JP3587049B2 - Gas replacement method for solid food containers and packaging, quantitative dry powder supply method and apparatus therefor - Google Patents

Gas replacement method for solid food containers and packaging, quantitative dry powder supply method and apparatus therefor Download PDF

Info

Publication number
JP3587049B2
JP3587049B2 JP07307198A JP7307198A JP3587049B2 JP 3587049 B2 JP3587049 B2 JP 3587049B2 JP 07307198 A JP07307198 A JP 07307198A JP 7307198 A JP7307198 A JP 7307198A JP 3587049 B2 JP3587049 B2 JP 3587049B2
Authority
JP
Japan
Prior art keywords
gas
container
dry ice
separation tank
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07307198A
Other languages
Japanese (ja)
Other versions
JPH10329808A (en
Inventor
善文 田口
利裕 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Kaisha Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP07307198A priority Critical patent/JP3587049B2/en
Publication of JPH10329808A publication Critical patent/JPH10329808A/en
Application granted granted Critical
Publication of JP3587049B2 publication Critical patent/JP3587049B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、粉末ドライアイスを使用した容器包装食品のガス置換方法及び容器に粉末ドライアイスを定量供給する方法並びにその装置に関する。
【0002】
【従来の技術】
容器内の空隙部の酸素を除去する方法として、液状食品の場合は容器内に不活性ガスを吹き込んで容器内のガスと置換するガス置換方法が一般に行われているが、粉末状、顆粒状、フレーク状あるいはスライス状等の固体食品の場合、前記ガス置換方法では固形物間に存在する酸素を除去することが困難なため、真空包装方法、真空+不活性ガス(主として窒素ガス)置換方法による脱酸素包装を行うか、あるいは脱酸素剤添付等で行っている。このため、固体食品の脱酸素包装は、バッチ式が殆どであり、生産効率が低く且つ高価な設備を必要とする。また脱酸素剤添付の場合は、コスト高となる等の問題がある。
【0003】
【発明が解決しようとする課題】
本発明は、上記実状に鑑み創案されたものであって、ガス置換包装が困難な、塊状、粉末状、顆粒状、フレーク状あるいはスライス状等の固体食品の包装において、効率的かつ安価にガス置換包装ができる固体食品の容器包装におけるガス置換方法、及び容器に粉末ドライアイスをバラツキが少なく定量供給することができる方法並びにその装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、従来の内容物充填後にガス置換により容器内の空気を除去する方法に代えて、内容物充填前に容器内に定量の粉末ドライアイスを充填し、固体食品間の空隙部に残っている空気を定量の粉末ドライアイスの気化による体積膨張により効率的に除去するようにしたものである。
【0005】
即ち、本発明の固体食品の容器包装におけるガス置換方法は、二酸化炭素ボンベから液化二酸化炭素を気液分離槽に供給し、該気液分離槽で液面制御及び圧力制御しながら、粉末ドライアイス生成ノズルに液化二酸化炭素を供給することにより、液化二酸化炭素から直接粉末ドライアイスを生成して容器に定量充填する工程、内容物を充填する工程、前記粉末ドライアイスを気化させて容器内の酸素を除去する工程、容器を密封する工程からなることを特徴とする。容器内に粉末ドライアイスを充填する工程と内容物を充填する工程は、経時的にその順序が望ましいが、必ずしもその順序に限るものでなく、粉末ドライアイスと内容物を同時に又は粉末ドライアイスを後に充填してもよい。なお、例えば焙煎したコーヒー豆をそのまま又は粉状にしてまだ熱を保持した状態で容器に充填する場合や、玄米を精米するときに生じた摩擦熱を持ったまま米を容器内に充填する場合等、内容物自体が熱を持っている場合は、容器を加熱しなくても粉末ドライアイスが短時間に昇華するので、必ずしも容器を加熱する工程を設けなくても良い。
【0006】
前記粉末ドライアイスとしては、粉末状又は米粒状(以下、単に粉末状という)に微細化したドライアイスが良い。粉末状ドライアイスを使用したガス置換条件として次の1〜4のことがいえる。
1.ドライアイスの充填量は、容器に内容物を充填したときの容器内ガス量に依存する。ドライアイスは昇華したとき、500倍にガス化して膨張する。従って、1gのドライアイスは500mlの二酸化炭素となる。これまでの試験結果によれば、良好なガス置換条件のためには容器内ガス量に対し約3〜5倍量のガスの導入が必要である。従って、容器内ガス量に対する粉末ドライアイス充填量は、表1に示す関係、即ち容器に内容物を充填したときの容器内ガス量(ml)の0.006〜0.01倍量(g)の範囲が望ましい。
【0007】
【表1】

Figure 0003587049
【0008】
2.粉末状ドライアイスの粒径は10〜100メッシュの範囲が望ましい。
10メッシュ以下では粒径が大き過ぎ、内容物充填加熱後の加熱工程において気化しにくい。100メッシュ以上では細か過ぎ、粉末ドライアイス生成時のノズルが詰り易くなり生成量がばらつく危険性がある。
【0009】
3.前記容器の加熱は、容器底部を乾燥加熱空気で加熱するとより簡単に効率的にしかも簡単な設備で加熱することができる。ドライアイスの乾燥加熱空気による加熱温度は包材の耐熱性に依存する。そのため、低密度ポリエチレン等の耐熱性の低い包材では、100℃前後で10秒前後が望ましく、ナイロンフィルム、ポリエステルフィルム、ポリプロピレンフィルム等の耐熱性のある包材では100〜250℃で10秒前後が望ましい。なお、気化のための熱媒体は、乾燥加熱空気の他、熱水・超音波誘導加熱・高周波誘導加熱・マイクロ波加熱等が利用できる。
【0010】
4.加熱後の粉末ドライアイスの残量は、密封後の包装外観に影響を与えるため、残留は出来るだけ避ける必要がある。しかしながら、包装速度との兼ね合いから残ってしまう場合がある。どの程度の残留が許容されるかは、容器内の空隙量や包装材質の柔軟性または包装形状や内容物の種類などに依存する。例えば、穀類・ピーナッツ類・粉末スープ等は膨張した外観は好ましくないが、ポテトチップス等は内容物の保護(割れ防止)のため、多少膨張していた方が望ましい。膨張外観が好ましくない内容物の包装形態において、容器内ガス量に対するドライアイス残量は、パウチ等変形しやすい容器の場合は表2、金属缶等容器膨張や容器に剛性があり変形しにくい容器の場合は表3に示す範囲以下が望ましい。これらの表から加熱後のドライアイスの残存量は、変形しやすい容器の場合が容器内ガス量(ml)の約0.00075〜0.001倍量(g)以内であり、変形しにくい容器の場合が容器内ガス量(ml)の約0.0015〜0.002倍量(g)以内であることが望ましいことが分かる。
【0011】
【表2】
Figure 0003587049
【0012】
【表3】
Figure 0003587049
【0013】
また、上記ガス置換のための粉末ドライアイスを容器に定量供給するための、本発明の粉末ドライアイス定量充填方法は、二酸化炭素ボンベから液化二酸化炭素を気液分離槽に供給し、該気液分離槽で液面制御及び圧力制御しながら、粉末ドライアイス生成ノズルに液化二酸化炭素を供給することにより、液化二酸化炭素から直接粉末ドライアイスを生成して容器に供給することを特徴とするものである。
【0014】
そして、上記方法を実施するための本発明の容器への粉末ドライアイス定量充填装置は、気液分離槽、該気液分離槽への液化二酸化炭素供給管路に設けられた電磁弁、前記気液分離槽の圧力を検出して電気信号に変換する圧力変換器、前記気液分離槽の液位を検出する液面計、前記気液分離槽からの排ガス管路に設けられた電磁弁、前記圧力変換器及び前記液面計からの信号に基づいて前記各電磁弁を制御する制御装置、前記気液分離槽に連通した液化二酸化炭素流下管路の下端部に設けられた粉末ドライアイス生成ノズルを備えてなることを特徴とする技術的構成からなる。前記液化二酸化炭素流下管路に流量を制御する流量計を設けることによって、常に流量を監視して所定流量に制御でき望ましい。
【0015】
【発明の実施の形態】
図1は、固体食品の容器包装における粉末ドライアイスによるガス置換方法の一実施形態を示す工程ブロック線図である。
本実施形態の固体食品の容器包装におけるガス置換方法は、装置に容器を供給する容器供給工程1、供給された容器に定量の粉末ドライアイスを充填するドライアイス充填工程2、内容物充填位置に移動して内容物を充填する内容物充填工程3、内容物充填から次工程の密封位置まで移動する間にドライアイスを気化させるドライアイス気化工程4、容器を完全に密封する密封工程5、密封された容器を装置から排出する排出工程6とからなる。
【0016
は、前記ドライアイス充填工程における容器への粉末ドライアイス定量充填装置の実施形態を示す。本実施形態の粉末ドライアイス定量充填装置は、液化二酸化炭素を気液分離槽に供給して液面制御及び圧力制御しながら流量計を介してノズルより直接粉末ドライアイスを生成して容器に供給するものであり、ドライアイス生成時のノズルの詰りが少なくなり、100メッシュ程度の細かいドライアイスの生成が可能であり、それだけ粉末ドライアイスの充填量のバラツキが少なく、定量充填性がより向上した。以下、本実施形態の装置を図に基づき詳細に説明する。
【0017
本実施形態の容器への粉末ドライアイス定量充填装置30は、気液分離槽31、流量計32、粉末ドライアイス生成ノズル33、充填ノズル34を備え、気液分離槽31に超低温容器である液化炭素ガスボンベ35から液化二酸化炭素が供給配管36を介して液化二酸化炭素が供給されるようになっている。液化二酸化炭素供給配管36は、液化二酸化炭素ボンベ35の液吐出管37と連結管38を介して連結され、途中に本体入口側のバルブ39、フィルター40、電磁弁41が設けられ、該電磁弁の開閉を制御することにより、気液分離槽への液化二酸化炭素の供給を自動的に制御することができる。なお、42は液化炭素ガスボンベ35の気相部に連結された戻し管路であり、前記液化二酸化炭素供給管36の電磁弁41の下流側に連結された排ガス供給管43に、ボンベ側のバルブ44、接続管45、本体側のバルブ46を介して接続され、気液分離槽31の圧力が異常に高くなったとき、気液分離槽の液化二酸化炭素を液化二酸化炭素ボンベ35に戻すために設けられている。
【0018
気液分離槽31には、シーケンサ等の制御装置49に連結された液面計50及び圧力計51が設けられ、制御装置49に予め設定された所定の液位及び圧力となるように、常に液面制御及び圧力制御しながら粉末ドライアイス生成ノズルに液化二酸化炭素を供給するようになっている。図中、52は気液分離槽31の内圧を電気信号に変換して制御装置に供給する圧力変換器、53は気液分離槽の圧力が異常となった場合に警報を発する警報器であり、警報をランプ及び又は音声によって表示すると共に制御装置49に異常信号を送出する。
【0019
55は気液分離槽31の気相部分に連結された排ガス管路であり、途中に電磁弁が設けられ、該電磁弁を前記制御装置49の制御信号に基づき制御して、ガスを外部に流出させて気液分離槽内を所定圧に保つように調整する。本実施形態では、該排ガス管路55の途中にバイパス管路56を並設して、それぞれに容量の異なる電磁弁57、58を設け、例えば運転開始時に気液分離槽に液化二酸化炭素を溜めるときには、排ガス量が多く且つ不安定であるので容量の大きい電磁弁57を用いて短時間に排ガス量を制御し、通常運転時の排ガス量が一定した状態では、バイパス管路に配置した容量の小さい電磁弁58を用いて制御するようにして、微細な安定した圧力制御ができるようになっている。しかしながら、バイパス管路を設けなくて、1個の電磁弁のみで排ガス量を制御するようにしても良い。なお、59は運転終了時等に気液分離槽内の排ガスを外部に逃がすためのバルブ、60は安全弁である。また、61は電磁弁の上流側に設けられたフィルター、62、63は電磁弁の下流側に設けられたオリフィスであり、これらは必要に応じて設ければ良い。
【0020
流量計32は、本実施形態ではマイクロモーション流量計を採用し、極超低温の液体の流量を微細に検出できると共に、流量制御弁47を取り付けることにより、流量を任意に調整することができるようにした。また、粉末ドライアイス生成ノズル群33の各粉末ドライアイス生成ノズル33’は、電磁弁65の下流端に形成され、本実施形態ではそれぞれノズル径の異なる4個のノズルを採用して、供給量に応じて適宜選択できるようにしている。しかしながら、その個数は任意に選択でき、1個でも良く、あるいはノズル径が小さくて等しいノズルを複数個採用して、微細なドライアイスを短時間に生成するようにして、そのノズル個数を選択することにより充填量を制御するようにしても良い。充填ノズル群34の各充填ノズル34’は、前記各粉末ドライアイス生成ノズル33に対応して設けられ、容器の開口部に向けて生成された粉末ドライアイスを雪状に降らせる機能を果たす。なお、48は流量制御弁47の下流側に設けられたフィルターである。
【0021】
本実施形態の粉末ドライアイス定量充填装置は以上のように構成され、液化二酸化炭素供給管路36を開くことによって、液化二酸化炭素が液化二酸化炭素ボンベ35から気液分離槽31に供給され、液面計50が液位を検出して予め制御装置に設定してある液位に達すると制御装置49から電磁弁41に制御信号が送出されて電磁弁が閉じる。運転中常時液位を検出して、電磁弁の開閉を制御することにより、気液分離槽の液位を常に一定に保つ。一方、気液分離槽の気相部の圧力も常に検出されて、圧力計51で表示すると共に、圧力変換器53によって内圧に比例して電気信号が制御装置に送られて、設定値と比較される。内圧が設定値よりも高いと、電磁弁58を開いて気液分離槽31の排ガスを外部に排気することにより、内圧を調整して気液分離槽の内圧を常に一定値に保つように制御する。
【0022
このようにして、気液分離槽を常に一定圧力及び一定液面となるように制御して気液分離を行い、各粉末ドライアイス生成ノズル33’の選択された所定の電磁弁65を開くことによって、各粉末ドライアイス生成ノズルの多数のノズル孔から所定圧力・所定流量の液化二酸化炭素を噴出する。液化二酸化炭素は、微細なノズル孔から大気中に噴出することによって、粉末状のドライアイスとなって充填ノズル内に拡がって該充填ノズルに案内されて雪状に容器内に降り注いで充填される。このようにして、本実施形態によれば、所定時間に所定量の粉末ドライアイスを所定の容器に充填することができ、充填量のバラツキが少なく定量充填が安定してできる。そして、常に一定圧力一定流量で粉末ドライアイス生成ノズルに供給されるので、脈流がなくてノズルつまりがなく、ノズル孔を小さくすることができ、100メッシュ程度の細かいドライアイスの生成が可能である。
【0023
以上のように構成された本実施形態の粉末ドライアイス定量充填装置において、前記4個の粉末ドライアイス生成ノズルのノズル径を、0.41mm、0.51mm、0.58mm、0.70mmとし、何れのノズルからも1gの粉末ドライアイスを供給することを目標として各ノズルに付き、20回づつ粉末ドライアイス生成実験を行った。その結果、図4に示すように、そのバラツキは、1g±0.25gの範囲にあった。このことから、本実施形態によれば、非常にバラツキが少なく、高精度で容器に粉末状ドライアイスを充填するのに有効であることが分かる。そして、本実施形態の粉末ドライアイス定量充填装置によれば、より細かい粉末ドライアイスを定量充填でき、容器に充填後の昇華も早いので、上記ガス置換方法において粉末ドライアイスを気化させるための容器加熱時間を短くすること、あるいは加熱工程を省くことが可能である。
【0024
以上のようにして定量のドライアイス21が充填された容器20は、内容物充填ステージに搬送されて、所定量の内容物22が充填される。該充填ステージから次工程の密封ステージまで搬送される間、あるいは少なくとも容器が密封されるまでに、容器の底部を加熱してドライアイスの気化を促進させる。本実施形態では、図3に示すように、ドライアイス充填ステージから内容物充填ステージまでの容器が通過する通路下方に100〜200℃の乾燥加熱空気を吹き出す樋状の加熱装置25を配置し、容器の底部が該加熱装置25を通過することによって、容器底部を加熱するようにしてある。
【002
容器の底部を加熱することによって、内部に充填された粉末ドライアイスの昇華が促進され、図3(b)に示すように内容物充填後も二酸化炭素が容器下部より層状となって内容物間の隙間に存在する空気を押出し、容器内から効果的に空気を除去することができる。しかも、容器を加熱するので、粉末ドライアイスは短時間に昇華してガス置換が短時間にでき、内容物充填から容器密封までの時間の短縮を図ることができる。
【0026
なお、上記実施形態では、容器内の脱酸素を専ら容器内に充填されるドライアイスのみによって行なう場合を示したが、必要により従来の不活性ガスのフラッシュと組み合わせても良い。その場合、例えば粉末ドライアイスが充填される前に容器内に二酸化炭素又は窒素ガスをフローして予備ガス置換を行なう。また、内容物充填後容器が密封ステーションに移動する間に、容器の底部を加熱すると共に、容器開口部に向けて二酸化炭素又は窒素ガスをフラッシュする。そのようにすることによって、容器内の酸素置換効率を高めることができるとともに、移動中に外部から容器内に空気が侵入することを防ぐことができる。
【0027
なお、本発明の固体食品の容器包装におけるガス置換方法は、ロータリ式充填包装装置に限らず、直線式充填包装装置、ロール供給・背張りシール包装等その他の形式の充填包装装置にも適宜適用できることは云うまでもない。また、適用する容器もパウチに限らず、金属缶、カップその他の成形容器等種々の容器包装に適用できる。さらに、内容物として、コーヒー豆、コーヒー粉末、酒のつまみ類乾き物、スナック食品、穀類、レトルト物等、種々の固体食品の脱酸素包装に適用できる。
【002
【実施例】
実施例1,2
充填条件:
包装容器:スタンディングパウチ
内容物 :17〜18メッシュの粉末状食品150グラム
ガス置換条件:
粉末ドライアイス1gをスタンディングパウチに充填し、その後上記包装条件で内容物を充填し、約200℃の乾燥空気で10秒加熱後容器を密封した(実施例1)。また、同様な条件で加熱時間を15秒にした(実施例2)。
夫々の実施例において、容器内酸素濃度及びガス置換率を測定した結果を表4に示す。なお、ガス置換率は次のようにして求めた。
ガス置換率(%)={(20.9−容器内酸素濃度)/20.9}×100
【0029
【表4】
Figure 0003587049
【0030
また、比較例として前記実施例1、2と同じ充填条件で同じ内容物を充填し、ガス置換は従来法である窒素ガスを表5の条件でフラッシュして行なった。密封後のそれぞれについて実施例と同様な方法で、容器内酸素濃度とガス置換率を測定した。その結果を表5に示す。
【0031
【表5】
Figure 0003587049
【0032
表5から明らかなように、比較例(従来例)の場合は、窒素ガスフラッシュの何れの条件においても容器内酸素濃度は高く、適正な酸素濃度である2%を大きく上回る結果を示し、ガス置換状態は不良であった。それは、フラッシュするガスが内容物に遮断され容器の底部まで到達しないことに起因する。これに対し、前記実施例1,2は、何れの場合も容器内酸素濃度が1%以下、ガス置換率95%以上を達成でき、本発明の方法で固形物でも連続作業によって満足のいくガス置換包装が達成できることが確認された。
【0033
本発明によるガス置換方法は、上記従来のガス置換法と異なり、容器内に充填した粉末ドライアイスの昇華により容器底部から上部に向かってガスが移動するため、粉末・顆粒食品等従来ガスフラッシュにより置換できなかった固体食品包装における容器内酸素を除去することができるものである。しかしながら、ドライアイスは大気圧常温下では昇華するのに時間を要するため、ガス置換包装の生産能率を高めるためには、ドライアイスをできるだけ早くガス化させる必要がある。そのため、本発明では粉末ドライアイスを容器に充填後容器底部を加熱して、ガス置換包装の高速化を図った。この点に関する本発明の効果を確認するために、容器を加熱する場合と、無加熱の場合との粉末ドライアイスの重量が経時的にどのように変化するかを次のような実験を行なって調べた。
【0034
実験は、上記実施例の場合と同様にパウチに粉末ドライアイス1gを充填して、直ちに粉末食品150gを充填し、該パウチ底部を約200℃の乾燥空気で加熱した場合と無加熱の場合の場合について5秒おきに容器の重量を測定することにより、ドライアイス残量を計算した。その結果を図に示す。
【0035
から明らかなように、加熱により約15秒で粉末ドライアイスはほぼ昇華するが、無加熱の場合は30秒経過後も0.5g残った。このことは、無加熱の場合、粉末ドライアイスは密封工程で固体のまま残り易く、その後容器内で気化し、容器が膨張したり場合によっては破袋する可能性がある。これに対して、本実施例の場合、袋に粉末ドライアイスを充填後15秒で気化するので、内容物充填時間を含めて最大でも15秒でガス置換を行なうことができ、固形物の脱酸素包装における従来のバッチ方式による場合と比べて飛躍的に短時間に脱酸素包装を行なうことができる。
【0036
【発明の効果】
本発明のガス置換方法によれば、従来バッチ式で行なっていた固体食品の脱酸素包装を、充填密封ラインにおいて連続的にガス置換包装ができ、従来と比較して生産効率を飛躍的に向上させることができる。しかも従来と比し高いガス置換率で包装することができるので、固形内容物の酸化劣化防止に非常に有効な包装ができる。特に、酸化炭素ボンベから液化二酸化炭素を気液分離槽に供給し、該気液分離槽で液面制御及び圧力制御しながら、粉末ドライアイス生成ノズルに液化二酸化炭素を供給するので、100メッシュ程度の細かいドライアイスを生成して容器に定量充填できる結果、高いガス置換率が得られると共に所定内圧を得ることができる。また、生産設備も簡単であり、且つ脱酸素剤等も不要であるので生産コストを低減することができる。
【0037
粉末ドライアイスを充填後、容器を加熱することにより、粉末ドライアイスが短時間に気化して、容器底部から上部に向かってガスが移動して効率的に容器内の酸素を除去するから短時間でガス置換ができ、容器に粉末ドライアイス及び内容物を充填して密封するまで時間を飛躍的に短縮することができる。
【0038
また、本発明の粉末ドライアイス定量充填方法又は装置によれば、液化二酸化炭素が常に一定圧力一定流量で粉末ドライアイス生成ノズルに供給されるので、脈流がなくてノズルつまりがなくなりノズル孔を小さくすることができ、100メッシュ程度の細かいドライアイスの生成が可能である。そして、より細かい粉末ドライアイスを定量充填できる結果、容器に充填後の昇華も早くなるので、上記ガス置換方法に適用することによって粉末ドライアイスを気化させるための容器加熱時間を短くすること、あるいは加熱工程を省くことが可能となる。
【図面の簡単な説明】
【図1】本発明に係る固体食品の容器包装におけるガス置換方法の実施形態に係る工程ブロック線図である。
【図】本発明に係る粉末ドライアイス定量充填装置の実施形態の概略図である。
【図3】容器を加熱する加熱装置の模式図であり、(a)は粉末状ドライアイス充填ステーションにおける断面模式図、(b)は容器密封ステーションにおける断面模式図である。
【図】図に示す実施形態における粉末ドライアイス生成ノズルのノズル径をパラメータとする粉末ドライアイス生成量のバラツキを示すグラフである。
【図】容器内での粉末ドライアイスの重量変化を示すグラフである。
【符号の説明】
25 加熱装置
30 粉末ドライアイス定量充填装置
31 気液分離槽 32 流量計
33 粉末ドライアイス生成ノズル群
34 充填ノズル群 35 液化炭酸ガスボンベ
36 液化炭酸ガス供給配管
41、57、58、65 電磁弁
49 制御装置 50 液面計
51 圧力計 52 圧力変換器
53 警報器 55 排ガス管路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and apparatus quantitative supplying powder dry ice gas replacement method and container for packaging food using powder dry ice.
[0002]
[Prior art]
As a method of removing oxygen in the voids in the container, in the case of liquid food, a gas replacement method of blowing an inert gas into the container to replace the gas in the container is generally performed, but powdery, granular In the case of solid foods such as flakes or slices, it is difficult to remove oxygen existing between solids by the gas replacement method, and therefore, vacuum packaging method, vacuum + inert gas (mainly nitrogen gas) replacement method Oxygen-absorbing packaging is performed, or an oxygen-absorbing agent is attached. For this reason, the deoxygenation packaging of solid food is mostly of the batch type, which requires low production efficiency and expensive equipment. In the case where an oxygen scavenger is attached, there is a problem that the cost is increased.
[0003]
[Problems to be solved by the invention]
The present invention has been devised in view of the above situation, and is effective and inexpensive in packaging solid foods such as lumps, powders, granules, flakes or slices, which are difficult to gas-displace and package. An object of the present invention is to provide a gas replacement method in a container packaging of solid food that can be replaced and packaged, a method and a device capable of supplying powdered dry ice to a container with little variation and in a fixed amount.
[0004]
[Means for Solving the Problems]
The present invention replaces the conventional method of removing air in a container by gas replacement after filling the contents, filling the container with a fixed amount of powdered dry ice before filling the contents, and remaining in the gap between the solid foods. Air is efficiently removed by volume expansion due to evaporation of a fixed amount of powdered dry ice .
[0005]
That is, the gas replacement method in the container packaging of the solid food of the present invention comprises supplying liquefied carbon dioxide from a carbon dioxide cylinder to a gas-liquid separation tank, and controlling the liquid level and pressure in the gas-liquid separation tank while drying the powder dry ice. by supplying the liquefied carbon dioxide to produce a nozzle, as engineering to quantitatively filled in a container to generate a direct powder dry ice from liquid carbon dioxide, filling the contents of the container to vaporize the powder dry ice It is characterized by comprising a step of removing oxygen and a step of sealing the container. The order of the step of filling the container with the powder dry ice and the step of filling the contents is preferable over time, but the order is not necessarily limited to the order, and the powder dry ice and the contents are simultaneously or the powder dry ice is mixed. It may be filled later . In addition, for example, when roasted coffee beans are filled in a container as it is or in a powder state while maintaining heat, or rice is filled into the container with frictional heat generated when polishing brown rice. In cases such as the case where the content itself has heat, the powder dry ice sublimates in a short time without heating the container, so that a step of heating the container is not necessarily required.
[0006]
As the dry ice powder, dry ice finely divided into powder or rice grains (hereinafter simply referred to as powder) is preferable. The following 1 to 4 can be said as gas replacement conditions using powdered dry ice.
1. The filling amount of dry ice depends on the amount of gas in the container when the contents are filled in the container. When dry ice sublimates, it expands by gasification 500 times. Therefore, 1 g of dry ice becomes 500 ml of carbon dioxide. According to the test results so far, it is necessary to introduce a gas in an amount of about 3 to 5 times the amount of gas in the container for good gas replacement conditions. Therefore, the filling amount of powder dry ice with respect to the gas amount in the container is the relationship shown in Table 1, that is, 0.006 to 0.01 times the amount (g) of the gas amount (ml) in the container when the contents are filled in the container. Is desirable.
[0007]
[Table 1]
Figure 0003587049
[0008]
2. The particle size of the powdery dry ice is preferably in the range of 10 to 100 mesh.
If it is less than 10 mesh, the particle size is too large, and it is difficult to vaporize in the heating step after filling and heating the contents. If it is more than 100 meshes, it is too fine, and there is a risk that the nozzles at the time of generating powder dry ice are easily clogged and the amount of the generated dry ice varies.
[0009]
3. The heating of the container can be performed more easily, efficiently and with simple equipment by heating the container bottom with dry heated air. The heating temperature of the dry ice with the dry heating air depends on the heat resistance of the packaging material. Therefore, in the case of a low heat-resistant packaging material such as low-density polyethylene, it is desirable that the temperature be around 100 ° C. and about 10 seconds, and in the case of a heat-resistant packaging material such as a nylon film, polyester film, and polypropylene film, it is about 10 seconds at 100 to 250 ° C. Is desirable. As a heat medium for vaporization, hot water, ultrasonic induction heating, high frequency induction heating, microwave heating, or the like can be used in addition to dry heating air.
[0010]
4. Since the residual amount of the powdered dry ice after heating affects the appearance of the package after sealing, it is necessary to avoid the residual as much as possible. However, there is a case where it is left in consideration of the packaging speed. How much residue is allowed depends on the amount of voids in the container, the flexibility of the packaging material, the packaging shape, the type of contents, and the like. For example, cereals, peanuts, powdered soups and the like do not preferably have an expanded appearance, but potato chips and the like are preferably slightly expanded to protect the contents (prevent cracking). In the packaging form of contents whose expansion appearance is unfavorable, the remaining amount of dry ice with respect to the amount of gas in the container is as shown in Table 2 in the case of easily deformable containers such as pouches. In the case of (1), it is desirable that the range is not more than the range shown in Table 3. From these tables, the residual amount of dry ice after heating is less than about 0.00075 to 0.001 times (g) the gas amount (ml) in the container in the case of a container that is easily deformed, and the container is hardly deformed. It is understood that it is desirable that the case of (1) is within the amount (g) of about 0.0015 to 0.002 times the gas amount (ml) in the container.
[0011]
[Table 2]
Figure 0003587049
[0012]
[Table 3]
Figure 0003587049
[0013]
In addition, the method for quantitatively filling powder dry ice for gas replacement in a container, the method for quantitatively filling powder dry ice of the present invention comprises supplying liquefied carbon dioxide from a carbon dioxide cylinder to a gas-liquid separation tank, By supplying liquefied carbon dioxide to the powder dry ice generation nozzle while controlling the liquid level and pressure in the separation tank, powder dry ice is directly generated from liquefied carbon dioxide and supplied to the container. is there.
[0014]
An apparatus for quantitatively filling powder dry ice into a container according to the present invention for carrying out the above method includes a gas-liquid separation tank, an electromagnetic valve provided in a liquefied carbon dioxide supply pipe to the gas-liquid separation tank, A pressure converter that detects the pressure of the liquid separation tank and converts it into an electric signal, a liquid level gauge that detects the liquid level of the gas-liquid separation tank, an electromagnetic valve provided in an exhaust gas line from the gas-liquid separation tank, A control device for controlling each of the solenoid valves based on signals from the pressure transducer and the liquid level gauge, and powder dry ice generation provided at a lower end of a liquefied carbon dioxide flow-down line communicating with the gas-liquid separation tank; It has a technical configuration characterized by comprising a nozzle. By providing a flow meter for controlling the flow rate in the liquefied carbon dioxide flow-down conduit, the flow rate can be constantly monitored and controlled to a predetermined flow rate.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a process block diagram showing one embodiment of a gas replacement method using dry powder powder in a container packaging of solid food.
The gas replacement method in the container packaging of solid food according to the present embodiment includes a container supply step 1 for supplying a container to the apparatus, a dry ice filling step 2 for filling a supplied container with a fixed amount of powdered dry ice, and a content filling position. A contents filling step 3 for moving and filling the contents, a dry ice vaporizing step 4 for evaporating dry ice while moving from the contents filling to a sealing position in the next step, a sealing step 5 for completely sealing the container, and a sealing And a discharging step 6 for discharging the discharged containers from the apparatus.
[00 16]
FIG. 2 shows an embodiment of an apparatus for filling powder dry ice into a container in the dry ice filling step. The powder dry ice quantitative filling apparatus of the present embodiment supplies liquefied carbon dioxide to a gas-liquid separation tank, generates powder dry ice directly from a nozzle via a flow meter while controlling liquid level and pressure, and supplies the powder to a container. der which is, the less clogging of the nozzle during dry ice product, 100 produce a fine dry ice of about meshes are possible, correspondingly less variation in the filling amount of the powder dry ice, improved quantitative filling property did. Hereinafter will be described the apparatus of the present embodiment based on FIG. 2 in detail.
[00 17]
The apparatus 30 for quantitatively filling powder dry ice into a container according to the present embodiment includes a gas-liquid separation tank 31, a flow meter 32, a powder dry ice generation nozzle 33, and a filling nozzle 34. Liquefied carbon dioxide is supplied from a carbon gas cylinder 35 via a supply pipe 36. The liquefied carbon dioxide supply pipe 36 is connected to a liquid discharge pipe 37 of a liquefied carbon dioxide cylinder 35 via a connecting pipe 38, and a valve 39, a filter 40, and an electromagnetic valve 41 on the inlet side of the main body are provided on the way. By controlling the opening and closing of the liquefied carbon dioxide, the supply of liquefied carbon dioxide to the gas-liquid separation tank can be automatically controlled. Reference numeral 42 denotes a return pipe connected to the gas phase of the liquefied carbon gas cylinder 35, and an exhaust gas supply pipe 43 connected to the liquefied carbon dioxide supply pipe 36 downstream of the solenoid valve 41. In order to return the liquefied carbon dioxide in the gas-liquid separation tank to the liquefied carbon dioxide cylinder 35 when the pressure in the gas-liquid separation tank 31 is abnormally high, the connection is made via the connection pipe 44, the connection pipe 45, and the valve 46 on the main body side. Is provided.
[00 18 ]
The gas-liquid separation tank 31 is provided with a liquid level gauge 50 and a pressure gauge 51 connected to a control device 49 such as a sequencer, so that a predetermined liquid level and pressure set in the control device 49 are always obtained. The liquefied carbon dioxide is supplied to the powder dry ice generation nozzle while controlling the liquid level and the pressure. In the figure, 52 is a pressure converter that converts the internal pressure of the gas-liquid separation tank 31 into an electric signal and supplies it to the control device, and 53 is an alarm that issues an alarm when the pressure of the gas-liquid separation tank becomes abnormal. , An alarm is displayed by a lamp and / or a sound, and an abnormal signal is sent to the controller 49.
[00 19 ]
Reference numeral 55 denotes an exhaust gas pipe connected to the gas phase of the gas-liquid separation tank 31. An electromagnetic valve is provided on the way, and the electromagnetic valve is controlled based on a control signal of the control device 49 to send gas to the outside. It is adjusted so that it flows out and the inside of the gas-liquid separation tank is maintained at a predetermined pressure. In the present embodiment, bypass pipes 56 are arranged in the middle of the exhaust gas pipe 55, and solenoid valves 57 and 58 having different capacities are respectively provided. For example, liquefied carbon dioxide is stored in a gas-liquid separation tank at the start of operation. At times, since the amount of exhaust gas is large and unstable, the amount of exhaust gas is controlled in a short time by using the electromagnetic valve 57 having a large capacity. By controlling using a small electromagnetic valve 58, fine and stable pressure control can be performed. However, the exhaust gas amount may be controlled by only one solenoid valve without providing the bypass pipe. Reference numeral 59 denotes a valve for releasing the exhaust gas in the gas-liquid separation tank to the outside at the end of operation or the like, and reference numeral 60 denotes a safety valve. Reference numeral 61 denotes a filter provided on the upstream side of the solenoid valve, and reference numerals 62 and 63 denote orifices provided on the downstream side of the solenoid valve. These orifices may be provided as needed.
[00 20 ]
In the present embodiment, the flow meter 32 employs a micro motion flow meter so that the flow rate of the ultra-low temperature liquid can be finely detected and the flow rate can be arbitrarily adjusted by attaching the flow rate control valve 47. did. In addition, each of the powder dry ice generation nozzles 33 'of the powder dry ice generation nozzle group 33 is formed at the downstream end of the solenoid valve 65, and in the present embodiment, four nozzles having different nozzle diameters are employed, and the supply amount is adjusted. Can be appropriately selected according to the conditions. However, the number can be arbitrarily selected and may be one, or a plurality of nozzles having a small nozzle diameter and being equal to each other are used to generate fine dry ice in a short time, and the number of the nozzles is selected. Thus, the filling amount may be controlled. Each filling nozzle 34 'of the filling nozzle group 34 is provided corresponding to each of the powder dry ice generating nozzles 33, and has a function of falling the powder dry ice generated toward the opening of the container in a snow-like manner. Reference numeral 48 denotes a filter provided downstream of the flow control valve 47.
[0021]
The powder dry ice quantitative filling device of the present embodiment is configured as described above, and by opening the liquefied carbon dioxide supply pipe line 36, liquefied carbon dioxide is supplied from the liquefied carbon dioxide cylinder 35 to the gas-liquid separation tank 31, When the level gauge 50 detects the liquid level and reaches a liquid level preset in the control device, a control signal is sent from the control device 49 to the electromagnetic valve 41, and the electromagnetic valve is closed. By constantly detecting the liquid level during operation and controlling the opening and closing of the solenoid valve, the liquid level in the gas-liquid separation tank is always kept constant. On the other hand, the pressure in the gas phase of the gas-liquid separation tank is also constantly detected and displayed by the pressure gauge 51, and an electric signal is sent to the control device by the pressure converter 53 in proportion to the internal pressure, and compared with the set value. Is done. When the internal pressure is higher than the set value, the solenoid valve 58 is opened to exhaust the exhaust gas of the gas-liquid separation tank 31 to the outside, thereby controlling the internal pressure to keep the internal pressure of the gas-liquid separation tank always at a constant value. I do.
[00 22 ]
In this manner, the gas-liquid separation tank is controlled so as to be always at a constant pressure and a constant liquid level to perform gas-liquid separation, and the selected predetermined electromagnetic valve 65 of each powder dry ice generation nozzle 33 ′ is opened. As a result, liquefied carbon dioxide at a predetermined pressure and a predetermined flow rate is ejected from a number of nozzle holes of each powder dry ice generation nozzle. The liquefied carbon dioxide is ejected into the atmosphere from a fine nozzle hole, becomes powdery dry ice, spreads in the filling nozzle, is guided by the filling nozzle, falls into a snow-like shape in the container, and is filled. . In this manner, according to the present embodiment, a predetermined amount of powdered dry ice can be filled in a predetermined container at a predetermined time, and a constant amount can be stably filled with little variation in the filling amount. Since the powder is always supplied to the powder dry ice generating nozzle at a constant pressure and a constant flow rate, there is no pulsating flow, no nozzle clogging, the nozzle hole can be reduced, and fine dry ice of about 100 mesh can be generated. is there.
[00 23 ]
In the powder dry ice quantitative filling device of the present embodiment configured as described above, the nozzle diameters of the four powder dry ice generation nozzles are 0.41 mm, 0.51 mm, 0.58 mm, and 0.70 mm, A powder dry ice generation experiment was performed 20 times for each nozzle with the aim of supplying 1 g of powder dry ice from each nozzle. As a result, as shown in FIG. 4, the variation was in the range of 1 g ± 0.25 g. From this, it can be seen that according to the present embodiment, the dispersion is very small, and it is effective to fill the container with the powdery dry ice with high accuracy. According to the powder dry ice quantitative filling device of the present embodiment, a finer powder dry ice can be quantitatively filled, and sublimation after filling the container is fast, so a container for vaporizing the powder dry ice in the gas replacement method is used. It is possible to shorten the heating time or to omit the heating step.
[00 24 ]
The container 20 filled with the fixed amount of dry ice 21 as described above is conveyed to a contents filling stage, and is filled with a predetermined amount of contents 22. During the transfer from the filling stage to the sealing stage of the next step, or at least until the container is sealed, the bottom of the container is heated to promote the vaporization of dry ice. In the present embodiment, as shown in FIG. 3, a gutter-shaped heating device 25 that blows dry heating air at 100 to 200 ° C. is disposed below a passage through which a container passes from the dry ice filling stage to the content filling stage, The bottom of the container is heated by passing the bottom of the container through the heating device 25.
[002 5]
By heating the bottom of the container, the sublimation of the powdered dry ice filled therein is promoted, and as shown in FIG. The air existing in the gaps is extruded, and the air can be effectively removed from inside the container. In addition, since the container is heated, the powder dry ice sublimates in a short time and gas replacement can be performed in a short time, and the time from filling the contents to sealing the container can be reduced.
[00 26]
In the above embodiment, the case where the deoxygenation in the container is exclusively performed by only the dry ice filled in the container has been described. However, it may be combined with a conventional inert gas flush if necessary. In this case, for example, carbon dioxide or nitrogen gas is flowed into the container before filling with powdered dry ice to perform preliminary gas replacement. While the container is moving to the sealing station after filling the contents, the bottom of the container is heated and carbon dioxide or nitrogen gas is flushed toward the opening of the container. By doing so, the oxygen replacement efficiency in the container can be increased, and air can be prevented from entering the container from outside during movement.
[00 27]
In addition, the gas replacement method in the container packaging of the solid food of the present invention is appropriately applied not only to the rotary filling and packaging apparatus, but also to other types of filling and packaging apparatuses such as a linear filling and packaging apparatus, a roll supply / backing seal packaging, and the like. Needless to say, we can do it. Further, the container to be applied is not limited to the pouch, and can be applied to various containers and packaging such as metal cans, cups and other molded containers. Furthermore, the present invention can be applied to the deoxygenation packaging of various solid foods such as coffee beans, coffee powder, dried snacks, snack foods, cereals, retorts, and the like.
[002 8 ]
【Example】
Examples 1 and 2
Filling conditions:
Packaging container: Standing pouch Contents: 17-18 mesh powdery food 150g Gas replacement conditions:
The standing pouch was filled with 1 g of powdered dry ice, and then the contents were packed under the above-mentioned packaging conditions, and the container was sealed after heating with dry air at about 200 ° C. for 10 seconds (Example 1). The heating time was set to 15 seconds under the same conditions (Example 2).
Table 4 shows the results of measuring the oxygen concentration in the container and the gas replacement ratio in each example. The gas replacement ratio was determined as follows.
Gas replacement ratio (%) = {(20.9-oxygen concentration in container) /20.9} × 100
[00 29 ]
[Table 4]
Figure 0003587049
[00 30 ]
As a comparative example, the same contents were filled under the same filling conditions as in Examples 1 and 2, and gas replacement was performed by flushing nitrogen gas, which is a conventional method, under the conditions shown in Table 5. The oxygen concentration in the container and the gas replacement ratio were measured in the same manner as in the example for each of the sealed containers. Table 5 shows the results.
[00 31 ]
[Table 5]
Figure 0003587049
[00 32]
As is clear from Table 5, in the case of the comparative example (conventional example), the oxygen concentration in the container was high under any condition of the nitrogen gas flush, and the result showed that the oxygen concentration greatly exceeded the appropriate oxygen concentration of 2%. The replacement state was poor. This is due to the flushing gas being blocked by the contents and not reaching the bottom of the container. On the other hand, in each of Examples 1 and 2, the oxygen concentration in the container can be 1% or less and the gas exchange rate can be 95% or more in any case. It has been confirmed that replacement packaging can be achieved.
[00 33 ]
The gas replacement method according to the present invention is different from the conventional gas replacement method described above, because the gas moves from the bottom to the top of the container by sublimation of the powder dry ice filled in the container, so that the conventional gas flushing of powder / granular food etc. Oxygen in the container in the solid food packaging that could not be replaced can be removed. However, since dry ice takes time to sublime at atmospheric pressure and room temperature, it is necessary to gasify dry ice as soon as possible in order to increase the production efficiency of gas replacement packaging. Therefore, in the present invention, after filling the dry ice powder into the container, the bottom of the container is heated to speed up the gas replacement packaging. In order to confirm the effect of the present invention in this regard, the following experiment was conducted to determine how the weight of dry ice powder changes over time when the container is heated and when the container is not heated. Examined.
[00 34]
In the experiment, the pouch was filled with 1 g of powdered dry ice and the powdered food was immediately filled with 150 g, and the bottom of the pouch was heated with dry air at about 200 ° C. and without heating in the same manner as in the above example. The remaining dry ice was calculated by weighing the container every 5 seconds for the case. The results are shown in FIG.
[00 35]
As is clear from FIG. 5 , the powder dry ice was substantially sublimated in about 15 seconds by heating, but in the case of no heating, 0.5 g remained even after 30 seconds. This means that if not heated, the powdered dry ice tends to remain solid during the sealing process, and then evaporates in the container, causing the container to expand and possibly break. On the other hand, in the case of the present embodiment, since the bag is vaporized 15 seconds after the powder dry ice is filled, gas replacement can be performed in a maximum of 15 seconds including the time for filling the contents, and the solid material can be removed. Deoxygenation packaging can be performed in a remarkably short time as compared with the conventional batch method in oxygen packaging.
[00 36]
【The invention's effect】
According to the gas replacement method of the present invention, the deoxidation packaging of solid foods, which has been conventionally performed in a batch system, can be continuously performed with gas replacement packaging in a filling and sealing line, thereby dramatically improving production efficiency as compared with the conventional method. Can be done. In addition, since the packaging can be performed with a higher gas replacement ratio than in the past, packaging that is very effective in preventing the solid contents from being oxidized and deteriorated can be performed. In particular, liquefied carbon dioxide is supplied from a carbon oxide cylinder to a gas-liquid separation tank, and while liquid level control and pressure control are performed in the gas-liquid separation tank, liquefied carbon dioxide is supplied to a powder dry ice generation nozzle. As a result, it is possible to obtain a high gas exchange rate and to obtain a predetermined internal pressure. Further, an easy production facilities, and an oxygen scavenger, etc. can be reduced production costs because it is unnecessary.
[00 37]
After filling the powder dry ice , by heating the container, the powder dry ice evaporates in a short time, and the gas moves from the bottom to the top of the container to efficiently remove oxygen in the container. And the time required for filling the container with the powdered dry ice and the contents and sealing the container can be drastically reduced.
[00 38]
Further, according to the powder dry ice quantitative filling method or apparatus of the present invention, liquefied carbon dioxide is always supplied to the powder dry ice generation nozzle at a constant pressure and a constant flow rate. It is possible to reduce the size and to generate fine dry ice of about 100 mesh. And, as a result of being able to quantitatively fill finer powder dry ice, sublimation after filling the container is quicker, so that the container heating time for vaporizing the powder dry ice by applying the above gas replacement method can be shortened, or The heating step can be omitted.
[Brief description of the drawings]
FIG. 1 is a process block diagram according to an embodiment of a gas replacement method in a container and packaging of solid food according to the present invention.
FIG. 2 is a schematic view of an embodiment of a powder dry ice quantitative filling apparatus according to the present invention.
3A and 3B are schematic diagrams of a heating device for heating a container, in which FIG. 3A is a schematic cross-sectional view of a powdery dry ice filling station, and FIG. 3B is a schematic cross-sectional view of a container sealing station.
FIG. 4 is a graph showing the variation in the amount of powder dry ice generated using the nozzle diameter of the powder dry ice generation nozzle in the embodiment shown in FIG. 2 as a parameter.
FIG. 5 is a graph showing a change in weight of powdered dry ice in a container.
[Explanation of symbols]
25 Heating device 30 Powder dry ice quantitative filling device 31 Gas-liquid separation tank 32 Flow meter 33 Powder dry ice generation nozzle group 34 Filling nozzle group 35 Liquefied carbon dioxide gas cylinder 36 Liquefied carbon dioxide gas supply pipes 41, 57, 58, 65 Solenoid valve 49 Control Device 50 Level gauge 51 Pressure gauge 52 Pressure transducer 53 Alarm 55 Exhaust gas line

Claims (12)

二酸化炭素ボンベから液化二酸化炭素を気液分離槽に供給し、該気液分離槽で常に液面制御及び圧力制御しながら、粉末ドライアイス生成ノズルに液化二酸化炭素を供給することにより、液化二酸化炭素から直接粉末ドライアイスを生成して容器に定量充填する工程、内容物を充填する工程、前記粉末ドライアイスを気化させて容器内の酸素を除去する工程、容器を密封する工程からなり、前記液面制御は液面計からの信号を電気的に変換して制御しており、前記圧力制御は圧力変換器によって、前記気液分離槽内の圧力に比例して電気信号が制御装置に送られ、電磁弁を開閉して内圧を常に一定に保つように制御していることを特徴とする固体食品の容器包装におけるガス置換方法。By supplying liquefied carbon dioxide from a carbon dioxide cylinder to a gas-liquid separation tank and supplying liquefied carbon dioxide to a powder dry ice generation nozzle while constantly controlling the liquid level and pressure in the gas-liquid separation tank, the liquefied carbon dioxide is supplied. quantifying filled in a container to generate a direct powder dry ice from filling the contents, removing the oxygen of the powder dry ice vaporizes within the container, it consists step of sealing the container, the liquid The surface control is controlled by electrically converting a signal from a liquid level gauge, and the pressure control is performed by a pressure converter, and an electric signal is sent to a control device in proportion to the pressure in the gas-liquid separation tank. A method for replacing gas in a solid food container or packaging , wherein an electromagnetic valve is opened and closed to control the internal pressure to be always constant . 前記粉末ドライアイスの気化は、容器を加熱することにより行う請求項1記載のガス置換方法。The gas replacement method according to claim 1, wherein the vaporization of the powder dry ice is performed by heating a container. 前記粉末ドライアイスが粒径100〜10メッシュである請求項1又は2記載のガス置換方法。The gas replacement method according to claim 1, wherein the dry ice powder has a particle size of 100 to 10 mesh. 前記粉末ドライアイスの充填量は、容器に内容物を充填したときの容器内ガス量(ml)の0.006〜0.01倍量(g)である請求項1〜3の何れかに記載のガス置換方法。The filling amount of the powdered dry ice is 0.006 to 0.01 times (g) the gas amount (ml) in the container when the contents are filled in the container. Gas replacement method. 加熱後の粉末ドライアイスの残存量は、剛性がなく変形しやすい容器の場合が容器内ガス量(ml)の0.00075〜0.001倍量(g)以内であり、剛性があり変形しにくい容器の場合が容器内ガス量(ml)の0.0015〜0.002倍量(g)以内である請求項1〜4何れかに記載のガス置換方法。The residual amount of the powdered dry ice after heating is within 0.00075 to 0.001 times (g) of the gas amount (ml) in the container in the case of a container having no rigidity and being easily deformed, and is rigid and deformable. The gas replacement method according to any one of claims 1 to 4, wherein the case of a difficult container is within 0.0015 to 0.002 times the amount (g) of the gas amount (ml) in the container. 前記容器の加熱は、容器底部を乾燥加熱空気で加熱するようにした請求項2〜5何れか記載のガス置換方法。The gas replacement method according to claim 2, wherein the heating of the container is performed by heating a bottom portion of the container with dry heated air. 二酸化炭素ボンベから液化二酸化炭素を気液分離槽に供給し、該気液分離槽で該気液分離槽内の液位を検出する液面計からの信号を電気的に変換して常に液面制御し、且つ圧力変換器によって前記気液分離槽内の圧力に比例して電気信号を制御装置に送って電磁弁を開閉して内圧を常に一定に保つように圧力制御しながら、粉末ドライアイス生成ノズルに液化二酸化炭素を供給することにより、液化二酸化炭素から直接粉末ドライアイスを生成して容器に供給することを特徴とする容器への粉末ドライアイス定量充填方法。The liquefied carbon dioxide is supplied from a carbon dioxide cylinder to a gas-liquid separation tank, and the gas-liquid separation tank electrically converts a signal from a liquid level gauge for detecting a liquid level in the gas-liquid separation tank to constantly convert the liquid level. Powder dry ice while controlling and controlling the pressure so as to keep the internal pressure constant by opening and closing the solenoid valve by sending an electric signal to the control device in proportion to the pressure in the gas-liquid separation tank by the pressure converter. A method for filling powder dry ice into a container, wherein powder dry ice is directly generated from the liquefied carbon dioxide by supplying liquefied carbon dioxide to the generation nozzle and supplied to the container. 前記液面制御において、前記気液分離槽の液面が異常に高くなったとき、該気液分離槽の液化二酸化炭素を液化二酸化炭素ボンベに戻すようにした請求項7に記載の粉末ドライアイス定量充填方法。 The powder dry ice according to claim 7, wherein in the liquid level control, when the liquid level of the gas-liquid separation tank becomes abnormally high, the liquefied carbon dioxide in the gas-liquid separation tank is returned to the liquefied carbon dioxide cylinder. Quantitative filling method. 気液分離槽、該気液分離槽への液化二酸化炭素供給管路に設けられた電磁弁、前記気液分離槽の圧力を検出して電気信号に変換する圧力変換器、前記気液分離槽の液位を検出する液面計、前記気液分離槽からの排ガス管路に設けられた電磁弁、前記圧力変換器及び前記液面計からの信号に基づいて前記各電磁弁を制御する制御装置、前記気液分離槽に連通した液化二酸化炭素流下管路の下端部に設けられた粉末ドライアイス生成ノズルを備えてなり、常に前記気液分離槽内の液面と内圧を一定に保つように液面制御及び圧力制御しながら、粉末ドライアイス生成ノズルに液化二酸化炭素を供給するようにしてなることを特徴とする容器への粉末ドライアイス定量充填装置。A gas-liquid separation tank, a solenoid valve provided in a liquefied carbon dioxide supply pipe to the gas-liquid separation tank, a pressure converter for detecting the pressure of the gas-liquid separation tank and converting the pressure into an electric signal, the gas-liquid separation tank A liquid level gauge for detecting the liquid level of the liquid, a solenoid valve provided in an exhaust gas line from the gas-liquid separation tank, and control for controlling the solenoid valves based on signals from the pressure transducer and the liquid level gauge. The apparatus comprises a powder dry ice generation nozzle provided at the lower end of a liquefied carbon dioxide flow-down pipe communicating with the gas-liquid separation tank, so that the liquid level and the internal pressure in the gas-liquid separation tank are always kept constant. Liquefied carbon dioxide is supplied to a powder dry ice generating nozzle while controlling the liquid level and pressure in the container. 前記気液分離槽の液相部と液化二酸化炭素ガスボンベの気相部との間に液化二酸化炭素ガスを戻す戻し管路を配置し、前記気液分離槽の圧力が異常に高くなったとき、該気液分離槽の液化二酸化炭素を液化二酸化炭素ボンベに戻すようにした請求項9に記載の容器への粉末ドライアイス定量充填装置 Arrange a return line for returning liquefied carbon dioxide gas between the liquid phase part of the gas-liquid separation tank and the gas phase part of the liquefied carbon dioxide gas cylinder, and when the pressure of the gas-liquid separation tank becomes abnormally high, 10. The apparatus for quantitatively filling powder dry ice in a container according to claim 9, wherein the liquefied carbon dioxide in the gas-liquid separation tank is returned to a liquefied carbon dioxide cylinder . 前記気液分離槽からの前記排ガス管路の途中にバイパス管路を並設して、それぞれに容量の異なる電磁弁を設けた請求項10に記載の容器への粉末ドライアイス定量充填装置 11. The apparatus for quantitatively filling dry ice in a container according to claim 10, wherein bypass pipes are arranged in the middle of the exhaust gas pipe from the gas-liquid separation tank, and electromagnetic valves having different capacities are provided respectively . 前記液化二酸化炭素流下管路に流量を制御する流量計を設けた請求項記載の容器への粉末ドライアイス定量充填装置。10. The apparatus for quantitatively filling dry ice in a container according to claim 9, wherein a flow meter for controlling a flow rate is provided in the liquefied carbon dioxide downflow pipe.
JP07307198A 1997-04-02 1998-03-09 Gas replacement method for solid food containers and packaging, quantitative dry powder supply method and apparatus therefor Expired - Fee Related JP3587049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07307198A JP3587049B2 (en) 1997-04-02 1998-03-09 Gas replacement method for solid food containers and packaging, quantitative dry powder supply method and apparatus therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-97953 1997-04-02
JP9795397 1997-04-02
JP07307198A JP3587049B2 (en) 1997-04-02 1998-03-09 Gas replacement method for solid food containers and packaging, quantitative dry powder supply method and apparatus therefor

Publications (2)

Publication Number Publication Date
JPH10329808A JPH10329808A (en) 1998-12-15
JP3587049B2 true JP3587049B2 (en) 2004-11-10

Family

ID=26414196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07307198A Expired - Fee Related JP3587049B2 (en) 1997-04-02 1998-03-09 Gas replacement method for solid food containers and packaging, quantitative dry powder supply method and apparatus therefor

Country Status (1)

Country Link
JP (1) JP3587049B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005063594A2 (en) * 2003-12-22 2005-07-14 Da Vinci Association For Inventors' Rights System and method for packaging coffee or tea
JP2006199539A (en) * 2005-01-20 2006-08-03 Costem:Kk Method and apparatus for producing dry ice pellet
JP5056000B2 (en) * 2006-12-22 2012-10-24 大日本印刷株式会社 Fluid filling method and apparatus
JP6458226B2 (en) * 2014-12-26 2019-01-30 ゼネラルパッカー株式会社 Gas filling and packaging machine
JP6507342B2 (en) * 2014-12-26 2019-05-08 ゼネラルパッカー株式会社 Inert gas filling method in gas filling and packaging machine
JP6507349B2 (en) * 2015-04-06 2019-05-08 ゼネラルパッカー株式会社 Gas filling and packaging machine and inert gas filling method in gas filling and packaging machine
ES2669429B1 (en) * 2016-11-23 2019-03-21 Xexprimir S L PROCEDURE FOR THE CONSERVATION OF FRESH CITRUS JUICE AND POMEGRANATES

Also Published As

Publication number Publication date
JPH10329808A (en) 1998-12-15

Similar Documents

Publication Publication Date Title
JP3587049B2 (en) Gas replacement method for solid food containers and packaging, quantitative dry powder supply method and apparatus therefor
JP3584092B2 (en) Powder metering device
CA2269626C (en) Pneumatically conveying powdery substances
KR101517455B1 (en) Continuous bagging processes and systems
KR101729360B1 (en) A high pressure feeder and method of operation to feed granular or fine materials
US6190461B1 (en) Sugar liquification system and process
NL8900598A (en) SPRAY DRYER; PROCESS FOR PREPARING A SPRAY-DROUGH PRODUCT WITH A DESIRED DUMP WEIGHT.
US11448463B2 (en) Freeze drying chamber for a bulk freeze drying system
US5782010A (en) Device for preparing a spray-dried product and method for preparing a product of this kind
US6260361B1 (en) Combination low temperature liquid or slush carbon dioxide ground support system
JP4025418B2 (en) Method and apparatus for manufacturing gas replacement positive pressure package
US20240085106A1 (en) Drying chamber for a bulk freeze drying system
JPH07505212A (en) Method and apparatus for feeding granular material into a pressurized container
Bruff et al. A silo for ground anthracite
JPH1143111A (en) Liquefied gas streaming down device for aseptic filling
EP3864359B1 (en) Bulk freeze drying system
JP3891530B2 (en) Liquefied gas flow down device for aseptic filling
JP2002347716A (en) Method for gas exchange in packing viscous substance in container
JP2000136953A (en) Device for supplying fixed quantity of powder, and method for supplying fixed quantity of powder using the same
JP4309531B2 (en) Fine particle coating method and apparatus
JP3613975B2 (en) Liquefied inert gas filling system
JPH1043580A (en) Shift to non-continuous process from continuous process, method and device therefor
CN1172826C (en) Convenient mixing bag for article
US20230294139A1 (en) Cleaning apparatus for cleaning, in particular degassing, thermoplastic plastics
JPH03120304A (en) Method and apparatus for manufacturing metal fine powder

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees