JP3586296B2 - Method and apparatus for manufacturing artificial tooth root - Google Patents

Method and apparatus for manufacturing artificial tooth root Download PDF

Info

Publication number
JP3586296B2
JP3586296B2 JP21284994A JP21284994A JP3586296B2 JP 3586296 B2 JP3586296 B2 JP 3586296B2 JP 21284994 A JP21284994 A JP 21284994A JP 21284994 A JP21284994 A JP 21284994A JP 3586296 B2 JP3586296 B2 JP 3586296B2
Authority
JP
Japan
Prior art keywords
artificial tooth
tooth root
adhesive
metal core
artificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21284994A
Other languages
Japanese (ja)
Other versions
JPH0871089A (en
Inventor
泰彦 平山
智勇 松本
誠 小木曾
Original Assignee
ペンタックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ペンタックス株式会社 filed Critical ペンタックス株式会社
Priority to JP21284994A priority Critical patent/JP3586296B2/en
Publication of JPH0871089A publication Critical patent/JPH0871089A/en
Application granted granted Critical
Publication of JP3586296B2 publication Critical patent/JP3586296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools

Description

【0001】
【産業上の利用分野】
本発明は、生体口腔内で利用可能な歯科用材料であるセラミックス及び金属を有機接着剤により複合化した人工歯根の製造方法及び製造装置に関する。
【0002】
【従来技術及びその問題点】
従来から、種々の理由により失われた歯を人工歯により回復させるとき、人工歯根を歯槽骨膜下に埋入し、それにより上部構造を再建することが行われている。人工歯根には様々な型が提案され、実際に使用されて今日に至っているが、それらの中では骨と接触する外部に生体活性なセラミックス材料を、内部に強度を維持補償するため金属芯体を用いた複合化人工歯根が有望視されている。これら異種材料の複合化には、溶射などにより直接金属芯体にセラミックス層を形成させる方法、接着剤により複合化させる方法がある。このうち後者の場合、歯科用接着剤として広く使用されている有機化合物系の2,2−ビス〔4−(3−メタクリロキシ−2−ヒドロキシプロピル)フェニル〕プロパン(以下、bis−GMAと略記する)系の接着剤が用いられてきた。しかし、このbis−GMA系接着剤は、重合時の収縮により接着界面に剥離層が生じ、充分な接着効果を発現できない。
【0003】
そこで、接着剤の重合収縮によって生じる空隙を補償するため、特願平5−268872号において、該空隙内に、重合可能な不飽和化合物及び重合開始剤を含有する補償液を注入し、加圧重合を行うことが提案された。
この改良方法による効果をさらに有効なものとするため加圧重合過程の検討を行ったところ、加圧による強制的な接着剤の補償をより完全なものとすることにより人工歯根の強度信頼性を向上させるためには、補償液の硬化を遅延させる一方、接着剤は補償液の供給部から最も離れた部分より徐々に硬化させればよいことが分かった。
これを実現するには、最遠部から供給部へ重合開始剤の濃度勾配をつけることが考えられるが、人工歯根では制御困難である。
【0004】
【発明の目的】
本発明は、補償液の硬化を遅延させるとともに、接着剤は補償液の供給部から最も離れた部分より徐々に硬化させることができ、接着剤の重合収縮を補償し、強度が著しく向上した人工歯根を効率よく製造しうる方法及び装置を提供することを目的とする。
【0005】
【発明の概要】
本発明は、最遠部から供給部へ温度勾配を設けること、より具体的には最遠部のみを加熱することによって、接着剤が人工歯根中の補償液供給部から最も離れた部分より重合硬化を開始し、硬化は徐々に移動して最終的に供給部に達し、その間、硬化点での重合収縮に対して供給部から補償液が補填されるように構成することによって上記目的を達成したものである。
【0006】
すなわち、本発明による人工歯根の製造方法は、セラミックス焼結体から成る人工歯根本体の凹部に接着剤を入れ、次いで金属芯体を挿入し、重合可能な不飽和化合物及び重合開始剤を含有する補償液を注入しながら接着剤を重合させて人工歯根本体と金属芯体とを接着複合化することにより人工歯根を製造する方法において、重合時に、補償液を人工歯根本体と金属芯体との開口部に接触させて保持し、人工歯根本体の底部側を加熱して、そこから上記開口部に向かって徐々に低くなる温度勾配をつけることを特徴とする。
【0007】
また、本発明による人工歯根の製造装置は、人工歯根本体の外径と直径がほぼ同一の穴を1個以上有する筒状体からなり、各穴の上部に、少なくとも人工歯根本体と金属芯体との開口部に、重合可能な不飽和化合物及び重合開始剤を含有する補償液を接触させて保持しうる補償液貯留部が設けられていることを特徴とする。
【0008】
本発明において人工歯根の本体は、セラミックス焼結体から成るものである。セラミックスとしては、リン酸カルシウム系セラミックス、アルミナ系セラミックス、ジルコニア系セラミックスなどを用いることができる。しかし、生体親和性、新生骨誘導性などを考慮すると、少なくとも生体組織と接触する部分はリン酸カルシウム系セラミックス、特にハイドロキシアパタイト及び/又はβ−リン酸三カルシウムの層を有することが好ましい。
【0009】
人工歯根の本体全体がハイドロキシアパタイト焼結体から成るものも好ましいが、このハイドロキシアパタイト焼結体は、純粋である必要はないが、ハイドロキシアパタイトを50重量%以上含むのが好ましい。50重量%未満では、顎骨に埋入した後、顎骨との骨性癒着が不充分となるおそれがある。さらに、ハイドロキシアパタイトに微粒状あるいはウィスカー状のリン酸三カルシウム、アルミナ、シリカ及びジルコニアの1種以上を添加・混合して焼結した人工歯根本体であってもよい。微粒状あるいはウィスカー状の上記のようなセラミックスを混入することにより、強度の向上が期待される。また、ハイドロキシアパタイトにリン酸三カルシウムを添加して焼結したもの及びハイドロキシアパタイト焼結体の表面にリン酸三カルシウム層を設けたものは、その人工歯根を顎骨に埋入したときに、新生骨の形成に有効に作用する点で殊に好ましい。
【0010】
本発明に用いる接着剤には、特に制限はなく、例えば、メタクリレート系接着剤、アクリル系接着剤などが挙げられる。これらのうち、メタクリル酸メチルを主成分として含有し、副成分としてポリメタクリル酸メチル、4−(2−メタクリロイルオキシエチル)トリメリット酸無水物(以下、4−METAと略記する。この物質は、金属やセラミックスとの接着力を向上する作用を有する)及び重合開始剤を含有するメタクリレート系接着剤は、生体内で金属とセラミックス材料との間で優れた接着性を示す点で、特に好適である。上記のような接着剤を用いて充分な接着性及び強度を達成することができるが、接着剤に充填剤として人工歯根本体を構成するセラミックスと同種のセラミックス粉末を添加した接着剤を使用するのも好ましい。セラミックス粉末を充填剤として添加する場合、セラミックス粉末は、50〜75重量%の量で接着剤中に含まれるのが好ましい。セラミックス粉末の配合割合が50重量%未満では、接着剤の強度向上の効果が小さくなり、75重量%を超えると、接着力の低下と接着剤の粘度の増大が起こり、実用に耐えなくなる。
【0011】
本発明において、金属芯体としては、特に制限はなく、チタン、コバルト−クロム合金、ステンレス鋼などの金属あるいは合金から成る芯体を用いることができる。
【0012】
本発明の方法を実施するには、上記のような人工歯根本体の凹部に上記のような接着剤を入れ、金属芯体を挿入して接着剤の重合を開始させ、重合可能な不飽和化合物及び重合開始剤を含有する補償液を注入しながら重合を進行させるのであるが、その際、補償液を少なくとも人工歯根本体と金属芯体との開口部に接触させて保持し、人工歯根本体の底部を加熱して、そこから上記開口部に向かって徐々に低くなる温度勾配をつける。
【0013】
本発明に使用する補償液は、上記のように重合可能な不飽和化合物及び重合開始剤を含有するものである。
重合可能な不飽和化合物としては、特に制限はなく、酢酸ビニル等のビニルエステル、アクリル酸メチル等のアクリル酸エステル、メタクリル酸メチル等のメタクリル酸エステル、アクリルアミド,N−メチルアクリルアミド等のアクリルアミド誘導体、メタクリルアミド,N−メチルメタクリルアミド等のメタクリルアミド誘導体、メチルビニルエーテル等のビニルエーテル、アクリロニトリル、メタクリロニトリル等のニトリル類、塩化ビニル等のハロゲン化ビニル類などが挙げられる。これらのうち1種又は2種以上を使用することができるが、使用する接着剤に主成分として含まれるモノマーと同一の不飽和化合物を用いるのが好ましい。
【0014】
また、重合開始剤としては、過酸化水素、クメンヒドロパーオキシド、t−ブチルヒドロパーオキシド、過硫酸塩(K,Naまたはアンモニウム塩)、過酢酸t−ブチル、過安息香酸t−ブチル、過酸化ベンゾイル、過酸化ジブチル、t−ブチルパーオキシ(2−エチルヘキサノエート)、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビス−2,4−ジメチルバレロニトリルなどが挙げられる。
【0015】
補償液は、接着剤の重合硬化によって生じた微少な空隙へ容易に浸入しうるように、低粘度であることが好ましく、接着剤よりも遅く硬化することが必要である。そのため、補償液にはポリマーは含有しないのが好ましく、重合開始剤の濃度を接着剤の場合より低くするのが好ましい。
【0016】
また、補償液の硬化を遅延、特に、人工歯根本体と金属芯体との開口部、すなわち、補償液の供給部付近での硬化による補償液の注入停止を防止し、さらに最終的には接着剤の硬化よりも後に補償液を硬化させるためには補償液全体を低温に保つ必要がある。この低温化を効果的に実現するため、金属芯体の頭部に金属製の冷却棒を嵌合させ、熱拡散を生じさせるのが好ましい。金属としては、補償液と接触しても腐食せず、熱伝導性のよい金属材料であるのが好ましく、金属芯体として挙げたものを使用することができる。
【0017】
この冷却棒には補償液の固化物と冷却棒とが接合されないように接合防止加工が施されているか、又は接合されない材料から成る外筒が備えられているのが好ましい。接合防止加工としては、例えば、テフロン加工などが挙げられ、外筒としては例えば、テフロン製外筒が挙げられる。
この冷却棒は、これを金属芯体の頂部に結合することによって、金属芯体の頂部に補償液が回り込み、その補償液の固化物が該芯体に固着してしまうのを防止する作用を及ぼすこともできる。
【0018】
補償液が効果的に注入されるように、接着剤が外界と接する部分、すなわち、人工歯根本体と金属芯体との開口部を補償液と接触させて維持して重合を開始するのが好ましい。重合が開始すると、接着剤層の方が先に硬化し、同時に収縮する。この収縮による陰圧が駆動力となって補償液が生じた空隙部に吸引され空隙が補填され、こうして硬化点が徐々に上昇し、開口部まで空隙を残すことなく接着層が形成される。
【0019】
また、人工歯根本体の底部の加熱は、水浴、電気的加熱など任意の手段で行うことができる。
重合は、補償液の注入を効果的に行うために比較的低い重合温度で長時間、望ましくは45℃〜50℃で40時間以上かけて行うことが好ましい。重合を完全に行うためには、重合温度は80℃以上であることが好ましく、90℃以上であることがよりいっそう好ましい。
【0020】
さらに補償液の注入を完全にするためには、重合時に加圧することが好ましい。加圧方法としては、特に制限はなく、様々な方法を採用することができるが、ガスを注入して重合容器内の内圧を高くする方法が簡便で好ましい。また、遠心力を利用して補償液を注入する方法などがある。この圧力は、大気圧下でさらに1気圧以上が好ましく、1.5気圧以上かけるのがより好ましい。また、重合雰囲気は、重合開始剤を効果的に使用するため、窒素ガス雰囲気などの不活性雰囲気であるのが好ましい。
【0021】
次に、図面を参照して本発明の方法及び装置を詳細に説明する。
図1は、本発明の一実施例を示す人工歯根製造装置の断面図であり、図2は、図1に示した装置を人工歯根の製造中の状態で示す断面図である。
図1に示した人工歯根製造装置は、人工歯根本体の外径と直径がほぼ同一の穴2を1個有する筒状体1からなり、この穴2の上部に、少なくとも人工歯根本体3と金属芯体4との開口部5に、重合可能な不飽和化合物及び重合開始剤を含有する補償液6を接触させて保持しうる補償液貯留部7が設けられている。
さらに、筒状体1の上部には、上部に加圧ガス導入口を有するフードをねじ結合などによって結合しうるフード受容部8が設けられている。
【0022】
人工歯根本体3及び金属芯体4を接着剤層9で複合化した人工歯根を図2に示したように人工歯根製造装置の穴2内にセットした後、補償液貯留部7に補償液6を入れ、人工歯根本体3の底部を加熱すると、接着剤層9はその底部から開口部5に向かって温度勾配を生じ、接着剤層9が底部から重合硬化を開始し、収縮分は補償液6が補填し、空隙や剥離部のない硬化した接着剤層を形成することができる。
【0023】
金属芯体4の頂部に存在する穴に冷却棒を結合して、金属芯体の頂部に補償液が回り込み、その補償液が硬化して芯体に硬化物が付着して穴を埋めてしまうのを防止するとともに、補償液を低温に保持するのが好ましい。
図3は、冷却棒10の断面図である。この冷却棒10は、耐蝕性及び熱拡散に優れた金属、例えば、チタンから成るが、補償液の固化物が付着しないように、テフロンなどから成る外筒11を有する。
【0024】
図4は、本発明の別の実施例を示す人工歯根製造装置の平面図であり、図5は図4に示した人工歯根製造装置にフードを取り付けた状態で示す図4のA−A線断面図である。
図4に示した人工歯根製造装置は、一度に多数の人工歯根を製造しうるものであり、筒状体12には、人工歯根を収容する多数の穴13及び外周付近にフード受容部14が設けられている。このフード受容部14にはフード15がねじ結合などによって結合される。また、このフード15には、図5に示したように不活性ガス導入口16が設けられている。不活性ガス導入口16の数は、穴13の数などに応じて適宜選定することができる。
【0025】
この人工歯根製造装置によれば、不活性ガス導入口16から不活性ガスを圧入することによって、補償液を容易に加圧することができ、また、補償液の蒸発を防ぐこともできる。こうして加圧下に、人工歯根本体の底部を加熱することによって、個々の接着剤層にその底部から開口部5に向かって温度勾配を生じさせることができ、接着剤層の底部から重合硬化を開始させ、収縮分は補償液6が補填し、空隙や剥離部のない硬化した接着剤層を形成することができ、多数の人工歯根を一度に効率よく製造することができる。
【0026】
【実施例】
次に、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれによって制限されるものではない。なお、実施例中「部」は特に断りのない限り、「重量部」を意味する。
【0027】
実施例1
下記組成のメタクリル酸メチル系接着剤を調製した。
メタクリル酸メチルモノマー 50部
ポリメタクリル酸メチル 25部
過酸化ベンゾイル 0.25部
4−META 1.5部
ハイドロキシアパタイト粉末 125部
使用したハイドロキシアパタイト粉末は、公知の方法で合成したスラリーを造粒した後、1050℃で4時間熱処理し、乳鉢で粉砕して得たものである。
【0028】
次に、補償液を下記の重量組成で調製した。
メタクリル酸メチルモノマー 50部
4−META 1.5部
過酸化ベンゾイル 0.15部
【0029】
人工歯根本体をハイドロキシアパタイト焼結体から作製し、芯体を金属チタンから作製した。人工歯根本体の凹部内に上記のメタクリル酸メチル系接着剤を充填し、次いで金属チタン芯体を圧入した後、余剰の接着剤を除去した。こうして複合化した人工歯根を図2に示したように、人工歯根製造装置にセットした後、その装置の補償液貯留部に補償液を入れ、この状態で2気圧の窒素雰囲気下で加圧重合を行った。このとき、歯根底部が下側となっている。チタン芯体にはその頂部に金属チタン製の冷却棒(長さ2cm)を取り付けた。温度47℃の水浴を用いて、人工歯根の底部のみが加熱されるようにして重合を開始させ、この温度に48時間維持した。その後、段階的に温度を上げていき、最終的に95℃で1時間維持した後、徐冷することによって重合を終了させた。次いで、歯根外部の余剰の固化した補償液を除去した後、以上の手順で作製した人工歯根試料について、縦圧縮強度及び横圧縮強度を下記の方法で測定し、結果を表1に示す。
縦圧縮強度は、人工歯根を正立の状態で上下方向から荷重を負荷して破壊時の荷重で示し、横圧縮強度は、人工歯根を横に倒した状態で上下方向から荷重を負荷して破壊時の荷重で示した。
【0030】
実施例2
実施例1と同じ接着剤組成、補償液組成及び温度条件を用いるが、常圧で接着操作を行った。得られた人工歯根試料について、縦圧縮強度及び横圧縮強度を測定し、結果を表1に示す。
【0031】
比較例1
実施例1に用いたのと同じ接着剤及び補償液、人工歯根本体及び金属チタン芯体を用いた。人工歯根本体の凹部に接着剤を充填し、金属チタン芯体を圧入した後、余剰の接着剤を除去した。この複合体を補償液を入れた容器に倒立して置き、この状態で2気圧の窒素雰囲気下で加圧重合を行った。50℃に設定した恒温器内に設置して加圧重合を開始させ、13時間この温度に維持し、その後、段階的に温度を上げていき、最終的に95℃に1時間維持した後、徐冷することにより重合を終了させた。次いで、歯根外部の余剰の固化した補償液を除去した後、以上の手順で作製した人工歯根試料について、縦圧縮強度及び横圧縮強度を測定したところ表1に示す結果を得た。
【0032】
比較例2
常圧で接着操作を行った以外は、比較例1と同じ条件で人工歯根試料を作製し、縦圧縮強度及び横圧縮強度を測定したところ表1に示す結果を得た。
【0033】
【表1】

Figure 0003586296
【0034】
この結果から、重合時に、補償液の供給部から最も離れた側から補償液供給部に向かって温度が低くなるように、温度勾配をつけることによって、縦圧縮強度で100kgf、横圧縮強度で約50kgf、強度が向上したことが分かる。
【0035】
【発明の効果】
本発明によれば、補償液の硬化を遅延させるとともに、接着剤は補償液の供給部から最も離れた部分より徐々に硬化させることができるため、接着剤の重合収縮を完全に補償し、剥離部のない接着層を形成でき、強度が著しく向上した人工歯根を容易に製造することができる。また、本発明の装置を用いれば、多数の人工歯根を一度に製造することができ、効率よく品質の良い人工歯根を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す人工歯根製造装置の断面図である。
【図2】図1に示した人工歯根製造装置を人工歯根の製造中の状態で示す断面図である。
【図3】冷却棒10の断面図である。
【図4】本発明の別の実施例を示す人工歯根製造装置の平面図である。
【図5】図4に示した人工歯根製造装置にフードを取り付けた状態で示す図4のA−A線断面図である。
【符号の説明】
1 筒状体
2 穴
3 人工歯根本体
4 金属芯体
5 開口部
6 補償液
7 補償液貯留部
8 フード受容部
9 接着剤層
10 冷却棒
11 外筒
12 筒状体
13 穴
14 フード受容部
15 フード
16 不活性ガス導入口[0001]
[Industrial applications]
The present invention relates to a method and an apparatus for manufacturing an artificial tooth root in which ceramics and metal, which are dental materials usable in a living body oral cavity, are combined with an organic adhesive.
[0002]
[Prior art and its problems]
2. Description of the Related Art Conventionally, when a tooth that has been lost due to various reasons is recovered by an artificial tooth, an artificial root is implanted under the alveolar periosteum, thereby reconstructing a superstructure. Various types of artificial tooth roots have been proposed and used today, but among them, among them, a bioactive ceramic material that contacts the bone and a metal core to maintain and compensate the strength inside are used. Prosthetic composite dental roots are promising. In order to combine these dissimilar materials, there are a method in which a ceramic layer is directly formed on a metal core by thermal spraying or the like, and a method in which a composite is formed using an adhesive. In the latter case, organic compound 2,2-bis [4- (3-methacryloxy-2-hydroxypropyl) phenyl] propane (hereinafter abbreviated as bis-GMA) widely used as a dental adhesive. ) Based adhesives have been used. However, this bis-GMA-based adhesive does not exhibit a sufficient adhesive effect due to the formation of a peeling layer at the adhesive interface due to shrinkage during polymerization.
[0003]
Therefore, in order to compensate for the voids caused by the polymerization shrinkage of the adhesive, in Japanese Patent Application No. 5-268872, a compensating solution containing a polymerizable unsaturated compound and a polymerization initiator is injected into the voids and pressurized. It has been proposed to carry out the polymerization.
In order to make the effect of this improved method even more effective, we examined the pressure polymerization process and found that the strength reliability of the artificial tooth root was improved by compensating the forced adhesive by pressure more completely. It has been found that while improving the compensation, the curing of the compensating liquid is delayed, while the adhesive should be cured gradually from the part farthest from the supply section of the compensating liquid.
In order to realize this, it is conceivable to provide a concentration gradient of the polymerization initiator from the furthest part to the supply part, but it is difficult to control with an artificial tooth root.
[0004]
[Object of the invention]
The present invention delays the curing of the compensating solution, and allows the adhesive to be gradually cured from the portion farthest from the supply portion of the compensating solution, compensates for the polymerization shrinkage of the adhesive, and significantly improves the strength. An object of the present invention is to provide a method and an apparatus capable of efficiently manufacturing a tooth root.
[0005]
Summary of the Invention
The present invention provides a temperature gradient from the furthest part to the supply part, more specifically, by heating only the furthest part, so that the adhesive polymerizes from the part of the artificial tooth root farthest from the compensation liquid supply part. The above-mentioned object is achieved by starting the curing, gradually moving the curing, and finally reaching the supply section, during which the compensation liquid is compensated from the supply section for the polymerization shrinkage at the curing point. It was done.
[0006]
That is, the method for manufacturing an artificial tooth root according to the present invention includes inserting an adhesive into a concave part of an artificial tooth root body made of a ceramic sintered body, then inserting a metal core, and containing a polymerizable unsaturated compound and a polymerization initiator. In a method of manufacturing an artificial tooth root by polymerizing an adhesive while injecting a compensating solution and bonding and compounding the artificial tooth root body and the metal core, during the polymerization, the compensating solution is mixed with the artificial tooth root body and the metal core. The artificial tooth root body is heated by heating the bottom side of the artificial tooth root body, and a temperature gradient is gradually reduced from the bottom side toward the opening.
[0007]
Further, the apparatus for manufacturing an artificial tooth root according to the present invention includes a cylindrical body having one or more holes having substantially the same outer diameter and diameter as the artificial tooth root body. Is provided with a compensating liquid storing section capable of contacting and holding a compensating liquid containing a polymerizable unsaturated compound and a polymerization initiator.
[0008]
In the present invention, the main body of the artificial tooth root is made of a ceramic sintered body. As the ceramics, calcium phosphate-based ceramics, alumina-based ceramics, zirconia-based ceramics, and the like can be used. However, in consideration of biocompatibility, new bone induction, and the like, it is preferable that at least a portion that comes into contact with a living tissue has a layer of calcium phosphate-based ceramics, particularly hydroxyapatite and / or β-tricalcium phosphate.
[0009]
It is also preferable that the entire body of the artificial root is made of a hydroxyapatite sintered body, but this hydroxyapatite sintered body does not need to be pure, but preferably contains 50% by weight or more of hydroxyapatite. If the amount is less than 50% by weight, the bone adhesion to the jaw bone may become insufficient after implantation into the jaw bone. Further, an artificial tooth root body obtained by adding and mixing one or more of fine-grained or whisker-shaped tricalcium phosphate, alumina, silica and zirconia to hydroxyapatite and mixing the sintered body may be used. By mixing fine or whisker-like ceramics as described above, improvement in strength is expected. In addition, those prepared by adding tricalcium phosphate to hydroxyapatite and sintering it, and those provided with a tricalcium phosphate layer on the surface of the hydroxyapatite sintered body, have a new structure when the artificial root is implanted in the jaw bone. It is particularly preferred in that it effectively acts on bone formation.
[0010]
The adhesive used in the present invention is not particularly limited, and examples thereof include a methacrylate adhesive and an acrylic adhesive. Among them, methyl methacrylate is contained as a main component, and polymethyl methacrylate and 4- (2-methacryloyloxyethyl) trimellitic anhydride (hereinafter abbreviated as 4-META.) A methacrylate-based adhesive containing a polymerization initiator which has an effect of improving the adhesive strength to metals and ceramics) and a polymerization initiator is particularly preferable in that it exhibits excellent adhesion between a metal and a ceramic material in a living body. is there. Sufficient adhesiveness and strength can be achieved by using the above-mentioned adhesive, but an adhesive obtained by adding a ceramic powder of the same type as the ceramic constituting the artificial tooth root body as a filler to the adhesive is used. Is also preferred. When ceramic powder is added as a filler, the ceramic powder is preferably contained in the adhesive in an amount of 50 to 75% by weight. If the mixing ratio of the ceramic powder is less than 50% by weight, the effect of improving the strength of the adhesive is reduced, and if it exceeds 75% by weight, the adhesive strength is reduced and the viscosity of the adhesive is increased, making the adhesive unsuitable for practical use.
[0011]
In the present invention, the metal core is not particularly limited, and a core made of a metal or alloy such as titanium, a cobalt-chromium alloy, and stainless steel can be used.
[0012]
In order to carry out the method of the present invention, the adhesive as described above is put into the concave portion of the artificial tooth root body as described above, the polymerization of the adhesive is started by inserting the metal core, and the polymerizable unsaturated compound is The polymerization proceeds while injecting a compensating solution containing a polymerization initiator and the polymerization initiator.At this time, the compensating solution is held in contact with at least the openings of the artificial tooth root body and the metal core body to hold the artificial tooth body. The bottom is heated and a temperature gradient is created which decreases gradually from there toward the opening.
[0013]
The compensating solution used in the present invention contains an unsaturated compound which can be polymerized as described above and a polymerization initiator.
The polymerizable unsaturated compound is not particularly limited, and includes vinyl esters such as vinyl acetate, acrylates such as methyl acrylate, methacrylates such as methyl methacrylate, acrylamide, acrylamide derivatives such as N-methylacrylamide, and the like. Examples thereof include methacrylamide derivatives such as methacrylamide and N-methylmethacrylamide, vinyl ethers such as methyl vinyl ether, nitriles such as acrylonitrile and methacrylonitrile, and vinyl halides such as vinyl chloride. One or more of these can be used, but it is preferable to use the same unsaturated compound as the monomer contained as the main component in the adhesive used.
[0014]
Examples of the polymerization initiator include hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide, persulfate (K, Na or ammonium salt), t-butyl peracetate, t-butyl perbenzoate, Benzoyl oxide, dibutyl peroxide, t-butylperoxy (2-ethylhexanoate), 2,2'-azobisisobutyronitrile, 2,2'-azobis (4-methoxy-2,4-dimethylvalero Nitrile), 2,2′-azobis-2,4-dimethylvaleronitrile and the like.
[0015]
The compensating liquid preferably has a low viscosity so that it can easily penetrate into minute voids generated by polymerization and curing of the adhesive, and needs to cure more slowly than the adhesive. Therefore, it is preferable that the compensating liquid does not contain a polymer, and the concentration of the polymerization initiator is preferably lower than that of the adhesive.
[0016]
In addition, the curing of the compensating solution is delayed, and in particular, the opening of the artificial root body and the metal core, that is, the stopping of the injection of the compensating solution due to the curing in the vicinity of the supply portion of the compensating solution is prevented, and finally, the bonding is performed. In order to cure the compensating solution after the curing of the agent, it is necessary to keep the entire compensating solution at a low temperature. In order to effectively realize the lowering of the temperature, it is preferable to fit a metal cooling rod to the head of the metal core to cause heat diffusion. The metal is preferably a metal material which does not corrode even when it comes into contact with the compensating liquid and has good heat conductivity, and those mentioned as the metal core can be used.
[0017]
It is preferable that the cooling rod is subjected to joining prevention processing so that the solidified compensating liquid and the cooling rod are not joined, or provided with an outer cylinder made of a material that is not joined. Examples of the joining prevention processing include Teflon processing and the like, and examples of the outer cylinder include a Teflon outer cylinder.
The cooling rod has an effect of preventing the compensating liquid from flowing around the top of the metal core by joining the cooling rod to the top of the metal core, and preventing the solidified product of the compensating liquid from sticking to the core. It can also affect.
[0018]
In order for the compensation liquid to be effectively injected, it is preferable that the polymerization is started by maintaining the portion of the adhesive in contact with the outside world, that is, the opening between the artificial tooth root body and the metal core body in contact with the compensation liquid. . When the polymerization starts, the adhesive layer cures first and shrinks at the same time. The negative pressure due to this shrinkage becomes a driving force and is sucked into the gap where the compensating liquid is generated to fill the gap, thus gradually increasing the hardening point and forming an adhesive layer without leaving a gap up to the opening.
[0019]
In addition, the heating of the bottom of the artificial tooth root body can be performed by any means such as a water bath and electric heating.
The polymerization is preferably performed at a relatively low polymerization temperature for a long time, preferably at 45 ° C. to 50 ° C. for 40 hours or more in order to effectively inject the compensating solution. In order to carry out the polymerization completely, the polymerization temperature is preferably 80 ° C. or higher, and more preferably 90 ° C. or higher.
[0020]
In order to completely inject the compensating solution, it is preferable to pressurize during the polymerization. The pressurizing method is not particularly limited, and various methods can be adopted. However, a method of injecting a gas to increase the internal pressure in the polymerization vessel is simple and preferable. In addition, there is a method of injecting a compensating solution using centrifugal force. This pressure is preferably 1 atm or more under atmospheric pressure, more preferably 1.5 atm or more. Further, the polymerization atmosphere is preferably an inert atmosphere such as a nitrogen gas atmosphere in order to use the polymerization initiator effectively.
[0021]
Next, the method and apparatus of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view of an apparatus for manufacturing an artificial tooth root showing one embodiment of the present invention, and FIG. 2 is a cross-sectional view showing the apparatus shown in FIG. 1 during manufacturing of an artificial tooth root.
The artificial tooth root manufacturing apparatus shown in FIG. 1 includes a cylindrical body 1 having one hole 2 having substantially the same outer diameter and diameter as the artificial tooth root body. An opening 5 with the core 4 is provided with a compensating liquid reservoir 7 which can hold a compensating liquid 6 containing a polymerizable unsaturated compound and a polymerization initiator in contact therewith.
Further, a hood receiving portion 8 is provided at an upper portion of the tubular body 1 so that a hood having a pressurized gas introduction port at an upper portion can be connected by screw connection or the like.
[0022]
After setting the artificial tooth obtained by compounding the artificial tooth root body 3 and the metal core 4 with the adhesive layer 9 in the hole 2 of the artificial tooth root manufacturing apparatus as shown in FIG. When the bottom of the artificial tooth root body 3 is heated, the adhesive layer 9 generates a temperature gradient from the bottom toward the opening 5, the adhesive layer 9 starts polymerization and hardening from the bottom, and the shrinkage is reduced by the compensation liquid. 6 makes up a cured adhesive layer without voids or peeled portions.
[0023]
A cooling rod is connected to the hole at the top of the metal core 4, and the compensating liquid flows around the top of the metal core, and the compensating liquid hardens, and a cured product adheres to the core to fill the hole. It is preferable to keep the temperature of the compensating solution at a low temperature as well as to prevent the above.
FIG. 3 is a sectional view of the cooling rod 10. The cooling rod 10 is made of a metal having excellent corrosion resistance and heat diffusion, for example, titanium, but has an outer cylinder 11 made of Teflon or the like so that a solidified compensating liquid does not adhere.
[0024]
FIG. 4 is a plan view of an artificial tooth root manufacturing apparatus showing another embodiment of the present invention, and FIG. 5 is a state in which a hood is attached to the artificial tooth root manufacturing apparatus shown in FIG. It is sectional drawing.
The artificial tooth root manufacturing apparatus shown in FIG. 4 can manufacture a large number of artificial tooth roots at a time, and the cylindrical body 12 has a number of holes 13 for accommodating the artificial tooth root and a hood receiving portion 14 near the outer periphery. Is provided. A hood 15 is connected to the hood receiving portion 14 by a screw connection or the like. The hood 15 is provided with an inert gas inlet 16 as shown in FIG. The number of the inert gas inlets 16 can be appropriately selected according to the number of the holes 13 and the like.
[0025]
According to this artificial tooth root manufacturing apparatus, by injecting the inert gas from the inert gas inlet 16, the compensating solution can be easily pressurized, and the compensating solution can be prevented from evaporating. By heating the bottom of the artificial tooth root body under pressure in this manner, a temperature gradient can be generated in each adhesive layer from the bottom toward the opening 5, and polymerization curing starts from the bottom of the adhesive layer. Then, the compensation liquid 6 compensates for the shrinkage, and a cured adhesive layer without voids or peeled portions can be formed, so that a large number of artificial dental roots can be efficiently manufactured at once.
[0026]
【Example】
Next, the present invention will be described more specifically based on examples, but the present invention is not limited thereto. In the examples, “parts” means “parts by weight” unless otherwise specified.
[0027]
Example 1
A methyl methacrylate adhesive having the following composition was prepared.
Methyl methacrylate monomer 50 parts Polymethyl methacrylate 25 parts Benzoyl peroxide 0.25 parts 4-META 1.5 parts Hydroxyapatite powder 125 parts Heat-treated at 1050 ° C. for 4 hours and crushed in a mortar.
[0028]
Next, a compensating solution was prepared with the following weight composition.
Methyl methacrylate monomer 50 parts 4-META 1.5 parts Benzoyl peroxide 0.15 parts
The artificial tooth root body was made of a hydroxyapatite sintered body, and the core was made of titanium metal. The above-mentioned methyl methacrylate adhesive was filled in the concave portion of the artificial tooth root body, and then a metal titanium core was press-fitted, and then the excess adhesive was removed. As shown in FIG. 2, the artificial tooth thus compounded was set in an artificial tooth root manufacturing apparatus, and then a compensating solution was poured into a compensating solution storage section of the apparatus. In this state, pressure polymerization was performed under a nitrogen atmosphere at 2 atm. Was done. At this time, the root of the tooth is on the lower side. A cooling rod (length: 2 cm) made of titanium metal was attached to the top of the titanium core. Using a water bath at a temperature of 47 ° C., the polymerization was started by heating only the bottom of the artificial tooth root and maintained at this temperature for 48 hours. Thereafter, the temperature was gradually increased, and finally maintained at 95 ° C. for 1 hour, followed by gradually cooling to terminate the polymerization. Next, after removing the excessive solidified compensating solution outside the tooth root, the longitudinal compression strength and the horizontal compression strength of the artificial tooth root sample prepared by the above procedure were measured by the following method, and the results are shown in Table 1.
The vertical compressive strength is indicated by the load at the time of breaking by applying a load from above and below while the artificial tooth is upright, and the horizontal compressive strength is obtained by applying a load from above and below while the artificial tooth is folded sideways. It was shown by the load at the time of breaking.
[0030]
Example 2
The same adhesive composition, compensating solution composition and temperature conditions as in Example 1 were used, but the bonding operation was performed at normal pressure. For the obtained artificial tooth root sample, the longitudinal compressive strength and the lateral compressive strength were measured, and the results are shown in Table 1.
[0031]
Comparative Example 1
The same adhesive, compensating solution, artificial root body and metallic titanium core as used in Example 1 were used. An adhesive was filled in the concave portion of the artificial tooth root body, and after press-fitting a metal titanium core, excess adhesive was removed. The complex was placed upside down in a container containing the compensating solution, and under this condition, pressure polymerization was performed under a nitrogen atmosphere at 2 atm. It was placed in a thermostat set at 50 ° C. to start pressure polymerization, maintained at this temperature for 13 hours, then gradually increased in temperature, and finally maintained at 95 ° C. for 1 hour, The polymerization was terminated by slow cooling. Next, after removing the excessive solidified compensating solution outside the tooth root, the longitudinal compressive strength and the lateral compressive strength of the artificial tooth root sample prepared by the above procedure were measured, and the results shown in Table 1 were obtained.
[0032]
Comparative Example 2
An artificial tooth root sample was prepared under the same conditions as in Comparative Example 1 except that the bonding operation was performed at normal pressure, and the longitudinal compression strength and the horizontal compression strength were measured. The results shown in Table 1 were obtained.
[0033]
[Table 1]
Figure 0003586296
[0034]
From these results, it is found that, during polymerization, a temperature gradient is set so that the temperature decreases from the side farthest from the supply section of the compensation liquid toward the supply section of the compensation liquid. It can be seen that the strength was improved by 50 kgf.
[0035]
【The invention's effect】
According to the present invention, the curing of the compensating liquid is delayed, and the adhesive can be gradually cured from the part farthest from the supply section of the compensating liquid. An adhesive layer having no parts can be formed, and an artificial root with significantly improved strength can be easily manufactured. In addition, by using the apparatus of the present invention, a large number of artificial dental roots can be manufactured at one time, and an artificial dental root with high quality can be provided efficiently.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an apparatus for manufacturing an artificial root according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing the artificial tooth root manufacturing apparatus shown in FIG. 1 in a state where an artificial tooth root is being manufactured.
FIG. 3 is a cross-sectional view of the cooling rod 10;
FIG. 4 is a plan view of an apparatus for manufacturing an artificial tooth root according to another embodiment of the present invention.
5 is a cross-sectional view taken along line AA of FIG. 4, showing a state in which a hood is attached to the artificial tooth root manufacturing device shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cylindrical body 2 Hole 3 Artificial root body 4 Metal core 5 Opening 6 Compensating liquid 7 Compensating liquid storing section 8 Food receiving section 9 Adhesive layer 10 Cooling rod 11 Outer cylinder 12 Cylindrical body 13 Hole 14 Food receiving section 15 Hood 16 inert gas inlet

Claims (6)

セラミックス焼結体から成る人工歯根本体の凹部に接着剤を入れ、次いで金属芯体を挿入し、重合可能な不飽和化合物及び重合開始剤を含有する補償液を注入しながら接着剤を重合させて人工歯根本体と金属芯体とを接着複合化することにより人工歯根を製造する方法において、重合時に、補償液を人工歯根本体と金属芯体との開口部に接触させて保持し、人工歯根本体の底部を加熱して、そこから上記開口部に向かって徐々に低くなる温度勾配をつけることを特徴とする人工歯根の製造方法。An adhesive is put into the concave portion of the artificial tooth root body made of ceramic sintered body, then a metal core is inserted, and the adhesive is polymerized while injecting a compensating solution containing a polymerizable unsaturated compound and a polymerization initiator. In a method for manufacturing an artificial tooth root by bonding and bonding an artificial tooth root body and a metal core body, during polymerization, a compensating solution is held in contact with the opening of the artificial tooth root body and the metal core body, A method for manufacturing an artificial tooth root, comprising heating a bottom portion of the dental implant and providing a temperature gradient that gradually decreases from the bottom toward the opening. 金属芯体の頭部に冷却棒を嵌合させて、該頭部への補償液の回り込みを防止するとともに熱を拡散させて補償液を低温に維持する請求項1記載の人工歯根の製造方法。2. The method for manufacturing an artificial tooth root according to claim 1, wherein a cooling rod is fitted to the head of the metal core to prevent the compensating solution from flowing into the head and diffuse the heat to maintain the compensating solution at a low temperature. . 重合を不活性雰囲気中で加圧下に行う請求項1又は2記載の人工歯根の製造方法。3. The method for producing an artificial dental root according to claim 1, wherein the polymerization is performed under pressure in an inert atmosphere. 人工歯根本体の外径と直径がほぼ同一の穴を1個以上有する筒状体からなり、各穴の上部に、少なくとも人工歯根本体と金属芯体との開口部に、重合可能な不飽和化合物及び重合開始剤を含有する補償液を接触させて保持しうる補償液貯留部が設けられていることを特徴とする人工歯根の製造装置。It comprises a cylindrical body having one or more holes whose diameters are substantially the same as the outer diameter of the artificial root body, and a polymerizable unsaturated compound is formed at the top of each hole at least in the opening between the artificial root body and the metal core. And a compensating solution storage part capable of contacting and holding a compensating solution containing a polymerization initiator. 金属芯体の頭部に結合しうる金属製の冷却棒を有し、該冷却棒には補償液の固化物と冷却棒とが接合されないように接合防止加工が施されているか、又は接合されない材料から成る外筒が備えられている請求項4記載の人工歯根の製造装置。It has a metal cooling rod that can be connected to the head of the metal core, and the cooling rod has been subjected to joining prevention processing so that the solidified material of the compensation liquid and the cooling rod are not joined, or is not joined. The apparatus according to claim 4, further comprising an outer cylinder made of a material. 筒状体の上部に結合でき、上部に不活性ガス導入口を有するフードを備えた請求項4又は5記載の人工歯根の製造装置。The artificial tooth root manufacturing apparatus according to claim 4 or 5, further comprising a hood that can be coupled to an upper part of the cylindrical body and has an inert gas inlet at the upper part.
JP21284994A 1994-09-06 1994-09-06 Method and apparatus for manufacturing artificial tooth root Expired - Fee Related JP3586296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21284994A JP3586296B2 (en) 1994-09-06 1994-09-06 Method and apparatus for manufacturing artificial tooth root

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21284994A JP3586296B2 (en) 1994-09-06 1994-09-06 Method and apparatus for manufacturing artificial tooth root

Publications (2)

Publication Number Publication Date
JPH0871089A JPH0871089A (en) 1996-03-19
JP3586296B2 true JP3586296B2 (en) 2004-11-10

Family

ID=16629350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21284994A Expired - Fee Related JP3586296B2 (en) 1994-09-06 1994-09-06 Method and apparatus for manufacturing artificial tooth root

Country Status (1)

Country Link
JP (1) JP3586296B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2828090B1 (en) * 2001-08-03 2003-11-21 Andre Benhamou IMPLANT FOR DENTAL OR SIMILAR USE, CONSISTING OF A CORE AND A CERAMIC SLEEVE CONNECTED TO ONE ANOTHER BY GLUE
SE530060C2 (en) * 2004-09-01 2008-02-19 Nobel Biocare Ab Implants for dental prosthetics and the procedure and systems for making the implant

Also Published As

Publication number Publication date
JPH0871089A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
CA2027921C (en) Bone cement composition, cured product thereof, implant material and process for the preparation of the same
US4131597A (en) Bioactive composite material process of producing and method of using same
JP4781675B2 (en) Formulation for fixing to natural tooth parts or teeth
EP0089782B1 (en) Polymeric acrylic prosthesis
O'Keefe et al. In vitro tensile bond strength of adhesive cements to new post materials.
US4547327A (en) Method for producing a porous prosthesis
Morita et al. Performance of adhesive bone cement containing hydroxyapatite particles
WO1996011715A1 (en) Hard-tissue repair composition and supply unit therefor
JPS6335508A (en) Resin composition for denture base
US20130150227A1 (en) Composite Bio-Ceramic Dental Implant and Fabricating Method Thereof
Ishihara et al. Adhesive bone cement both to bone and metals: 4‐META in MMA initiated with tri‐n‐butyl borane
JP3586296B2 (en) Method and apparatus for manufacturing artificial tooth root
CN110327220A (en) Zirconium oxide-resin bicontinuous composites, using and preparation method thereof
EP0053903B1 (en) Oral prosthesis and method for producing same
Amarnath et al. Bond strength and tensile strength of surface treated resin teeth with microwave cured and heat cured acrylic resin denture base: An in-vitro study
EP3146934B1 (en) Pads for orthodontic brackets, orthodontic brackets, and methods of making orthodontic brackets
JP3471866B2 (en) Manufacturing method of artificial root
JPS63183069A (en) Implant material and its production
Ogiso et al. Adhesive improvement of the mechanical properties of a dense HA‐cemented Ti dental implant
EP1096039B1 (en) Method of forming an oxide film on a metallic member and method of cementing the metallic member
KR101922150B1 (en) Porous implants for dentistry and surgery and manufacturing method thereof
Ghavami-Lahiji et al. Influence of Er, Cr: YSGG laser surface treatments on micro push-out bond strength of fiber posts to composite resin core materials
MUNKSGAARD et al. Effect of load‐cycling on bond between composite fillings and dentin established by Gluma and various resins
JPS63160662A (en) Surface treatment of metal material excellent in bone compatibility
WO2010009567A2 (en) A preparation for being fastened on a natural tooth part or tooth and method of manufacturing such a preparation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040806

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees