JPH07279962A - Magnetic bearing type rotary device - Google Patents

Magnetic bearing type rotary device

Info

Publication number
JPH07279962A
JPH07279962A JP6074594A JP7459494A JPH07279962A JP H07279962 A JPH07279962 A JP H07279962A JP 6074594 A JP6074594 A JP 6074594A JP 7459494 A JP7459494 A JP 7459494A JP H07279962 A JPH07279962 A JP H07279962A
Authority
JP
Japan
Prior art keywords
magnetic bearing
relay
motor
circuit
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6074594A
Other languages
Japanese (ja)
Other versions
JP3585950B2 (en
Inventor
Masayuki Yamamoto
雅之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Seiki KK
Original Assignee
Seiko Seiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Seiki KK filed Critical Seiko Seiki KK
Priority to JP07459494A priority Critical patent/JP3585950B2/en
Publication of JPH07279962A publication Critical patent/JPH07279962A/en
Application granted granted Critical
Publication of JP3585950B2 publication Critical patent/JP3585950B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To stop the rotation of a rotary body in a short time even though a rotary body touches down upon power failure. CONSTITUTION:During power supply, a relay 61 is energized by an output from a drive control circuit power source 60 so as to open a brake contact 61a and to charge a capacitor 63. Further, upon power failure, since no output is delivered from the drive control circuit power source 60, the relay 61 is deenergized so that the contact 61a is closed. Then, the charge having been accumulated in the capacitor 63 is applied to the gate of a transistor through diodes 65a through 65c. When the transistor is turned on so that three phase windings of a motor is shortcircuited through transistor, etc., so as to effect electric brake operation. As a result, the rotation of a rotary body which has touched down comes to a stop in a short time, the rotational speed of a protecting bearing, thereby it is possible to prolong the life of the protecting bearing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気軸受式回転装置に
係り、例えば、回転中の磁気軸受式ターボ分子ポンプ等
が停電時にタッチダウンする際に、保護ベアリングが破
壊しないようにした磁気軸受式回転装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic bearing type rotating device, for example, a magnetic bearing which prevents a protective bearing from being destroyed when a rotating magnetic bearing type turbo molecular pump or the like touches down during a power failure. Rotary device.

【0002】[0002]

【従来の技術】従来、磁気軸受式回転装置では、回転体
の高速回転中に停電した場合のバックアップ用電源とし
て、バッテリを装備するのが一般的であった。そして、
停電時には、このバッテリの電力によって回転体の磁気
浮上を継続させると共に、インバータでブレーキ動作を
行い、回転体の回転を停止させるようにしていた。
2. Description of the Related Art Conventionally, a magnetic bearing type rotating device has generally been equipped with a battery as a backup power source when a power failure occurs during high speed rotation of a rotating body. And
At the time of power failure, the magnetic levitation of the rotating body is continued by the electric power of the battery, and the inverter performs a braking operation to stop the rotation of the rotating body.

【0003】しかし、近年、例えば磁気軸受式ターボ分
子ポンプなどでは、バックアップ用電源としてのバッテ
リを使用せず、停電時には回転体の回転エネルギをモー
タ駆動装置側に回生して磁気軸受の電源とすることによ
り、回転体の磁気浮上を継続する方式(以下、バッテリ
レス方式と呼ぶ)が主流となりつつある。
However, in recent years, for example, in a magnetic bearing type turbo-molecular pump or the like, a battery as a backup power source is not used, and in the event of a power failure, the rotational energy of the rotating body is regenerated to the motor driving device side and used as the power source for the magnetic bearing. As a result, a method of continuing the magnetic levitation of the rotating body (hereinafter referred to as a batteryless method) is becoming mainstream.

【0004】バッテリレス方式では、回転体の回転エネ
ルギが回生されると共に回転体の回転数は低下し、回転
数の低下と共に回生される電力が減少する。そして、回
生電力が磁気浮上に必要な電力を下回った時点で、磁気
軸受の磁気浮上動作の継続が不可能となり、回転体は保
護ベアリング上に降下する(以下、タッチダウンと呼
ぶ)。
In the batteryless system, the rotational energy of the rotating body is regenerated and the rotational speed of the rotating body is reduced, and the regenerated electric power is reduced as the rotational speed is reduced. Then, when the regenerated electric power falls below the electric power required for magnetic levitation, the magnetic levitation operation of the magnetic bearing cannot be continued, and the rotating body descends onto the protective bearing (hereinafter referred to as touchdown).

【0005】一方、バッテリレス方式において、停電時
に磁気軸受が動作不可能となる回転数は、定格回転数の
1/3〜1/5程度である。そして、回転体が保護ベア
リング上にタッチダウンしたときの回転エネルギは、殆
ど保護ベアリングの機械的摩擦による熱エネルギとして
消費され、数分〜数10分で回転は停止する。
On the other hand, in the batteryless system, the rotational speed at which the magnetic bearing becomes inoperable during a power failure is about 1/3 to 1/5 of the rated rotational speed. The rotational energy when the rotating body touches down on the protective bearing is almost consumed as heat energy due to mechanical friction of the protective bearing, and the rotation is stopped in several minutes to several tens of minutes.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前述の
如く数分〜数10分にわたって保護ベアリング上で回転
体が回転すると、回転体の重量により保護ベアリングが
激しく磨耗する。この激しい磨耗のために、場合によっ
ては数10回の停電時における回転体のタッチダウンに
より保護ベアリングが破壊したり、或いは、保護ベアリ
ングを構成するボールの磨耗によって生じたベアリング
のがたつきによって、例えばターボ分子ポンプの回転翼
と固定翼とが接触し、破壊するおそれがあった。
However, when the rotating body rotates on the protective bearing for several minutes to several tens of minutes as described above, the weight of the rotating body causes the protective bearing to be severely worn. Due to this severe wear, the protective bearing may be destroyed by touchdown of the rotating body at the time of several tens of times of power failure, or due to the rattling of the bearing that is caused by the abrasion of the balls constituting the protective bearing, For example, there is a risk that the rotor blades of the turbo molecular pump and the fixed blades may come into contact with each other and be destroyed.

【0007】そこで、本発明の目的は、回転体の高速回
転中に停電になり回転体がタッチダウンした場合に、短
時間で回転を停止させる磁気軸受式回転装置を提供する
ことである。
Therefore, an object of the present invention is to provide a magnetic bearing type rotating device which stops rotation in a short time when a power failure occurs during high speed rotation of the rotating body and the rotating body touches down.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明で
は、直流供給手段と、この直流供給手段からの供給電流
によりモータの回転体を磁気浮上させる電磁石と、この
電磁石の発生磁界を制御して前記回転体の位置制御を行
う磁気軸受制御手段と、前記直流供給手段からの供給電
流を、モータの回転体を回転させる回転磁界形成用の交
流に変換する電力変換手段と、前記直流供給手段による
給電の停止を検出し、前記電力変換手段から交流が供給
されるモータの巻線を短絡させる短絡手段とを備えて、
前記目的を達成する。
According to a first aspect of the present invention, a direct current supply means, an electromagnet for magnetically levitating a rotating body of a motor by a current supplied from the direct current supply means, and a magnetic field generated by the electromagnet are controlled. Magnetic bearing control means for controlling the position of the rotating body, power converting means for converting the supply current from the direct current supplying means into alternating current for forming a rotating magnetic field for rotating the rotating body of the motor, and the direct current supplying means. Detecting a stop of the power supply by, and short-circuit means for short-circuiting the winding of the motor to which the alternating current is supplied from the power conversion means,
To achieve the above objectives.

【0009】請求項2記載の発明では、前記電力変換手
段は、前記モータの巻線への電流供給を制御するスイッ
チング素子を有してなり、前記短絡手段は、前記直流供
給手段の出力側に並列接続された継電器およびコンデン
サと、前記継電器とコンデンサとの接続点に一端が接続
され、他端が前記スイッチング素子の導通を制御する導
通制御部に接続された前記継電器のブレーク接点とを備
えて、前記目的を達成する。
According to a second aspect of the present invention, the power conversion means includes a switching element for controlling current supply to the winding of the motor, and the short-circuit means is provided on the output side of the direct current supply means. A relay and a capacitor connected in parallel; and a break contact of the relay, one end of which is connected to a connection point of the relay and the capacitor and the other end of which is connected to a conduction control unit which controls conduction of the switching element. To achieve the above-mentioned object.

【0010】請求項3記載の発明では、前記直流供給手
段と継電器との間に配置され、前記磁気軸受制御手段が
給電されている場合には前記直流供給手段と継電器とを
接続させ、前記磁気軸受制御手段が給電停止されている
場合には前記直流供給手段と継電器とを非接続とさせる
開閉手段を備えて、前記目的を達成する。
According to a third aspect of the present invention, it is arranged between the DC supply means and the relay, and when the magnetic bearing control means is supplied with power, the DC supply means and the relay are connected to each other, and The object is achieved by providing an opening / closing means for disconnecting the direct current supply means and the relay when the bearing control means is deenergized.

【0011】[0011]

【作用】請求項1記載の磁気軸受式回転装置では、電磁
石は、直流供給手段から直流を供給されてモータの回転
体を磁気浮上させる。磁気軸受制御手段は、磁気浮上さ
れた回転体の位置制御を行う。電力変換手段は、直流供
給手段から供給された直流をモータの回転体を回転させ
る回転磁界形成用の交流に変換する。短絡手段は、直流
供給手段による給電の停止を検出して、モータの巻線を
短絡する。
In the magnetic bearing type rotating device according to the first aspect of the invention, the electromagnet is supplied with direct current from the direct current supplying means to magnetically levitate the rotating body of the motor. The magnetic bearing control means controls the position of the magnetically levitated rotating body. The power conversion means converts the direct current supplied from the direct current supply means into alternating current for forming a rotating magnetic field for rotating the rotating body of the motor. The short-circuit means detects the stop of the power supply by the DC supply means and short-circuits the winding of the motor.

【0012】そして、給電停止時にモータの巻線が短絡
状態のまま回転体が回転を継続すると、モータは発電機
として作用し、モータの回転体は電気的制動作用を受け
る。従って、給電停止時には、回転体は電気的制動作用
により短時間の内に回転を停止するので、保護ベアリン
グの寿命を延ばすことができる。
When the rotating body continues to rotate while the winding of the motor is short-circuited when the power supply is stopped, the motor acts as a generator and the rotating body of the motor receives an electric braking action. Therefore, when the power supply is stopped, the rotating body stops rotating within a short time by the electric braking action, so that the life of the protective bearing can be extended.

【0013】請求項2記載の磁気軸受式回転装置では、
電力変換手段をなすスイッチング素子にはモータの巻線
が接続されている。継電器は直流供給手段の出力側に接
続されているので、直流供給手段の給電の有無を検出す
る。継電器の接点は、ブレーク接点なので、給電時には
その接点が開放され、コンデンサはスイッチング素子と
は非接続状態になる。従って、コンデンサには、直流供
給手段からの給電時に電荷が蓄えられる。
According to another aspect of the magnetic bearing type rotating device of the present invention,
The winding of the motor is connected to the switching element forming the power conversion means. Since the relay is connected to the output side of the DC supply means, the presence or absence of power supply of the DC supply means is detected. Since the contact of the relay is a break contact, the contact is opened when power is supplied, and the capacitor is not connected to the switching element. Therefore, electric charges are stored in the capacitor when power is supplied from the DC supply means.

【0014】一方、給電停止時には継電器に給電されな
いので、ブレーク接点は接続状態になり、コンデンサに
蓄えられた電荷がスイッチング素子の導通制御部に供給
される。従って、モータの巻線は、スイッチング素子を
介して短絡される。請求項3記載の磁気軸受式回転装置
では、開閉手段が直流供給手段と継電器との間に配置さ
れている。開閉手段は、磁気軸受制御手段が給電されて
いる場合には直流供給手段と継電器とを接続させ、磁気
軸受制御手段が給電停止されている場合には直流供給手
段と継電器とを非接続とさせる。
On the other hand, since the relay is not supplied with power when the power supply is stopped, the break contact is brought into a connected state, and the electric charge stored in the capacitor is supplied to the conduction control section of the switching element. Therefore, the winding of the motor is short-circuited via the switching element. In the magnetic bearing type rotating device according to the third aspect, the opening / closing means is arranged between the direct current supplying means and the relay. The opening / closing means connects the DC supply means and the relay when the magnetic bearing control means is powered, and disconnects the DC supply means and the relay when the magnetic bearing control means is powered off. .

【0015】従って、磁気軸受制御手段への給電が停止
されると、直ちにブレーク接点が接続状態になり、コン
デンサに蓄えられた電荷によりスイッチング素子が導通
し、モータの巻線が短絡される。
Therefore, when the power supply to the magnetic bearing control means is stopped, the break contact is immediately put into the connected state, the electric charge accumulated in the capacitor makes the switching element conductive, and the winding of the motor is short-circuited.

【0016】[0016]

【実施例】以下、本発明の磁気軸受式回転装置における
実施例を図1ないし図6を参照して詳細に説明する。図
1は、本実施例を適用するバッテリレス方式の磁気軸受
システムの全体構成を示すブロック図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the magnetic bearing type rotating device of the present invention will be described in detail below with reference to FIGS. FIG. 1 is a block diagram showing the overall configuration of a batteryless magnetic bearing system to which this embodiment is applied.

【0017】図1に示すように、交流電源1は、「直流
供給手段」としての整流回路2の入力側に接続され、整
流回路2の出力側には2本の電源線La1、Lb1が接続さ
れている。2本の電源線La1、Lb1は、平滑用コンデン
サ3を介して単相電力を3相電力に変換する「電力変換
手段」としてのモータ駆動主回路4の入力側に接続され
ている。モータ駆動主回路4の出力側からは3相電力が
出力され、その出力は、磁気軸受式回転装置MBを構成
するDCブラシレスモータのモータ巻線MCに接続され
ている。
As shown in FIG. 1, an AC power supply 1 is connected to an input side of a rectifier circuit 2 as "DC supply means", and two power supply lines La1 and Lb1 are connected to an output side of the rectifier circuit 2. Has been done. The two power supply lines La1 and Lb1 are connected to the input side of the motor drive main circuit 4 as “power conversion means” that converts single-phase power into three-phase power via the smoothing capacitor 3. Three-phase electric power is output from the output side of the motor drive main circuit 4, and the output is connected to the motor winding MC of the DC brushless motor that constitutes the magnetic bearing type rotating device MB.

【0018】また、整流回路2の出力側の2本の電源線
La1、Lb1は、直流安定化電源回路5の入力側に接続さ
れている。直流安定化電源回路5の出力側には、2本の
電源線La2、Lb2が接続されている。2本の電源線La
2、Lb2は、モータ駆動制御回路6に接続されると共
に、磁気軸受式回転装置MBの磁気軸受巻線BCに電力
を供給して回転体の位置制御を行う「磁気軸受制御手
段」としての磁気軸受制御回路7に接続されている。モ
ータ駆動制御回路6の出力側は、モータ駆動主回路4の
制御用の入力端子に接続されている。
The two power supply lines La1 and Lb1 on the output side of the rectifier circuit 2 are connected to the input side of the stabilized DC power supply circuit 5. Two power supply lines La2 and Lb2 are connected to the output side of the DC stabilized power supply circuit 5. Two power lines La
2, Lb2 is connected to the motor drive control circuit 6, and supplies magnetic power to the magnetic bearing winding BC of the magnetic bearing type rotating device MB to control the position of the rotating body. It is connected to the bearing control circuit 7. The output side of the motor drive control circuit 6 is connected to the control input terminal of the motor drive main circuit 4.

【0019】次に、第1実施例と第2実施例を説明す
る。なお、これらの実施例は、図1に示したモータ駆動
主回路4とモータ駆動制御回路6との回路構成が相違す
るのみであり、その他の部分は同一である。 (1)第1実施例 本実施例は、通電中にコンデンサに蓄えた電荷を、停電
時にN・MOSトランジスタのゲートに加えてこのN・
MOSトランジスタをオンさせ、モータ巻線MCを短絡
して電気的制動作用を行わせる場合である。
Next, the first and second embodiments will be described. Note that these embodiments are different only in the circuit configurations of the motor drive main circuit 4 and the motor drive control circuit 6 shown in FIG. 1, and the other parts are the same. (1) First Embodiment In this embodiment, the charge stored in the capacitor during energization is added to the gate of the N-MOS transistor at the time of power failure,
This is a case where the MOS transistor is turned on and the motor winding MC is short-circuited to perform an electric braking action.

【0020】図2は、モータ駆動主回路4の具体的な構
成のモータ駆動主回路4Aを示す回路図であり、図3
は、同様にモータ駆動制御回路6Aを示す回路図であ
る。図2に示すように、2本の電源線La1、Lb1間に
は、抵抗41とトランジスタ42からなる直列回路が接
続されている。抵抗41は、停電に伴う回転体の減速時
に、DCブラシレスモータから回生されるエネルギを消
費させるための回生抵抗であり、回生されるエネルギ量
と抵抗41で消費されるエネルギ量が等しくなるように
トランジスタ42がオン・オフ制御される。
FIG. 2 is a circuit diagram showing a motor drive main circuit 4A having a specific configuration of the motor drive main circuit 4, and FIG.
FIG. 6 is a circuit diagram showing a motor drive control circuit 6A similarly. As shown in FIG. 2, a series circuit including a resistor 41 and a transistor 42 is connected between the two power supply lines La1 and Lb1. The resistor 41 is a regenerative resistor for consuming the energy regenerated from the DC brushless motor at the time of deceleration of the rotating body due to the power failure, so that the amount of energy regenerated and the amount of energy consumed by the resistor 41 become equal. The transistor 42 is on / off controlled.

【0021】また、2本の電源線La1、Lb1間には、ト
ランジスタ43aと43bとからなる直列回路と、トラ
ンジスタ43cと43dとからなる直列回路と、トラン
ジスタ43eと43fとからなる直列回路とが、それぞ
れ接続されている。各トランジスタ42、43a〜43
fは、N・MOSFETまたはIGBT(絶縁ゲートバ
イポーラモードトランジスタ)等のパワートランジスタ
が使用され、各トランジスタ42、43a〜43fのソ
ース・ドレイン間には回生電流パス用のダイオード44
a〜44gが接続されている。また、各トランジスタ4
3aと43b、43cと43d、43eと43fのそれ
ぞれの接続点は、モータ巻線MCに接続されている。
Between the two power supply lines La1 and Lb1, there are a series circuit including transistors 43a and 43b, a series circuit including transistors 43c and 43d, and a series circuit including transistors 43e and 43f. , Each connected. Each transistor 42, 43a-43
For f, a power transistor such as N-MOSFET or IGBT (insulated gate bipolar mode transistor) is used, and a diode 44 for a regenerative current path is provided between the source and drain of each transistor 42, 43a to 43f.
a to 44 g are connected. Also, each transistor 4
The connection points of 3a and 43b, 43c and 43d, 43e and 43f are connected to the motor winding MC.

【0022】トランジスタ43b、43d、43fのそ
れぞれのゲートは、図3に示すモータ駆動制御回路6A
の符号A、B、Cで示す部分に接続されている。図3に
示すように、駆動制御回路用電源60の入力側は、直流
安定化電源回路5の2本の電源線La2、Lb2に接続さ
れ、駆動制御回路用電源60は直流安定化電源回路5の
出力電圧を、リレー駆動用の電圧に変換する。駆動制御
回路用電源60の出力側の+端子と−端子間には、交流
電源1の通電中に動作する「短絡手段」をなすリレー6
1が接続され、更に+側端子は直流阻止用のダイオード
62を介してリレー61の「短絡手段」をなすブレーク
接点61aの一方の端子に接続されている。
The gates of the transistors 43b, 43d, and 43f are connected to the motor drive control circuit 6A shown in FIG.
Are connected to the portions indicated by reference signs A, B, and C. As shown in FIG. 3, the input side of the drive control circuit power supply 60 is connected to the two power supply lines La2 and Lb2 of the DC stabilized power supply circuit 5, and the drive control circuit power supply 60 is connected to the DC stabilized power supply circuit 5. The output voltage of is converted into the voltage for driving the relay. Between the output-side + terminal and the-terminal of the drive control circuit power supply 60, a relay 6 forming a “short-circuit means” that operates while the AC power supply 1 is energized.
1 is connected, and the + side terminal is connected to one terminal of the break contact 61a which forms the "short-circuit means" of the relay 61 via the diode 62 for blocking direct current.

【0023】交流電源1の通電時にはリレー61に通電
されるので、ブレーク接点61aは開放状態となり、交
流電源1の停電時には接続状態となる。ダイオード62
のカソードとブレーク接点61aの一方の端子間には、
「短絡手段」をなすコンデンサ63の+側端子が接続さ
れ、このコンデンサ63の−側端子は駆動制御回路用電
源60の−側出力端子に接続されると共に、接地されて
いる。
Since the relay 61 is energized when the AC power supply 1 is energized, the break contact 61a is opened, and the break contact 61a is connected when the AC power supply 1 fails. Diode 62
Between the cathode and one terminal of the break contact 61a,
The + side terminal of the capacitor 63 forming the “short-circuit means” is connected, and the − side terminal of this capacitor 63 is connected to the − side output terminal of the drive control circuit power supply 60 and is also grounded.

【0024】ブレーク接点61aの他方の端子は、直流
阻止用のダイオード65a、65b、65cのそれぞれ
のアノードに接続され、各ダイオード65a、65b、
65cのカソードは、図2に示した各トランジスタ4
2、43a〜43fのゲートを所定のタイミングで制御
駆動するゲート駆動回路64に接続されている。
The other terminal of the break contact 61a is connected to the respective anodes of the DC blocking diodes 65a, 65b, 65c, and the diodes 65a, 65b,
The cathode of 65c corresponds to each transistor 4 shown in FIG.
It is connected to a gate drive circuit 64 for controlling and driving the gates of 2, 43a to 43f at a predetermined timing.

【0025】次に、以上のように構成された第1実施例
の動作を説明する。 交流電源の通電時 この場合は、モータ駆動主回路4Aおよびモータ駆動制
御回路6Aを含め、図1に示す全ての部分に電力が供給
可能になっている。
Next, the operation of the first embodiment constructed as described above will be explained. When the AC power supply is energized In this case, power can be supplied to all parts shown in FIG. 1, including the motor drive main circuit 4A and the motor drive control circuit 6A.

【0026】そして、図3に示すリレー61には駆動制
御回路用電源60から所定の直流電圧が印加され、リレ
ー61はオンになり、ブレーク接点61aは開放状態と
なる。従って、コンデンサ63には駆動制御回路用電源
60から直流電圧が印加され、充電される。
A predetermined DC voltage is applied from the drive control circuit power supply 60 to the relay 61 shown in FIG. 3, the relay 61 is turned on, and the break contact 61a is opened. Therefore, the DC voltage is applied to the capacitor 63 from the drive control circuit power supply 60 to charge it.

【0027】また、モータ駆動主回路4Aの各トランジ
スタ42、43a〜43fは、モータ駆動制御回路6A
に示すゲート駆動回路64から出力されるゲート信号に
よって所定のタイミングでオン・オフ制御される。更
に、磁気軸受制御回路7からは、磁気浮上用の電流が磁
気軸受巻線BCに供給される。従って、磁気軸受式回転
装置MBを構成するDCブラシレスモータの回転体(ロ
ータ)は、所定の速度で高速回転される。
The transistors 42, 43a to 43f of the motor drive main circuit 4A are connected to the motor drive control circuit 6A.
On / off control is performed at a predetermined timing by a gate signal output from the gate drive circuit 64 shown in FIG. Further, the magnetic bearing control circuit 7 supplies a magnetic levitation current to the magnetic bearing winding BC. Therefore, the rotating body (rotor) of the DC brushless motor that constitutes the magnetic bearing type rotating device MB is rotated at a high speed at a predetermined speed.

【0028】交流電源の停電時 磁気軸受式回転装置MBの高速回転中に停電が発生した
場合、DCブラシレスモータは直ちに減速し始める。減
速時に回生される電力の一部は、モータ駆動主回路4A
を介して直流安定化電源回路5に供給され、それによっ
て停電時でもモータ駆動制御回路6Aや磁気軸受制御回
路7は、動作を継続し、回転体は保護ベアリング上にタ
ッチダウンすることなく回転を継続する。
At the time of power failure of AC power supply When a power failure occurs during high-speed rotation of the magnetic bearing type rotating device MB, the DC brushless motor immediately starts decelerating. Part of the electric power regenerated during deceleration is the motor drive main circuit 4A.
Is supplied to the stabilized DC power supply circuit 5 via the power supply, so that the motor drive control circuit 6A and the magnetic bearing control circuit 7 continue to operate even when a power failure occurs, and the rotating body rotates without touching down on the protective bearing. continue.

【0029】また、停電時であっても回生エネルギによ
って磁気軸受式回転装置MBが動作している間、駆動制
御回路用電源60が動作し、リレー61のブレーク接点
61aは開放状態のままであり、コンデンサ63の充電
は継続される。やがて、DCブラシレスモータの回転数
が低下し、回生電力が磁気軸受制御回路7とモータ駆動
制御回路6Aとにおいて消費される電力より小さくなっ
たとき、直流安定化電源回路5は動作を停止し、回転体
は保護ベアリング上にタッチダウンする。
Even during a power failure, the drive control circuit power supply 60 operates while the magnetic bearing type rotating device MB operates by the regenerative energy, and the break contact 61a of the relay 61 remains open. The charging of the capacitor 63 is continued. Eventually, when the rotation speed of the DC brushless motor decreases and the regenerative power becomes smaller than the power consumed by the magnetic bearing control circuit 7 and the motor drive control circuit 6A, the DC stabilized power supply circuit 5 stops operating, The rotating body touches down on the protective bearing.

【0030】このとき図3に示す駆動制御回路用電源6
0も動作を停止するのでリレー61はオフとなり、ブレ
ーク接点61aは接続状態に回復する。このブレーク接
点61aの接続により、それまでコンデンサ63に蓄え
られていた電荷が、ブレーク接点61a、ダイオード6
5a〜65cを介してトランジスタ43b、43d、4
3fをオンにするので、DCブラシレスモータの3相コ
イルが短絡される。
At this time, the drive control circuit power source 6 shown in FIG.
Since 0 also stops the operation, the relay 61 is turned off and the break contact 61a is restored to the connected state. Due to the connection of the break contact 61a, the electric charge accumulated in the capacitor 63 up to that time is changed to the break contact 61a and the diode 6
Transistors 43b, 43d, 4 through 5a-65c
Since 3f is turned on, the three-phase coil of the DC brushless motor is short-circuited.

【0031】このとき、DCブラシレスモータは発電機
として作用し、回転エネルギはモータ巻線抵抗及びケー
ブル抵抗などで消費され、すみやかに減速する。従っ
て、保護ベアリングを長時間に渡って回転させることが
ないので、保護ベアリングを磨耗させることがない。
At this time, the DC brushless motor acts as a generator, the rotational energy is consumed by the motor winding resistance and the cable resistance, and the speed is quickly reduced. Therefore, since the protective bearing is not rotated for a long time, the protective bearing is not worn.

【0032】ここに、トランジスタ43b、43d、4
3fには、前述の如くFET或いはIGBTが用いられ
ているので、ゲート漏れ電流が極めて少なく、回転体が
停止するまでの間トランジスタ43b、43d、43f
のオン状態を継続することができる。
Here, the transistors 43b, 43d, 4
Since the FET or the IGBT is used for the 3f as described above, the gate leakage current is extremely small, and the transistors 43b, 43d, 43f are provided until the rotating body stops.
The ON state of can be continued.

【0033】また、コンデンサ63の充電電圧を12
V、FETのゲート漏れ電流を100nAとし、FET
に10V以上の電圧を5分以上供給するために必要なコ
ンデンサ63の容量は、次式で求めることができる。 100×10-9×3×5×60/2=45×10-6F 従って、コンデンサ63としては、余裕を見て100μ
F程度の電解コンデンサを使用すればよい。
The charging voltage of the capacitor 63 is set to 12
V, FET gate leakage current is 100nA, FET
The capacity of the capacitor 63 required to supply a voltage of 10 V or more to the above for 5 minutes or more can be obtained by the following equation. 100 × 10 -9 × 3 × 5 × 60/2 = 45 × 10 -6 F Therefore, the capacitor 63 should be 100 μ with a margin.
An electrolytic capacitor of about F may be used.

【0034】第1実施例におけるモータ駆動制御回路
の変形例 ところで、停電となり、図1に示す磁気軸受制御回路7
への給電が停止されると、磁気軸受巻線BCへの給電も
停止される。一方、停電になっても、磁気軸受式回転装
置全体には電源回路周辺のコンデンサ等には未だ電荷が
残存している可能性がある。従って、前述の如く停電に
なって磁気軸受制御回路7への給電が停止されても、駆
動制御回路用電源60からはリレー61をオンにさせる
電流が継続して供給される可能性がある。よって、停電
になったにも拘らず、図3に示すモータ駆動制御回路6
Aが動作せず、DCブラシレスモータの3相コイルが短
絡されない場合がある。従って、電気的制動作用が働か
ないので、回転体のタッチダウン後に、長時間回転体が
回転を継続するおそれがある。
Modified Example of Motor Drive Control Circuit in First Embodiment By the way, a power failure occurs and the magnetic bearing control circuit 7 shown in FIG.
When the power supply to the magnetic bearing winding BC is stopped, the power supply to the magnetic bearing winding BC is also stopped. On the other hand, even if a power failure occurs, electric charges may still remain in the capacitors and the like around the power supply circuit in the entire magnetic bearing type rotating device. Therefore, even if the power supply to the magnetic bearing control circuit 7 is stopped due to the power failure as described above, the current for turning on the relay 61 may be continuously supplied from the drive control circuit power supply 60. Therefore, the motor drive control circuit 6 shown in FIG.
In some cases, A does not operate and the three-phase coil of the DC brushless motor is not short-circuited. Therefore, since the electric braking action does not work, the rotating body may continue to rotate for a long time after the rotating body is touched down.

【0035】このような不都合を回避する手段として、
図4に示すモータ駆動制御回路6Bが好適である。図4
に示すように、駆動制御回路用電源60とリレー61と
の間に、開閉回路66を配置する。この開閉回路66
は、通電中に閉じており、停電となり磁気軸受制御回路
7が停止した場合には開く。
As a means for avoiding such an inconvenience,
The motor drive control circuit 6B shown in FIG. 4 is suitable. Figure 4
As shown in, an opening / closing circuit 66 is arranged between the drive control circuit power supply 60 and the relay 61. This switching circuit 66
Is closed during energization and is opened when the magnetic bearing control circuit 7 is stopped due to a power failure.

【0036】このように構成すれば、磁気軸受制御回路
7が停止すると開閉回路66が開くので、リレー61が
オフになり、ブレーク接点61aが接続される。このブ
レーク接点61aの接続により、コンデンサ63に蓄え
られた電荷がトランジスタ43b、43d、43fをオ
ンにするので、モータの3相が短絡される。
According to this structure, when the magnetic bearing control circuit 7 stops, the opening / closing circuit 66 opens, so that the relay 61 is turned off and the break contact 61a is connected. Due to the connection of the break contact 61a, the electric charge stored in the capacitor 63 turns on the transistors 43b, 43d and 43f, so that the three phases of the motor are short-circuited.

【0037】よって、DCブラシレスモータは発電機と
して作用し、タッチダウンした回転体は保護ベアリング
を長時間に渡って回転させることがないので、保護ベア
リングを磨耗させることがない。 (2)第2実施例 本実施例は、通電中にコンデンサに蓄えた電荷を、停電
時にP・MOSFETのゲートに加えてこのP・MOS
FETをオンさせ、モータ巻線MCを短絡する場合であ
る。
Therefore, the DC brushless motor acts as a generator, and since the touch-down rotating body does not rotate the protective bearing for a long time, the protective bearing is not worn. (2) Second Embodiment In this embodiment, the electric charge stored in the capacitor during energization is added to the gate of the P-MOSFET at the time of power failure, and this P-MOS is added.
This is a case where the FET is turned on and the motor winding MC is short-circuited.

【0038】図5は、第2実施例のモータ駆動主回路4
Bの回路図であり、図6は、第2実施例のモータ駆動制
御回路6Cの回路図である。本実施例は、トランジスタ
45a〜45cにP・MOSFETを使用し、ダイオー
ド66、68a〜68cの方向を逆にした場合である。
FIG. 5 shows a motor drive main circuit 4 of the second embodiment.
6 is a circuit diagram of B, and FIG. 6 is a circuit diagram of a motor drive control circuit 6C of the second embodiment. In this embodiment, P-MOSFETs are used for the transistors 45a to 45c and the directions of the diodes 66 and 68a to 68c are reversed.

【0039】このように構成しても、第1実施例と同様
に、通電中にはダイオード66を介して駆動制御回路用
電源52からコンデンサ67に電流供給され、コンデン
サ67に電荷が蓄えられる。そして、停電時には、コン
デンサ67に蓄えられた電荷によりトランジスタ45
a、45c、45eが導通されて3相のモータ巻線が短
絡される。従って、DCブラシレスモータは発電機とし
て作用し、タッチダウンした回転体は保護ベアリングを
長時間に渡って回転させることがないので、保護ベアリ
ングを磨耗させることがない。
Even with such a configuration, as in the first embodiment, current is supplied from the drive control circuit power supply 52 to the capacitor 67 via the diode 66 during energization, and the capacitor 67 stores electric charge. Then, at the time of a power failure, the transistor 45 is charged by the electric charge stored in the capacitor 67.
The a, 45c, and 45e are electrically connected to short-circuit the three-phase motor windings. Therefore, the DC brushless motor acts as a generator, and the rotating body touched down does not rotate the protective bearing for a long time, so that the protective bearing is not worn.

【0040】なお、第2実施例においても、図4に示し
たのと同様の開閉回路66を駆動制御回路用電源60と
リレー61との間に備えれば、第1実施例と同様の効果
を上げることができる。
Also in the second embodiment, if an opening / closing circuit 66 similar to that shown in FIG. 4 is provided between the drive control circuit power source 60 and the relay 61, the same effect as in the first embodiment is obtained. Can be raised.

【0041】[0041]

【発明の効果】以上説明したように請求項1記載の発明
によれば、短絡手段は、直流供給手段による直流の供給
停止を検出してモータの巻線を短絡しているので、直流
の供給が停止されると、モータは発電機として作用し、
モータの回転体は電気的制動作用を受ける。従って、給
電停止時には、回転体は電気的制動作用により短時間の
内に回転を停止するので、保護ベアリングの寿命を延ば
すことができる。
As described above, according to the first aspect of the present invention, the short-circuit means short-circuits the winding of the motor by detecting the stop of the direct-current supply by the direct-current supply means. When is stopped, the motor acts as a generator,
The rotating body of the motor is electrically braked. Therefore, when the power supply is stopped, the rotating body stops rotating within a short time by the electric braking action, so that the life of the protective bearing can be extended.

【0042】また、請求項2記載の発明では、スイッチ
ング素子を介してモータの巻線への電流供給を制御し、
短絡手段として継電器とこの継電器のブレーク接点とコ
ンデンサとを用いて、給電停止時には、回転体は電気的
制動作用により短時間の内に回転を停止する。
According to the second aspect of the invention, the current supply to the winding of the motor is controlled via the switching element,
By using a relay, a break contact of this relay, and a capacitor as a short-circuit means, when the power supply is stopped, the rotating body stops rotating within a short time due to an electric braking action.

【0043】請求項3記載の発明では、開閉手段は、磁
気軸受制御手段が給電停止されている場合には直流供給
手段と継電器とを非接続とさせるので、直ちにブレーク
接点が接続状態になり、コンデンサに蓄えられた電荷に
よりスイッチング素子が導通され、モータの巻線が短絡
される。
According to the third aspect of the invention, the opening / closing means disconnects the DC supplying means and the relay from each other when the magnetic bearing control means is deenergized, so that the break contact is immediately brought into the connected state. The electric charge stored in the capacitor causes the switching element to conduct, and the winding of the motor is short-circuited.

【0044】従って、磁気軸受式回転装置を構成する電
源回路のコンデンサ等に、停電時に電荷が残っていて
も、直ちにモータの回転体は電気的制動作用を受ける。
Therefore, even if electric charge remains in the capacitor of the power supply circuit constituting the magnetic bearing type rotating device at the time of power failure, the rotating body of the motor is immediately subjected to the electric braking action.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の全体構成を示すブロック図で
ある。
FIG. 1 is a block diagram showing an overall configuration of an embodiment of the present invention.

【図2】同上、モータ駆動主回路の第1実施例の回路図
である。
FIG. 2 is a circuit diagram of a first embodiment of a motor drive main circuit of the above.

【図3】同上、モータ駆動制御回路の第1実施例の回路
図である。
FIG. 3 is a circuit diagram of a first embodiment of a motor drive control circuit of the above.

【図4】同上、モータ駆動制御回路の第1実施例の変形
例の回路図である。
FIG. 4 is a circuit diagram of a modified example of the first embodiment of the motor drive control circuit.

【図5】同上、モータ駆動主回路の第2実施例の回路図
である。
FIG. 5 is a circuit diagram of a second embodiment of the motor drive main circuit of the above.

【図6】同上、モータ駆動制御回路の第2実施例の回路
図である。
FIG. 6 is a circuit diagram of a second embodiment of the motor drive control circuit of the above.

【符号の説明】[Explanation of symbols]

MB 磁気軸受装置 MC 磁気軸受装置のモータ巻線 1 交流電源 2 整流回路(直流供給手段) 4 モータ駆動主回路(電力変換手段) 4A 第1実施例のモータ駆動主回路 4B 第2実施例のモータ駆動主回路 5 直流安定化電源回路 6 モータ駆動制御回路 6A 第1実施例のモータ駆動制御回路 6B 第2実施例のモータ駆動制御回路 7 磁気軸受制御回路 41 回生抵抗 42、43a〜43f N・MOSトランジスタ 45a〜45c P・MOSトランジスタ 60 駆動制御回路用電源 61 リレー(検出手段) 61a リレーのブレーク接点(検出手段) 63 コンデンサ(検出手段) 66 開閉回路(開閉手段) MB magnetic bearing device MC motor winding of magnetic bearing device 1 AC power supply 2 rectifier circuit (DC supply means) 4 motor drive main circuit (power conversion means) 4A motor drive main circuit 4B 4B motor of the second embodiment Drive main circuit 5 DC stabilized power supply circuit 6 Motor drive control circuit 6A Motor drive control circuit 6B of the first embodiment 6B Motor drive control circuit of the second embodiment 7 Magnetic bearing control circuit 41 Regenerative resistor 42, 43a to 43f N-MOS Transistors 45a to 45c P / MOS transistor 60 Power supply for drive control circuit 61 Relay (detection means) 61a Relay break contact (detection means) 63 Capacitor (detection means) 66 Switching circuit (opening and closing means)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 直流供給手段と、 この直流供給手段からの供給電流によりモータの回転体
を磁気浮上させる電磁石と、 この電磁石の発生磁界を制御して前記回転体の位置制御
を行う磁気軸受制御手段と、 前記直流供給手段からの供給電流を、モータの回転体を
回転させる回転磁界形成用の交流に変換する電力変換手
段と、 前記直流供給手段による給電の停止を検出し、前記電力
変換手段から交流が供給されるモータの巻線を短絡させ
る短絡手段とを備えたことを特徴とする磁気軸受式回転
装置。
1. A direct current supplying means, an electromagnet for magnetically levitating a rotating body of a motor by a current supplied from the direct current supplying means, and a magnetic bearing control for controlling a position of the rotating body by controlling a magnetic field generated by the electromagnet. Means, power conversion means for converting the supply current from the DC supply means into AC for forming a rotating magnetic field for rotating the rotor of the motor, and detection of stop of power supply by the DC supply means, and the power conversion means A magnetic bearing type rotating device, comprising: a short-circuit means for short-circuiting a winding of a motor to which an alternating current is supplied from.
【請求項2】 前記電力変換手段は、前記モータの巻線
への電流供給を制御するスイッチング素子を有してな
り、 前記短絡手段は、前記直流供給手段の出力側に並列接続
された継電器およびコンデンサと、前記継電器とコンデ
ンサとの接続点に一端が接続され、他端が前記スイッチ
ング素子の導通を制御する導通制御部に接続された前記
継電器のブレーク接点とを備えたことを特徴とする請求
項1記載の磁気軸受式回転装置。
2. The power conversion means includes a switching element for controlling current supply to the winding of the motor, and the short-circuit means is a relay connected in parallel to an output side of the DC supply means. A break contact of the relay, one end of which is connected to a connection point of the relay and the capacitor, and the other end of which is connected to a conduction control unit that controls conduction of the switching element. Item 1. A magnetic bearing type rotating device according to item 1.
【請求項3】 前記直流供給手段と継電器との間に配置
され、前記磁気軸受制御手段が給電されている場合には
前記直流供給手段と継電器とを接続させ、前記磁気軸受
制御手段が給電停止されている場合には前記直流供給手
段と継電器とを非接続とさせる開閉手段を備えたことを
特徴とする請求項2記載の磁気軸受式回転装置。
3. The magnetic bearing control means is arranged between the direct current supply means and the relay, connects the direct current supply means and the relay when the magnetic bearing control means is supplied with power, and stops the power supply by the magnetic bearing control means. 3. The magnetic bearing type rotating device according to claim 2, further comprising an opening / closing means for disconnecting the direct current supplying means and the relay if they are provided.
JP07459494A 1994-04-13 1994-04-13 Magnetic bearing type rotating device Expired - Lifetime JP3585950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07459494A JP3585950B2 (en) 1994-04-13 1994-04-13 Magnetic bearing type rotating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07459494A JP3585950B2 (en) 1994-04-13 1994-04-13 Magnetic bearing type rotating device

Publications (2)

Publication Number Publication Date
JPH07279962A true JPH07279962A (en) 1995-10-27
JP3585950B2 JP3585950B2 (en) 2004-11-10

Family

ID=13551642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07459494A Expired - Lifetime JP3585950B2 (en) 1994-04-13 1994-04-13 Magnetic bearing type rotating device

Country Status (1)

Country Link
JP (1) JP3585950B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083946A1 (en) 2012-11-30 2014-06-05 エドワーズ株式会社 Electromagnetic rotating device and vacuum pump equipped with electromagnetic rotating device
WO2018110466A1 (en) 2016-12-16 2018-06-21 エドワーズ株式会社 Vacuum pump and control device provided to vacuum pump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083946A1 (en) 2012-11-30 2014-06-05 エドワーズ株式会社 Electromagnetic rotating device and vacuum pump equipped with electromagnetic rotating device
KR20150088992A (en) 2012-11-30 2015-08-04 에드워즈 가부시키가이샤 Electromagnetic rotating device and vacuum pump equipped with electromagnetic rotating device
US10876540B2 (en) 2012-11-30 2020-12-29 Edwards Japan Limited Electromagnetic rotating device and vacuum pump equipped with electromagnetic rotating device
WO2018110466A1 (en) 2016-12-16 2018-06-21 エドワーズ株式会社 Vacuum pump and control device provided to vacuum pump
KR20190095263A (en) 2016-12-16 2019-08-14 에드워즈 가부시키가이샤 Vacuum pump and control device provided in the vacuum pump

Also Published As

Publication number Publication date
JP3585950B2 (en) 2004-11-10

Similar Documents

Publication Publication Date Title
RU2326490C2 (en) Power supply circuit of high speed electric drive
US6278256B1 (en) Electric vehicle control system for controlling a permanent magnet motor which drives the electric vehicle
JP3519771B2 (en) Magnetic bearing device
JPH03256591A (en) Power supply system for vacuum pump
JP4126510B2 (en) Inverter braking circuit
US5757148A (en) Method of and apparatus for stopping a motor having magnetic bearings
JP3585950B2 (en) Magnetic bearing type rotating device
JP3677826B2 (en) Magnetic bearing device
EP3832878B1 (en) Sequential electrical braking with pulsed dc injection rotor lock mechanism
JPH1023781A (en) Power unit for magnetic bearing
JPH0147110B2 (en)
WO2002021674A1 (en) Power supply for high speed motor
JPH07293563A (en) Drive control device for rotating device supporting rotor on magnetic bearing
JP3624271B2 (en) Magnetic bearing device
JPH0242196A (en) Power unit for turbo molecular pump
KR100477122B1 (en) Stopping device and method of motor with magnetic bearing
JPS64314B2 (en)
JP2549159Y2 (en) Power supply for induction motors using magnetic bearings
JPH06280874A (en) Feeder of magnetic bearing device
US20240132325A1 (en) Method, elevator, and electric power converter
JPH06165548A (en) Motor brake unit
JP2002171687A (en) Commutator of charging generator for vehicle
AU2003269647B2 (en) Power supply circuit of a high speed electric motor
JPH04359687A (en) Motor drive control circuit
JPS6071477A (en) Controller for alternating current elevator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term