JP3585950B2 - Magnetic bearing type rotating device - Google Patents

Magnetic bearing type rotating device Download PDF

Info

Publication number
JP3585950B2
JP3585950B2 JP07459494A JP7459494A JP3585950B2 JP 3585950 B2 JP3585950 B2 JP 3585950B2 JP 07459494 A JP07459494 A JP 07459494A JP 7459494 A JP7459494 A JP 7459494A JP 3585950 B2 JP3585950 B2 JP 3585950B2
Authority
JP
Japan
Prior art keywords
magnetic bearing
supply
circuit
power
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07459494A
Other languages
Japanese (ja)
Other versions
JPH07279962A (en
Inventor
雅之 山本
Original Assignee
Bocエドワーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bocエドワーズ株式会社 filed Critical Bocエドワーズ株式会社
Priority to JP07459494A priority Critical patent/JP3585950B2/en
Publication of JPH07279962A publication Critical patent/JPH07279962A/en
Application granted granted Critical
Publication of JP3585950B2 publication Critical patent/JP3585950B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、磁気軸受式回転装置に係り、例えば、回転中の磁気軸受式ターボ分子ポンプ等が停電時にタッチダウンする際に、保護ベアリングが破壊しないようにした磁気軸受式回転装置に関する。
【0002】
【従来の技術】
従来、磁気軸受式回転装置では、回転体の高速回転中に停電した場合のバックアップ用電源として、バッテリを装備するのが一般的であった。そして、停電時には、このバッテリの電力によって回転体の磁気浮上を継続させると共に、インバータでブレーキ動作を行い、回転体の回転を停止させるようにしていた。
【0003】
しかし、近年、例えば磁気軸受式ターボ分子ポンプなどでは、バックアップ用電源としてのバッテリを使用せず、停電時には回転体の回転エネルギをモータ駆動装置側に回生して磁気軸受の電源とすることにより、回転体の磁気浮上を継続する方式(以下、バッテリレス方式と呼ぶ)が主流となりつつある。
【0004】
バッテリレス方式では、回転体の回転エネルギが回生されると共に回転体の回転数は低下し、回転数の低下と共に回生される電力が減少する。そして、回生電力が磁気浮上に必要な電力を下回った時点で、磁気軸受の磁気浮上動作の継続が不可能となり、回転体は保護ベアリング上に降下する(以下、タッチダウンと呼ぶ)。
【0005】
一方、バッテリレス方式において、停電時に磁気軸受が動作不可能となる回転数は、定格回転数の1/3〜1/5程度である。そして、回転体が保護ベアリング上にタッチダウンしたときの回転エネルギは、殆ど保護ベアリングの機械的摩擦による熱エネルギとして消費され、数分〜数10分で回転は停止する。
【0006】
【発明が解決しようとする課題】
しかしながら、前述の如く数分〜数10分にわたって保護ベアリング上で回転体が回転すると、回転体の重量により保護ベアリングが激しく磨耗する。この激しい磨耗のために、場合によっては数10回の停電時における回転体のタッチダウンにより保護ベアリングが破壊したり、或いは、保護ベアリングを構成するボールの磨耗によって生じたベアリングのがたつきによって、例えばターボ分子ポンプの回転翼と固定翼とが接触し、破壊するおそれがあった。
【0007】
そこで、本発明の目的は、回転体の高速回転中に停電になり回転体がタッチダウンした場合に、短時間で回転を停止させる磁気軸受式回転装置を提供することである。
【0008】
【課題を解決するための手段】
請求項1記載の発明では、直流供給手段と、この直流供給手段からの供給電流によりモータの回転体を磁気浮上させる電磁石と、この電磁石の発生磁界を制御して前記回転体の位置制御を行う磁気軸受制御手段と、前記モータの巻線への電流供給を制御するスイッチング素子を用いて、前記直流供給手段からの供給電流を、モータの回転体を回転させる回転磁界形成用の交流に変換する電力変換手段と、前記直流供給手段による給電の停止を検出し、前記電力変換手段から交流が供給されるモータの巻線を前記スイッチング素子の導通を制御して短絡させる短絡手段とを備えて、前記目的を達成する。
【0009】
請求項2記載の発明では、前記短絡手段は、前記直流供給手段の出力側に並列接続された継電器およびコンデンサと、前記継電器とコンデンサとの接続点に一端が接続され、他端が前記スイッチング素子の導通を制御する導通制御部に接続された前記継電器のブレーク接点とを備えて、前記目的を達成する。
【0010】
請求項3記載の発明では、前記直流供給手段と継電器との間に配置され、前記磁気軸受制御手段が給電されている場合には前記直流供給手段と継電器とを接続させ、前記磁気軸受制御手段が給電停止されている場合には前記直流供給手段と継電器とを非接続とさせる開閉手段を備えて、前記目的を達成する。
【0011】
【作用】
請求項1記載の磁気軸受式回転装置では、電磁石は、直流供給手段から直流を供給されてモータの回転体を磁気浮上させる。磁気軸受制御手段は、磁気浮上された回転体の位置制御を行う。電力変換手段をなすスイッチング素子にはモータの巻線が接続されている。電力変換手段は、モータの巻線への電流供給を制御するスイッチング素子を用いて、直流供給手段から供給された直流をモータの回転体を回転させる回転磁界形成用の交流に変換する。短絡手段は、直流供給手段による給電の停止を検出し、モータの巻線をスイッチング素子の導通を制御して短絡する。
【0012】
そして、給電停止時にモータの巻線が短絡状態のまま回転体が回転を継続すると、モータは発電機として作用し、モータの回転体は電気的制動作用を受ける。従って、給電停止時には、回転体は電気的制動作用により短時間の内に回転を停止するので、保護ベアリングの寿命を延ばすことができる。
【0013】
請求項2記載の磁気軸受式回転装置では、継電器は直流供給手段の出力側に接続されているので、直流供給手段の給電の有無を検出する。継電器の接点は、ブレーク接点なので、給電時にはその接点が開放され、コンデンサはスイッチング素子とは非接続状態になる。従って、コンデンサには、直流供給手段からの給電時に電荷が蓄えられる。
【0014】
一方、給電停止時には継電器に給電されないので、ブレーク接点は接続状態になり、コンデンサに蓄えられた電荷がスイッチング素子の導通制御部に供給される。従って、モータの巻線は、スイッチング素子を介して短絡される。
請求項3記載の磁気軸受式回転装置では、開閉手段が直流供給手段と継電器との間に配置されている。開閉手段は、磁気軸受制御手段が給電されている場合には直流供給手段と継電器とを接続させ、磁気軸受制御手段が給電停止されている場合には直流供給手段と継電器とを非接続とさせる。
【0015】
従って、磁気軸受制御手段への給電が停止されると、直ちにブレーク接点が接続状態になり、コンデンサに蓄えられた電荷によりスイッチング素子が導通し、モータの巻線が短絡される。
【0016】
【実施例】
以下、本発明の磁気軸受式回転装置における実施例を図1ないし図6を参照して詳細に説明する。
図1は、本実施例を適用するバッテリレス方式の磁気軸受システムの全体構成を示すブロック図である。
【0017】
図1に示すように、交流電源1は、「直流供給手段」としての整流回路2の入力側に接続され、整流回路2の出力側には2本の電源線La1、Lb1が接続されている。2本の電源線La1、Lb1は、平滑用コンデンサ3を介して単相電力を3相電力に変換する「電力変換手段」としてのモータ駆動主回路4の入力側に接続されている。モータ駆動主回路4の出力側からは3相電力が出力され、その出力は、磁気軸受式回転装置MBを構成するDCブラシレスモータのモータ巻線MCに接続されている。
【0018】
また、整流回路2の出力側の2本の電源線La1、Lb1は、直流安定化電源回路5の入力側に接続されている。直流安定化電源回路5の出力側には、2本の電源線La2、Lb2が接続されている。2本の電源線La2、Lb2は、モータ駆動制御回路6に接続されると共に、磁気軸受式回転装置MBの磁気軸受巻線BCに電力を供給して回転体の位置制御を行う「磁気軸受制御手段」としての磁気軸受制御回路7に接続されている。モータ駆動制御回路6の出力側は、モータ駆動主回路4の制御用の入力端子に接続されている。
【0019】
次に、第1実施例と第2実施例を説明する。なお、これらの実施例は、図1に示したモータ駆動主回路4とモータ駆動制御回路6との回路構成が相違するのみであり、その他の部分は同一である。
(1)第1実施例
本実施例は、通電中にコンデンサに蓄えた電荷を、停電時にN・MOSトランジスタのゲートに加えてこのN・MOSトランジスタをオンさせ、モータ巻線MCを短絡して電気的制動作用を行わせる場合である。
【0020】
図2は、モータ駆動主回路4の具体的な構成のモータ駆動主回路4Aを示す回路図であり、図3は、同様にモータ駆動制御回路6Aを示す回路図である。
図2に示すように、2本の電源線La1、Lb1間には、抵抗41とトランジスタ42からなる直列回路が接続されている。抵抗41は、停電に伴う回転体の減速時に、DCブラシレスモータから回生されるエネルギを消費させるための回生抵抗であり、回生されるエネルギ量と抵抗41で消費されるエネルギ量が等しくなるようにトランジスタ42がオン・オフ制御される。
【0021】
また、2本の電源線La1、Lb1間には、トランジスタ43aと43bとからなる直列回路と、トランジスタ43cと43dとからなる直列回路と、トランジスタ43eと43fとからなる直列回路とが、それぞれ接続されている。
各トランジスタ42、43a〜43fは、N・MOSFETまたはIGBT(絶縁ゲートバイポーラモードトランジスタ)等のパワートランジスタが使用され、各トランジスタ42、43a〜43fのソース・ドレイン間には回生電流パス用のダイオード44a〜44gが接続されている。また、各トランジスタ43aと43b、43cと43d、43eと43fのそれぞれの接続点は、モータ巻線MCに接続されている。
【0022】
トランジスタ43b、43d、43fのそれぞれのゲートは、図3に示すモータ駆動制御回路6Aの符号A、B、Cで示す部分に接続されている。
図3に示すように、駆動制御回路用電源60の入力側は、直流安定化電源回路5の2本の電源線La2、Lb2に接続され、駆動制御回路用電源60は直流安定化電源回路5の出力電圧を、リレー駆動用の電圧に変換する。駆動制御回路用電源60の出力側の+端子と−端子間には、交流電源1の通電中に動作する「短絡手段」をなすリレー61が接続され、更に+側端子は直流阻止用のダイオード62を介してリレー61の「短絡手段」をなすブレーク接点61aの一方の端子に接続されている。
【0023】
交流電源1の通電時にはリレー61に通電されるので、ブレーク接点61aは開放状態となり、交流電源1の停電時には接続状態となる。ダイオード62のカソードとブレーク接点61aの一方の端子間には、「短絡手段」をなすコンデンサ63の+側端子が接続され、このコンデンサ63の−側端子は駆動制御回路用電源60の−側出力端子に接続されると共に、接地されている。
【0024】
ブレーク接点61aの他方の端子は、直流阻止用のダイオード65a、65b、65cのそれぞれのアノードに接続され、各ダイオード65a、65b、65cのカソードは、図2に示した各トランジスタ42、43a〜43fのゲートを所定のタイミングで制御駆動するゲート駆動回路64に接続されている。
【0025】
次に、以上のように構成された第1実施例の動作を説明する。
▲1▼交流電源の通電時
この場合は、モータ駆動主回路4Aおよびモータ駆動制御回路6Aを含め、図1に示す全ての部分に電力が供給可能になっている。
【0026】
そして、図3に示すリレー61には駆動制御回路用電源60から所定の直流電圧が印加され、リレー61はオンになり、ブレーク接点61aは開放状態となる。従って、コンデンサ63には駆動制御回路用電源60から直流電圧が印加され、充電される。
【0027】
また、モータ駆動主回路4Aの各トランジスタ42、43a〜43fは、モータ駆動制御回路6Aに示すゲート駆動回路64から出力されるゲート信号によって所定のタイミングでオン・オフ制御される。更に、磁気軸受制御回路7からは、磁気浮上用の電流が磁気軸受巻線BCに供給される。従って、磁気軸受式回転装置MBを構成するDCブラシレスモータの回転体(ロータ)は、所定の速度で高速回転される。
【0028】
▲2▼交流電源の停電時
磁気軸受式回転装置MBの高速回転中に停電が発生した場合、DCブラシレスモータは直ちに減速し始める。減速時に回生される電力の一部は、モータ駆動主回路4Aを介して直流安定化電源回路5に供給され、それによって停電時でもモータ駆動制御回路6Aや磁気軸受制御回路7は、動作を継続し、回転体は保護ベアリング上にタッチダウンすることなく回転を継続する。
【0029】
また、停電時であっても回生エネルギによって磁気軸受式回転装置MBが動作している間、駆動制御回路用電源60が動作し、リレー61のブレーク接点61aは開放状態のままであり、コンデンサ63の充電は継続される。
やがて、DCブラシレスモータの回転数が低下し、回生電力が磁気軸受制御回路7とモータ駆動制御回路6Aとにおいて消費される電力より小さくなったとき、直流安定化電源回路5は動作を停止し、回転体は保護ベアリング上にタッチダウンする。
【0030】
このとき図3に示す駆動制御回路用電源60も動作を停止するのでリレー61はオフとなり、ブレーク接点61aは接続状態に回復する。このブレーク接点61aの接続により、それまでコンデンサ63に蓄えられていた電荷が、ブレーク接点61a、ダイオード65a〜65cを介してトランジスタ43b、43d、43fをオンにするので、DCブラシレスモータの3相コイルが短絡される。
【0031】
このとき、DCブラシレスモータは発電機として作用し、回転エネルギはモータ巻線抵抗及びケーブル抵抗などで消費され、すみやかに減速する。従って、保護ベアリングを長時間に渡って回転させることがないので、保護ベアリングを磨耗させることがない。
【0032】
ここに、トランジスタ43b、43d、43fには、前述の如くFET或いはIGBTが用いられているので、ゲート漏れ電流が極めて少なく、回転体が停止するまでの間トランジスタ43b、43d、43fのオン状態を継続することができる。
【0033】
また、コンデンサ63の充電電圧を12V、FETのゲート漏れ電流を100nAとし、FETに10V以上の電圧を5分以上供給するために必要なコンデンサ63の容量は、次式で求めることができる。
100×10−9×3×5×60/2=45×10−6
従って、コンデンサ63としては、余裕を見て100μF程度の電解コンデンサを使用すればよい。
【0034】
▲3▼第1実施例におけるモータ駆動制御回路の変形例
ところで、停電となり、図1に示す磁気軸受制御回路7への給電が停止されると、磁気軸受巻線BCへの給電も停止される。
一方、停電になっても、磁気軸受式回転装置全体には電源回路周辺のコンデンサ等には未だ電荷が残存している可能性がある。従って、前述の如く停電になって磁気軸受制御回路7への給電が停止されても、駆動制御回路用電源60からはリレー61をオンにさせる電流が継続して供給される可能性がある。よって、停電になったにも拘らず、図3に示すモータ駆動制御回路6Aが動作せず、DCブラシレスモータの3相コイルが短絡されない場合がある。従って、電気的制動作用が働かないので、回転体のタッチダウン後に、長時間回転体が回転を継続するおそれがある。
【0035】
このような不都合を回避する手段として、図4に示すモータ駆動制御回路6Bが好適である。
図4に示すように、駆動制御回路用電源60とリレー61との間に、開閉回路66を配置する。この開閉回路66は、通電中に閉じており、停電となり磁気軸受制御回路7が停止した場合には開く。
【0036】
このように構成すれば、磁気軸受制御回路7が停止すると開閉回路66が開くので、リレー61がオフになり、ブレーク接点61aが接続される。このブレーク接点61aの接続により、コンデンサ63に蓄えられた電荷がトランジスタ43b、43d、43fをオンにするので、モータの3相が短絡される。
【0037】
よって、DCブラシレスモータは発電機として作用し、タッチダウンした回転体は保護ベアリングを長時間に渡って回転させることがないので、保護ベアリングを磨耗させることがない。
(2)第2実施例
本実施例は、通電中にコンデンサに蓄えた電荷を、停電時にP・MOSFETのゲートに加えてこのP・MOSFETをオンさせ、モータ巻線MCを短絡する場合である。
【0038】
図5は、第2実施例のモータ駆動主回路4Bの回路図であり、図6は、第2実施例のモータ駆動制御回路6Cの回路図である。
本実施例は、トランジスタ45a〜45cにP・MOSFETを使用し、ダイオード66、68a〜68cの方向を逆にした場合である。
【0039】
このように構成しても、第1実施例と同様に、通電中にはダイオード66を介して駆動制御回路用電源52からコンデンサ67に電流供給され、コンデンサ67に電荷が蓄えられる。そして、停電時には、コンデンサ67に蓄えられた電荷によりトランジスタ45a、45c、45eが導通されて3相のモータ巻線が短絡される。従って、DCブラシレスモータは発電機として作用し、タッチダウンした回転体は保護ベアリングを長時間に渡って回転させることがないので、保護ベアリングを磨耗させることがない。
【0040】
なお、第2実施例においても、図4に示したのと同様の開閉回路66を駆動制御回路用電源60とリレー61との間に備えれば、第1実施例と同様の効果を上げることができる。
【0041】
【発明の効果】
以上説明したように請求項1記載の発明によれば、短絡手段は、直流供給手段による直流の供給停止を検出してモータの巻線をスイッチング素子の導通を制御して短絡しているので、直流の供給が停止されると、モータは発電機として作用し、モータの回転体は電気的制動作用を受ける。従って、給電停止時には、回転体は電気的制動作用により短時間の内に回転を停止するので、保護ベアリングの寿命を延ばすことができる。
【0042】
また、請求項2記載の発明では、短絡手段として継電器とこの継電器のブレーク接点とコンデンサとを用いて、給電停止時には、回転体は電気的制動作用により短時間の内に回転を停止する。
【0043】
請求項3記載の発明では、開閉手段は、磁気軸受制御手段が給電停止されている場合には直流供給手段と継電器とを非接続とさせるので、直ちにブレーク接点が接続状態になり、コンデンサに蓄えられた電荷によりスイッチング素子が導通され、モータの巻線が短絡される。
【0044】
従って、磁気軸受式回転装置を構成する電源回路のコンデンサ等に、停電時に電荷が残っていても、直ちにモータの回転体は電気的制動作用を受ける。
【図面の簡単な説明】
【図1】本発明の実施例の全体構成を示すブロック図である。
【図2】同上、モータ駆動主回路の第1実施例の回路図である。
【図3】同上、モータ駆動制御回路の第1実施例の回路図である。
【図4】同上、モータ駆動制御回路の第1実施例の変形例の回路図である。
【図5】同上、モータ駆動主回路の第2実施例の回路図である。
【図6】同上、モータ駆動制御回路の第2実施例の回路図である。
【符号の説明】
MB 磁気軸受装置
MC 磁気軸受装置のモータ巻線
1 交流電源
2 整流回路(直流供給手段)
4 モータ駆動主回路(電力変換手段)
4A 第1実施例のモータ駆動主回路
4B 第2実施例のモータ駆動主回路
5 直流安定化電源回路
6 モータ駆動制御回路
6A 第1実施例のモータ駆動制御回路
6B 第2実施例のモータ駆動制御回路
7 磁気軸受制御回路
41 回生抵抗
42、43a〜43f N・MOSトランジスタ
45a〜45c P・MOSトランジスタ
60 駆動制御回路用電源
61 リレー(検出手段)
61a リレーのブレーク接点(検出手段)
63 コンデンサ(検出手段)
66 開閉回路(開閉手段)
[0001]
[Industrial applications]
The present invention relates to a magnetic bearing-type rotating device, for example, a magnetic bearing-type rotating device that prevents a protective bearing from breaking when a rotating magnetic bearing-type turbo-molecular pump or the like touches down during a power failure.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a magnetic bearing type rotating device generally includes a battery as a backup power supply when a power failure occurs during high-speed rotation of a rotating body. Then, at the time of a power failure, the magnetic levitation of the rotating body is continued by the power of the battery, and a braking operation is performed by the inverter to stop the rotation of the rotating body.
[0003]
However, in recent years, for example, a magnetic bearing type turbo molecular pump or the like does not use a battery as a backup power supply, and at the time of a power failure, regenerates the rotational energy of the rotating body to the motor drive device side and uses it as a power supply for the magnetic bearing. A method of continuing magnetic levitation of a rotating body (hereinafter referred to as a battery-less method) is becoming mainstream.
[0004]
In the battery-less system, the rotational energy of the rotating body is regenerated while the rotating speed of the rotating body is reduced, and the power regenerated is reduced as the rotating speed is reduced. Then, when the regenerative power falls below the power required for magnetic levitation, the magnetic levitation operation of the magnetic bearing cannot be continued, and the rotating body falls on the protective bearing (hereinafter, referred to as touchdown).
[0005]
On the other hand, in the batteryless system, the number of rotations at which the magnetic bearing cannot operate at the time of power failure is about 1/3 to 1/5 of the rated rotation number. Then, the rotational energy when the rotating body touches down on the protective bearing is almost consumed as heat energy due to the mechanical friction of the protective bearing, and the rotation stops in several minutes to several tens of minutes.
[0006]
[Problems to be solved by the invention]
However, when the rotating body rotates on the protective bearing for several minutes to several tens of minutes as described above, the protective bearing is severely worn due to the weight of the rotating body. Due to this severe wear, in some cases, the protective bearing is destroyed by the touchdown of the rotating body at the time of several tens of power failures, or the bearing is rattled due to wear of the balls constituting the protective bearing. For example, the rotating blades and fixed blades of the turbo molecular pump may come into contact with each other and break.
[0007]
Therefore, an object of the present invention is to provide a magnetic bearing type rotating device that stops rotation in a short time when a power failure occurs during high-speed rotation of the rotating body and the rotating body touches down.
[0008]
[Means for Solving the Problems]
According to the first aspect of the present invention, a DC supply unit, an electromagnet for magnetically levitating a rotating body of a motor by a supply current from the DC supplying unit, and a position control of the rotating body are performed by controlling a magnetic field generated by the electromagnet. Using a magnetic bearing control means and a switching element for controlling current supply to a winding of the motor, a supply current from the DC supply means is converted into an AC for forming a rotating magnetic field for rotating a rotating body of the motor. Power conversion means, and short-circuit means for detecting the stop of power supply by the DC supply means, and controlling the conduction of the switching element to short-circuit the winding of the motor to which AC power is supplied from the power conversion means, Achieve the above objectives.
[0009]
In the invention according to claim 2, the short-circuit means has one end connected to a connection point between the relay and the capacitor connected in parallel to the output side of the DC supply means, and the other end to the switching element. And a break contact of the relay connected to a conduction control unit for controlling conduction of the relay.
[0010]
In the invention according to claim 3, the magnetic bearing control means is disposed between the DC supply means and the relay, and connects the DC supply means and the relay when the magnetic bearing control means is supplied with power. The above object is achieved by providing an opening / closing means for disconnecting the DC supply means and the relay when the power supply is stopped.
[0011]
[Action]
In the magnetic bearing type rotating device according to the first aspect, the electromagnet is supplied with a direct current from the direct current supply means to magnetically levitate the rotating body of the motor. The magnetic bearing control means controls the position of the magnetically levitated rotating body. The windings of the motor are connected to the switching elements constituting the power conversion means. The power conversion means converts a direct current supplied from the direct current supply means into an alternating current for forming a rotating magnetic field for rotating a rotating body of the motor by using a switching element for controlling current supply to a winding of the motor . The short-circuit means detects the stop of the power supply by the DC supply means and short-circuits the winding of the motor by controlling the conduction of the switching element .
[0012]
Then, if the rotating body continues to rotate while the winding of the motor is short-circuited when the power supply is stopped, the motor acts as a generator and the rotating body of the motor receives an electric braking action. Therefore, when the power supply is stopped, the rotating body stops rotating within a short time due to the electric braking action, so that the life of the protective bearing can be extended.
[0013]
In the magnetic bearing type rotating device according to the second aspect, since the relay is connected to the output side of the DC supply means, the presence or absence of power supply from the DC supply means is detected. Since the contact of the relay is a break contact, the contact is opened at the time of power supply, and the capacitor is disconnected from the switching element. Therefore, the electric charge is stored in the capacitor when the power is supplied from the DC supply means.
[0014]
On the other hand, when power supply is stopped, power is not supplied to the relay, so that the break contact is in a connected state, and the charge stored in the capacitor is supplied to the conduction control unit of the switching element. Therefore, the winding of the motor is short-circuited via the switching element.
In the magnetic bearing type rotating device according to the third aspect, the opening / closing means is disposed between the DC supply means and the relay. The opening / closing means connects the DC supply means and the relay when the magnetic bearing control means is supplied with power, and disconnects the DC supply means and the relay when the magnetic bearing control means stops supplying power. .
[0015]
Therefore, when the power supply to the magnetic bearing control means is stopped, the break contact is immediately connected, the switching element is turned on by the electric charge stored in the capacitor, and the winding of the motor is short-circuited.
[0016]
【Example】
Hereinafter, an embodiment of a magnetic bearing type rotating device according to the present invention will be described in detail with reference to FIGS.
FIG. 1 is a block diagram showing the overall configuration of a batteryless magnetic bearing system to which the present embodiment is applied.
[0017]
As shown in FIG. 1, an AC power supply 1 is connected to an input side of a rectifier circuit 2 as “DC supply means”, and two power supply lines La1 and Lb1 are connected to an output side of the rectifier circuit 2. . The two power lines La1 and Lb1 are connected via a smoothing capacitor 3 to the input side of a motor drive main circuit 4 as "power conversion means" for converting single-phase power to three-phase power. Three-phase power is output from the output side of the motor drive main circuit 4, and the output is connected to a motor winding MC of a DC brushless motor constituting the magnetic bearing type rotating device MB.
[0018]
The two power lines La1 and Lb1 on the output side of the rectifier circuit 2 are connected to the input side of the stabilized DC power supply circuit 5. On the output side of the DC stabilized power supply circuit 5, two power supply lines La2 and Lb2 are connected. The two power lines La2 and Lb2 are connected to the motor drive control circuit 6 and supply power to the magnetic bearing winding BC of the magnetic bearing type rotating device MB to perform position control of the rotating body. It is connected to a magnetic bearing control circuit 7 as “means”. The output side of the motor drive control circuit 6 is connected to a control input terminal of the motor drive main circuit 4.
[0019]
Next, a first embodiment and a second embodiment will be described. In these embodiments, only the circuit configuration of the motor drive main circuit 4 and the motor drive control circuit 6 shown in FIG. 1 is different, and the other parts are the same.
(1) First Embodiment In this embodiment, the electric charge stored in the capacitor during energization is added to the gate of the N-MOS transistor at the time of a power failure, and this N-MOS transistor is turned on to short-circuit the motor winding MC. This is a case where an electric braking action is performed.
[0020]
FIG. 2 is a circuit diagram showing a motor drive main circuit 4A having a specific configuration of the motor drive main circuit 4, and FIG. 3 is a circuit diagram showing a motor drive control circuit 6A similarly.
As shown in FIG. 2, a series circuit including a resistor 41 and a transistor 42 is connected between the two power lines La1 and Lb1. The resistor 41 is a regenerative resistor for consuming the energy regenerated from the DC brushless motor when the rotating body is decelerated due to the power failure, so that the amount of energy regenerated is equal to the amount of energy consumed by the resistor 41. The transistor 42 is on / off controlled.
[0021]
A series circuit including transistors 43a and 43b, a series circuit including transistors 43c and 43d, and a series circuit including transistors 43e and 43f are connected between the two power lines La1 and Lb1, respectively. Have been.
A power transistor such as an N-MOSFET or an IGBT (insulated gate bipolar mode transistor) is used for each of the transistors 42, 43a to 43f, and a diode 44a for a regenerative current path is provided between the source and the drain of each of the transistors 42, 43a to 43f. To 44 g are connected. The connection points of the transistors 43a and 43b, 43c and 43d, and 43e and 43f are connected to the motor winding MC.
[0022]
The gates of the transistors 43b, 43d, and 43f are connected to portions indicated by reference signs A, B, and C of the motor drive control circuit 6A shown in FIG.
As shown in FIG. 3, the input side of the drive control circuit power supply 60 is connected to two power supply lines La2 and Lb2 of the DC stabilized power supply circuit 5, and the drive control circuit power supply 60 is connected to the DC stabilized power supply circuit 5. Is converted into a voltage for driving the relay. Between the + terminal and the-terminal on the output side of the drive control circuit power supply 60, a relay 61 forming "short-circuit means" that operates while the AC power supply 1 is energized is connected. It is connected to one terminal of a break contact 61 a forming a “short circuit” of the relay 61 via 62.
[0023]
Since the relay 61 is energized when the AC power supply 1 is energized, the break contact 61a is open, and is connected when the AC power supply 1 is out of power. Between the cathode of the diode 62 and one terminal of the break contact 61a, the + terminal of a capacitor 63 forming "short circuit means" is connected. The-terminal of the capacitor 63 is connected to the-output of the drive control circuit power supply 60. Connected to terminal and grounded.
[0024]
The other terminal of the break contact 61a is connected to the anode of each of the DC blocking diodes 65a, 65b, 65c, and the cathode of each diode 65a, 65b, 65c is connected to each of the transistors 42, 43a to 43f shown in FIG. Are connected to a gate drive circuit 64 that controls and drives the gates at a predetermined timing.
[0025]
Next, the operation of the first embodiment configured as described above will be described.
(1) At the time of energization of the AC power supply In this case, power can be supplied to all parts shown in FIG. 1 including the motor drive main circuit 4A and the motor drive control circuit 6A.
[0026]
Then, a predetermined DC voltage is applied from the drive control circuit power supply 60 to the relay 61 shown in FIG. 3, the relay 61 is turned on, and the break contact 61a is opened. Therefore, a DC voltage is applied to the capacitor 63 from the drive control circuit power supply 60, and the capacitor 63 is charged.
[0027]
The transistors 42, 43a to 43f of the motor drive main circuit 4A are ON / OFF controlled at a predetermined timing by a gate signal output from the gate drive circuit 64 shown in the motor drive control circuit 6A. Further, a magnetic levitation current is supplied from the magnetic bearing control circuit 7 to the magnetic bearing winding BC. Therefore, the rotating body (rotor) of the DC brushless motor constituting the magnetic bearing type rotating device MB is rotated at a high speed at a predetermined speed.
[0028]
{Circle around (2)} When a power failure occurs in the AC power source If a power failure occurs during the high-speed rotation of the magnetic bearing rotating device MB, the DC brushless motor immediately starts to decelerate. Part of the power regenerated during deceleration is supplied to the DC stabilizing power supply circuit 5 via the motor drive main circuit 4A, so that the motor drive control circuit 6A and the magnetic bearing control circuit 7 continue to operate even during a power failure. However, the rotating body continues rotating without touching down on the protective bearing.
[0029]
Further, even during a power failure, while the magnetic bearing type rotating device MB is operating due to the regenerative energy, the drive control circuit power supply 60 operates, the break contact 61a of the relay 61 remains open, and the capacitor 63 Charging is continued.
Eventually, when the rotation speed of the DC brushless motor decreases and the regenerative power becomes smaller than the power consumed in the magnetic bearing control circuit 7 and the motor drive control circuit 6A, the DC stabilized power supply circuit 5 stops operating, The rotating body touches down on the protective bearing.
[0030]
At this time, the power supply 60 for the drive control circuit shown in FIG. 3 also stops operating, so the relay 61 is turned off, and the break contact 61a is restored to the connected state. By the connection of the break contact 61a, the electric charge stored in the capacitor 63 turns on the transistors 43b, 43d and 43f via the break contact 61a and the diodes 65a to 65c. Is short-circuited.
[0031]
At this time, the DC brushless motor acts as a generator, and the rotational energy is consumed by the motor winding resistance, the cable resistance, and the like, and the speed is quickly reduced. Therefore, since the protection bearing is not rotated for a long time, the protection bearing is not worn.
[0032]
Here, since the FETs or IGBTs are used for the transistors 43b, 43d, and 43f as described above, the gate leakage current is extremely small, and the transistors 43b, 43d, and 43f are turned on until the rotating body stops. Can continue.
[0033]
Also, the charging voltage of the capacitor 63 is 12 V, the gate leakage current of the FET is 100 nA, and the capacitance of the capacitor 63 required to supply a voltage of 10 V or more to the FET for 5 minutes or more can be obtained by the following equation.
100 × 10 −9 × 3 × 5 × 60/2 = 45 × 10 −6 F
Therefore, an electrolytic capacitor of about 100 μF may be used as the capacitor 63 with a margin.
[0034]
(3) Modification of the motor drive control circuit in the first embodiment By the way, when a power failure occurs and power supply to the magnetic bearing control circuit 7 shown in FIG. 1 is stopped, power supply to the magnetic bearing winding BC is also stopped. .
On the other hand, even if a power failure occurs, there is a possibility that electric charges still remain in capacitors and the like around the power supply circuit in the entire magnetic bearing type rotating device. Therefore, even if a power failure occurs as described above and the power supply to the magnetic bearing control circuit 7 is stopped, a current for turning on the relay 61 may be continuously supplied from the drive control circuit power supply 60. Therefore, in spite of the power failure, the motor drive control circuit 6A shown in FIG. 3 may not operate, and the three-phase coil of the DC brushless motor may not be short-circuited. Therefore, since the electric braking action does not work, the rotating body may continue to rotate for a long time after the touch down of the rotating body.
[0035]
As means for avoiding such inconvenience, a motor drive control circuit 6B shown in FIG. 4 is preferable.
As shown in FIG. 4, an opening / closing circuit 66 is arranged between the power supply 60 for the drive control circuit and the relay 61. The opening / closing circuit 66 is closed during energization, and is opened when a power failure occurs and the magnetic bearing control circuit 7 stops.
[0036]
With this configuration, when the magnetic bearing control circuit 7 stops, the switching circuit 66 opens, so that the relay 61 is turned off and the break contact 61a is connected. By the connection of the break contact 61a, the electric charge stored in the capacitor 63 turns on the transistors 43b, 43d, and 43f, so that the three phases of the motor are short-circuited.
[0037]
Therefore, the DC brushless motor acts as a generator, and the rotating body that has been touched down does not rotate the protective bearing for a long time, so that the protective bearing does not wear.
(2) Second Embodiment In this embodiment, the electric charge stored in the capacitor during energization is added to the gate of the P-MOSFET at the time of power failure, and this P-MOSFET is turned on to short-circuit the motor winding MC. .
[0038]
FIG. 5 is a circuit diagram of the motor drive main circuit 4B of the second embodiment, and FIG. 6 is a circuit diagram of a motor drive control circuit 6C of the second embodiment.
In this embodiment, P-MOSFETs are used for the transistors 45a to 45c, and the directions of the diodes 66 and 68a to 68c are reversed.
[0039]
Even in such a configuration, similarly to the first embodiment, a current is supplied from the drive control circuit power supply 52 to the capacitor 67 via the diode 66 during energization, and the capacitor 67 stores an electric charge. Then, at the time of power failure, the transistors 45a, 45c, 45e are turned on by the electric charge stored in the capacitor 67, and the three-phase motor winding is short-circuited. Therefore, the DC brushless motor acts as a generator, and the touched-down rotator does not rotate the protective bearing for a long time, so that the protective bearing is not worn.
[0040]
In the second embodiment as well, if the same opening / closing circuit 66 as shown in FIG. 4 is provided between the drive control circuit power supply 60 and the relay 61, the same effect as in the first embodiment can be obtained. Can be.
[0041]
【The invention's effect】
As described above, according to the first aspect of the present invention, the short-circuit means detects the stop of the supply of the direct current by the direct-current supply means and short-circuits the winding of the motor by controlling the conduction of the switching element . When the supply of the direct current is stopped, the motor acts as a generator, and the rotating body of the motor receives an electric braking action. Therefore, when the power supply is stopped, the rotating body stops rotating within a short time due to the electric braking action, so that the life of the protective bearing can be extended.
[0042]
According to the second aspect of the present invention, when the power supply is stopped, the rotating body stops rotating within a short time by the electric braking action, using the relay, the break contact of the relay, and the capacitor as the short-circuit means.
[0043]
According to the third aspect of the present invention, the switching means disconnects the DC supply means and the relay when the power supply to the magnetic bearing control means is stopped, so that the break contact is immediately connected and stored in the capacitor. The switching element is turned on by the electric charge, and the winding of the motor is short-circuited.
[0044]
Therefore, even if electric charges remain in the capacitor of the power supply circuit constituting the magnetic bearing type rotating device at the time of power failure, the rotating body of the motor is immediately subjected to the electric braking action.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an overall configuration of an embodiment of the present invention.
FIG. 2 is a circuit diagram of a first embodiment of a motor driving main circuit according to the first embodiment;
FIG. 3 is a circuit diagram of the first embodiment of the motor drive control circuit.
FIG. 4 is a circuit diagram of a modification of the first embodiment of the motor drive control circuit.
FIG. 5 is a circuit diagram of a motor driving main circuit according to a second embodiment of the present invention;
FIG. 6 is a circuit diagram of a motor drive control circuit according to a second embodiment of the present invention;
[Explanation of symbols]
MB Magnetic bearing device MC Motor winding of magnetic bearing device 1 AC power supply 2 Rectifier circuit (DC supply means)
4 Motor drive main circuit (power conversion means)
4A Motor drive main circuit 4B of the first embodiment Motor drive main circuit 5 of the second embodiment 5 DC stabilized power supply circuit 6 Motor drive control circuit 6A Motor drive control circuit 6B of the first embodiment Motor drive control of the second embodiment Circuit 7 Magnetic bearing control circuit 41 Regenerative resistors 42, 43a to 43f N.MOS transistors 45a to 45c P.MOS transistor 60 Power supply 61 for drive control circuit Relay (detection means)
61a Break contact of relay (detection means)
63 Capacitor (detection means)
66 Switching circuit (switching means)

Claims (3)

直流供給手段と、
この直流供給手段からの供給電流によりモータの回転体を磁気浮上させる電磁石と、
この電磁石の発生磁界を制御して前記回転体の位置制御を行う磁気軸受制御手段と、
前記モータの巻線への電流供給を制御するスイッチング素子を用いて、前記直流供給手段からの供給電流をモータの回転体を回転させる回転磁界形成用の交流に変換する電力変換手段と、
前記直流供給手段による給電の停止を検出し、前記電力変換手段から交流が供給されるモータの巻線を前記スイッチング素子の導通を制御して短絡させる短絡手段と、
を備えたことを特徴とする磁気軸受式回転装置。
DC supply means,
An electromagnet for magnetically levitating the rotating body of the motor by a supply current from the DC supply means,
Magnetic bearing control means for controlling the position of the rotating body by controlling the magnetic field generated by the electromagnet;
A power conversion unit that converts a supply current from the DC supply unit into an AC for forming a rotating magnetic field that rotates a rotating body of the motor by using a switching element that controls current supply to a winding of the motor;
Short-circuit means for detecting the stop of power supply by the DC supply means, and controlling the conduction of the switching element to short-circuit the winding of the motor to which AC power is supplied from the power conversion means,
A magnetic bearing type rotating device comprising:
前記短絡手段は、前記直流供給手段の出力側に並列接続された継電器およびコンデンサと、前記継電器とコンデンサとの接続点に一端が接続され、他端が前記スイッチング素子の導通を制御する導通制御部に接続された前記継電器のブレーク接点とを備えたことを特徴とする請求項1記載の磁気軸受式回転装置。The short-circuit means has a relay and a capacitor connected in parallel to the output side of the DC supply means, and one end is connected to a connection point between the relay and the capacitor, and the other end controls conduction of the switching element. 2. The magnetic bearing type rotating device according to claim 1, further comprising: a break contact of the relay connected to the rotating device. 前記直流供給手段と継電器との間に配置され、前記磁気軸受制御手段が給電されている場合には前記直流供給手段と継電器とを接続させ、前記磁気軸受制御手段が給電停止されている場合には前記直流供給手段と継電器とを非接続とさせる開閉手段を備えたことを特徴とする請求項2記載の磁気軸受式回転装置。It is arranged between the DC supply means and the relay, and when the magnetic bearing control means is supplied with power, connects the DC supply means and the relay, and when the magnetic bearing control means stops supplying power. 3. The magnetic bearing-type rotating device according to claim 2, further comprising opening / closing means for disconnecting the DC supply means from the relay.
JP07459494A 1994-04-13 1994-04-13 Magnetic bearing type rotating device Expired - Lifetime JP3585950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07459494A JP3585950B2 (en) 1994-04-13 1994-04-13 Magnetic bearing type rotating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07459494A JP3585950B2 (en) 1994-04-13 1994-04-13 Magnetic bearing type rotating device

Publications (2)

Publication Number Publication Date
JPH07279962A JPH07279962A (en) 1995-10-27
JP3585950B2 true JP3585950B2 (en) 2004-11-10

Family

ID=13551642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07459494A Expired - Lifetime JP3585950B2 (en) 1994-04-13 1994-04-13 Magnetic bearing type rotating device

Country Status (1)

Country Link
JP (1) JP3585950B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6077286B2 (en) 2012-11-30 2017-02-08 エドワーズ株式会社 Electromagnetic rotating device and vacuum pump provided with the electromagnetic rotating device
JP6934298B2 (en) 2016-12-16 2021-09-15 エドワーズ株式会社 Vacuum pumps and control devices for vacuum pumps

Also Published As

Publication number Publication date
JPH07279962A (en) 1995-10-27

Similar Documents

Publication Publication Date Title
RU2326490C2 (en) Power supply circuit of high speed electric drive
KR100260665B1 (en) Power supply circuit for magnetic bearing system
US6278256B1 (en) Electric vehicle control system for controlling a permanent magnet motor which drives the electric vehicle
US7279862B1 (en) Fault handling of inverter driven PM motor drives
US5376867A (en) Electronic braking device for asynchronous motors
JP4126510B2 (en) Inverter braking circuit
JPH03256591A (en) Power supply system for vacuum pump
US20180375321A1 (en) Power electronics unit
JP3585950B2 (en) Magnetic bearing type rotating device
JP3677826B2 (en) Magnetic bearing device
JP6704948B2 (en) Motor drive control device and motor drive control method
JPH09247973A (en) Method for stopping motor using magnetic bearing
KR20130002026A (en) Apparatus for protecting magnetic bearing and motor system having the same
EP3832878B1 (en) Sequential electrical braking with pulsed dc injection rotor lock mechanism
CN106849789A (en) A kind of control method of magnetic suspension high speed motor power generation mode
JPS6117715A (en) Control method and device for electro-magnetic bearing
CN111835243A (en) Built-in star circuit that seals of elevator door motor controller
WO2015098942A1 (en) Motor driving device
JPH0147110B2 (en)
JP3624271B2 (en) Magnetic bearing device
WO2002021674A1 (en) Power supply for high speed motor
JPH07293563A (en) Drive control device for rotating device supporting rotor on magnetic bearing
KR100477122B1 (en) Stopping device and method of motor with magnetic bearing
JPH06280874A (en) Feeder of magnetic bearing device
US20200195173A1 (en) Method for controlled motor speed reduction and mechanism for controlling motor speed reduction

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term