JP3587208B1 - Stereolithography processing reference correction method and stereolithography device - Google Patents

Stereolithography processing reference correction method and stereolithography device Download PDF

Info

Publication number
JP3587208B1
JP3587208B1 JP2003368151A JP2003368151A JP3587208B1 JP 3587208 B1 JP3587208 B1 JP 3587208B1 JP 2003368151 A JP2003368151 A JP 2003368151A JP 2003368151 A JP2003368151 A JP 2003368151A JP 3587208 B1 JP3587208 B1 JP 3587208B1
Authority
JP
Japan
Prior art keywords
light beam
mark
cutting
layer
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003368151A
Other languages
Japanese (ja)
Other versions
JP2005133120A (en
Inventor
喜万 東
諭 阿部
裕彦 峠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003368151A priority Critical patent/JP3587208B1/en
Application granted granted Critical
Publication of JP3587208B1 publication Critical patent/JP3587208B1/en
Publication of JP2005133120A publication Critical patent/JP2005133120A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting

Abstract

【課題】切削座標系と光ビーム座標系とを一致させる補正を簡便に且つ的確に行う。
【解決手段】粉末材料の層の所定箇所への光ビームの照射で該当個所の粉末を焼結して焼結層を形成することを繰り返すとともに、焼結層の形成後にそれまでに作成した造形物の表面部及びまたは不要部分の切削除去を行う工程を複数回の焼結層の作成工程中に挿入して造形物を製造するにあたり、光ビームの照射面にセットした較正板6上の予め定めたポイントに対し、切削手段によるマーク60と、光ビーム照射手段によるマーク61との付与を行い、切削手段及び光ビーム照射手段の制御を行う制御装置は、マーク60,61の位置測定手段から得られた両種マークの位置ずれ量に基づいて切削位置または光ビーム照射位置を補正する。実際に切削加工及び光ビーム照射を行うことでエンドエフェクタである切削用の刃先の位置を基準に光ビームの照射位置を合わせる補正を行う。
【選択図】図1
An object of the present invention is to simply and accurately perform correction for matching a cutting coordinate system with a light beam coordinate system.
SOLUTION: The sintering of a powder at a predetermined portion of a layer of a powder material by irradiating a light beam to a predetermined portion thereof to form a sintered layer is repeated, and the molding formed up to that time after the formation of the sintered layer In manufacturing a molded article by inserting a step of cutting and removing a surface part and / or an unnecessary part of the object during a plurality of processes of forming a sintered layer, a calibration plate 6 set on a light beam irradiation surface in advance is manufactured. The control device that gives the mark 60 by the cutting means and the mark 61 by the light beam irradiating means to the determined point, and controls the cutting means and the light beam irradiating means, The cutting position or the light beam irradiation position is corrected based on the obtained positional deviation amount of the two kinds of marks. By actually performing the cutting and the light beam irradiation, a correction for adjusting the light beam irradiation position based on the position of the cutting edge, which is an end effector, is performed.
[Selection diagram] Fig. 1

Description

本発明は粉末材料を光ビームで焼結硬化させることで三次元形状造形物を製造する光造形に際しての加工基準補正方法及び光造形装置に関するものである。   The present invention relates to a method for correcting a processing standard and a stereolithography apparatus for stereolithography in which a three-dimensional shaped object is manufactured by sintering and hardening a powder material with a light beam.

光造形法として知られている三次元形状造形物の製造方法がある。特許第2620353号(特許文献1)などに示された該製造方法は、無機質あるいは有機質の粉末材料の層の所定箇所に光ビームを照射して該当個所の粉末を焼結(融着)することで焼結層を形成し、この焼結層の上に粉末材料の新たな層を被覆して該粉末層の所定箇所に光ビームを照射して該当個所の粉末を焼結することで下層の焼結層と一体になった新たな焼結層を形成するということを繰り返すことで、複数の焼結層が積層一体化された粉末焼結部品(三次元形状造形物)を作成するものであり、三次元形状造形物の設計データ(CADデータ)であるモデルを所望の層厚みにスライスして生成する各層の断面形状データをもとに光ビームを照射することから、いわゆるCAM装置が無くとも任意形状の三次元形状造形物を製造することができるほか、切削加工などによる製造方法に比して、迅速に所望の形状の造形物を得ることができる。   There is a method of manufacturing a three-dimensionally shaped object known as an optical molding method. The manufacturing method disclosed in Japanese Patent No. 2620353 (Patent Document 1) irradiates a predetermined portion of a layer of an inorganic or organic powder material with a light beam and sinters (fuses) the powder at the corresponding portion. To form a sintered layer, a new layer of powdered material is coated on the sintered layer, and a predetermined portion of the powder layer is irradiated with a light beam to sinter the powder at the corresponding location to form a lower layer. By repeating the process of forming a new sintered layer integrated with the sintered layer, a powder sintered part (three-dimensional shaped object) in which multiple sintered layers are laminated and integrated is created. There is no so-called CAM device because a light beam is radiated based on the cross-sectional shape data of each layer generated by slicing a model, which is design data (CAD data) of a three-dimensional molded object, to a desired layer thickness. Manufactures three-dimensional shaped objects with arbitrary shapes Guests can be collected by, in comparison with the manufacturing process such as by cutting, it is possible to obtain a molded article rapidly desired shape.

ところで、光ビームを照射して焼結硬化させた部分の周囲には伝達された熱が原因となって不要な粉末が付着するものであり、該付着粉末は密度の低い表面層を造形物に形成してしまう。この密度の低い表面層を除去して滑らかな表面の三次元形状造形物を得るために、本出願人は特開2002−115004号(特許文献2)において、焼結層の形成後にそれまでに作成した造形物の表面部及びまたは不要部分の切削除去を行う工程を複数回の焼結層の作成工程中に挿入することを提案した。この場合、焼結層の作成と造形物の表面部及びまたは不要部分の除去を繰り返し行うことで、切削用工具の刃長などの制約を受けることなく表面を仕上げることができる。   By the way, unnecessary powder adheres to the periphery of the portion which is sintered and hardened by irradiating the light beam, and the adhered powder forms a low-density surface layer on a molded article due to the transmitted heat. Will form. In order to remove the low-density surface layer and obtain a three-dimensional shaped object having a smooth surface, the present applicant disclosed in Japanese Patent Application Laid-Open No. 2002-115004 (Patent Document 2) It has been proposed to insert a process of cutting and removing the surface portion and / or unnecessary portion of the formed object into the process of forming the sintered layer a plurality of times. In this case, by repeatedly performing the creation of the sintered layer and the removal of the surface portion and / or unnecessary portions of the modeled object, the surface can be finished without being restricted by the blade length of the cutting tool.

ここにおいて、上記焼結のための光ビーム照射手段の光ビーム座標系K1は、図17(a)に示すように、その走査領域が光造形のための造形タンク内に納まっておればよいが、この造形タンク25内で造形される造形物に対して造形タンク25内で切削除去加工も行う場合、図17(b)に示すように切削手段の切削除去座標系K2と光ビーム座標系K1とがずれていると、造形物を正しく切削加工することができないために、造形を始めるにあたり、まず両座標系K1,K2を一致させなくてはならない。   Here, as shown in FIG. 17A, the light beam coordinate system K1 of the light beam irradiating means for sintering may be such that its scanning area is contained in a modeling tank for optical modeling. When cutting and removing processing is performed in the modeling tank 25 on the shaped object formed in the modeling tank 25, as shown in FIG. 17B, the cutting and removing coordinate system K2 and the light beam coordinate system K1 of the cutting means are used. If it is deviated, the molded object cannot be cut properly, so that the coordinate systems K1 and K2 must be matched before starting the modeling.

また、光ビーム照射手段は、一般にスキャン光学系を有するものとして構成されているが、このような光学系を含んでいるということは、光学系が持つピンクッションエラーや、スキャン光学系の鏡の取付位置と傾き、経時変化などによる照射位置誤差などで、図18に示すように、狙った照射位置S1に対して実際の照射位置S2がずれている場合があるということであり、この点に関する補正も必要である。
特許第2620353号公報 特開2002−115004号公報
The light beam irradiating means is generally configured as having a scanning optical system, but including such an optical system means that a pin cushion error of the optical system or a mirror of the scanning optical system is required. As shown in FIG. 18, there is a case where the actual irradiation position S2 is deviated from the target irradiation position S1 due to the mounting position, inclination, irradiation position error due to aging, and the like. Correction is also needed.
Japanese Patent No. 2620353 JP 2002-115004 A

本発明は上記の点に鑑みて発明したものであって、切削座標系と光ビーム座標系とを一致させる補正及び光ビーム照射手段の照射位置誤差の補正を簡便に且つ的確に行うことができる光造形用加工基準補正方法及び光造形装置を提供することを課題とするものである。   The present invention has been made in view of the above points, and can easily and accurately perform correction for matching a cutting coordinate system with a light beam coordinate system and correction of an irradiation position error of a light beam irradiation unit. An object of the present invention is to provide an optical modeling processing reference correction method and an optical modeling apparatus.

上記課題を解決するために本発明に係る光造形用加工基準補正方法は、粉末材料の層の所定箇所への光ビームの照射で該当個所の粉末を焼結して焼結層を形成し、この焼結層の上に粉末材料の新たな層を被覆して該粉末層の所定箇所への光ビームの照射で該当個所の粉末を焼結して下層の焼結層と一体になった新たな焼結層を形成することを繰り返すとともに、焼結層の形成後にそれまでに作成した造形物の表面部及びまたは不要部分の切削除去を行う工程を複数回の焼結層の作成工程中に挿入して造形物を製造するにあたり、光ビームの照射面にセットした較正板上の予め定めたポイントに対し、上記切削除去のための切削手段によるマークと、上記光ビームを照射する光ビーム照射手段によるマークとの付与を行い、切削手段及び光ビーム照射手段の制御を行う制御装置は、上記両種マークの位置を測定する測定手段から得られた両種マークの位置ずれ量に基づいて切削位置または光ビーム照射位置の補正を行うことに特徴を有している。切削座標系と光ビーム座標系との較正作業を自動化できる上に、実際に切削加工及び光ビーム照射を行うことでエンドエフェクタである切削用の刃先の位置を基準に光ビームの照射位置を合わせる補正を行うことができる。   In order to solve the above problems, the stereolithography processing reference correction method according to the present invention is to form a sintered layer by sintering the powder at a corresponding location by irradiating a light beam to a predetermined location of the layer of the powder material, A new layer of a powder material is coated on the sintered layer, and a predetermined portion of the powder layer is irradiated with a light beam to sinter the powder at a corresponding location to be integrated with the lower sintered layer. The process of cutting and removing the surface part and / or unnecessary part of the modeled object created so far after the formation of the sintered layer is repeated multiple times during the process of forming the sintered layer. In manufacturing a molded article by inserting the mark, a predetermined point on the calibration plate set on the irradiation surface of the light beam, a mark by the cutting means for the cutting removal, and a light beam irradiation for irradiating the light beam Means and the cutting means and light beam The control device for controlling the irradiating means is characterized in that the cutting position or the light beam irradiation position is corrected based on the displacement between the two kinds of marks obtained from the measuring means for measuring the position of the two kinds of marks. Have. The calibration work between the cutting coordinate system and the light beam coordinate system can be automated, and by actually performing cutting and light beam irradiation, the irradiation position of the light beam is adjusted based on the position of the cutting edge which is an end effector. Corrections can be made.

切削手段によるマークと光ビーム照射手段によるマークとを異なる較正板に対して付与して切削手段によるマークと光ビーム照射手段によるマークとを誤認する虞がなくなるようにしてもよく、この場合、較正板の位置決めを行った後、マークの付与及びマーク位置測定を行ったり、切削手段にてマークを付与する較正板と光ビーム照射手段にてマークを付与する較正板とに、切削手段にて基準マークを別途付与することで、較正板を取り出してから位置測定を行う場合にも位置ずれ量を適切に測定することができる。   The mark by the cutting means and the mark by the light beam irradiating means may be given to different calibration plates so that there is no possibility of misidentifying the mark by the cutting means and the mark by the light beam irradiating means. After the positioning of the plate, the mark is applied and the mark position is measured.The calibration plate that applies the mark by the cutting unit and the calibration plate that applies the mark by the light beam irradiation unit are referenced by the cutting unit. By separately providing the mark, even when the position measurement is performed after the calibration plate is taken out, the position shift amount can be appropriately measured.

粉末材料の層の所定箇所への光ビームの照射で該当個所の粉末を焼結して焼結層を形成し、この焼結層の上に粉末材料の新たな層を被覆して該粉末層の所定箇所への光ビームの照射で該当個所の粉末を焼結して下層の焼結層と一体になった新たな焼結層を形成することを繰り返すとともに、焼結層の形成後にそれまでに作成した造形物の表面部及びまたは不要部分の切削除去を行う工程を複数回の焼結層の作成工程中に挿入して造形物を製造するにあたり、撮像手段と画像処理手段とで構成された測定手段における撮像手段を上記切削除去のための切削手段に設けて切削手段と撮像手段との位置関係を一定とし、光ビームの照射面にセットした較正板に対し、上記撮像手段の撮像位置として規定された較正点に光ビーム照射手段でマークを付与し、撮像手段による撮像画像から該画像中の基準点とマークの画像とのずれ量を算出して、得られたずれ量に基づいて光ビーム照射位置の補正を行うようにしてもよい。この場合、切削手段による切削動作を行う必要がないために、更に簡便に補正を行うことができる。   By irradiating a predetermined portion of the layer of the powder material with a light beam, the powder at the corresponding location is sintered to form a sintered layer, and a new layer of the powder material is coated on the sintered layer to form a powder layer. Sintering the powder at the corresponding location by irradiating the light beam to the predetermined location to form a new sintered layer integrated with the lower sintered layer, and after forming the sintered layer, When manufacturing a model by inserting a step of cutting and removing a surface portion and / or an unnecessary portion of the model formed in a plurality of processes of forming a sintered layer, the process includes imaging means and image processing means. The imaging means in the measuring means is provided in the cutting means for removing the cutting so that the positional relationship between the cutting means and the imaging means is constant, and the imaging position of the imaging means with respect to the calibration plate set on the light beam irradiation surface. Mark the calibration points specified as And calculates the shift amount between the reference point and the mark of the image in the image from the image captured by the imaging means, may be performed to correct the light beam irradiation position based on the obtained amount of deviation. In this case, since it is not necessary to perform the cutting operation by the cutting means, the correction can be performed more easily.

いずれにしても、上記較正板に対する光ビーム照射手段によるマークの付与は、粉末層の焼結時と同じパワーで行うことが、光ビーム照射装置の光学系の熱影響による変動を含めた補正を行うことができる。   In any case, the addition of the mark to the calibration plate by the light beam irradiating means can be performed with the same power as that at the time of sintering of the powder layer. It can be carried out.

また、光ビーム照射手段によるマークを十字形とする場合、撮像手段と画像処理手段とで構成された測定手段は、十字形マークにおける直交する2線の濃淡処理にて濃淡境界線を求めて、濃淡境界線から上記2線の各中央を通る2つの直線を求め、この2つの直線の交点をマークの中心とすると、十字形マークの中心位置を簡便に且つ的確に求めることができる。   When the mark formed by the light beam irradiating unit has a cross shape, the measuring unit configured by the imaging unit and the image processing unit obtains a shading boundary line by shading two orthogonal lines in the cross mark, If two straight lines passing through the centers of the two lines are determined from the shading boundary line and the intersection of the two straight lines is set as the center of the mark, the center position of the cross mark can be easily and accurately determined.

また、較正板上のマークの付与が可能なエリアの外辺に形成するマークの形状を、
較正板上のマークの付与が可能なエリアの外辺に形成するマークの形状を、L字形またはT字形とすると、補正データを得ることができるエリアを最大限にとることができる。
In addition, the shape of the mark formed on the outer side of the area on the calibration plate where the mark can be provided,
If the shape of the mark formed on the outer side of the area on the calibration plate where the mark can be provided is L-shaped or T-shaped, the area where the correction data can be obtained can be maximized.

また、較正板に対するマークの付与とマークの位置ずれ量に基づく補正とを繰り返して行うとともに、マークを付与するポイントの数を減らしていくと、精度を保ちつつ処理に必要な時間を短縮することができる。   In addition, by repeatedly performing the addition of the mark to the calibration plate and the correction based on the amount of displacement of the mark, and reducing the number of points to which the mark is applied, it is possible to shorten the time required for processing while maintaining accuracy. Can be.

そして本発明に係る光造形装置は、粉末の層を形成する粉末層形成手段と、最上層の粉末層の所定箇所に光ビームを照射して該当箇所の粉末を焼結させて焼結層を形成する光ビーム照射手段と、焼結層の形成後にそれまでに作製した造形物の表面部及びまたは不要部分の切削除去を行う切削手段と、これら粉末層形成手段と光ビーム照射手段と切削手段とを制御する制御手段とを備えるとともに、光ビームの照射面にセットした較正板上の予め定めたポイントに上記切削手段で付与されたマークと、上記光ビーム照射手段で付与されたマークの2種のマークの位置を測定する測定手段を備えており、上記制御手段では測定手段で得られた2種のマークの位置ずれ量に基づいて切削手段による切削位置または光ビーム照射手段による光ビーム照射位置の補正を行うものであることに特徴を有しており、また、粉末の層を形成する粉末層形成手段と、最上層の粉末層の所定箇所に光ビームを照射して該当箇所の粉末を焼結させて焼結層を形成する光ビーム照射手段と、焼結層の形成後にそれまでに作製した造形物の表面部及びまたは不要部分の切削除去を行う切削手段と、これら粉末層形成手段と光ビーム照射手段と切削手段とを制御する制御手段とを備えるとともに、光ビームの照射面にセットした較正板上の複数のポイントに上記光ビーム照射手段で付与されたマークの位置を測定する測定手段を備え、撮像手段と画像処理手段とで構成された上記測定手段における撮像手段は、切削手段に設けられて切削手段と撮像手段との位置関係が一定とされているとともに上記複数のポイントは撮像手段の撮像位置として規定されており、上記制御手段は撮像手段による撮像画像中の基準点とマークの画像とのずれ量に基づいて光ビーム照射手段による光ビーム照射位置の補正を行うものであることに他の特徴を有している。   Then, the optical shaping apparatus according to the present invention comprises a powder layer forming means for forming a layer of powder, and irradiating a predetermined portion of the uppermost powder layer with a light beam to sinter the powder at the corresponding portion to form a sintered layer. Light beam irradiating means to be formed, cutting means for cutting and removing the surface portion and / or unnecessary portion of the modeled object produced so far after the formation of the sintered layer, powder layer forming means, light beam irradiating means and cutting means And a mark provided by the cutting means at a predetermined point on the calibration plate set on the light beam irradiation surface, and a mark provided by the light beam irradiation means. Measuring means for measuring the position of the seed mark; and the control means controls the cutting position by the cutting means or the light beam irradiation by the light beam irradiating means based on the positional deviation of the two marks obtained by the measuring means. It is characterized in that the position is corrected, and a powder layer forming means for forming a layer of powder; Light beam irradiation means for sintering to form a sintered layer, cutting means for cutting and removing the surface portion and / or unnecessary portion of the modeled object produced so far after forming the sintered layer, and forming these powder layers Means for controlling the light beam irradiation means and the cutting means, and measuring the positions of the marks provided by the light beam irradiation means at a plurality of points on the calibration plate set on the light beam irradiation surface. The imaging means in the measurement means constituted by the imaging means and the image processing means is provided in the cutting means, the positional relationship between the cutting means and the imaging means is fixed, and the plurality of Poin Is defined as the imaging position of the imaging means, and the control means corrects the light beam irradiation position by the light beam irradiation means based on the shift amount between the reference point and the mark image in the image taken by the imaging means. Has other characteristics.

本発明は、切削座標系と光ビーム座標系との較正のための補正を自動化することができて、切削を伴う光造形による造形品の製造を正確に行うことができるものであり、しかも実際に切削加工及び光ビーム照射を較正板に対して行ってエンドエフェクタである切削用の刃先の位置を基準に光ビームの照射位置を合わせる補正を行うために、切削座標系と光ビーム座標系とを一致させる補正を精度良く行うことができるとともに、この時、光ビーム照射手段の照射位置誤差の補正もなされてしまうものである。   The present invention can automate the correction for the calibration of the cutting coordinate system and the light beam coordinate system, and can accurately manufacture a molded article by optical molding with cutting, and moreover The cutting coordinate system and the light beam coordinate system are used to perform cutting and light beam irradiation on the calibration plate to correct the light beam irradiation position based on the position of the cutting edge which is the end effector. Can be performed with high accuracy, and at this time, the irradiation position error of the light beam irradiation means is also corrected.

以下本発明を実施の形態の一例に基づいて詳述すると、図14及び図15に示す光造形装置は、粉末層形成手段2と光ビーム照射手段3と切削手段4と撮像手段5及び制御装置Cで構成されているもので、上記粉末層形成手段2は、造形タンク25内をシリンダー駆動で上下に昇降するステージ20上に粉末タンク23内の粉末をスキージング用ブレード21で供給するとともに均すことで所定厚みΔtの粉末層10をステージ20上に形成するものとして構成されている。   Hereinafter, the present invention will be described in detail based on an example of an embodiment. The optical forming apparatus shown in FIGS. 14 and 15 includes a powder layer forming unit 2, a light beam irradiation unit 3, a cutting unit 4, an imaging unit 5, and a control unit. The powder layer forming means 2 supplies the powder in the powder tank 23 with a squeezing blade 21 onto a stage 20 that moves up and down in a molding tank 25 by driving a cylinder. Thus, the powder layer 10 having a predetermined thickness Δt is formed on the stage 20.

光ビーム照射手段3は、レーザー発振器30から出力されたレーザーをスポット径及び焦点位置調節用光学系32とガルバノミラー等のスキャン光学系31とを介して上記粉末層10に照射する。   The light beam irradiating means 3 irradiates the laser beam output from the laser oscillator 30 to the powder layer 10 via an optical system 32 for adjusting a spot diameter and a focal position and a scanning optical system 31 such as a galvanometer mirror.

切削手段4は上記粉末層形成手段2のベース部にXY駆動機構40を介してミーリングヘッド41を設けたものとして構成されている。また、XY駆動機構40にはミーリングヘッド41に並ぶ形でCCD等で構成された撮像手段5が配設されている。図14中のSは光ビームの発振と偏向及び焦点制御を行う偏向制御装置、Dは撮像手段5で得られた画像の処理のための画像処理装置であり、撮像手段5と画像処理装置Dとで本発明における測定手段が構成されている。   The cutting means 4 is configured such that a milling head 41 is provided on the base portion of the powder layer forming means 2 via an XY drive mechanism 40. Further, the XY drive mechanism 40 is provided with an image pickup means 5 formed of a CCD or the like in a form arranged in line with the milling head 41. In FIG. 14, S is a deflection control device for controlling the oscillation, deflection and focus of the light beam, and D is an image processing device for processing the image obtained by the imaging means 5, and the imaging means 5 and the image processing device D These constitute the measuring means in the present invention.

このものにおける三次元形状の造形物の造形は、図15(a)に示すように、ステージ20上面の造形用ベース22表面に粉末タンク23からステージ24の上昇で溢れさせた粉末をブレード21で供給すると同時にブレード21で均すことで第1層目の粉末層10を形成し、この粉末層10の硬化させたい箇所に光ビーム(レーザー)Lを照射して粉末を焼結させてベース22と一体化した焼結層11を形成する。この後、ステージ20を少し下げて再度粉末を供給してブレード21で均すことで第1層目の粉末層10(と焼結層11)の上に第2層目の粉末層10を形成し、この第2層目の粉末層10の硬化させたい箇所に光ビーム(レーザー)Lを照射して粉末を焼結させて下層の焼結層11と一体化した焼結層11を形成する。   As shown in FIG. 15 (a), the three-dimensional shaped object is formed by using a blade 21 to apply the powder overflowing from the powder tank 23 to the surface of the molding base 22 on the upper surface of the stage 20 by raising the stage 24. At the same time as the supply, the first powder layer 10 is formed by leveling with a blade 21, and a light beam (laser) L is applied to a portion of the powder layer 10 where the powder layer 10 is to be cured to sinter the powder to form a base 22 To form a sintered layer 11 integrated with the above. Thereafter, the stage 20 is slightly lowered, and the powder is supplied again and leveled by the blade 21 to form the second powder layer 10 on the first powder layer 10 (and the sintered layer 11). Then, a light beam (laser) L is applied to a portion of the second powder layer 10 to be hardened to sinter the powder to form a sintered layer 11 integrated with the lower sintered layer 11. .

ステージ20を下降させて新たな粉末層10を形成し、光ビームLを照射して所要箇所を焼結層11とする工程を繰り返すことで、焼結層の積層物として目的とする造形物を製造するものであるが、前述のように焼結層11の全厚みがたとえば切削手段4におけるミーリングヘッド41の工具の刃長などから求めた所要の値になれば、図15(b)に示すようにいったん切削手段4を作動させてそれまでに造形した造形物の表面を切削することで、造形物表面に付着した粉末による過剰焼結部としての低密度表面層を除去して造形物表面に密度が高い部分を全面的に露出させる。切削手段4の工具が直径1mm、有効刃長(首下長さ)3mmで深さ3mmの切削加工が可能であり、粉末層10の厚みが0.05mmであるならば、焼結層11の形成時に過剰焼結部が0.1mm〜0.5mmほど垂れ下がって生じることから、たとえば40層の焼結層11を積層する毎に切削手段4を作動させ、前回の切削除去で一度切削したところも1mmほどオーバーラップさせて切削することが好ましい。   By lowering the stage 20 to form a new powder layer 10 and irradiating the light beam L to turn the required portion into the sintered layer 11, a desired shaped object as a laminate of sintered layers is obtained. As described above, if the total thickness of the sintered layer 11 becomes a required value obtained from the cutting edge length of the tool of the milling head 41 in the cutting means 4 as described above, as shown in FIG. As described above, the cutting means 4 is once operated to cut the surface of the modeled object so far, thereby removing the low-density surface layer as an excessively sintered portion due to the powder attached to the surface of the modeled object, and removing the surface of the modeled object. The high-density portion is entirely exposed. If the tool of the cutting means 4 can perform cutting with a diameter of 1 mm, an effective blade length (length under the neck) of 3 mm and a depth of 3 mm, and the thickness of the powder layer 10 is 0.05 mm, Since the excessively sintered portion hangs down by about 0.1 mm to 0.5 mm at the time of forming, for example, the cutting means 4 is operated every time the 40 sintered layers 11 are laminated, and the cutting is performed once in the previous cutting and removing. It is also preferable to cut by overlapping about 1 mm.

ここにおいて、前述のように、光ビーム座標系と切削座標系とが一致していなくては光ビームの照射による焼結で得た造形物の表面のみを切削手段4で切削して除去することはできないことから、造形を始めるにあたっては、まず上記両座標系を一致させなくてはならないが、ここでは切削手段4がXY機構40でミーリングヘッド41の位置を制御していることと、光ビームがスキャン光学系31で照射位置制御されていることから、補正が容易な光ビーム座標系を切削座標系に合わせる補正を行うものとし、補正値は次のようにして求めている。   Here, as described above, if the light beam coordinate system does not match the cutting coordinate system, only the surface of the modeled object obtained by sintering by light beam irradiation is removed by cutting with the cutting means 4. Before starting modeling, the two coordinate systems must first be matched, but here, the cutting means 4 controls the position of the milling head 41 by the XY mechanism 40 and the light beam Since the irradiation position is controlled by the scanning optical system 31, it is assumed that correction is performed so that the light beam coordinate system, which can be easily corrected, matches the cutting coordinate system, and the correction value is obtained as follows.

すなわち、光造形を開始するに先立ち、図2に示すように、造形タンク25のステージ20上に較正板6を配置し、この較正板6の上面がスキージング用のブレード21の移動面と一致するように高さを合わせる。そして、図1に示すように、切削手段4によって較正点として予め設定されている複数ポイントに対して切削動作を行うことで切削痕としてのマーク60を較正板6に形成する。次いで、光ビーム照射手段3によって上記と同じ複数ポイントに対して光ビームを照射して較正板6にマーク61を形成する。   That is, prior to the start of stereolithography, as shown in FIG. 2, the calibration plate 6 is arranged on the stage 20 of the modeling tank 25, and the upper surface of the calibration plate 6 coincides with the moving surface of the squeezing blade 21. Adjust the height as you do. Then, as shown in FIG. 1, the cutting means 4 performs a cutting operation on a plurality of points set in advance as calibration points, thereby forming marks 60 as cutting marks on the calibration plate 6. Next, the same plural points as described above are irradiated with a light beam by the light beam irradiation means 3 to form a mark 61 on the calibration plate 6.

夫々の座標系の基に同じポイントにマーク60,61を付すことから、光ビーム座標系K1と切削座標系K2とが一致しておれば、マーク60,61は較正板6上の同じ位置に来るが、両座標系K1,K2がずれておれば、マーク60,61はずれた位置に付されることになる。   Since the marks 60 and 61 are attached to the same point based on the respective coordinate systems, if the light beam coordinate system K1 and the cutting coordinate system K2 match, the marks 60 and 61 are located at the same position on the calibration plate 6. However, if the two coordinate systems K1 and K2 are displaced, the marks 60 and 61 will be placed at positions deviated.

従って、切削座標系K2に基づいて複数ポイントに形成されたマーク60と、光ビーム座標系K1に基づいて同じ複数ポイントに形成されたマーク61とを前述の撮像手段5を用いて撮像して、得られた画像を処理することで、各ポイントにおけるマーク60の位置に対し、マーク61がずれているかどうかを判定するとともに、ずれている場合にはそのずれ量(Δx,Δy)を算出して該ずれ量に基づいて光ビーム照射位置の補正データ(光ビーム座標系K1の切削座標系K2に対する補正データ)を作成する。マーク60,61の形成と撮像と補正処理とは、マーク60,61間の位置ずれ量が所定の値以下になるまで繰り返すことが好ましい。   Therefore, the mark 60 formed at a plurality of points based on the cutting coordinate system K2 and the mark 61 formed at the same plurality of points based on the light beam coordinate system K1 are imaged using the above-described imaging unit 5, and By processing the obtained image, it is determined whether or not the mark 61 is shifted with respect to the position of the mark 60 at each point, and if so, the shift amount (Δx, Δy) is calculated. Correction data of the light beam irradiation position (correction data of the light beam coordinate system K1 with respect to the cutting coordinate system K2) is created based on the shift amount. The formation of the marks 60 and 61, the imaging, and the correction processing are preferably repeated until the amount of displacement between the marks 60 and 61 becomes equal to or less than a predetermined value.

この時、マーク60,61を付すポイントの数を多く設定すれば、光ビーム座標系K1と切削座標系K2とを一致させるだけでなく、光ビーム照射手段3のスキャン光学系31等に起因する照射位置誤差についての補正も同時になされることになる。   At this time, if the number of points to which the marks 60 and 61 are added is set to be large, not only does the light beam coordinate system K1 match the cutting coordinate system K2, but also the scan optical system 31 of the light beam irradiation means 3 and the like. The correction for the irradiation position error is also made at the same time.

ここで、切削手段4によるマーク(切削痕)60は円形とするとよい。切削手段4にはエンドミルを好適に用いることができるが、これだと円形の切削痕を容易に形成することができる。また、円形のマーク60であれば、画像処理に際してエッジを通る円の中心としてマーク60の中心を容易に算出することができる。   Here, the mark (cut mark) 60 by the cutting means 4 may be circular. Although an end mill can be suitably used as the cutting means 4, a circular cutting mark can be easily formed with this. In the case of a circular mark 60, the center of the mark 60 can be easily calculated as the center of a circle passing through the edge during image processing.

一方、光ビームによるマーク61については、切削痕であるマーク60と異なる形状のものとするのが好ましい。画像処理上においてマーク60との識別を簡便に行うことができるからであり、マーク60を円形とする時、マーク61には十字形を好適に用いることができる。画像処理上での十字形のマーク61の中心点の算出は、図3に示すように、十字を構成する2つの線に対して濃淡値が急激に変化するところを夫々複数点求めることで、左側境界線61Lと右側境界線61Rと上側境界線61Uと下側境界線61Dを近似直線として求め、次いで左側境界線61Lと右側境界線61Rの中間直線61Y及び上側境界線61Uと下側境界線61Dの中間直線61Xを求めて、両中間直線61X,61Yの交点を求めることで行えばよい。   On the other hand, it is preferable that the mark 61 formed by the light beam has a shape different from that of the mark 60 which is a cutting mark. This is because identification with the mark 60 can be easily performed in image processing. When the mark 60 is circular, a cross shape can be suitably used for the mark 61. As shown in FIG. 3, the calculation of the center point of the cross-shaped mark 61 in the image processing is performed by obtaining a plurality of points where the gray value changes abruptly with respect to two lines forming the cross. The left boundary line 61L, the right boundary line 61R, the upper boundary line 61U, and the lower boundary line 61D are determined as approximate straight lines, and then the intermediate straight line 61Y between the left boundary line 61L and the right boundary line 61R, and the upper boundary line 61U and the lower boundary line. What is necessary is just to obtain | require the intermediate | middle straight line 61X of 61D, and obtain | require the intersection of both intermediate | middle straight lines 61X and 61Y.

なお、較正板6に感熱紙や特定の波長に反応する感光紙を貼り付けたガラス板のような板状材を用い場合、マーク61は光ビームLのパワーを造形時よりも低くして形成することになるが、較正板6としてアクリル板や黒アルマイト処理したアルミニウム板を用いた場合、造形時と同じパワーの光ビームLでマーク61を形成することができ、この場合、光ビーム照射手段3における光学系の熱影響による変動を含めた較正を行うことができる。ちなみに、較正板6としてアクリル板を用いた場合、マーク61は図4(a)に示す断面形状の溝として形成され、黒アルマイト処理したアルミニウム板を用いた場合、マーク61は図4(b)に示すようにアルマイト処理層65が除去されたものとして形成される。   When using a plate-like material such as a heat-sensitive paper or a glass plate on which a photosensitive paper reacting to a specific wavelength is attached to the calibration plate 6, the mark 61 is formed by lowering the power of the light beam L than at the time of molding. However, when an acrylic plate or a black alumite-treated aluminum plate is used as the calibration plate 6, the mark 61 can be formed with the light beam L having the same power as at the time of modeling. Calibration including the fluctuation due to the thermal effect of the optical system in 3 can be performed. Incidentally, when an acrylic plate is used as the calibration plate 6, the mark 61 is formed as a groove having a sectional shape shown in FIG. 4A, and when an aluminum plate subjected to black alumite treatment is used, the mark 61 is formed as shown in FIG. As shown in FIG. 5, the alumite treatment layer 65 is formed as removed.

ちなみに、光ビームLが炭酸ガスレーザであり、造形時の焼結パワー(例えば300W)でマーク61を形成する場合、できるだけ集光させた状態で撮像手段5のカメラ視野内に納まる大きさで且つ細かい十字マークを加工し、十字を構成する溝の溝幅を画像から計測してその中心線から十字マークの中心を求めるものとする。このような加工とすることで、撮像手段5の分解能を有効に使用することができる。   Incidentally, when the light beam L is a carbon dioxide gas laser and the mark 61 is formed by sintering power (for example, 300 W) at the time of molding, the mark 61 is small and small enough to fit within the camera field of view of the imaging means 5 in a state where light is condensed as much as possible. The cross mark is processed, the groove width of the groove forming the cross is measured from the image, and the center of the cross mark is determined from the center line. With such processing, the resolution of the imaging unit 5 can be used effectively.

ところで、各ポイントにおける両種マーク60,61が完全に重なっておれば、切削系の座標系K2とレーザ系の座標系K1とが一致していることになるが、両種マーク60,61が重なっていると、マーク60,61の形状によってはマーク61(もしくはマーク60)が判別しづらくなる場合がある。このような時には、切削手段4によるマーク60を先に形成する場合、マーク60の位置測定の後にマーク61を形成するようにしてもよい。   By the way, if the two kinds of marks 60 and 61 at each point are completely overlapped, it means that the coordinate system K2 of the cutting system and the coordinate system K1 of the laser system are coincident. If they overlap, the mark 61 (or the mark 60) may be difficult to distinguish depending on the shapes of the marks 60,61. In such a case, when the mark 60 is formed first by the cutting means 4, the mark 61 may be formed after the position measurement of the mark 60.

また、マーク60を形成するポイントに対してマーク61を形成するポイントを所定寸法だけオフセットさせたところとし、マーク61の測定位置からオフセット分を除いた位置で座標系が一致しているかどうかの判別を行うならば、両座標系が一致している時にもマーク60にマーク61が重ならないために、両者の判別が困難となるようなことがない。   Further, it is assumed that the point forming the mark 61 is offset from the point forming the mark 60 by a predetermined dimension, and it is determined whether or not the coordinate system matches at a position obtained by removing the offset from the measurement position of the mark 61. Is performed, the mark 61 does not overlap the mark 60 even when the two coordinate systems match, so that it is not difficult to distinguish between the two.

もっとも、マーク60が上記のように円形であり、マーク61が十字形である場合、十字形の中心は前述のように算出することから、十字形の交差部が円形のマーク60に重なっていても中心点の算出に問題が生じることはない。切削手段4によるマーク60の形状と、光ビームによるマーク61の形状は逆であってもよい。また、マーク60,61のいずれか一方を十字形とする場合でも、図5に示すように、複数ポイントのうちの最も外側に位置することについては、T字形やL字形を用いとよい。複数ポイントの配置エリアを光ビームの照射可能エリア(あるいはXY駆動機構40によるミーリングヘッド41の移動可能エリア)いっぱいに取ることができる。   However, when the mark 60 is circular as described above and the mark 61 is cross-shaped, the center of the cross is calculated as described above, so that the intersection of the cross overlaps with the circular mark 60. Also, there is no problem in calculating the center point. The shape of the mark 60 by the cutting means 4 and the shape of the mark 61 by the light beam may be reversed. Further, even when one of the marks 60 and 61 has a cross shape, as shown in FIG. 5, a T-shaped or L-shaped shape may be used for the outermost position among the plurality of points. The arrangement area of a plurality of points can be set to fill the entire area where the light beam can be irradiated (or the area where the milling head 41 can be moved by the XY drive mechanism 40).

なお、複数ポイントの配置エリアAは、図6に示すように、次に造形する造形物Pのサイズに応じたものとしてもよい。必要な箇所のみ補正するために時間短縮を図ることができる。造形物Pの作成位置の中点(重心)P0を中心として複数ポイントの配置エリアAを決定すれば、さらに時間短縮が可能である。   In addition, as shown in FIG. 6, the arrangement area A of a plurality of points may be determined according to the size of the modeled object P to be formed next. The time can be reduced because only necessary parts are corrected. If the arrangement area A of a plurality of points is determined around the midpoint (center of gravity) P0 of the creation position of the modeled object P, the time can be further reduced.

このほか、求めた補正量で補正を行った後、再度較正板6を用いて補正動作を繰り返す時、最初はマーク60,61間のずれが図7(a)に示すように大きくても、いったん補正を行った後の2度目は図9(b)に示すようにマーク60,61間のずれが微小であり、微調整レベルの補正で対応することができることから、2度目は複数ポイントの数を少なくしてマーク60,61の形成と測定及び補正を行うようにしてもよい。較正に要する時間の短縮を図ることができる。ただし、測定したポイントでのずれ量からマーク60,61の付与や測定を行わなかったポイントのずれ量を推定して、座標系の補正に供するようにすることが望ましい。   In addition, when the correction operation is repeated using the calibration plate 6 after performing the correction with the obtained correction amount, even if the deviation between the marks 60 and 61 is initially large as shown in FIG. The second time after the correction is performed once, the deviation between the marks 60 and 61 is very small as shown in FIG. 9B, and the correction can be made by correcting the fine adjustment level. The number of marks 60 and 61 may be reduced, and measurement and correction may be performed with a reduced number. The time required for calibration can be reduced. However, it is desirable to estimate the shift amount of the point where the marks 60 and 61 are not added or the measurement is not performed from the shift amount at the measured point, and to estimate the shift amount for the coordinate system.

また、最初からずれが少なくて微調整レベルの補正だけで対応することができることもあるために、最初の較正板6に対して形成された各マーク60,61の位置測定を行って補正動作を行う時、全ポイントにおける両者の位置ずれ量(偏差量)の平方の総和ΣΔの値を求め、再度較正板6にマーク60,61を形成して補正を行うにあたり、総和ΣΔの値が所定の閾値より大きければ、m個のポイントでマーク60,61の形成と測定とを行い、総和ΣΔの値が所定の閾値より小さければ、n(n<m)個のポイントでマーク60,61の形成と測定とを行うようにしてもよい。時間がかかるものの正確な補正データを得られる動作と、測定動作にかかる時間を短縮することとを、ずれ量に応じて自動で切り換えられるようにするのである。なお、この場合においても、マーク60,61の形成及び測定を行わなかったポイントでのずれ量を、マーク60,61の形成及び測定を行ったポイントでのずれ量から推定して、全ポイントでのずれ量から補正量を算出することが望ましい。   Further, since there is a case where the deviation is small from the beginning and the correction can be made only by the correction of the fine adjustment level, the position of each of the marks 60 and 61 formed on the first calibration plate 6 is measured to perform the correction operation. When performing the correction, the value of the sum ΣΔ of the squares of the positional deviation amounts (deviation amounts) of the two at all points is obtained, and when the marks 60 and 61 are formed again on the calibration plate 6 and the correction is performed, the value of the sum ΣΔ is a predetermined value. If the value is larger than the threshold value, the marks 60 and 61 are formed and measured at m points. If the value of the sum 総 Δ is smaller than a predetermined threshold value, the marks 60 and 61 are formed at n (n <m) points. And measurement may be performed. It is possible to automatically switch between the operation of obtaining accurate correction data although it takes time and the reduction of the time required for the measurement operation in accordance with the deviation amount. In this case as well, the shift amount at the point where the formation and measurement of the marks 60 and 61 are not performed is estimated from the shift amount at the point where the formation and measurement of the marks 60 and 61 are performed. It is desirable to calculate the amount of correction from the amount of deviation.

更に、求めた補正量で補正を行った後、再度較正板6を用いて補正動作を繰り返す時、較正板6を取り換えて、2度目のマーク60,61の形成や測定等を行うものを示したが、設定されている複数のポイントに対して、1回目と2回目とで異なるポイントを使用するようにすれば、較正板6の取り替えが不要となる。例えば図8に示すように、設定されている複数のポイント全てにマーク60を形成するものの、光ビームによるマーク61は一つおきのポイントに形成するものとし、2回目は1回目でマーク61を形成しなかったポイントについてマーク61を形成するのである。補正動作の繰り返しにあたり、較正板6の取り替えが不要となるために、補正に要する全体時間の短縮及び手間の削減を図ることができる。   Further, when the correction operation is repeated using the calibration plate 6 after performing the correction with the obtained correction amount, the calibration plate 6 is replaced to perform the second formation and measurement of the marks 60 and 61. However, if different points are used in the first and second times for a plurality of set points, replacement of the calibration plate 6 becomes unnecessary. For example, as shown in FIG. 8, the marks 60 are formed at all of a plurality of set points, but the marks 61 by the light beam are formed at every other point. The marks 61 are formed for the points not formed. Since it is not necessary to replace the calibration plate 6 when repeating the correction operation, it is possible to reduce the overall time and labor required for the correction.

さらに、複数のポイント全てにマーク60,61を形成するのではなく、たとえば図9に示すように、一つおきのポイントにマーク60,61を形成し、マーク60,61を形成しなかったポイントについては、その周囲のポイントに形成したマーク60,61の測定位置から直線近似で仮想マーク60’,61’の位置を求めることを、当初から行うようにしてもよい。   Furthermore, instead of forming the marks 60 and 61 at all of the plurality of points, for example, as shown in FIG. 9, the marks 60 and 61 are formed at every other point and the marks 60 and 61 are not formed. With respect to the above, the positions of the virtual marks 60 'and 61' may be obtained from the beginning by linear approximation from the measurement positions of the marks 60 and 61 formed at the surrounding points.

つまり、左右のマーク60,60の測定された位置が(ΔXa,ΔYa)、(ΔXb,ΔYb)であれば、その中間にある仮想マーク60’の位置(ΔXp,ΔYp)は(ΔXa+ΔXb,ΔYa+ΔYb)/2として仮定し、上下のマーク60,60の測定された位置が(ΔXa,ΔYa)、(ΔXd,ΔYd)であれば、その中間にある仮想マーク60’の位置(ΔXs,ΔYs)は(ΔXa+ΔXd,ΔYa+ΔYd)/2として仮定し、さらに仮想マーク60’(ΔXp,ΔYp)=(ΔXa+ΔXb,ΔYa+ΔYb)/2と仮想マーク60’(ΔXr,ΔYr)=(ΔXc+ΔXd,ΔYc+ΔYd)/2とが上下にあり且つ仮想マーク60’(ΔXs,ΔYs)=(ΔXa+ΔXd,ΔYa+ΔYd)/2と仮想マーク60’(ΔXq,ΔYq)=(ΔXb+ΔXc,ΔYb+ΔYc)/2とが左右にある仮想マーク60’(ΔXt,Yt)は、(ΔXa+ΔXb+ΔXc+ΔXd,ΔYa+ΔYb+ΔYc+ΔYd)/4と仮定するのである。   That is, if the measured positions of the left and right marks 60, 60 are (ΔXa, ΔYa) and (ΔXb, ΔYb), the position (ΔXp, ΔYp) of the intermediate virtual mark 60 ′ is (ΔXa + ΔXb, ΔYa + ΔYb) / 2, and if the measured positions of the upper and lower marks 60, 60 are (ΔXa, ΔYa) and (ΔXd, ΔYd), the position (ΔXs, ΔYs) of the virtual mark 60 ′ in the middle is ( Assuming that ΔXa + ΔXd, ΔYa + ΔYd) / 2, the virtual mark 60 ′ (ΔXp, ΔYp) = (ΔXa + ΔXb, ΔYa + ΔYb) / 2 and the virtual mark 60 ′ (ΔXr, ΔYr) = (ΔXc + ΔXd, ΔYc + ΔYd) / 2 are vertically shifted. And the virtual mark 60 ′ (ΔXs, ΔYs) = (ΔXa + ΔXd, ΔYa + ΔYd) / 2 and the virtual mark 60 ′ (ΔXq, ΔYq) = (ΔXb It is assumed that the virtual mark 60 ′ (ΔXt, Yt) having + ΔXc, ΔYb + ΔYc) / 2 on the left and right is (ΔXa + ΔXb + ΔXc + ΔXd, ΔYa + ΔYb + ΔYc + ΔYd) / 4.

このようにして、マーク60,61を形成しなかったポイントでのずれ量の推定値を求めれば、マーク60,61の形成数が少なくても、多くのポイントでのずれ量を得ることができるために、マーク60,61の形成に必要な時間及びその位置測定に必要な時間を短縮することができる。   In this manner, if the estimated value of the shift amount at the point where the marks 60 and 61 are not formed is obtained, the shift amount at many points can be obtained even if the number of marks 60 and 61 formed is small. Therefore, the time required for forming the marks 60 and 61 and the time required for measuring the position thereof can be reduced.

造形装置に付設した撮像手段5を用いることで、較正板6を造形用のステージ20に配した状態のままで撮像してその画像処理で較正板6上に形成されているマーク60,61の位置測定を行うものを示したが、較正板6をステージ20から外し、造形装置外で較正板6上のマーク60,61の位置測定を行うものであってもよい。マーク60に対するマーク61の位置ずれ量から、基準とした切削座標系K2に対する光ビーム座標系K1の補正値を求めるために、造形装置外でのマーク60,61の位置測定を行っても、問題なく補正量を求めることができる。また、ステージ20上に較正板6をセットする時の位置も適当でよい。   By using the imaging means 5 attached to the modeling device, the calibration plate 6 is imaged with the calibration plate 6 arranged on the modeling stage 20, and the marks 60 and 61 formed on the calibration plate 6 by the image processing are processed. Although the position measurement is performed, the calibration plate 6 may be removed from the stage 20 and the positions of the marks 60 and 61 on the calibration plate 6 may be measured outside the modeling apparatus. Even if the positions of the marks 60 and 61 are measured outside the modeling apparatus in order to obtain a correction value of the light beam coordinate system K1 with respect to the cutting coordinate system K2 as a reference from the displacement amount of the mark 61 with respect to the mark 60, Without any correction. Further, the position when the calibration plate 6 is set on the stage 20 may be appropriate.

図10に示すように、マーク60を施す較正板6aとは異なる較正板6bにマーク61を施すようにしてもよい。すなわち、ステージ20上に較正板6aをセットして切削手段4で予め設定された複数のポイントにマーク60を形成し、これらマーク60をXY駆動機構40に設けた撮像手段5で撮像して画像処理により位置を測定する。次いで上記較正板6aに代えて較正板6bをステージ20上にセットし、光ビーム照射手段3により予め設定された複数のポイントにマーク61を形成し、これらマーク61をXY駆動機構40に設けた撮像手段5で撮像して画像処理により位置を測定する。この時、撮像手段5はマーク60を撮影した時と同じ位置でマーク61の撮影を行う。   As shown in FIG. 10, the mark 61 may be provided on a calibration plate 6b different from the calibration plate 6a on which the mark 60 is provided. That is, the calibration plate 6 a is set on the stage 20, marks 60 are formed at a plurality of points set in advance by the cutting means 4, and these marks 60 are imaged by the imaging means 5 provided in the XY drive mechanism 40. The position is measured by processing. Next, the calibration plate 6b was set on the stage 20 in place of the calibration plate 6a, and marks 61 were formed at a plurality of points set in advance by the light beam irradiation means 3, and these marks 61 were provided on the XY drive mechanism 40. An image is taken by the image pickup means 5 and the position is measured by image processing. At this time, the imaging means 5 photographs the mark 61 at the same position as when the mark 60 was photographed.

次いで、各ポイント毎のマーク60の位置に対するマーク61の位置ずれ量(Δx,Δy)から光ビーム座標系K1の切削座標系K2に対する補正値を算出し、この補正で光ビーム座標系の補正を行う。好ましくは、この後、再度較正板6bをステージ20にセットして、マーク61の形成及び位置測定と、マーク60に対するマーク61の位置ずれ量(Δx,Δy)の算出並びに光ビーム座標系K1の再補正を行う。2種のマーク60,61が単一の較正板6上に混在しないことから、画像処理によるマーク60,61の認識が容易であり、またマーク60,61を同じ形状のものにしても何ら支障はないことから、画像中からマーク60,61を抽出する画像認識も迅速に行うことができる。   Next, a correction value of the light beam coordinate system K1 with respect to the cutting coordinate system K2 is calculated from the positional shift amount (Δx, Δy) of the mark 61 with respect to the position of the mark 60 for each point, and the correction of the light beam coordinate system is performed by this correction. Do. Preferably, thereafter, the calibration plate 6b is set on the stage 20 again to form and measure the position of the mark 61, calculate the amount of displacement (Δx, Δy) of the mark 61 with respect to the mark 60, and calculate the position of the light beam coordinate system K1. Perform re-correction. Since the two types of marks 60 and 61 are not mixed on the single calibration plate 6, it is easy to recognize the marks 60 and 61 by image processing, and there is no problem even if the marks 60 and 61 have the same shape. Therefore, image recognition for extracting the marks 60 and 61 from the image can be performed quickly.

造形装置内の撮像手段5を用いる場合、較正板6a,6bはステージ20上のどの位置にセットしてもよいが、撮像手段5等によるマーク60,61の位置測定を造形装置外で行う場合には、図11(a)(b)(c)に示すように、ステージ20上に較正板6a,6bの位置決めのための複数本の位置決めピン29を設けて、これら位置決めピン29で較正板6a,6bの位置決めを行うことができるようにしておく。また、造形装置外の測定手段についても、図11(d)(e)に示すように、較正板6a,6bをセットするプレート58に上記位置決めピン29と同様の位置決めピン59を設けて、これら位置決めピン59によって較正板6a,6bを位置決めした状態で撮像を行う。   When using the imaging means 5 in the molding apparatus, the calibration plates 6a and 6b may be set at any positions on the stage 20, but when the position measurement of the marks 60 and 61 by the imaging means 5 or the like is performed outside the molding apparatus. As shown in FIGS. 11A, 11B, and 11C, a plurality of positioning pins 29 for positioning the calibration plates 6a and 6b are provided on the stage 20. The positioning of 6a and 6b should be performed. 11 (d) and 11 (e), a positioning pin 59 similar to the positioning pin 29 is provided on a plate 58 on which the calibration plates 6a and 6b are set. Imaging is performed in a state where the calibration plates 6a and 6b are positioned by the positioning pins 59.

この時、切削座標系K2と、測定装置における測定座標系K3とが一致するように(もしくは平行となるように)位置決めピン59を設けておくと、較正板6aのマーク60と較正板6bのマーク61との位置ずれ量を測定座標系K3で測定すれば、そのずれ量が切削座標系K2に対する光ビーム座標系K1のずれ量と一致、もしくは加減算が必要となるだけとなり、測定座標系K3を切削座標系K2に対して回転させる補正を必要としなくなる。つまり、位置決めピン29,59に夫々較正板6a,6bを押し当ててセットするだけで、ずれ量を簡便に求めることができる。   At this time, if the positioning pins 59 are provided so that the cutting coordinate system K2 and the measuring coordinate system K3 of the measuring device are coincident (or parallel), the mark 60 of the calibration plate 6a and the calibration plate 6b If the amount of positional deviation from the mark 61 is measured in the measurement coordinate system K3, the amount of deviation will coincide with the amount of deviation of the light beam coordinate system K1 with respect to the cutting coordinate system K2, or only requires addition and subtraction. Need not be corrected to rotate the cutting coordinate system with respect to the cutting coordinate system K2. That is, the displacement amount can be easily obtained simply by pressing and setting the calibration plates 6a and 6b against the positioning pins 29 and 59, respectively.

図12に示すように、較正板6a,6bにマーク60,61のほかに切削手段4による加工で複数の基準マーク62を形成しておき、複数の基準マーク62を基準にマーク60に対するマーク61の位置ずれ量を算出する場合は、較正板6a,6bはステージ20上のどの位置にセットしてもよい。   As shown in FIG. 12, in addition to the marks 60 and 61, a plurality of reference marks 62 are formed on the calibration plates 6a and 6b by processing by the cutting means 4, and the marks 61 corresponding to the marks 60 are formed based on the plurality of reference marks 62. When calculating the amount of positional deviation, the calibration plates 6a and 6b may be set at any position on the stage 20.

上記のような補正動作は、造形に先立って行うだけでなく、造形途中に行ってもよい。この場合、較正板6(6a,6b)は、それまでに造形した造形物P上にセットする。較正板6の上面が焼結させる粉末層10の上面と一致するように高さを合わせるのは前述の場合と同じである。   The correction operation as described above may be performed not only prior to modeling but also during modeling. In this case, the calibration plate 6 (6a, 6b) is set on the modeled object P formed up to that time. The height is adjusted so that the upper surface of the calibration plate 6 coincides with the upper surface of the powder layer 10 to be sintered, as in the case described above.

図13(a)に示すように、較正板6(6a,6b)をブレード21に取り付けて較正板6をステージ20の上方に位置させた状態でマーク60,61の付与を行ってもよい。ただし、較正板6の表面は、焼結させる粉末層10の上面と平行となるようにしておく。この場合、較正板6の表面を焼結させる粉末層10の上面と同じ高さにセットすることが困難となり、図13(b)に示すように、光ビームのスキャン光学系31から焼結させる粉末層10の上面z0までの距離L1と、上記スキャン光学系31から較正板6の表面z1までの距離L2とが異なってくる上に、測定される較正板6の表面z1上でのずれ量(δx、δy)と、焼結させる粉末層10の上面z0でのずれ量(Δx+Δy)とが異なってくることから、次の式
Δx=(L1/L2)・δx
Δy=(L1/L2)・δy
で加工面(粉末層10の表面)でのずれ量(Δx,Δy)を算出し、得られたずれ量を基に補正を行う。
As shown in FIG. 13A, the marks 60 and 61 may be provided in a state where the calibration plate 6 (6a, 6b) is attached to the blade 21 and the calibration plate 6 is positioned above the stage 20. However, the surface of the calibration plate 6 is set to be parallel to the upper surface of the powder layer 10 to be sintered. In this case, it is difficult to set the surface of the calibration plate 6 at the same height as the upper surface of the powder layer 10 to be sintered, and as shown in FIG. The distance L1 from the scanning optical system 31 to the surface z1 of the calibration plate 6 differs from the distance L1 to the upper surface z0 of the powder layer 10, and the amount of displacement of the measured calibration plate 6 on the surface z1. Since (δx, δy) is different from the deviation amount (Δx + Δy) on the upper surface z0 of the powder layer 10 to be sintered, the following expression is used: Δx = (L1 / L2) · δx
Δy = (L1 / L2) · δy
Calculates the shift amount (Δx, Δy) on the processing surface (the surface of the powder layer 10), and performs correction based on the obtained shift amount.

測定手段における撮像手段5が切削手段4のXY駆動手段40によって位置を変更するものであり且つ切削手段4の切削工具部(ミーリングヘッド41)と所定の位置関係にある場合、撮像手段5の座標系は切削座標系K2に一致しているとみなすことができるために、次の手順で切削座標系K2に光ビーム座標系K1を合わせ込むようにしてもよい。   When the position of the imaging unit 5 of the measuring unit is changed by the XY driving unit 40 of the cutting unit 4 and the imaging unit 5 has a predetermined positional relationship with the cutting tool unit (milling head 41) of the cutting unit 4, the coordinates of the imaging unit 5 Since the system can be considered to match the cutting coordinate system K2, the light beam coordinate system K1 may be adjusted to the cutting coordinate system K2 in the following procedure.

すなわち、図16に示すように、造形タンク25内のステージ20上に複数の較正点Qを設定する。これら較正点Qは、撮像位置として撮像画像の例えば中心位置(画素)が基準点となるように規定する。つまり、1つの較正点Qが1つの撮像画像の中心位置となるようにしておく。 That is, as shown in FIG. 16, a plurality of calibration points Q are set on the stage 20 in the modeling tank 25. These calibration points Q are defined such that, for example, the center position (pixel) of the captured image is a reference point as the imaging position. That is, one calibration point Q is set to the center position of one captured image.

較正点Qの数は、光ビームの照射位置精度の要求に応じて決定すればよく、高精度としたい場合には、小間隔で並ぶ多数の較正点Qを設定し、粗い精度でよければ、大間隔で並ぶ少数の較正点Qを設定する。撮像手段5としては、高分解能であるとともに、見込まれる照射位置のずれの範囲をカバーすることができるカメラ視野を持つものを使用する。   The number of the calibration points Q may be determined according to the requirement of the irradiation position accuracy of the light beam. If high accuracy is desired, a large number of calibration points Q arranged at small intervals are set. A small number of calibration points Q arranged at large intervals are set. As the imaging means 5, an imaging means having a high resolution and having a camera field of view capable of covering a range of expected displacement of the irradiation position is used.

そして、較正板6をステージ20上にセットし、上記の各較正点Qに向けて光ビームを照射して例えば十字形のマーク61を形成する。較正板6のステージ20上の位置は任意でよい。この後、撮像手段5で各較正点Qを撮像し、図16(b)に示すように、各マーク61の中心が各較正点Q(撮像画像の中心位置)からどれだけずれているかのデータを取る。この時、切削手段4における切削工具部と撮像手段5とは共に切削座標系K2上にあって、両者の位置の差(より正確には切削工具部による切削点と撮像手段5の撮像画像上の中心点との位置の差)は既知であるから、上記ずれのデータと既知の位置の差の情報とにより、切削座標系K2に光ビーム座標系K1を合わせ込むことができる。また、光ビーム照射手段3のスキャン光学系31等に起因する照射位置誤差も同時に補正することができる。造形途中に補正動作を行うことは、本例においても適用することができる。   Then, the calibration plate 6 is set on the stage 20, and a light beam is emitted toward each of the calibration points Q to form, for example, a cross mark 61. The position of the calibration plate 6 on the stage 20 may be arbitrary. Thereafter, each calibration point Q is imaged by the imaging means 5, and as shown in FIG. 16B, data indicating how much the center of each mark 61 deviates from each calibration point Q (the center position of the captured image). I take the. At this time, both the cutting tool part and the imaging means 5 in the cutting means 4 are on the cutting coordinate system K2, and the difference between the positions (more precisely, the cutting point by the cutting tool part and the image taken by the imaging means 5) Is known, the light beam coordinate system K1 can be matched to the cutting coordinate system K2 based on the data of the deviation and the information of the known position difference. Further, an irradiation position error caused by the scanning optical system 31 or the like of the light beam irradiation unit 3 can be corrected at the same time. Performing a correction operation during molding can also be applied in this example.

上記較正板6としては、前述のようなアクリル板やアルミニウム板、感熱紙等のほか、物体色とは異なる色で着色され且つ光ビームが照射された部分が変色乃至脱色される板状材なども用いることができる。   Examples of the calibration plate 6 include an acrylic plate, an aluminum plate, and thermal paper as described above, as well as a plate-like material that is colored with a color different from the object color and a portion irradiated with the light beam is discolored or decolorized. Can also be used.

本発明の実施の形態の一例の動作説明図である。It is operation | movement explanatory drawing of an example of Embodiment of this invention. 同上の較正板の配置位置を示す概略断面図である。It is a schematic sectional drawing which shows the arrangement position of the said calibration plate. 同上のマークの一例の正面図である。It is a front view of an example of a mark same as the above. (a)(b)はいずれもマークを施した較正板の断面図である。(a) and (b) are cross-sectional views of the calibration plate on which marks are provided. マークの他例の正面図である。It is a front view of other examples of a mark. マークを形成するポイントの配置エリアの説明図である。FIG. 4 is an explanatory diagram of an area where points forming a mark are arranged. (a)(b)は2種のマークを施した較正板の平面図である。(a) and (b) are plan views of a calibration plate provided with two types of marks. マークの形成位置についての説明図である。FIG. 4 is an explanatory diagram of a mark formation position. 仮想マークについての説明図である。FIG. 4 is an explanatory diagram of a virtual mark. 他例の動作説明図である。It is operation | movement explanatory drawing of another example. (a)は位置決めピンを有するステージの断面図、(b)(c)は位置決めピンによる較正板の位置決めを示す平面図、(d)は位置決めピンを有する測定手段の平面図、(e)は位置決めピンを有する測定手段の側面図である。(a) is a cross-sectional view of a stage having positioning pins, (b) and (c) are plan views showing positioning of the calibration plate by the positioning pins, (d) is a plan view of a measuring unit having the positioning pins, and (e) is It is a side view of the measuring means which has a positioning pin. (a)(b)は夫々マーク及び基準マークを施した較正板の平面図である。(a) and (b) are plan views of a calibration plate provided with a mark and a reference mark, respectively. (a)は他の例の概略断面図、(b)はこの場合の追加補正についての説明図である。(a) is a schematic sectional view of another example, and (b) is an explanatory diagram of additional correction in this case. 造形装置のブロック図である。It is a block diagram of a modeling device. (a)(b)は同上の概略断面図である。(a) and (b) are schematic sectional views of the above. (a)は較正点を示す平面図、(b)は較正点とマークの撮像画像の説明図である。(a) is a plan view showing a calibration point, and (b) is an explanatory diagram of a captured image of a calibration point and a mark. (a)は光ビーム座標系の説明図、(b)は切削座標系と光ビーム座標系の説明図である。(a) is an explanatory diagram of a light beam coordinate system, and (b) is an explanatory diagram of a cutting coordinate system and a light beam coordinate system. 光ビームの補正すべき点を示す説明図である。FIG. 4 is an explanatory diagram showing points to be corrected for a light beam.

符号の説明Explanation of reference numerals

2 粉末層供給手段
3 光ビーム照射手段
4 切削手段
5 撮像手段
6 較正板
60 マーク
61 マーク
2 powder layer supply means 3 light beam irradiation means 4 cutting means 5 imaging means 6 calibration plate 60 mark 61 mark

Claims (10)

粉末材料の層の所定箇所への光ビームの照射で該当個所の粉末を焼結して焼結層を形成し、この焼結層の上に粉末材料の新たな層を被覆して該粉末層の所定箇所への光ビームの照射で該当個所の粉末を焼結して下層の焼結層と一体になった新たな焼結層を形成することを繰り返すとともに、焼結層の形成後にそれまでに作成した造形物の表面部及びまたは不要部分の切削除去を行う工程を複数回の焼結層の作成工程中に挿入して造形物を製造するにあたり、光ビームの照射面にセットした較正板上の予め定めたポイントに対し、上記切削除去のための切削手段によるマークと、上記光ビームを照射する光ビーム照射手段によるマークとの付与を行い、切削手段及び光ビーム照射手段の制御を行う制御装置は、上記両種マークの位置を測定する測定手段から得られた両種マークの位置ずれ量に基づいて切削位置または光ビーム照射位置の補正を行うことを特徴とする光造形用加工基準補正方法。   By irradiating a predetermined portion of the layer of the powder material with a light beam, the powder at the corresponding location is sintered to form a sintered layer, and a new layer of the powder material is coated on the sintered layer to form a powder layer. Sintering the powder at the corresponding location by irradiating the light beam to the predetermined location to form a new sintered layer integrated with the lower sintered layer, and after forming the sintered layer, In manufacturing the molded article by inserting the step of cutting and removing the surface part and / or the unnecessary part of the molded article prepared in the above step into the sintered layer forming step a plurality of times, the calibration plate set on the light beam irradiation surface in producing the molded article For the above-mentioned predetermined point, a mark by the cutting means for the cutting removal and a mark by the light beam irradiating means for irradiating the light beam are given, and the cutting means and the light beam irradiating means are controlled. The control device measures the positions of the two kinds of marks. For stereolithography processing reference correction method characterized in that to correct the cutting position or light beam irradiation position based on the positional deviation amount of both species marks obtained from a constant section. 切削手段によるマークと光ビーム照射手段によるマークとを異なる較正板に対して付与するとともに、各較正板の位置決めを行った後、マークの付与及びマーク位置測定を行うことを特徴とする請求項1記載の光造形用加工基準補正方法。   2. A mark provided by a cutting means and a mark provided by a light beam irradiating means are provided to different calibration plates, and after positioning of each calibration plate, a mark is provided and a mark position is measured. The processing standard correction method for stereolithography described. 切削手段によるマークと光ビーム照射手段によるマークとを異なる較正板に対して付与するとともに、切削手段にてマークを付与する較正板と光ビーム照射手段にてマークを付与する較正板とに切削手段にて基準マークを別途付与することを特徴とする請求項1記載の光造形用加工基準補正方法。   The cutting means and the calibration plate for applying the mark by the cutting means and the mark by the light beam irradiating means to the different calibration plates, 2. The method according to claim 1, wherein a reference mark is separately provided. 粉末材料の層の所定箇所への光ビームの照射で該当個所の粉末を焼結して焼結層を形成し、この焼結層の上に粉末材料の新たな層を被覆して該粉末層の所定箇所への光ビームの照射で該当個所の粉末を焼結して下層の焼結層と一体になった新たな焼結層を形成することを繰り返すとともに、焼結層の形成後にそれまでに作成した造形物の表面部及びまたは不要部分の切削除去を行う工程を複数回の焼結層の作成工程中に挿入して造形物を製造するにあたり、撮像手段と画像処理手段とで構成された測定手段における撮像手段を上記切削除去のための切削手段に設けて切削手段と撮像手段との位置関係を一定とし、光ビームの照射面にセットした較正板に対し、上記撮像手段の撮像位置として規定された較正点に光ビーム照射手段でマークを付与し、撮像手段による撮像画像から該画像中の基準点とマークの画像とのずれ量を算出して、得られたずれ量に基づいて光ビーム照射位置の補正を行うことを特徴とする光造形用加工基準補正方法。   By irradiating a predetermined portion of the layer of the powder material with a light beam, the powder at the corresponding location is sintered to form a sintered layer, and a new layer of the powder material is coated on the sintered layer to form a powder layer. Sintering the powder at the corresponding location by irradiating the light beam to the predetermined location to form a new sintered layer integrated with the lower sintered layer, and after forming the sintered layer, When manufacturing a model by inserting a step of cutting and removing a surface portion and / or an unnecessary portion of the model formed in a plurality of processes of forming a sintered layer, the process includes imaging means and image processing means. The imaging means in the measuring means is provided in the cutting means for removing the cutting so that the positional relationship between the cutting means and the imaging means is constant, and the imaging position of the imaging means with respect to the calibration plate set on the light beam irradiation surface. Mark the calibration points specified as And calculating an amount of shift between a reference point in the image and an image of the mark from an image picked up by the image pickup means, and correcting the light beam irradiation position based on the obtained amount of shift. Processing standard correction method. 較正板に対する光ビーム照射手段によるマークの付与を、粉末層の焼結時と同じパワーで行うことを特徴とする請求項1〜4のいずれか1項に記載の光造形用加工基準補正方法。   The method according to any one of claims 1 to 4, wherein the mark is applied to the calibration plate by the light beam irradiating means with the same power as when the powder layer is sintered. 光ビーム照射手段によるマークを十字形とするとともに、撮像手段と画像処理手段とで構成された測定手段は、十字形マークにおける直交する2線の濃淡処理にて濃淡境界線を求めて、濃淡境界線から上記2線の各中央を通る2つの直線を求め、この2つの直線の交点をマークの中心とすることを特徴とする請求項1〜5のいずれか1項に記載の光造形用加工基準補正方法。   The mark formed by the light beam irradiating means has a cross shape, and the measuring means constituted by the imaging means and the image processing means obtains a shading boundary line by shading processing of two orthogonal lines in the cross mark, and obtains a shading boundary. The stereolithography processing according to any one of claims 1 to 5, wherein two straight lines passing through respective centers of the two lines are obtained from the line, and an intersection of the two straight lines is set as a center of the mark. Reference correction method. 較正板上のマークの付与が可能なエリアの外辺に形成するマークの形状を、L字形またはT字形とすることを特徴とする請求項1〜6のいずれか1項に記載の光造形用加工基準補正方法。   The shape of the mark formed on the outer side of the area on the calibration plate where the mark can be provided is L-shaped or T-shaped, for stereolithography according to any one of claims 1 to 6. Processing reference correction method. 較正板に対するマークの付与とマークの位置ずれ量に基づく補正とを繰り返して行うとともに、マークを付与するポイントの数を減らしていくことを特徴とする請求項1〜7のいずれか1項に記載の光造形用加工基準補正方法。   The method according to any one of claims 1 to 7, wherein the addition of the mark to the calibration plate and the correction based on the amount of displacement of the mark are repeatedly performed, and the number of points to which the mark is added is reduced. Processing standard correction method for stereolithography. 粉末の層を形成する粉末層形成手段と、最上層の粉末層の所定箇所に光ビームを照射して該当箇所の粉末を焼結させて焼結層を形成する光ビーム照射手段と、焼結層の形成後にそれまでに作製した造形物の表面部及びまたは不要部分の切削除去を行う切削手段と、これら粉末層形成手段と光ビーム照射手段と切削手段とを制御する制御手段とを備えるとともに、光ビームの照射面にセットした較正板上の予め定めたポイントに上記切削手段で付与されたマークと、上記光ビーム照射手段で付与されたマークの2種のマークの位置を測定する測定手段を備えており、上記制御手段では測定手段で得られた2種のマークの位置ずれ量に基づいて切削手段による切削位置または光ビーム照射手段による光ビーム照射位置の補正を行うものであることを特徴とする光造形装置。   Powder layer forming means for forming a layer of powder; light beam irradiating means for irradiating a predetermined portion of the uppermost powder layer with a light beam to sinter the powder at the corresponding portion to form a sintered layer; Cutting means for cutting and removing the surface part and / or unnecessary part of the modeled object manufactured so far after the formation of the layer, and control means for controlling these powder layer forming means, light beam irradiation means and cutting means, and Measuring means for measuring the positions of two types of marks: a mark provided by the cutting means at a predetermined point on a calibration plate set on the light beam irradiation surface, and a mark provided by the light beam irradiation means. Wherein the control means corrects the cutting position by the cutting means or the light beam irradiation position by the light beam irradiation means based on the positional deviation of the two types of marks obtained by the measurement means. Optical shaping apparatus according to claim. 粉末の層を形成する粉末層形成手段と、最上層の粉末層の所定箇所に光ビームを照射して該当箇所の粉末を焼結させて焼結層を形成する光ビーム照射手段と、焼結層の形成後にそれまでに作製した造形物の表面部及びまたは不要部分の切削除去を行う切削手段と、これら粉末層形成手段と光ビーム照射手段と切削手段とを制御する制御手段とを備えるとともに、光ビームの照射面にセットした較正板上の複数のポイントに上記光ビーム照射手段で付与されたマークの位置を測定する測定手段を備え、撮像手段と画像処理手段とで構成された上記測定手段における撮像手段は、切削手段に設けられて切削手段と撮像手段との位置関係が一定とされているとともに上記複数のポイントは撮像手段の撮像位置として規定されており、上記制御手段は撮像手段による撮像画像中の基準点とマークの画像とのずれ量に基づいて光ビーム照射手段による光ビーム照射位置の補正を行うものであることを特徴とする光造形装置。   Powder layer forming means for forming a layer of powder; light beam irradiating means for irradiating a predetermined portion of the uppermost powder layer with a light beam to sinter the powder at the corresponding portion to form a sintered layer; Cutting means for cutting and removing the surface part and / or unnecessary part of the modeled object manufactured so far after the formation of the layer, and control means for controlling these powder layer forming means, light beam irradiation means and cutting means, and Measuring means for measuring the positions of the marks provided by the light beam irradiating means at a plurality of points on the calibration plate set on the light beam irradiating surface, wherein the measuring means comprises image pickup means and image processing means The imaging means in the means is provided in the cutting means, the positional relationship between the cutting means and the imaging means is fixed, and the plurality of points are defined as imaging positions of the imaging means, and the control means Optical shaping apparatus, characterized in that to correct the light beam irradiation position by the light beam irradiation means based on the shift amount between the reference point and the mark of the image in the captured image due to image unit.
JP2003368151A 2003-10-28 2003-10-28 Stereolithography processing reference correction method and stereolithography device Expired - Lifetime JP3587208B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368151A JP3587208B1 (en) 2003-10-28 2003-10-28 Stereolithography processing reference correction method and stereolithography device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003368151A JP3587208B1 (en) 2003-10-28 2003-10-28 Stereolithography processing reference correction method and stereolithography device

Publications (2)

Publication Number Publication Date
JP3587208B1 true JP3587208B1 (en) 2004-11-10
JP2005133120A JP2005133120A (en) 2005-05-26

Family

ID=33475604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368151A Expired - Lifetime JP3587208B1 (en) 2003-10-28 2003-10-28 Stereolithography processing reference correction method and stereolithography device

Country Status (1)

Country Link
JP (1) JP3587208B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105365215A (en) * 2014-09-02 2016-03-02 三纬国际立体列印科技股份有限公司 Correction device and correction method for three-dimensional line printing device
CN106584855A (en) * 2015-10-13 2017-04-26 三纬国际立体列印科技股份有限公司 Light source correction method for three-dimensional object forming device
CN108898810A (en) * 2018-09-12 2018-11-27 广州市艾礼富电子科技有限公司 A kind of visuable debugging method of invisible laser intrusion-detector
CN113664220A (en) * 2021-07-08 2021-11-19 中国科学院金属研究所 Method for preparing gradient material by adopting selective laser melting forming technology

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4258567B1 (en) * 2007-10-26 2009-04-30 パナソニック電工株式会社 Manufacturing method of three-dimensional shaped object
DE102009016585A1 (en) * 2009-04-06 2010-10-07 Eos Gmbh Electro Optical Systems Method and device for calibrating an irradiation device
EP3848180B1 (en) 2014-07-13 2023-05-10 Stratasys Ltd. Method and system for rotational 3d printing
WO2016026663A1 (en) * 2014-08-20 2016-02-25 Arcam Ab Energy beam deflection speed verification
JP5840312B1 (en) * 2015-02-16 2016-01-06 株式会社松浦機械製作所 3D modeling method
KR102353098B1 (en) * 2015-07-13 2022-01-19 스트라타시스 엘티디. Operation of print nozzles in additive manufacturing and apparatus for cleaning print nozzles
EP3159080A1 (en) * 2015-10-19 2017-04-26 Siemens Aktiengesellschaft Method of adjusting an additive manufacturing apparatus, method of manufacturing and setup
JP6129945B1 (en) 2015-12-22 2017-05-17 株式会社ソディック Laminate modeling apparatus and misalignment correction method for additive modeling apparatus
DE102016106403A1 (en) 2016-04-07 2017-10-12 Cl Schutzrechtsverwaltungs Gmbh Method for calibrating at least one scanning system, an SLS or SLM system
WO2017212619A1 (en) * 2016-06-09 2017-12-14 技術研究組合次世代3D積層造形技術総合開発機構 3d additive manufacturing system, additive manufacturing control device, additive manufacturing control method, and additive manufacturing control program
KR102083221B1 (en) * 2018-03-30 2020-03-02 윈포시스(주) Apparatus for inspecting forming quality in 3D printer and 3D printer having the same
JP6545411B1 (en) 2019-02-13 2019-07-17 株式会社松浦機械製作所 Method of forming a three-dimensional object
JP7165603B2 (en) * 2019-03-04 2022-11-04 三菱重工業株式会社 Calibration member for laminate forming apparatus, laminate forming apparatus, and laminate forming method
JP7213220B2 (en) * 2020-11-17 2023-01-26 株式会社ソディック How to calibrate an additive manufacturing machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3155168B2 (en) * 1995-05-26 2001-04-09 松下電工株式会社 3D shape forming method
DE19918613A1 (en) * 1999-04-23 2000-11-30 Eos Electro Optical Syst Method for calibrating a device for producing a three-dimensional object, calibration device and method and device for producing a three-dimensional object
JP2000316364A (en) * 1999-05-14 2000-11-21 Yanmar Agricult Equip Co Ltd Combine harvester
JP3446741B2 (en) * 2001-01-24 2003-09-16 松下電工株式会社 Light beam deflection control method and optical shaping apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105365215A (en) * 2014-09-02 2016-03-02 三纬国际立体列印科技股份有限公司 Correction device and correction method for three-dimensional line printing device
CN105365215B (en) * 2014-09-02 2018-02-06 三纬国际立体列印科技股份有限公司 Correction device and correction method for three-dimensional line printing device
CN106584855A (en) * 2015-10-13 2017-04-26 三纬国际立体列印科技股份有限公司 Light source correction method for three-dimensional object forming device
CN106584855B (en) * 2015-10-13 2018-09-11 三纬国际立体列印科技股份有限公司 The optical source correcting method of stereo object building mortion
CN108898810A (en) * 2018-09-12 2018-11-27 广州市艾礼富电子科技有限公司 A kind of visuable debugging method of invisible laser intrusion-detector
CN113664220A (en) * 2021-07-08 2021-11-19 中国科学院金属研究所 Method for preparing gradient material by adopting selective laser melting forming technology

Also Published As

Publication number Publication date
JP2005133120A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
JP3587208B1 (en) Stereolithography processing reference correction method and stereolithography device
EP1752240B1 (en) Three-dimensional shape model producing method and apparatus
CN109070221B (en) Method of calibrating a plurality of scanners in an additive manufacturing apparatus
CN108472870B (en) Method for calibrating a device for producing a three-dimensional object
JP6898458B2 (en) Equipment and methods for calibrating the irradiation system used to form three-dimensional workpieces
JP3718407B2 (en) Method for calibrating an apparatus for manufacturing a three-dimensional object, calibration apparatus, and apparatus and method for manufacturing a three-dimensional object
JP3446741B2 (en) Light beam deflection control method and optical shaping apparatus
US11389876B2 (en) Method of correcting a laser radiation position
JP2018514427A (en) Additive manufacturing apparatus and additive manufacturing method
CN111867754B (en) Method for aligning a multi-beam illumination system
JP7153067B2 (en) Method for adjusting equipment for manufacturing objects using additive manufacturing
US20220088682A1 (en) Determining a position of a building platform within a process chamber of an additive manufacturing device
US20220157346A1 (en) Calibration of a camera provided for monitoring an additive manufacturing process
JP5213783B2 (en) Laser processing apparatus and laser processing method
JP2004243383A (en) Laser beam machine, and laser beam machining method
JP4259123B2 (en) Manufacturing method of three-dimensional shaped object
CN113853261B (en) Method and device
CN114589316B (en) Lamination shaping device and correction method thereof
JP3531629B2 (en) Laser beam deflection control method in stereolithography system
US11472113B2 (en) Additive manufacturing apparatus and calibration method thereof
KR102584949B1 (en) A 3D printing system and method of upper mold through alignment mark-based position correction
JP2003001713A (en) Method and apparatus for controlling deflection of laser beam in stereo lithography system
KR20220097870A (en) alignment device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040802

R151 Written notification of patent or utility model registration

Ref document number: 3587208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

EXPY Cancellation because of completion of term