JP3586499B2 - Method for producing methacrylic acid - Google Patents
Method for producing methacrylic acid Download PDFInfo
- Publication number
- JP3586499B2 JP3586499B2 JP17302495A JP17302495A JP3586499B2 JP 3586499 B2 JP3586499 B2 JP 3586499B2 JP 17302495 A JP17302495 A JP 17302495A JP 17302495 A JP17302495 A JP 17302495A JP 3586499 B2 JP3586499 B2 JP 3586499B2
- Authority
- JP
- Japan
- Prior art keywords
- cpd
- reaction
- maa
- reference example
- methacrylic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、メタクロレインからメタクリル酸を有利に製造する方法に関する。
【0002】
【従来の技術】
メタクロレインからメタクリル酸を製造する技術として現在工業化されている製造方法としては、イソブチレンや第三級ブタノールの気相接触酸化によるメタクロレインを経由する方法と、エチレンからプロピオンアルデヒドを経由してメタクロレインを経る方法が挙げられる。
【0003】
このいずれの方法においても、メタクロレインの酸化にはリン、モリブデンを主成分とするヘテロポリ酸触媒が使用されているが、触媒の寿命や収率の面で劣っている。この原因の一つにはα−位のメチレン基の二重結合の存在を指摘することができる。本発明者等はこの二重結合を保護した状態で酸化反応を行えば高い収率が得られるとの考えのもとに鋭意研究の結果本発明を完成した。
【0004】
メタクロレインとシクロペンタジエンよりシクロペンタジエン・メタクロレイン付加物(以下CPD−MALと記す。)を製造する方法としてTetrahedron:Asymmetry,5,(4),523(1994)には、ポリマーに担持したホウ素のルイス酸触媒を使用する方法が記載されている。
【0005】
特開平1−254648号公報及び特公平5−60454号公報には、(メタ)アクリル酸エステルとシクロペンタジエンの付加物をアミド化あるいはエステル交換したものを解離して(メタ)アクリル酸アミドあるいは(メタ)アクリル酸アミノアルキルエステルを製造する方法が記載されている。
【0006】
【発明が解決しようとする課題】
本発明はα−位のメチレン基の二重結合を保護した状態でメタクロレインを酸化反応することにより、有利にメタクリル酸を製造する新規な方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、メタクロレインからメタクリル酸を製造するに当り、
(I)メタクロレインとシクロペンタジエンよりシクロペンタジエン・メタクロレイン付加物を製造する工程、
(II)シクロペンタジエン・メタクロレイン付加物を液相酸化しシクロペンタジエン・メタクリル酸付加物を製造する工程および
(III) シクロペンタジエン・メタクリル酸付加物をメタクリル酸とシクロペンタジエンに解離する工程
からなることを特徴とするメタクリル酸の製造方法にある。
【0008】
本発明においてメタクロレインとシクロペンタジエンよりCPD−MALを得る(I)の工程では触媒として例えば一般式
SiaAbBcOd
(ただし、式中Siはケイ素、Aはホウ素、リン及びイオウからなる群より選ばれた少なくとも一種の元素、Bはマグネシウム、チタン、バナジウム、鉄、銅、ニッケル、コバルト、アンチモン及びモリブデンからなる群より選ばれた少なくとも一種の元素、Oは酸素、a、b、c及びdは各元素の原子比率を示し、a=100のときb=0〜100、c=0〜100であり、dは前記各成分の原子価を満足するのに必要な酸素原子数である。)で表わされる触媒を用いると(I)の工程がトラブルなく進行するため好ましい。
【0009】
この工程の反応は液相で、触媒は懸濁状態で用いる。触媒の使用量は反応に用いるメタクロレインに対して重量比で0.1〜5、好ましくは0.5〜3である。また、シクロペンタジエンの量はメタクロレインに対しモル比で1〜5、好ましくは1.2〜3である。反応は回分式、半回分式、連続式のいずれでもよい。反応に共するシクロペンタジエンは、工業的にはシクロペンタジエンの解二量化により得ることができる。
【0010】
反応は、メタクロレインとシクロペンタジエンと触媒だけで反応を行ってもよいが、ヘキサン、ペンタン、酢酸、ベンゼン、トルエン等の溶媒を用いてもよい。溶媒の量としては、メタクロレインに対して重量比で0.5〜3、好ましくは0.7〜2を用いることができる。
【0011】
反応温度は、0〜100℃、好ましくは30〜80℃である。反応は常圧で行えるが、加圧下で行ってもよい。また、必要に応じてヒドロキノン、p−メトキシフェノール等の重合防止剤を添加してもよい。
【0012】
本工程で用いる上記一般式で表わされる触媒は、触媒を構成する元素の酸化物、炭酸塩、硝酸塩、酢酸塩、水酸化物等を原料化合物とし、これ等を組み合せて用い、成分の著しい偏在を伴わない限り、従来からよく知られている蒸発乾固法、沈澱法、酸化物混合法等の種々の方法を用いて得ることができる。
【0013】
次に、CPD−MALを液相酸化してCPD−MAAを製造する(II)の工程では、触媒として酢酸金属塩、ナフテン酸金属塩、メタクリル酸金属塩、アセチルアセトネート金属塩及び金属酸化物からなる群より選ばれた少なくとも一種の化合物を用いる。
【0014】
これら金属塩の中、酢酸金属塩としては、カリウム、カルシウム、クロム、マンガン、コバルト、銅、ニッケル、ルビジウム、タリウム、アルミニウム、銀及び鉛からなる群より選ばれた少なくとも一種の酢酸金属塩を、ナフテン酸金属塩としては、鉄、銅、コバルト及び鉛からなる群より選ばれた少なくとも一種のナフテン酸金属塩を、メタクリル酸金属塩としては、ナトリウム、カリウム及び鉄からなる群より選ばれた少なくとも一種のメタクリル酸金属塩を、また、アセチルアセトネート金属塩としては、マンガン、コバルト、鉄及び銅からなる群より選ばれた少なくとも一種のアセチルアセトネート金属塩を挙げることができる。これ等触媒として用いる酢酸金属塩、ナフテン酸金属塩、メタクリル酸金属塩、アセチルアセトネート金属塩は、市販品をそのまま使用しても良いが、必要に応じて金属と酸から調製したものを使用することもできる。
【0015】
また、金属酸化物としては、マンガン、コバルト、銅、モリブデン、銀及び鉛からなる群より選ばれた少なくとも一種の金属酸化物を挙げることができる。これ等の金属酸化物は市販品をそのまま使用してもよいが、該当する金属元素の炭酸塩、硝酸塩、酢酸塩、水酸化物等を組み合わせて調製使用することもできる。
【0016】
CPD−MALを酸化してCPD−MAAを製造する(II)の工程は上記触媒を用いて液相で反応させる。使用する触媒量は、反応に用いるCPD−MALに対して重量比で0.001〜1、好ましくは0.01〜0.8である。
【0017】
反応は、回分式、半回分式、連続式のいずれでもよい。また、酸化剤としては空気、酸素を富化した空気、酸素、過酸化水素等を用いることができる。反応温度は0〜100℃、好ましくは30〜80℃で実施される。反応は常圧で行えるが、加圧下で行ってもよい。
【0018】
反応は、CPD−MALと触媒だけで行ってもよいが、ヘキサン、ペンタン、酢酸、ベンゼン、トルエン等の溶媒を用いてもよい。溶媒の量としては、CPD−MALに対して重量比で0.1〜20、好ましくは0.5〜18が用いられる。また、必要に応じて水を反応系内に共存させることもできる。さらに、反応を行うに際しては、アセトアルデヒド、イソブチルアルデヒド等の反応開始剤を必要に応じて添加することができる。
【0019】
CPD−MAAをメタクリル酸とシクロペンタジエンに解離する(III) の工程は、(II)の工程で得られたCPD−MAAを熱分解することによって達成される。熱分解は公知の手段を用いることができ、例えば、CPD−MAAを100〜400℃、好ましくは150〜380℃に加熱した分解炉に導入し分解し、目的物を得る。
【0020】
【実施例】
以下、本発明による反応例を具体的に説明する。なお、分析はガスクロマトグラフィーにより行った。
【0021】
[参考例1]
300ml丸底フラスコに、メタクロレイン35.1g、シクロペンタジエン49.6g、ヒドロキノン0.4g、ヘキサン35.1g及び触媒としてシリカゲル(和光純薬工業(株)製、ワコーゲルC−100)35.1gを仕込み、浴温60℃で5時間撹拌して反応させた。反応終了後未反応のシクロペンタジエン等を除去したところメタクロレインに対してCPD−MALが収率96.7%で得られた。
【0022】
[参考比較例1]
触媒としてのシリカゲルを使用しないほかは、参考例1と同じ条件で反応を行ったところ、CPD−MALの収率は53.2%と低かった。
【0023】
[参考例2]
シリカゲルにリン酸を担持し、空気流通下に600℃で3時間熱処理したものを触媒として使用した。得られた触媒の酸素以外の元素の組成(以下同じ)はSi100 P1 であった。この触媒を用いたほかは、参考例1と同じ条件で行ったところ、CPD−MALの収率は97.5%であった。
【0024】
[参考例3〜10]
参考例2において、リン酸の代りに表1に示される各化合物を使用したほかは参考例2に記載される方法により、表2に示す触媒組成を有する各種触媒を調製した。得られた各触媒を用いて、参考例1と同じ条件で反応を行った。結果を一括して表2に示した。
【0025】
【表1】
【0026】
【表2】
【0027】
[参考例11]
300ml丸底ナス型フラスコに、CPD−MAL8.0gとn−ヘキサン65.9gを仕込み、触媒として酢酸コバルト2.0gを使用した。酸化剤として空気を50ml/分の割合で導入しながら、浴温40℃で30分間反応を行った。生成物をガスクロマトグラフィーにより分析したところ、CPD−MALの転化率13.3%、CPD−MAAの選択率37.3%、メタクリル酸(以下同MAA)の選択率62.7%であった。なお、このMAAは生成したCPD−MAAの解離により得られたものである(以下同じ)。
【0028】
[参考例12]
反応開始剤としてイソブチルアルデヒド0.5gを添加したほかは、参考例11と同じ条件で反応を行った。その結果、CPD−MALの転化率24.9%、CPD−MAAの選択率26.4%、MAAの選択率73.6%であった。
【0029】
[参考例13]
反応開始剤としてイソブチルアルデヒド0.5g及び酸化剤として31%過酸化水素水3.5gを使用したほかは参考例11と同じ条件で反応を行った。その結果、CPD−MALの転化率25.9%、CPD−MAAの選択率28.2%、MAAの選択率71.8%であった。
【0030】
[参考例14]
反応開始剤としてアセトアルデヒド0.5gを添加し、また、浴温65℃で3時間反応したほかは参考例11と同じ条件で反応を行った。その結果、CPD−MALの転化率40.2%、CPD−MAAの選択率20.5%、MAAの選択率70.7%であった。
[参考例15〜32]
参考例13と同じ条件で表3に示す各種触媒を用い反応を行った。結果を一括して表3に示した。
【0031】
【表3】
【0032】
[参考例33〜39]
触媒使用量を4gとしたほかは参考例13と同じ条件で表4に示す各種触媒を用い反応を行った。結果を一括して表4に示した。
【0033】
【表4】
【0034】
[参考例40]
水を5g添加したほかは参考例13と同じ条件で反応を行った。その結果、CPD−MALの転化率30.0%、CPD−MAAの選択率31.8%、MAAの選択率68.2%であった。
【0035】
[参考例41]
空気を酸素に変えたほかは参考例13と同じ条件で反応を行った。その結果、CPD−MALの転化率34.8%、CPD−MAAの選択率25.0%、MAAの選択率70.1%であった。
【0036】
[参考例42]
触媒を酢酸に変えたほかは参考例13と同じ条件で反応を行った。その結果、CPD−MALの転化率20.9%、CPD−MAAの選択率30.1%、MAAの選択率69.9%であった。
【0037】
[参考比較例2]
触媒を添加しないほかは参考例11と同じ条件で反応を行ったところ、CPD−MALの転化率4.8%、CPD−MAAの選択率0%、MAAの選択率0%であった。
【0038】
[参考比較例3]
触媒を添加しないほかは参考例13と同じ条件で反応を行ったところ、CPD−MALの転化率8.5%、CPD−MAAの選択率0%、MAAの選択率0%であった。
【0039】
[参考例43]
窒素雰囲気下、CPD−MAA15.2gを内部に石英チップを充填し350℃に加熱した石英製熱分解炉に通したところ、95.7%の収率でMAAが得られた。また、この時シクロペンタジエンは92.7%回収された。
【0040】
[参考比較例4]
分解温度を50℃にしたほかは参考例43と同じ条件で熱分解を行ったところ、CPD−MAAの分解は全く起こらなかった。
【0041】
[実施例1]
工程(I)として参考例1、工程(II)として参考例13、工程(III) として参考例43を用いて連続反応を行った。ただし、工程(II)では未反応のCPD−MALは回収して再反応を行った。その結果95.5%の収率でMAAが得られた。
【0042】
[実施例2〜21]
工程(I)(II)(III) をそれぞれ表5に示す参考例で連続反応を行った結果を表5に示した。
【0043】
【表5】
【0044】
[比較例1]
工程(I)として参考比較例1、工程(II)として参考例11、工程(III) として参考例43を用いて連続反応を行った。ただし、工程(II)では未反応のCPD−MALは回収して再反応を行った。その結果MAAの収率は52.3%と低かった。
【0045】
[比較例2]
工程(I)として参考例1、工程(II)として参考比較例3、工程(III) として参考例43を用いて連続反応を行った。ただし、工程(II)では未反応のCPD−MALは回収して再反応を行った。その結果MAAの収率は0%であった。
【0046】
[比較例3]
工程(I)として参考比較例1、工程(II)として参考比較例2、工程(III) として参考比較例4を用いて連続反応を行った。ただし、工程(II)では未反応のCPD−MALは回収して再反応を行った。その結果MAAの収率は0%であった。
【0047】
【発明の効果】
本発明によれば、メタクロレインから高収率でメタクリル酸を得ることができる。[0001]
[Industrial applications]
The present invention relates to a method for advantageously producing methacrylic acid from methacrolein.
[0002]
[Prior art]
The production methods that are currently industrialized as a technique for producing methacrylic acid from methacrolein include a method via methacrolein by gas-phase catalytic oxidation of isobutylene or tertiary butanol, and a method involving methacrolein from ethylene via propionaldehyde. The method which goes through is mentioned.
[0003]
In any of these methods, a heteropolyacid catalyst containing phosphorus and molybdenum as main components is used for the oxidation of methacrolein, but the life and yield of the catalyst are inferior. One of the causes can be pointed out by the presence of a double bond of a methylene group at the α-position. The present inventors have conducted intensive studies on the belief that a high yield can be obtained by carrying out an oxidation reaction while protecting the double bond, and completed the present invention.
[0004]
As a method for producing a cyclopentadiene / methacrolein adduct (hereinafter referred to as CPD-MAL) from methacrolein and cyclopentadiene, Tetrahedron: Asymmetry, 5, (4), 523 (1994) discloses a method for producing boron-supported polymer. A method using a Lewis acid catalyst is described.
[0005]
JP-A-1-254648 and JP-B-5-60454 disclose that a product obtained by amidating or transesterifying an adduct of (meth) acrylate and cyclopentadiene is dissociated to give (meth) acrylamide or ( Methods for producing aminoalkyl (meth) acrylates are described.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel method for advantageously producing methacrylic acid by oxidizing methacrolein while protecting the double bond at the α-position methylene group.
[0007]
[Means for Solving the Problems]
The present invention relates to the production of methacrylic acid from methacrolein,
(I) a step of producing a cyclopentadiene / methacrolein adduct from methacrolein and cyclopentadiene,
(II) a step of producing a cyclopentadiene / methacrylic acid adduct by liquid phase oxidation of a cyclopentadiene / methacrylic acid adduct, and (III) a step of dissociating the cyclopentadiene / methacrylic acid adduct into methacrylic acid and cyclopentadiene. The method for producing methacrylic acid is characterized in that:
[0008]
In the present invention, in the step (I) of obtaining CPD-MAL from methacrolein and cyclopentadiene, for example, a catalyst of the general formula SiaAbBcOd is used as a catalyst.
(Wherein Si is silicon, A is at least one element selected from the group consisting of boron, phosphorus and sulfur, and B is a group consisting of magnesium, titanium, vanadium, iron, copper, nickel, cobalt, antimony and molybdenum. At least one element selected from the group consisting of O, oxygen, a, b, c and d indicate the atomic ratio of each element, and when a = 100, b = 0 to 100 and c = 0 to 100; This is the number of oxygen atoms necessary to satisfy the valence of each component.) It is preferable to use the catalyst represented by the formula (I) since the process (I) proceeds without any trouble.
[0009]
The reaction in this step is in a liquid phase, and the catalyst is used in a suspended state. The amount of the catalyst to be used is 0.1 to 5, preferably 0.5 to 3, by weight based on methacrolein used in the reaction. The amount of cyclopentadiene is 1 to 5, preferably 1.2 to 3, in terms of molar ratio to methacrolein. The reaction may be any of a batch system, a semi-batch system, and a continuous system. The cyclopentadiene involved in the reaction can be industrially obtained by dedimerizing cyclopentadiene.
[0010]
The reaction may be carried out using methacrolein, cyclopentadiene and a catalyst alone, or a solvent such as hexane, pentane, acetic acid, benzene, or toluene may be used. As the amount of the solvent, a weight ratio of 0.5 to 3, preferably 0.7 to 2, with respect to methacrolein can be used.
[0011]
The reaction temperature is 0 to 100 ° C, preferably 30 to 80 ° C. The reaction can be performed under normal pressure, but may be performed under pressure. If necessary, a polymerization inhibitor such as hydroquinone and p-methoxyphenol may be added.
[0012]
The catalyst represented by the above general formula used in this step is obtained by using oxides, carbonates, nitrates, acetates, hydroxides, and the like of the elements constituting the catalyst as raw material compounds, using these in combination, and remarkably uneven distribution of components. As long as the method is not accompanied, it can be obtained using various well-known methods such as an evaporation to dryness method, a precipitation method, and an oxide mixing method.
[0013]
Next, in the step (II) of producing CPD-MAA by subjecting CPD-MAL to liquid phase oxidation, metal acetate, metal naphthenate, metal methacrylate, metal acetylacetonate and metal oxide are used as catalysts. At least one compound selected from the group consisting of
[0014]
Among these metal salts, as the metal acetate, potassium, calcium, chromium, manganese, cobalt, copper, nickel, rubidium, thallium, aluminum, at least one metal acetate selected from the group consisting of silver and lead, As the metal naphthenate, iron, copper, at least one metal salt of naphthenate selected from the group consisting of cobalt and lead, as the metal methacrylate, at least one selected from the group consisting of sodium, potassium and iron The metal methacrylate and the metal acetylacetonate include at least one metal acetylacetonate selected from the group consisting of manganese, cobalt, iron and copper. Commercially available metal acetate, metal naphthenate, metal methacrylate and metal acetylacetonate may be used as such catalysts, but those prepared from metals and acids may be used as necessary. You can also.
[0015]
Examples of the metal oxide include at least one metal oxide selected from the group consisting of manganese, cobalt, copper, molybdenum, silver, and lead. As these metal oxides, commercially available products may be used as they are, or they may be prepared and used in combination with carbonates, nitrates, acetates, hydroxides and the like of the corresponding metal elements.
[0016]
In the step (II) of oxidizing CPD-MAL to produce CPD-MAA, the reaction is performed in a liquid phase using the above catalyst. The amount of the catalyst used is 0.001 to 1, preferably 0.01 to 0.8 in terms of weight ratio with respect to CPD-MAL used in the reaction.
[0017]
The reaction may be any of a batch system, a semi-batch system, and a continuous system. Further, as the oxidizing agent, air, oxygen-enriched air, oxygen, hydrogen peroxide and the like can be used. The reaction is carried out at a temperature of 0 to 100 ° C, preferably 30 to 80 ° C. The reaction can be performed under normal pressure, but may be performed under pressure.
[0018]
The reaction may be performed using only CPD-MAL and a catalyst, or a solvent such as hexane, pentane, acetic acid, benzene, or toluene may be used. The solvent is used in an amount of 0.1 to 20, preferably 0.5 to 18, by weight based on CPD-MAL. Further, water can be allowed to coexist in the reaction system as needed. Further, when performing the reaction, a reaction initiator such as acetaldehyde and isobutyraldehyde can be added as necessary.
[0019]
The step (III) of dissociating CPD-MAA into methacrylic acid and cyclopentadiene is achieved by thermally decomposing the CPD-MAA obtained in step (II). For the thermal decomposition, known means can be used. For example, CPD-MAA is introduced into a decomposition furnace heated to 100 to 400 ° C., preferably 150 to 380 ° C., and decomposed to obtain a target product.
[0020]
【Example】
Hereinafter, a reaction example according to the present invention will be specifically described. The analysis was performed by gas chromatography.
[0021]
[Reference Example 1]
In a 300 ml round bottom flask, 35.1 g of methacrolein, 49.6 g of cyclopentadiene, 0.4 g of hydroquinone, 35.1 g of hexane and 35.1 g of silica gel (Wako Gel C-100, manufactured by Wako Pure Chemical Industries, Ltd.) as a catalyst. The mixture was stirred and reacted at a bath temperature of 60 ° C. for 5 hours. After the reaction was completed, unreacted cyclopentadiene and the like were removed. As a result, CPD-MAL was obtained at a yield of 96.7% with respect to methacrolein.
[0022]
[Reference Comparative Example 1]
When the reaction was carried out under the same conditions as in Reference Example 1 except that silica gel was not used as a catalyst, the yield of CPD-MAL was as low as 53.2%.
[0023]
[Reference Example 2]
Phosphoric acid supported on silica gel and heat-treated at 600 ° C. for 3 hours under air flow were used as a catalyst. The composition of the elements other than oxygen in the obtained catalyst (the same applies hereinafter) was Si 100 P 1 . Except for using this catalyst, the reaction was carried out under the same conditions as in Reference Example 1, and the yield of CPD-MAL was 97.5%.
[0024]
[Reference Examples 3 to 10]
Various catalysts having the catalyst compositions shown in Table 2 were prepared by the method described in Reference Example 2 except that the compounds shown in Table 1 were used instead of phosphoric acid in Reference Example 2. Using the obtained catalysts, a reaction was carried out under the same conditions as in Reference Example 1. The results are collectively shown in Table 2.
[0025]
[Table 1]
[0026]
[Table 2]
[0027]
[Reference Example 11]
A 300 ml round bottom eggplant type flask was charged with 8.0 g of CPD-MAL and 65.9 g of n-hexane, and 2.0 g of cobalt acetate was used as a catalyst. The reaction was carried out at a bath temperature of 40 ° C. for 30 minutes while introducing air as an oxidant at a rate of 50 ml / min. When the product was analyzed by gas chromatography, the conversion of CPD-MAL was 13.3%, the selectivity of CPD-MAA was 37.3%, and the selectivity of methacrylic acid (hereinafter MAA) was 62.7%. . This MAA was obtained by dissociation of the generated CPD-MAA (the same applies hereinafter).
[0028]
[Reference Example 12]
The reaction was carried out under the same conditions as in Reference Example 11, except that 0.5 g of isobutyraldehyde was added as a reaction initiator. As a result, the conversion of CPD-MAL was 24.9%, the selectivity of CPD-MAA was 26.4%, and the selectivity of MAA was 73.6%.
[0029]
[Reference Example 13]
The reaction was carried out under the same conditions as in Reference Example 11, except that 0.5 g of isobutyraldehyde was used as a reaction initiator and 3.5 g of 31% hydrogen peroxide solution was used as an oxidizing agent. As a result, the conversion of CPD-MAL was 25.9%, the selectivity of CPD-MAA was 28.2%, and the selectivity of MAA was 71.8%.
[0030]
[Reference Example 14]
The reaction was carried out under the same conditions as in Reference Example 11 except that 0.5 g of acetaldehyde was added as a reaction initiator and the reaction was carried out at a bath temperature of 65 ° C. for 3 hours. As a result, the conversion of CPD-MAL was 40.2%, the selectivity of CPD-MAA was 20.5%, and the selectivity of MAA was 70.7%.
[Reference Examples 15 to 32]
The reaction was carried out using the various catalysts shown in Table 3 under the same conditions as in Reference Example 13. The results are collectively shown in Table 3.
[0031]
[Table 3]
[0032]
[Reference Examples 33 to 39]
The reaction was carried out using various catalysts shown in Table 4 under the same conditions as in Reference Example 13 except that the amount of the catalyst used was 4 g. The results are collectively shown in Table 4.
[0033]
[Table 4]
[0034]
[Reference Example 40]
The reaction was carried out under the same conditions as in Reference Example 13 except that 5 g of water was added. As a result, the conversion of CPD-MAL was 30.0%, the selectivity of CPD-MAA was 31.8%, and the selectivity of MAA was 68.2%.
[0035]
[Reference Example 41]
The reaction was carried out under the same conditions as in Reference Example 13 except that the air was changed to oxygen. As a result, the conversion of CPD-MAL was 34.8%, the selectivity of CPD-MAA was 25.0%, and the selectivity of MAA was 70.1%.
[0036]
[Reference Example 42]
The reaction was carried out under the same conditions as in Reference Example 13 except that the catalyst was changed to acetic acid. As a result, the conversion of CPD-MAL was 20.9%, the selectivity of CPD-MAA was 30.1%, and the selectivity of MAA was 69.9%.
[0037]
[Reference Comparative Example 2]
The reaction was carried out under the same conditions as in Reference Example 11 except that no catalyst was added. As a result, the conversion of CPD-MAL was 4.8%, the selectivity of CPD-MAA was 0%, and the selectivity of MAA was 0%.
[0038]
[Reference Comparative Example 3]
The reaction was carried out under the same conditions as in Reference Example 13 except that no catalyst was added. As a result, the conversion of CPD-MAL was 8.5%, the selectivity of CPD-MAA was 0%, and the selectivity of MAA was 0%.
[0039]
[Reference Example 43]
Under a nitrogen atmosphere, 15.2 g of CPD-MAA was filled with a quartz chip and passed through a quartz pyrolysis furnace heated to 350 ° C., whereby MAA was obtained at a yield of 95.7%. At this time, 92.7% of cyclopentadiene was recovered.
[0040]
[Reference Comparative Example 4]
When thermal decomposition was performed under the same conditions as in Reference Example 43 except that the decomposition temperature was set to 50 ° C., no decomposition of CPD-MAA occurred.
[0041]
[Example 1]
A continuous reaction was performed using Reference Example 1 as the step (I), Reference Example 13 as the step (II), and Reference Example 43 as the step (III). However, in step (II), unreacted CPD-MAL was recovered and re-reacted. As a result, MAA was obtained in a yield of 95.5%.
[0042]
[Examples 2 to 21]
Table 5 shows the results of continuous reactions of the steps (I), (II), and (III) in Reference Examples shown in Table 5, respectively.
[0043]
[Table 5]
[0044]
[Comparative Example 1]
A continuous reaction was performed using Reference Comparative Example 1 as step (I), Reference Example 11 as step (II), and Reference Example 43 as step (III). However, in step (II), unreacted CPD-MAL was recovered and re-reacted. As a result, the MAA yield was as low as 52.3%.
[0045]
[Comparative Example 2]
A continuous reaction was performed using Reference Example 1 as Step (I), Reference Comparative Example 3 as Step (II), and Reference Example 43 as Step (III). However, in step (II), unreacted CPD-MAL was recovered and re-reacted. As a result, the yield of MAA was 0%.
[0046]
[Comparative Example 3]
A continuous reaction was performed using Reference Comparative Example 1 as the step (I), Reference Comparative Example 2 as the step (II), and Reference Comparative Example 4 as the step (III). However, in step (II), unreacted CPD-MAL was recovered and re-reacted. As a result, the yield of MAA was 0%.
[0047]
【The invention's effect】
According to the present invention, methacrylic acid can be obtained from methacrolein in high yield.
Claims (1)
(I)メタクロレインとシクロペンタジエンよりシクロペンタジエン・メタクロレイン付加物を製造する工程、
(II)シクロペンタジエン・メタクロレイン付加物を液相酸化しシクロペンタジエン・メタクリル酸付加物を製造する工程および
(III) シクロペンタジエン・メタクリル酸付加物をメタクリル酸とシクロペンタジエンに解離する工程
からなることを特徴とするメタクリル酸の製造方法。In producing methacrylic acid from methacrolein,
(I) a step of producing a cyclopentadiene / methacrolein adduct from methacrolein and cyclopentadiene,
(II) a step of producing a cyclopentadiene / methacrylic acid adduct by liquid phase oxidation of a cyclopentadiene / methacrylic acid adduct, and (III) a step of dissociating the cyclopentadiene / methacrylic acid adduct into methacrylic acid and cyclopentadiene. A method for producing methacrylic acid, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17302495A JP3586499B2 (en) | 1995-06-16 | 1995-06-16 | Method for producing methacrylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17302495A JP3586499B2 (en) | 1995-06-16 | 1995-06-16 | Method for producing methacrylic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH092996A JPH092996A (en) | 1997-01-07 |
JP3586499B2 true JP3586499B2 (en) | 2004-11-10 |
Family
ID=15952803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17302495A Expired - Lifetime JP3586499B2 (en) | 1995-06-16 | 1995-06-16 | Method for producing methacrylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3586499B2 (en) |
-
1995
- 1995-06-16 JP JP17302495A patent/JP3586499B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH092996A (en) | 1997-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06509018A (en) | Method for converting a vanadium/phosphorus mixed oxide catalyst precursor into an active catalyst for producing maleic anhydride | |
EP0523727A2 (en) | Process for preparing catalysts used for production of methacrolein and methacrylic acid | |
US5710328A (en) | Preparation of α, β-unsaturated carboxylic acids and anhydrides | |
JPH0686399B2 (en) | Method for producing acrylic acid | |
US6693059B2 (en) | Process for preparing a catalyst and catalytic oxidation therewith | |
JP3101821B2 (en) | Preparation of catalyst for methacrylic acid production | |
CA2027323C (en) | Process for preparing catalysts for producing methacrylic acid | |
US6028221A (en) | Catalyst systems for the one step gas phase production of acetic acid from ethylene and methods of making and using the same | |
JP2818652B2 (en) | Method for producing isobornyl (meth) acrylate | |
JPS58246A (en) | Catalyst for carbonylation of alcohol | |
JPH09316023A (en) | Production of (meth)acrylic acid | |
JP3586499B2 (en) | Method for producing methacrylic acid | |
KR900002454B1 (en) | Process for producing methacrylic acid and catalysts for the process | |
JPH0899933A (en) | Production of methacrylic acid ester | |
JPS5949214B2 (en) | Process for producing unsaturated carboxylic acids or their esters | |
JPS6032608B2 (en) | Method for producing unsaturated compounds | |
CN114917924B (en) | Catalyst for preparing methacrolein by selective oxidation of tertiary butanol and isobutene, and preparation method and application thereof | |
JPS5835141A (en) | Preparation of 2-cyclohexen-1-one | |
JP2000053611A (en) | Reduction of propionic acid in acrylic acid mixture gas | |
JP3173273B2 (en) | Method for producing glyoxylate | |
SU1409590A1 (en) | Method of producing vanadyl pyrophosphate | |
JPS62169739A (en) | Simultaneous production of 1-phenylpropanol and styrene oxide | |
JP4486751B2 (en) | Catalyst system for one-stage gas phase production of acetic acid from ethylene | |
JP2001131135A (en) | Method for producing acrylonitrile | |
JPH0586939B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040715 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040727 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040809 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080813 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080813 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090813 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100813 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100813 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110813 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110813 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110813 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120813 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120813 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |