JP3585289B2 - New tricarbonyl group-containing silicon compounds and metal surface treatment agents - Google Patents

New tricarbonyl group-containing silicon compounds and metal surface treatment agents Download PDF

Info

Publication number
JP3585289B2
JP3585289B2 JP15077395A JP15077395A JP3585289B2 JP 3585289 B2 JP3585289 B2 JP 3585289B2 JP 15077395 A JP15077395 A JP 15077395A JP 15077395 A JP15077395 A JP 15077395A JP 3585289 B2 JP3585289 B2 JP 3585289B2
Authority
JP
Japan
Prior art keywords
carbon atoms
group
tricarbonyl
nmr
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15077395A
Other languages
Japanese (ja)
Other versions
JPH093076A (en
Inventor
克之 土田
正志 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP15077395A priority Critical patent/JP3585289B2/en
Publication of JPH093076A publication Critical patent/JPH093076A/en
Application granted granted Critical
Publication of JP3585289B2 publication Critical patent/JP3585289B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Paints Or Removers (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【0001】
【産業上の利用分野】
本発明は銅、鉄鋼およびアルミニウム製品を主とする金属の防錆および金属と樹脂との接着性の改善等を行うための表面処理剤および該表面処理剤に好適な新規シラン化合物に関する。
【0002】
【従来の技術】
各種金属に関する要求は様々である。例えばプリント回路用の銅箔は紙−フェノール樹脂含浸基材やガラス−エポキシ樹脂含浸基材等に加熱、加圧して積層して、銅張積層板が形成され、これをエッチングして回路網を形成し、これに半導体装置等の素子を搭載することにより電子機器用のボードが作られる。
これらの過程では基材との接着、加熱、酸やアルカリ液への浸漬、レジストインクの塗布、ハンダ付け等が行われるため、銅箔には各種の性能が要求される。また保管時に銅箔表面の酸化変色がないことも要求されている。これらの要求を満たすために、黄銅層形成処理(特公昭51−35711号公報、同54−6701号公報)やクロメート処理、亜鉛または酸化亜鉛とクロム酸化物とからなる亜鉛−クロム基混合物被覆処理等(特公昭58−7077号公報)が行われている。しかしながら、最近、プリント回路が緻密化しているので、使用されるプリント回路用銅箔に要求される特性はますます厳しくなっている。
【0003】
又、鉄鋼製品は建築物、自動車、船舶、缶など様々なところで使用されているが、錆びるという重大な欠点がある。鉄製品の防錆剤には従来水溶性防錆剤、気化性防錆剤、油性防錆剤等の各種防錆剤が使用されている。一般的に水溶性防錆剤は一時的短時間の防錆を目的とし、長期の防錆には用いられていない。また気化性防錆剤は密閉状態で本来の防錆力を発揮するものである。油性防錆剤は比較的防錆力が強く長期の防錆に耐えるものであり、液状の防錆油、防錆添加剤や皮膜形成剤等を揮発性有機溶剤に溶解したもの、粘着性の防錆グリース等がある。このように様々な防錆剤が多数開発され、それぞれの環境によって使い分けられているが、今もなお、防錆剤の一層の充実が望まれているのが現状である。
又、アルミニウムまたはアルミニウム合金は軽量であるため自動車分野において、燃費向上の観点から注目され始めている。アルミニウム合金がパネル材として使用される場合は、プレス成形等の加工が施された後に塗装が行われるのが通常であり、特に自動車の外板材では耐食性に対する要求特性からカチオン型の電着塗装が施されている。しかしながら、アルミニウム合金に対する塗装の密着性が十分に得られず、また塗装後の耐食性も十分でないという欠点がある。
【0004】
【発明が解決しようとする課題】
本発明はこうした要請に対応できる、すなわち金属、特には銅、鉄鋼およびアルミニウム製品に対して、金属表面に強く吸着し、薄膜においても防錆作用を有し、かつ樹脂との接着性に優れる新規なシラン化合物およびそれに用いた新規な金属表面処理剤を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明者は鋭意研究を進めた結果、下記一般式(1)および(2)に示すトリカルボニル基を含有するケイ素化合物が金属表面に対して優れた防錆作用を有し、かつ金属と樹脂との接着性に優れることを見出した。
本発明はかかる知見に基づきなされたものであり、その要旨は、
(1)下記一般式(1)で表わされる新規トリカルボニル基含有ケイ素化合物。
【0006】
【化3】

Figure 0003585289
【0007】
〔ただし、該トリカルボニル基含有ケイ素化合物は、上記一般式(1)の互変異性体であるエノール形も含む。また、一般式(1)においてRは炭素数2〜10のアルキレン基、Rは炭素数1〜5のアルキル基、R,Rは炭素数1〜10のアルキル基であって、かつR,Rの少なくともいずれかが炭素数1〜5のとき、Rは炭素数6〜10であり、またRの炭素数が1〜5のとき、R,Rの少なくともいずれかが炭素数6〜10であり、x,y,zはそれぞれ0または1を示す。〕
(2)下記一般式(2)で表わされるトリカルボニル基含有ケイ素化合物を有効成分とする金属表面処理剤にある。
【0008】
【化4】
Figure 0003585289
【0009】
〔ただし、該トリカルボニル基含有ケイ素化合物は、上記一般式(2)の互変異性体であるエノール型も含む。また、一般式(2)においてRは炭素数2〜10のアルキレン基、Rは炭素数1〜5のアルキル基、R、Rはそれぞれ炭素数1〜10のアルキル基であって、かつR3、R4の少なくともいずれかが炭素数1〜5のとき、R は炭素数6〜10であり、またR の炭素数が1〜5のとき、R ,R の少なくともいずれかが炭素数6〜10であり、x、y、zはそれぞれ0または1を示す〕
以下に本発明をさらに詳細に説明する。上記一般式(2)におけるRは炭素数が2〜10のアルキル基である。Rは炭素数が1〜5のアルキル基であるが、特には合成の容易性やシランの加水分解のし易さの点からメチル基、エチル基が好適である。RおよびRは炭素数1〜10のアルキル基である。アルキル基が長いと金属に表面処理したときにそのアルキル基が外側に配向するため撥水性を示す。同様にRもアルキレン基が長いと撥水性が向上する。また、アルキル基が短いと立体障害が減少するためトリカルボニル基の金属に対する吸着性が増加する。
【0010】
すなわち、RおよびRは一方のアルキル基が長く、もう一方が短いことが撥水性およびトリカルボニル基の金属に対する吸着性の点から好適である。また、Rのアルキレン基が炭素数6〜10と長く、Rおよび/またはRのアルキル基が炭素数1〜5と短い場合も同様に撥水性および吸着性の点から好適である。さらにこの逆の関係すなわちRのアルキレン基が炭素数1〜5と短く、Rおよび/またはRのアルキル基が炭素数6〜10と長い場合も同様に撥水性および吸着性の点から好ましい。
このような観点から、一般式(2)においてR,R,Rは、一般式(1)におけるR,R,Rと同義である場合、すなわち、Rが炭素数2〜10のアルキレン基、R,Rは炭素数1〜10のアルキル基であって、かつR,Rの少なくともいずれかが炭素数1〜5のとき、Rは炭素数6〜10であり、またRの炭素数が1〜5のとき、R,Rの少なくともいずれかが炭素数6〜10である場合が好ましい。
本発明の上記一般式(1),(2)で表わされるトリカルボニル基含有シラン化合物として、特に好ましいものを挙げると、例えば
【0011】
【化5】
Figure 0003585289
【0012】
【化6】
Figure 0003585289
【0013】
などがある。ただし、上記化合物はケト形のみ記載しているが、下記に示すようにケト形とエノール形の互変異性体で存在しており、エノール形についても本特許の請求範囲に含まれる(以下、ケト形のみを記載するが、エノール形も含まれているものとする)。
【0014】
【化7】
Figure 0003585289
【0015】
本発明の上記一般式(1)で表わされるトリカルボニル基含有シラン化合物は、反応式(3)および(4)または反応式(5)および(6)で表わされる反応により合成される。すなわち、前者はジカルボニル化合物と二重結合を有する化合物iを塩化マグネシウムおよびアミンの存在下で反応させた後〔反応式(3)参照〕、白金存在下でトリアルコキシシランと反応させる〔ヒドロシリル化反応、反応式(4)参照〕ことにより製造する方法、また、後者は二重結合を有するジカルボニル化合物と化合物iiを塩化マグネシウムおよびアミンの存在下で反応させた後〔反応式(5)参照〕、白金存在下でトリアルコキシシランと反応させる〔ヒドロシリル化反応、反応式(6)参照〕ことにより製造する方法である。
【0016】
【化8】
Figure 0003585289
【0017】
〔上記式中、R,Rおよびx,y,zは前記一般式(1)におけるそれぞれの記号と同義であり、Rは結合手、または炭素数1〜8のアルキル基を示す〕
【0018】
【化9】
Figure 0003585289
【0019】
(なお、上記式中、R−CHCH−、Rはそれぞれ前記一般式(1)におけるR,Rと同義である。)
【0020】
【化10】
Figure 0003585289
【0021】
(上記式中、R,Rおよびx,y,zは前記一般式(1)におけるそれぞれの記号と同義であり、Rは結合手または炭素数1〜8のアルキル基を示す。)
【0022】
【化11】
Figure 0003585289
【0023】
(なお、上記式中、R−CHCH−、Rはそれぞれ前記一般式(1)におけるR,Rと同義である。)
また、上記反応式(3)〜(6)により同様にして上記一般式(2)で表わされるトリカルボニル基含有シラン化合物も製造することができる。
上記反応式(3)に表わされている二重結合を有する化合物iとして好ましいのは、アクリル酸クロリド、10−ウンデセノイルクロリドである。また、二重結合を有するカルボン酸、例えばビニルアセトアセティックアシッドや4−ペンタノイックアシッド等を塩化チオニル、三塩化リン、五塩化リン等により酸クロリド化してもよい。
上記反応式(3)に表わされているジカルボニル化合物は2,4−ペンタンジオン、2,2,6,6−テトラメチル−3,5−ヘプタンジオン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸n−ブチル、アセト酢酸t−ブチル、プロピオニル酢酸エチル、ブチリル酢酸エチル、ジメチルマロネート、ジエチルマロネート等が挙げられる。
上記反応式(4)に表わされているトリアルコキシシランとして好ましいのは、トリメトキシシラン、トリエトキシシラン等である。
【0024】
上記反応式(5)に表わされている化合物iiはアセチルクロリド、プロピオニルクロリド、ブチリルクロリド、t−ブチルアセチルクロリド、2−エチルブチリルクロリド、バレリルクロリド、イソバレリルクロリド、2−メチルバレリルクロリド、ヘキサノイルクロリド、2−エチルヘキサノイルクロリド、ヘプタノイルクロリド、オクタノイルクロリド、ノナノイルクロリド、デカノイルクロリド等が挙げられる。
上記反応式(5)に表わされている二重結合を有するジカルボニル化合物はアセト酢酸アリル等が挙げられる。
【0025】
上記反応式(3)および(5)の反応は文献〔M.W.Rathke,P.J.,Cowan,J.Org.Chem.,50,2622(1988)またはJ.Skarzewski,Tetrahedron,45,4593〕に基づいて合成できる。すなわち、反応溶媒にジカルボニル化合物と塩化マグネシウムを混合して混合溶液を得、この混合溶液中にアミンおよび化合物iまたはiiを順次滴下する。そしてこれらを滴下後、反応を十分行わせるために、還流することが好ましい。反応時間は5分〜24時間程度で十分である。反応溶媒としては塩化メチレンまたはアセトニトリル等が好適である。また、この反応は水分を嫌うので気相から水分が混入しないように、乾燥した窒素、アルゴン等の水分を含まない気体の雰囲気下で行うことが好ましい。
反応混合物はカラムクロマトグラフィー、抽出、蒸留等の既知の手段により精製され、単離されうるが、抽出し蒸留する方法が簡便で好ましい。
また、反応式(4)および(6)のヒドロシリル化反応は、二重結合を有するトリカルボニル化合物と1〜20倍モル量のトリアルコキシシランを、トリカルボニル化合物に対して10−5〜10−7倍モル量の塩化白金酸の存在下、室温〜150℃で数時間反応させることにより合成される。この反応は特には反応溶媒を必要としないが、トルエン等の溶媒を用いてもよい。
【0026】
反応混合物はカラムクロマトグラフィー、蒸留等の既知の手段により精製され、単離されうるが、過剰のトリアルコキシシランを濃縮により除去するのみでも純度よくトリカルボニル基含有シラン化合物が得られる。
上記トリカルボニル基含有シラン化合物を金属表面処理剤として用いる場合、その対象金属には特に制限はないが、銅、鉄鋼、アルミニウムおよびそれらの合金等の表面処理剤として用いることが好適である。また、その膜厚は金属の種類および用途によってそれぞれ異なるが、数分子層〜数百μmが好ましい。
上記トリカルボニル基含有シラン化合物は、そのまま金属に塗布してもよいが、メタノール、エタノール等のアルコール類、アセトン、酢酸エチル等の溶剤で0.001〜20重量%になるように希釈し、この液に金属を浸漬させる方法またはこの液を金属にシャワーする方法で塗布することが簡便で好ましい。また、それらの希釈液に水、酢酸水溶液または塩酸等を少量添加し、1時間〜24時間程度撹拌するとシランの加水分解が十分に進行し、シロキサン皮膜がより厚く形成されるため、本発明の効果を十分に発揮することができる。
【0027】
【実施例】
I.トリカルボニル基含有シラン化合物の合成例1
1.アセト酢酸メチルと10−ウンデセノイルクロリドとの反応
【0028】
【化12】
Figure 0003585289
【0029】
温度計、還流冷却器、滴下ロートを取り付けた500mlの四つ口フラスコを十分アルゴンで置換した後、アセト酢酸メチル0.15mol(17.2g)、塩化メチレン200ml、塩化マグネシウム0.15mol(14.1g)を入れた。0℃に冷却した後、ピリジン0.3mol(23.4g)を加え、15分間撹拌した。混合液中に10−ウンデセノイルクロリド0.15mol(30g)を滴下し、0℃で1時間撹拌後、2時間、50℃で撹拌した。反応混合物を0℃に冷却し、6mol/Lの塩酸を110ml滴下した。十分に撹拌後、有機層を水洗し、硫酸マグネシウムで乾燥した。溶媒を除去後、減圧蒸留により二重結合を有するトリカルボニル化合物を得た〔沸点:123.5〜130.0℃/0.4mmHg、収率:81%(収量:33.8g)〕。得られた化合物はGCにより単成分であることを確認し、H−NMR、13C−NMR、FT−IRにより同定した。これらの結果を図1〜3に示す。
図1〜3に示すように、下記の各シグナルが認められた。また、本化合物はH−NMRの積分比より、ほとんどエノール形で存在することが確認された。
【0030】
【化13】
Figure 0003585289
【0031】
〔図1.H−NMR(CDCl,δppm)〕
a:2.3(s,3H)
b:17.9(s,エノール形),3.4(s,ケト形)
c:3.8(s,3H)
d:2.6〜2.7(t,2H)
e:1.6(m,2H)
f:1.3(m,10H)
g:1.9〜2.0(m,2H)
h:5.7〜5.9(m,1H)
i:4.8〜5.0(m,2H)
〔図2.13C−NMR(CDCl,δppm)〕
a:25.7
b:108.1(エノール形),48.0(ケト形)
c:51.4
d:37.8
e:25.7
f:28.9〜29.8
g:33.7
h:138.9
i:114.0
jまたはl:195.6または199.0
k:167.4
〔図3.IR(cm−1)〕
νCH:2820〜3030、νC=O:1550〜1720
2.ヒドロシリル反応
【0032】
【化14】
Figure 0003585289
【0033】
温度計、還流冷却器、滴下ロートを取り付けた500mlの四つ口フラスコを十分アルゴンで置換した後、トリメトキシシラン0.027mol(3.25g)と0.2%のエタノール溶液として塩化白金酸9.0×10−7mol(0.23ml)を入れた。混合液中に室温下で上記合成した二重結合を有するトリカルボニル化合物0.018mol(5.1g)を滴下した。滴下後、70℃、1時間加熱し、真空ポンプで1時間濃縮することによりトリカルボニル基含有シラン化合物Aを得た〔収率:96.6%(収量:6.9g)〕。得られた化合物はH−NMR、13C−NMR、FT−IRにより同定した。これらの結果を図4〜6に示す。
図4〜6に示すように、下記の各シグナルが認められた。本化合物Aはケト形とエノール形で存在し、その存在比はH−NMRより、約29:71(ケト形:エノール形)であることが確認された。
【0034】
【化15】
Figure 0003585289
【0035】
〔図4.H−NMR(CDCl,δppm)〕
a:2.4(s,3H)
b:18.1(s,エノール形),3.7,5.4(s,ケト形)
c:3.8(s,3H)
d:2.7(t,2H)
e:1.7(m,2H)
f:1.2〜1.4(m,10H)
g:1.2〜1.4(m,2H)
h:1.2〜1.4(m,2H)
i:0.6〜0.7(m,2H)
j:3.6(s,9H)
〔図5.13C−NMR(CDCl,δppm)〕
a:26.2
b:109.1(エノール形),59.1(ケト形)
c:52.0
d:38.9
e:26.7
f:30.2〜30.7
g:34.2
h:23.8
i:10.3
j:50.9
kまたはm:196.9または200.4
l:167.9
〔図6.IR(cm−1)〕
νCH:2820〜3030、νC=O:1550〜1720
νSiOCH3:1080,820
II.トリカルボニル基含有シラン化合物の合成例2
【0036】
【化16】
Figure 0003585289
【0037】
温度計、還流冷却器、滴下ロートを取り付けた500mlの四つ口フラスコを十分アルゴンで置換した後、アセト酢酸アリル0.06mol(8.5g)、塩化メチレン70ml、塩化マグネシウム0.06mol(5.7g)を入れた。0℃に冷却した後、ピリジン0.12mol(9.5g)を加え、15分間撹拌した。混合液中にオクタノイルクロリド0.06mol(9.8g)を滴下し、0℃で1時間撹拌後、2時間、50℃で撹拌した。反応混合物を0℃に冷却し、6mol/Lの塩酸を40ml滴下した。十分に撹拌後、有機層を水洗し、硫酸マグネシウムで乾燥した。溶媒を除去後、減圧蒸留により二重結合を有するトリカルボニル化合物を得た〔沸点:102.2〜104.1℃/0.55mmHg、収率:67%(収量:10.8g)〕。得られた化合物はGCにより単成分であることを確認し、H−NMR、13C−NMR、FT−IRにより同定した。これらの結果を図7〜9に示す。
図7〜9に示すように、下記の各シグナルが認められた。本化合物Aはケト形とエノール形で存在し、その存在比はH−NMRの積分比より約10:90(ケト形:エノール形)であることが確認された。
【0038】
【化17】
Figure 0003585289
【0039】
〔図7.H−NMR(CDCl,δppm)〕
a:2.3(s,3H)
b:17.9(s,エノール形),3.4(s,ケト形)
c:4.7(m,2H)
d:5.9〜6.0(m,1H)
e:5.2〜5.4(m,2H)
f:2.6〜2.7(m,2H)
g:1.5〜1.7(m,2H)
h:1.3(m,8H)
i:0.9(m,3H)
〔図8.13C−NMR(CDCl,δppm)〕
a:25.6
b:108.1(エノール形),48.0(ケト形)
c:65.5
d:131.8
e:118.9
f:37.8
g:25.8
h:29.0〜37.8
i:14.0
jまたはl:198.9または195.7
k:166.7
〔図9.IR(cm−1)〕
νCH:2820〜3030、νC=O:1550〜1720
2.ヒドロシリル反応
【0040】
【化18】
Figure 0003585289
【0041】
温度計、還流冷却器、滴下ロートを取り付けた500mlの四つ口フラスコを十分アルゴンで置換した後、トリメトキシシラン0.017mol(2.0g)と0.2%のエタノール溶液として塩化白金酸5.5×10−7mol(0.14ml)を入れた。混合液中に室温下で上記合成した二重結合を有するトリカルボニル化合物0.011mol(2.95g)を滴下した。滴下後、70℃、1時間加熱し、真空ポンプで1時間濃縮することによりトリカルボニル基含有シラン化合物Bを得た(収率:89.9%(収量:3.86g)〕。得られた化合物はH−NMR、13C−NMR、FT−IRにより同定した。これらの結果を図10〜12に示す。
図10〜12に示すように、下記の各シグナルが認められた。本化合物Bはケト形とエノール形で存在し、その存在比はH−NMRの積分比より約18:82(ケト形:エノール形)であることが確認された。
【0042】
【化19】
Figure 0003585289
【0043】
〔図10.H−NMR(CDCl,δppm)〕
a:2.1(s,3H)
b:17.9(s,エノール形)、5.4,3.4(s,ケト形)
c:4.0〜4.1(m,2H)
d:1.6〜1.7(m,2H)
e:0.5〜0.6(m,2H)
f:3.4(s,9H)
g:2.5〜2.6(m,2H)
h:1.1〜1.5(m,10H)
i:0.8〜0.9(m,3H)
〔図11.13C−NMR(CDCl,δppm)〕
a:26.3
b:109.4(エノール形)、100.3,59.3(ケト形)
c:67.6
d:23.2
e:6.8
f:51.0
g:38.9
h:23.4〜32.9
i:14.8
jまたはl:196.8または200.1
k:167.5
〔図12.IR(cm−1)〕
νCH:2820〜3030、νC=O:1550〜1720
νSiOCH3:1080〜820
III.トリカルボニル基含有シラン化合物の合成例3
1.アセト酢酸アリルとアセチルクロリドとの反応
【0044】
【化20】
Figure 0003585289
【0045】
温度計、還流冷却器、滴下ロートを取り付けた500mlの四つ口フラスコを十分アルゴンで置換した後、アセト酢酸アリル0.15mol(21.3g)、塩化メチレン160ml、塩化マグネシウム0.15mol(14.3g)を入れた。0℃に冷却した後、ピリジン0.3mol(23.7g)を加え、15分間撹拌した。混合液中にアセチルクロリド0.15mol(11.8g)を滴下し、0℃で1時間撹拌後、2時間、50℃で撹拌した。反応混合物を0℃に冷却し、6mol/Lの塩酸を100ml滴下した。十分に撹拌後、有機層を水洗し、硫酸マグネシウムで乾燥した。溶媒を除去後、減圧蒸留により二重結合を有するトリカルボニル化合物を得た〔沸点:55.3〜57.5℃/1.1mmHg、収率:56%(収量:15.5g)〕。得られた化合物はGCにより単成分であることを確認し、H−NMR、13C−NMR、FT−IRにより同定した。これらの結果を図13〜15に示す。
図13〜15に示すように、下記の各シグナルが認められた。本化合物はH−NMRの積分比より、ほとんどエノール形で存在することが確認された。
【0046】
【化21】
Figure 0003585289
【0047】
〔図13.H−NMR(CDCl,δppm)〕
a:2.4(s,3H)
b:18.0(s,エノール形),3.4(s,ケト形)
c:4.7(m,2H)
d:5.9〜6.0(m,1H)
e:5.3〜5.4(m,2H)
f:2.4(s,3H)
〔図14.13C−NMR(CDCl,δppm)〕
a:26.0
b:108.4(エノール形),49.0(ケト形)
c:65.3
d:131.8
e:118.8
f:26.0
g:196.5
h:166.5
i:196.5
〔図15.IR(cm−1)〕
νCH:2890〜3100、νC=O:1550〜1720
2.ヒドロシリル反応
【0048】
【化22】
Figure 0003585289
【0049】
温度計、還流冷却器、滴下ロートを取り付けた500mlの四つ口フラスコを十分アルゴンで置換した後、トリメトキシシラン0.017mol(2.0g)と0.2%のエタノール溶液として塩化白金酸5.5×10−7mol(0.14ml)を入れた。混合液中に室温下で上記合成した二重結合を有するトリカルボニル化合物0.011mol(2.0g)を滴下した。滴下後、70℃、1時間加熱し、真空ポンプで1時間濃縮することによりトリカルボニル基含有シラン化合物Cを得た(収率:85.5%(収量:2.89g)〕。得られた化合物はH−NMR、13C−NMR、FT−IRにより同定した。これらの結果を図16〜18に示す。
図16〜18に示すように、下記の各シグナルが認められた。本化合物はH−NMRの積分比より、ほとんどエノール形で存在することが確認された。
【0050】
【化23】
Figure 0003585289
【0051】
〔図16.H−NMR(CDCl,δppm)〕
a:2.3(s,3H)
b:17.9(s,1H,エノール形),3.4,5.4(s,ケト形)
c:4.0〜4.1(m,2H)
d:1.6〜1.7(m,2H)
e:0.6(m,2H)
f:3.5(s,9H)
g:2.3(m,3H)
〔図17.13C−NMR(CDCl,δppm)〕
a:26.5
b:109.4(エノール形),59.4,101.0(ケト形)
c:67.6
d:23.3
e:6.7
f:51.0
g:26.5
h:197.9
i:167.5
j:197.9
〔図18.IR(cm−1)〕
νCH:2820〜3030、νC=O:1550〜1720
νSiOCH3:1080〜820
IV.銅に対する防錆試験
電解銅箔(日鉱グールド・フォイル製;JTC箔:厚さ75μm、4.5×4.5cm)の光沢面をアセトンで脱脂し、3%の硫酸水溶液で洗浄した。この銅箔に上記のトリカルボニル基含有シラン化合物A〜Cの6%メタノール溶液をスピンコーターで塗布後、150℃、30分間乾燥させ、0.3μmのトリカルボニル基含有シラン化合物A〜Cの薄膜を作成し、これを試験片とした。この試験片を温度80℃、湿度95%の恒温恒湿槽に24時間入れ、変色の程度で耐湿性を評価した。また、180℃、30分間熱処理し、変色の程度で耐熱性を評価した。この結果を表1に示した。また比較としてなにも塗布していない銅箔についても同様に評価した。その結果を表1に併せて示した。
【0052】
【表1】
Figure 0003585289
【0053】
V.炭素鋼に対する防錆試験
炭素鋼(S.45C、日本テストパネル製、厚さ2.0mm、5.5×5.5cm)を1000番のンドペーパーで研磨後、アセトンで5分間超音波洗浄した。この炭素鋼表面に上記のトリカルボニル基含有シラン化合物Aの所定濃度メタノール溶液(濃度および添加剤は表2参照)をスピンコーター(500回転、60秒)で塗布後、150℃、30分間乾燥させ、トリカルボニル基含有シラン化合物Aの薄膜を作成し、これを試験片とした。
この試験片を温度80℃、湿度95%の恒温恒湿槽に24時間入れ、変色の程度で耐湿性を評価した。結果を表2に示した。また3%塩化ナトリウム水溶液中に24時間浸漬し、変色の程度で耐塩水性を評価した。この結果を表2に示した。また比較としてなにも塗布していない炭素鋼についても同様に評価した。その結果を表2に併せて示した。
【0054】
【表2】
Figure 0003585289
【0055】
VI.アルミニウムに対する防錆試験
アルミ板(A5052P、日本テストパネル製、厚さ2.0mm、5.5×5.5cm)をアセトンで5分間超音波洗浄し、5%NaCO水溶液に30分間浸漬後水洗した。このアルミ板表面に上記のトリカルボニル基含有シラン化合物A〜Cの2%メタノール溶液をスピンコーター(500回転、60秒)で塗布後、150℃、30分間乾燥させ、トリカルボニル基含有シラン化合物の薄膜を作成し、これを試験片とした。
この試験片を沸騰水に1時間浸漬し、変色の程度で耐湿性を評価した。この結果を表3に示した。また比較としてなにも塗布していないアルミニウムについても同様に評価した。その結果を表3に併せて示した。
【0056】
【表3】
Figure 0003585289
【0057】
また、トリカルボニル基含有シラン化合物A〜Cの0.1%メタノール溶液を上記と同様の方法でアルミ板に表面処理した後、エポキシ樹脂(エピコート828:100部、LX2S:60部、メタノール:100部)をスピンコーターにより塗布し、70℃、3時間熱処理し、厚さ20μmのエポキシ樹脂被膜を作成した。この試験片を5%食塩水に2日間浸漬後、碁盤目試験を行い樹脂との接着性を評価した。その結果を表4に示した。また、比較としてなにも塗布していないアルミニウムについても同様に評価した。その結果を表4に併せて示した。
【0058】
【表4】
Figure 0003585289
【0059】
【発明の効果】
以上説明したように、本発明のトリカルボニル基含有シラン化合物は金属表面処理剤、特に銅、鉄鋼、アルミニウムの表面処理剤として有用なもので、耐熱性、防錆および樹脂との接着性に優れるという効果を有するものである。
【図面の簡単な説明】
【図1】トリカルボニル基含有シラン化合物の合成例1で得られた中間体のH−NMR、
【図2】同13C−NMR、
【図3】同FT−IR、
【図4】トリカルボニル基含有シラン化合物の合成例1で得られた同化合物のH−NMR、
【図5】同13C−NMR、
【図6】同FT−IR、
【図7】トリカルボニル基含有シラン化合物の合成例2で得られた中間体のH−NMR、
【図8】同13C−NMR、
【図9】同FT−IR、
【図10】トリカルボニル基含有シラン化合物の合成例2で得られた同化合物のH−NMR、
【図11】同13C−NMR、
【図12】同FT−IR、
【図13】トリカルボニル基含有シラン化合物の合成例3で得られた中間体のH−NMR、
【図14】同13C−NMR、
【図15】同FT−IR、
【図16】トリカルボニル基含有シラン化合物の合成例3で得られた同化合物のH−NMR、
【図17】同13C−NMR、
【図18】同FT−IR。[0001]
[Industrial applications]
The present invention relates to a surface treatment agent for preventing rust of metals, mainly copper, steel and aluminum products, and improving the adhesion between a metal and a resin, and a novel silane compound suitable for the surface treatment agent.
[0002]
[Prior art]
The requirements for various metals vary. For example, copper foil for printed circuits is laminated by heating, pressing, and the like on a paper-phenol resin-impregnated base material or a glass-epoxy resin-impregnated base material to form a copper-clad laminate, which is etched to form a circuit network. A board for an electronic device is manufactured by forming and mounting elements such as a semiconductor device on the board.
In these processes, the copper foil is required to have various performances because bonding to the base material, heating, immersion in an acid or alkaline solution, application of a resist ink, soldering, and the like are performed. It is also required that the copper foil surface does not undergo oxidative discoloration during storage. In order to satisfy these requirements, a brass layer forming treatment (JP-B-51-35711 and JP-B-54-6701), a chromate treatment, and a coating treatment with a zinc-chromium group mixture composed of zinc or zinc oxide and chromium oxide. (Japanese Patent Publication No. 58-7077). However, recently, as printed circuits are becoming finer, characteristics required for copper foils for printed circuits used are becoming more and more severe.
[0003]
In addition, steel products are used in various places such as buildings, automobiles, ships, cans and the like, but have a serious drawback of rusting. Conventionally, various rust preventive agents such as a water-soluble rust preventive, a vaporizable rust preventive, and an oil-based rust preventive have been used as rust preventives for iron products. Generally, a water-soluble rust inhibitor is intended for temporary short-time rust prevention and is not used for long-term rust prevention. Further, the vaporizable rust preventive exerts its original rust preventive power in a closed state. Oil-based rust preventives have relatively strong rust-proofing ability and withstand long-term rust-proofing, and are prepared by dissolving liquid rust-preventive oil, rust-preventive additives and film-forming agents in volatile organic solvents, Rust prevention grease and the like are available. As described above, a large number of various rust preventive agents have been developed and used depending on the respective environments. However, even now, there is a demand for further enhancement of rust preventive agents.
Also, aluminum or aluminum alloys are starting to attract attention in the automotive field from the viewpoint of improving fuel efficiency because of their light weight. When an aluminum alloy is used as a panel material, coating is usually performed after processing such as press forming, and in particular, cationic electrodeposition coating is required for the outer panel material of automobiles due to the required properties for corrosion resistance. It has been subjected. However, there are drawbacks in that the adhesion of the coating to the aluminum alloy cannot be sufficiently obtained, and that the corrosion resistance after coating is not sufficient.
[0004]
[Problems to be solved by the invention]
The present invention can respond to such a demand, that is, a novel metal, particularly a copper, steel and aluminum product, which strongly adheres to the metal surface, has a rust-preventing action even in a thin film, and has excellent adhesion to a resin. It is an object of the present invention to provide a novel silane compound and a novel metal surface treating agent used therefor.
[0005]
[Means for Solving the Problems]
As a result of intensive studies, the present inventor has found that a silicon compound containing a tricarbonyl group represented by the following general formulas (1) and (2) has an excellent rust-preventing action on the metal surface, It has been found that it has excellent adhesiveness with the adhesive.
The present invention has been made based on such findings, the gist of which is
(1) A novel tricarbonyl group-containing silicon compound represented by the following general formula (1).
[0006]
Embedded image
Figure 0003585289
[0007]
[However, the tricarbonyl group-containing silicon compound also includes an enol form which is a tautomer of the general formula (1). In the general formula (1), R 1 is an alkylene group having 2 to 10 carbon atoms, R 2 is an alkyl group having 1 to 5 carbon atoms, R 3 and R 4 are alkyl groups having 1 to 10 carbon atoms, and when at least one of R 3, R 4 is from 1 to 5 carbon atoms, R 1 is 6 to 10 carbon atoms, and when the number of carbon atoms of R 1 is from 1 to 5, at least R 3, R 4 Any one has 6 to 10 carbon atoms, and x, y, and z each represent 0 or 1. ]
(2) A metal surface treating agent comprising a tricarbonyl group-containing silicon compound represented by the following general formula (2) as an active ingredient.
[0008]
Embedded image
Figure 0003585289
[0009]
[However, the tricarbonyl group-containing silicon compound also includes an enol type which is a tautomer of the general formula (2). Further, R 1 in the general formula (2) is an alkylene group, R 2 represents an alkyl group having 1 to 5 carbon atoms, R 3, R 4 are each an alkyl group having 1 to 10 carbon atoms having 2 to 10 carbon atoms and R3, when at least one of R4 is C1-5, R 1 is 6 to 10 carbon atoms, and when the number of carbon atoms of R 1 is from 1 to 5, R 3, at least one of R 4 Has 6 to 10 carbon atoms, and x, y, and z each represent 0 or 1.]
Hereinafter, the present invention will be described in more detail. R 1 in the general formula (2) is an alkyl group having 2 to 10 carbon atoms. R 2 is an alkyl group having 1 to 5 carbon atoms, and in particular, a methyl group and an ethyl group are preferable in view of easiness of synthesis and hydrolysis of silane. R 3 and R 4 are an alkyl group having 1 to 10 carbon atoms. When the alkyl group is long, when the metal is subjected to surface treatment, the alkyl group is oriented outward, so that the metal exhibits water repellency. Similarly, when R 1 has a long alkylene group, the water repellency is improved. Further, when the alkyl group is short, steric hindrance is reduced, so that the adsorbability of the tricarbonyl group to the metal is increased.
[0010]
That is, it is preferable that one of R 3 and R 4 has a long alkyl group and the other has a short one in terms of water repellency and adsorptivity of a tricarbonyl group to a metal. Also, the case where the alkylene group of R 1 has a long carbon number of 6 to 10 and the alkyl group of R 3 and / or R 4 has a short carbon number of 1 to 5 is similarly preferable from the viewpoint of water repellency and adsorptivity. Further, when the alkylene group of R 1 is as short as 1 to 5 carbon atoms and the alkyl group of R 3 and / or R 4 is as long as 6 to 10 carbon atoms, the water repellency and the adsorptivity are similarly increased. preferable.
From this point of view, R 1, R 3, R 4 in formula (2), R 1 in the general formula (1), R 3, if R 4 as synonymous, i.e., the number R 1 carbon 2 When R 3 and R 4 are alkyl groups having 1 to 10 carbon atoms and at least one of R 3 and R 4 has 1 to 5 carbon atoms, R 1 has 6 to 10 carbon atoms. When R 1 has 1 to 5 carbon atoms, it is preferable that at least one of R 3 and R 4 has 6 to 10 carbon atoms.
Particularly preferred tricarbonyl group-containing silane compounds represented by the above general formulas (1) and (2) of the present invention include, for example,
Embedded image
Figure 0003585289
[0012]
Embedded image
Figure 0003585289
[0013]
and so on. However, although only the keto form is described, the compound exists as a tautomer of a keto form and an enol form as shown below, and the enol form is also included in the claims of the present invention (hereinafter, referred to as “enol form”). Only the keto form is described, but the enol form is also included).
[0014]
Embedded image
Figure 0003585289
[0015]
The tricarbonyl group-containing silane compound represented by the general formula (1) of the present invention is synthesized by the reaction represented by the reaction formulas (3) and (4) or the reaction formulas (5) and (6). That is, in the former, a dicarbonyl compound and a compound i having a double bond are reacted in the presence of magnesium chloride and an amine [see reaction formula (3)], and then reacted with trialkoxysilane in the presence of platinum [hydrosilylation] Reaction, see reaction formula (4)], and the latter is to react a dicarbonyl compound having a double bond with compound ii in the presence of magnesium chloride and an amine [see reaction formula (5)]. And a reaction with a trialkoxysilane in the presence of platinum [hydrosilylation reaction, see reaction formula (6)].
[0016]
Embedded image
Figure 0003585289
[0017]
[In the above formula, R 3 and R 4 and x, y and z have the same meanings as those in the general formula (1), and R 5 represents a bond or an alkyl group having 1 to 8 carbon atoms.]
[0018]
Embedded image
Figure 0003585289
[0019]
(In the above formula, R 5 —CH 2 CH 2 — and R 2 have the same meanings as R 1 and R 2 in the general formula (1), respectively.)
[0020]
Embedded image
Figure 0003585289
[0021]
(In the above formula, R 3 , R 4 and x, y, z have the same meanings as those in the general formula (1), and R 5 represents a bond or an alkyl group having 1 to 8 carbon atoms.)
[0022]
Embedded image
Figure 0003585289
[0023]
(In the above formula, R 5 —CH 2 CH 2 — and R 2 have the same meanings as R 1 and R 2 in the general formula (1), respectively.)
Further, a tricarbonyl group-containing silane compound represented by the above general formula (2) can be produced in the same manner according to the above reaction formulas (3) to (6).
Preferred as the compound i having a double bond represented by the above reaction formula (3) is acrylic acid chloride and 10-undecenoyl chloride. Further, a carboxylic acid having a double bond, for example, vinyl acetoacetic acid or 4-pentanoic acid, may be acid chlorided with thionyl chloride, phosphorus trichloride, phosphorus pentachloride or the like.
The dicarbonyl compound represented by the above reaction formula (3) is 2,4-pentanedione, 2,2,6,6-tetramethyl-3,5-heptanedione, methyl acetoacetate, ethyl acetoacetate, Examples include n-butyl acetate, t-butyl acetoacetate, ethyl propionyl acetate, ethyl butyryl acetate, dimethyl malonate, and diethyl malonate.
Preferred as the trialkoxysilane represented by the above reaction formula (4) are trimethoxysilane, triethoxysilane and the like.
[0024]
The compound ii represented by the above reaction formula (5) is acetyl chloride, propionyl chloride, butyryl chloride, t-butylacetyl chloride, 2-ethylbutyryl chloride, valeryl chloride, isovaleryl chloride, 2-methyl Valeryl chloride, hexanoyl chloride, 2-ethylhexanoyl chloride, heptanoyl chloride, octanoyl chloride, nonanoyl chloride, decanoyl chloride and the like can be mentioned.
The dicarbonyl compound having a double bond represented by the above reaction formula (5) includes, for example, allyl acetoacetate.
[0025]
The reactions of the above reaction formulas (3) and (5) are described in literature [M. W. Ratke, P .; J. Cowan, J .; Org. Chem. , 50, 2622 (1988) or J. Amer. Skarzewski, Tetrahedron, 45 , 4593]. That is, a dicarbonyl compound and magnesium chloride are mixed in a reaction solvent to obtain a mixed solution, and an amine and a compound i or ii are sequentially dropped into the mixed solution. Then, after these are dropped, it is preferable to carry out reflux in order to carry out the reaction sufficiently. A reaction time of about 5 minutes to 24 hours is sufficient. As a reaction solvent, methylene chloride or acetonitrile is suitable. In addition, since this reaction dislikes moisture, it is preferable to perform the reaction in an atmosphere of a moisture-free gas such as nitrogen or argon so that moisture does not enter from the gas phase.
The reaction mixture can be purified and isolated by known means such as column chromatography, extraction and distillation, but the method of extraction and distillation is simple and preferred.
In addition, the hydrosilylation reaction of the reaction formulas (4) and (6) is performed by adding a tricarbonyl compound having a double bond and a 1 to 20-fold molar amount of trialkoxysilane to 10 −5 to 10 with respect to the tricarbonyl compound. It is synthesized by reacting at room temperature to 150 ° C. for several hours in the presence of a 7- fold molar amount of chloroplatinic acid. This reaction does not particularly require a reaction solvent, but a solvent such as toluene may be used.
[0026]
The reaction mixture can be purified and isolated by known means such as column chromatography and distillation, but a tricarbonyl group-containing silane compound can be obtained with high purity only by removing excess trialkoxysilane by concentration.
When the tricarbonyl group-containing silane compound is used as a metal surface treating agent, the target metal is not particularly limited, but is preferably used as a surface treating agent for copper, steel, aluminum, and alloys thereof. In addition, the film thickness varies depending on the type and use of the metal, but is preferably several molecular layers to several hundred μm.
The tricarbonyl group-containing silane compound may be directly applied to a metal, but diluted with a solvent such as an alcohol such as methanol or ethanol, acetone or ethyl acetate to a concentration of 0.001 to 20% by weight. It is simple and preferable to apply the method by dipping the metal in the liquid or by showering the liquid on the metal. When a small amount of water, an aqueous solution of acetic acid or hydrochloric acid is added to these diluents, and the mixture is stirred for about 1 to 24 hours, hydrolysis of the silane proceeds sufficiently and a siloxane film is formed thicker. The effect can be fully exhibited.
[0027]
【Example】
I. Synthesis Example 1 of Tricarbonyl Group-Containing Silane Compound
1. Reaction of methyl acetoacetate with 10-undecenoyl chloride
Embedded image
Figure 0003585289
[0029]
After sufficiently replacing the 500-ml four-necked flask equipped with a thermometer, a reflux condenser and a dropping funnel with argon, 0.15 mol (17.2 g) of methyl acetoacetate, 200 ml of methylene chloride, and 0.15 mol of magnesium chloride (14. 1g). After cooling to 0 ° C., 0.3 mol (23.4 g) of pyridine was added, and the mixture was stirred for 15 minutes. 0.15 mol (30 g) of 10-undecenoyl chloride was added dropwise to the mixture, and the mixture was stirred at 0 ° C for 1 hour and then at 50 ° C for 2 hours. The reaction mixture was cooled to 0 ° C., and 110 ml of 6 mol / L hydrochloric acid was added dropwise. After sufficient stirring, the organic layer was washed with water and dried over magnesium sulfate. After removing the solvent, a tricarbonyl compound having a double bond was obtained by distillation under reduced pressure [boiling point: 123.5 to 130.0 ° C / 0.4 mmHg, yield: 81% (yield: 33.8 g)]. The obtained compound was confirmed to be a single component by GC, and identified by 1 H-NMR, 13 C-NMR, and FT-IR. These results are shown in FIGS.
As shown in FIGS. 1 to 3, the following signals were observed. Further, it was confirmed from the integration ratio of 1 H-NMR that the present compound was almost present in an enol form.
[0030]
Embedded image
Figure 0003585289
[0031]
[FIG. 1 H-NMR (CDCl 3 , δ ppm)]
a: 2.3 (s, 3H)
b: 17.9 (s, enol form), 3.4 (s, keto form)
c: 3.8 (s, 3H)
d: 2.6 to 2.7 (t, 2H)
e: 1.6 (m, 2H)
f: 1.3 (m, 10H)
g: 1.9 to 2.0 (m, 2H)
h: 5.7 to 5.9 (m, 1H)
i: 4.8 to 5.0 (m, 2H)
[FIG. 13 C-NMR (CDCl 3 , δ ppm)]
a: 25.7
b: 108.1 (enol type), 48.0 (keto type)
c: 51.4
d: 37.8
e: 25.7
f: 28.9 to 29.8
g: 33.7
h: 138.9
i: 114.0
j or l: 195.6 or 199.0
k: 167.4
[FIG. IR (cm -1 )]
ν CH: 2820~3030, ν C = O: 1550~1720
2. Hydrosilylation reaction [0032]
Embedded image
Figure 0003585289
[0033]
After sufficiently replacing the 500 ml four-necked flask equipped with a thermometer, a reflux condenser and a dropping funnel with argon, 0.027 mol (3.25 g) of trimethoxysilane and a 0.2% ethanol solution of chloroplatinic acid 9 were prepared. 0.0 × 10 −7 mol (0.23 ml). At room temperature, 0.018 mol (5.1 g) of the tricarbonyl compound having a double bond synthesized above was dropped into the mixture at room temperature. After the dropwise addition, the mixture was heated at 70 ° C. for 1 hour and concentrated by a vacuum pump for 1 hour to obtain a tricarbonyl group-containing silane compound A [yield: 96.6% (yield: 6.9 g)]. The obtained compound was identified by 1 H-NMR, 13 C-NMR and FT-IR. These results are shown in FIGS.
As shown in FIGS. 4 to 6, the following signals were observed. This compound A exists in a keto form and an enol form, and the abundance ratio was confirmed to be about 29:71 (keto form: enol form) by 1 H-NMR.
[0034]
Embedded image
Figure 0003585289
[0035]
[FIG. 1 H-NMR (CDCl 3 , δ ppm)]
a: 2.4 (s, 3H)
b: 18.1 (s, enol form), 3.7, 5.4 (s, keto form)
c: 3.8 (s, 3H)
d: 2.7 (t, 2H)
e: 1.7 (m, 2H)
f: 1.2 to 1.4 (m, 10H)
g: 1.2 to 1.4 (m, 2H)
h: 1.2 to 1.4 (m, 2H)
i: 0.6 to 0.7 (m, 2H)
j: 3.6 (s, 9H)
[FIG. 13 C-NMR (CDCl 3 , δ ppm)]
a: 26.2
b: 109.1 (enol type), 59.1 (keto type)
c: 52.0
d: 38.9
e: 26.7
f: 30.2-30.7
g: 34.2
h: 23.8
i: 10.3
j: 50.9
k or m: 196.9 or 200.4
l: 167.9
[FIG. IR (cm -1 )]
ν CH: 2820~3030, ν C = O: 1550~1720
ν SiOCH3 : 1080,820
II. Synthesis Example 2 of Tricarbonyl Group-Containing Silane Compound
[0036]
Embedded image
Figure 0003585289
[0037]
After sufficiently replacing the 500 ml four-necked flask equipped with a thermometer, a reflux condenser and a dropping funnel with argon, 0.06 mol (8.5 g) of allyl acetoacetate, 70 ml of methylene chloride, 0.06 mol of magnesium chloride (5. 7g). After cooling to 0 ° C., 0.12 mol (9.5 g) of pyridine was added, and the mixture was stirred for 15 minutes. 0.06 mol (9.8 g) of octanoyl chloride was added dropwise to the mixture, and the mixture was stirred at 0 ° C for 1 hour and then at 50 ° C for 2 hours. The reaction mixture was cooled to 0 ° C., and 40 ml of 6 mol / L hydrochloric acid was added dropwise. After sufficient stirring, the organic layer was washed with water and dried over magnesium sulfate. After removing the solvent, a tricarbonyl compound having a double bond was obtained by distillation under reduced pressure [boiling point: 102.2 to 104.1 ° C / 0.55 mmHg, yield: 67% (yield: 10.8 g)]. The obtained compound was confirmed to be a single component by GC, and identified by 1 H-NMR, 13 C-NMR, and FT-IR. These results are shown in FIGS.
As shown in FIGS. 7 to 9, the following signals were observed. This compound A exists in a keto form and an enol form, and the abundance ratio was confirmed to be about 10:90 (keto form: enol form) from the integration ratio of 1 H-NMR.
[0038]
Embedded image
Figure 0003585289
[0039]
[FIG. 1 H-NMR (CDCl 3 , δ ppm)]
a: 2.3 (s, 3H)
b: 17.9 (s, enol form), 3.4 (s, keto form)
c: 4.7 (m, 2H)
d: 5.9 to 6.0 (m, 1H)
e: 5.2 to 5.4 (m, 2H)
f: 2.6 to 2.7 (m, 2H)
g: 1.5 to 1.7 (m, 2H)
h: 1.3 (m, 8H)
i: 0.9 (m, 3H)
[FIG. 13 C-NMR (CDCl 3 , δ ppm)]
a: 25.6
b: 108.1 (enol type), 48.0 (keto type)
c: 65.5
d: 131.8
e: 118.9
f: 37.8
g: 25.8
h: 29.0-37.8
i: 14.0
j or l: 198.9 or 195.7
k: 166.7
[FIG. IR (cm -1 )]
ν CH: 2820~3030, ν C = O: 1550~1720
2. Hydrosilylation reaction [0040]
Embedded image
Figure 0003585289
[0041]
After sufficiently replacing the 500 ml four-necked flask equipped with a thermometer, a reflux condenser and a dropping funnel with argon, 0.017 mol (2.0 g) of trimethoxysilane and 0.2% ethanol solution of chloroplatinic acid were added. 0.5 × 10 −7 mol (0.14 ml). At room temperature, 0.011 mol (2.95 g) of the tricarbonyl compound having a double bond synthesized above was added dropwise to the mixture at room temperature. After the dropwise addition, the mixture was heated at 70 ° C. for 1 hour and concentrated by a vacuum pump for 1 hour to obtain a tricarbonyl group-containing silane compound B (yield: 89.9% (yield: 3.86 g)). The compound was identified by 1 H-NMR, 13 C-NMR, and FT-IR, and the results are shown in FIGS.
As shown in FIGS. 10 to 12, the following signals were observed. This compound B exists in a keto form and an enol form, and the abundance ratio was confirmed to be about 18:82 (keto form: enol form) based on the integration ratio of 1 H-NMR.
[0042]
Embedded image
Figure 0003585289
[0043]
[FIG. 1 H-NMR (CDCl 3 , δ ppm)]
a: 2.1 (s, 3H)
b: 17.9 (s, enol form), 5.4, 3.4 (s, keto form)
c: 4.0 to 4.1 (m, 2H)
d: 1.6 to 1.7 (m, 2H)
e: 0.5 to 0.6 (m, 2H)
f: 3.4 (s, 9H)
g: 2.5 to 2.6 (m, 2H)
h: 1.1 to 1.5 (m, 10H)
i: 0.8 to 0.9 (m, 3H)
[FIG. 13 C-NMR (CDCl 3 , δ ppm)]
a: 26.3
b: 109.4 (enol form), 100.3, 59.3 (keto form)
c: 67.6
d: 23.2
e: 6.8
f: 51.0
g: 38.9
h: 23.4-32.9
i: 14.8
j or l: 196.8 or 200.1
k: 167.5
[FIG. IR (cm -1 )]
ν CH: 2820~3030, ν C = O: 1550~1720
ν SiOCH3 : 1800-820
III. Synthesis Example 3 of Tricarbonyl Group-Containing Silane Compound
1. Reaction of allyl acetoacetate with acetyl chloride
Embedded image
Figure 0003585289
[0045]
After sufficiently replacing the 500 ml four-necked flask equipped with a thermometer, a reflux condenser and a dropping funnel with argon, allyl acetoacetate 0.15 mol (21.3 g), methylene chloride 160 ml, magnesium chloride 0.15 mol (14. 3g). After cooling to 0 ° C., 0.3 mol (23.7 g) of pyridine was added, and the mixture was stirred for 15 minutes. 0.15 mol (11.8 g) of acetyl chloride was added dropwise to the mixture, and the mixture was stirred at 0 ° C for 1 hour and then at 50 ° C for 2 hours. The reaction mixture was cooled to 0 ° C., and 100 ml of 6 mol / L hydrochloric acid was added dropwise. After sufficient stirring, the organic layer was washed with water and dried over magnesium sulfate. After removing the solvent, a tricarbonyl compound having a double bond was obtained by distillation under reduced pressure [boiling point: 55.3 to 57.5 ° C / 1.1 mmHg, yield: 56% (yield: 15.5 g)]. The obtained compound was confirmed to be a single component by GC, and identified by 1 H-NMR, 13 C-NMR, and FT-IR. These results are shown in FIGS.
As shown in FIGS. 13 to 15, the following signals were observed. From the integration ratio of 1 H-NMR, it was confirmed that the present compound was almost present in an enol form.
[0046]
Embedded image
Figure 0003585289
[0047]
[FIG. 1 H-NMR (CDCl 3 , δ ppm)]
a: 2.4 (s, 3H)
b: 18.0 (s, enol form), 3.4 (s, keto form)
c: 4.7 (m, 2H)
d: 5.9 to 6.0 (m, 1H)
e: 5.3 to 5.4 (m, 2H)
f: 2.4 (s, 3H)
[FIG. 13 C-NMR (CDCl 3 , δ ppm)]
a: 26.0
b: 108.4 (enol type), 49.0 (keto type)
c: 65.3
d: 131.8
e: 118.8
f: 26.0
g: 196.5
h: 166.5
i: 196.5
[FIG. IR (cm -1 )]
ν CH: 2890~3100, ν C = O: 1550~1720
2. Hydrosilylation reaction [0048]
Embedded image
Figure 0003585289
[0049]
After sufficiently replacing the 500 ml four-necked flask equipped with a thermometer, a reflux condenser and a dropping funnel with argon, 0.017 mol (2.0 g) of trimethoxysilane and 0.2% ethanol solution of chloroplatinic acid were added. 0.5 × 10 −7 mol (0.14 ml). At room temperature, 0.011 mol (2.0 g) of the tricarbonyl compound having a double bond synthesized above was dropped into the mixture at room temperature. After the dropwise addition, the mixture was heated at 70 ° C. for 1 hour and concentrated by a vacuum pump for 1 hour to obtain a tricarbonyl group-containing silane compound C (yield: 85.5% (yield: 2.89 g)). The compound was identified by 1 H-NMR, 13 C-NMR, and FT-IR, and the results are shown in FIGS.
As shown in FIGS. 16 to 18, the following signals were observed. From the integration ratio of 1 H-NMR, it was confirmed that the present compound was almost present in an enol form.
[0050]
Embedded image
Figure 0003585289
[0051]
[FIG. 1 H-NMR (CDCl 3 , δ ppm)]
a: 2.3 (s, 3H)
b: 17.9 (s, 1H, enol form), 3.4, 5.4 (s, keto form)
c: 4.0 to 4.1 (m, 2H)
d: 1.6 to 1.7 (m, 2H)
e: 0.6 (m, 2H)
f: 3.5 (s, 9H)
g: 2.3 (m, 3H)
[FIG. 13 C-NMR (CDCl 3 , δ ppm)]
a: 26.5
b: 109.4 (enol type), 59.4, 101.0 (keto type)
c: 67.6
d: 23.3
e: 6.7
f: 51.0
g: 26.5
h: 197.9
i: 167.5
j: 197.9
[FIG. IR (cm -1 )]
ν CH: 2820~3030, ν C = O: 1550~1720
ν SiOCH3 : 1800-820
IV. Rust prevention test on copper The glossy surface of electrolytic copper foil (manufactured by Nikko Gould Foil; JTC foil: thickness 75 µm, 4.5 x 4.5 cm) is degreased with acetone and washed with a 3% aqueous sulfuric acid solution. did. The copper foil is coated with a 6% methanol solution of the above-mentioned tricarbonyl group-containing silane compounds A to C by a spin coater, dried at 150 ° C. for 30 minutes, and formed into a thin film of 0.3 μm of the tricarbonyl group-containing silane compounds A to C. Was prepared and used as a test piece. The test piece was placed in a thermo-hygrostat at a temperature of 80 ° C. and a humidity of 95% for 24 hours, and the moisture resistance was evaluated by the degree of discoloration. Further, heat treatment was performed at 180 ° C. for 30 minutes, and heat resistance was evaluated based on the degree of discoloration. The results are shown in Table 1. For comparison, a copper foil to which no coating was applied was similarly evaluated. The results are shown in Table 1.
[0052]
[Table 1]
Figure 0003585289
[0053]
V. Rust test <br/> carbon steel to carbon steel (S.45C, manufactured by Nippon Test Panel, thickness 2.0 mm, 5.5 × 5.5cm) after polishing at No. 1000 of the sub-end paper 5 with acetone Ultrasonic cleaning for minutes. A methanol solution having a predetermined concentration of the above-mentioned tricarbonyl group-containing silane compound A (see Table 2 for the concentration and additives) is applied to the surface of the carbon steel by a spin coater (500 rpm, 60 seconds), and dried at 150 ° C. for 30 minutes. Then, a thin film of the tricarbonyl group-containing silane compound A was prepared and used as a test piece.
The test piece was placed in a thermo-hygrostat at a temperature of 80 ° C. and a humidity of 95% for 24 hours, and the moisture resistance was evaluated by the degree of discoloration. The results are shown in Table 2. The sample was immersed in a 3% aqueous sodium chloride solution for 24 hours, and the degree of discoloration was evaluated for salt water resistance. The results are shown in Table 2. For comparison, carbon steel not coated with anything was similarly evaluated. The results are also shown in Table 2.
[0054]
[Table 2]
Figure 0003585289
[0055]
VI. Rust test <br/> aluminum plate to aluminum (A5052P, manufactured by Nippon Test Panel, thickness 2.0 mm, 5.5 × 5.5cm) and washed 5 min ultrasonically acetone, 5% Na 2 CO 3 aqueous solution And then washed with water. A 2% methanol solution of the above-mentioned tricarbonyl group-containing silane compounds A to C is applied to the surface of the aluminum plate with a spin coater (500 rotations, 60 seconds), dried at 150 ° C. for 30 minutes, and dried. A thin film was prepared and used as a test piece.
The test piece was immersed in boiling water for 1 hour, and the moisture resistance was evaluated based on the degree of discoloration. Table 3 shows the results. For comparison, aluminum that was not coated with anything was also evaluated. The results are also shown in Table 3.
[0056]
[Table 3]
Figure 0003585289
[0057]
Also, a 0.1% methanol solution of tricarbonyl group-containing silane compounds A to C was subjected to surface treatment on an aluminum plate in the same manner as described above, and then epoxy resin (Epicoat 828: 100 parts, LX2S: 60 parts, methanol: 100 parts) Was applied by a spin coater and heat-treated at 70 ° C. for 3 hours to form an epoxy resin film having a thickness of 20 μm. After this test piece was immersed in 5% saline for 2 days, a grid test was performed to evaluate the adhesiveness to the resin. Table 4 shows the results. For comparison, aluminum that was not coated with anything was similarly evaluated. The results are also shown in Table 4.
[0058]
[Table 4]
Figure 0003585289
[0059]
【The invention's effect】
As described above, the tricarbonyl group-containing silane compound of the present invention is useful as a metal surface treatment agent, particularly a copper, steel, and aluminum surface treatment agent, and has excellent heat resistance, rust prevention, and adhesion to a resin. This has the effect.
[Brief description of the drawings]
[1] 1 H-NMR of the intermediate obtained in Synthesis Example 1 tricarbonyl group-containing silane compound,
FIG. 2 shows the same 13 C-NMR,
FIG. 3 shows the FT-IR,
FIG. 4 shows a 1 H-NMR of the tricarbonyl group-containing silane compound obtained in Synthesis Example 1 of the same,
FIG. 5 shows 13 C-NMR,
FIG. 6 shows the FT-IR,
FIG. 7 shows 1 H-NMR of an intermediate obtained in Synthesis Example 2 of a tricarbonyl group-containing silane compound,
FIG. 8: 13 C-NMR,
FIG. 9 shows the FT-IR,
FIG. 10 shows 1 H-NMR of a tricarbonyl group-containing silane compound obtained in Synthesis Example 2 of the same,
FIG. 11 shows 13 C-NMR,
FIG. 12 shows the FT-IR,
FIG. 13 shows 1 H-NMR of an intermediate obtained in Synthesis Example 3 of a tricarbonyl group-containing silane compound,
FIG. 14 shows 13 C-NMR,
FIG. 15 shows the FT-IR,
FIG. 16 shows 1 H-NMR of a tricarbonyl group-containing silane compound obtained in Synthesis Example 3 of the same,
FIG. 17 shows the same 13 C-NMR,
FIG. 18 is the same FT-IR.

Claims (2)

下記一般式(1)で表わされる新規トリカルボニル基含有ケイ素化合物。
Figure 0003585289
〔ただし、該トリカルボニル基含有ケイ素化合物は、上記一般式(1)の互変異性体であるエノール形も含む。また、一般式(1)においてRは炭素数2〜10のアルキレン基、Rは炭素数1〜5のアルキル基、R,Rは炭素数1〜10のアルキル基であって、かつR,Rの少なくともいずれかが炭素数1〜5のとき、Rは炭素数6〜10であり、またRの炭素数が1〜5のとき、R,Rの少なくともいずれかが炭素数6〜10であり、x,y,zはそれぞれ0または1を示す。〕
A novel tricarbonyl group-containing silicon compound represented by the following general formula (1).
Figure 0003585289
[However, the tricarbonyl group-containing silicon compound also includes an enol form which is a tautomer of the general formula (1). In the general formula (1), R 1 is an alkylene group having 2 to 10 carbon atoms, R 2 is an alkyl group having 1 to 5 carbon atoms, R 3 and R 4 are alkyl groups having 1 to 10 carbon atoms, and when at least one of R 3, R 4 is from 1 to 5 carbon atoms, R 1 is 6 to 10 carbon atoms, and when the number of carbon atoms of R 1 is from 1 to 5, at least R 3, R 4 Any one has 6 to 10 carbon atoms, and x, y, and z each represent 0 or 1. ]
下記一般式(2)で表わされるトリカルボニル基含有ケイ素化合物を有効成分とする金属表面処理剤。
Figure 0003585289
〔ただし、該トリカルボニル基含有ケイ素化合物は、上記一般式(2)の互変異性体であるエノール形も含む。また、一般式(2)においてRは炭素数2〜10のアルキレン基、Rは炭素数1〜5のアルキル基、R、Rはそれぞれ炭素数1〜10のアルキル基であって、かつR 、R の少なくともいずれかが炭素数1〜5のとき、R は炭素数6〜10であり、またR の炭素数が1〜5のとき、R ,R の少なくともいずれかが炭素数6〜10であり、x、y、zはそれぞれ0または1を示す〕
A metal surface treating agent comprising a tricarbonyl group-containing silicon compound represented by the following general formula (2) as an active ingredient.
Figure 0003585289
[However, the tricarbonyl group-containing silicon compound also includes an enol form which is a tautomer of the general formula (2). Further, R 1 in the general formula (2) is an alkylene group, R 2 represents an alkyl group having 1 to 5 carbon atoms, R 3, R 4 are each an alkyl group having 1 to 10 carbon atoms having 2 to 10 carbon atoms and when at least one of R 3, R 4 is from 1 to 5 carbon atoms, R 1 is 6 to 10 carbon atoms, and when the number of carbon atoms of R 1 is from 1 to 5, the R 3, R 4 At least one of which has 6 to 10 carbon atoms, and x, y, and z each represent 0 or 1]
JP15077395A 1995-06-16 1995-06-16 New tricarbonyl group-containing silicon compounds and metal surface treatment agents Expired - Lifetime JP3585289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15077395A JP3585289B2 (en) 1995-06-16 1995-06-16 New tricarbonyl group-containing silicon compounds and metal surface treatment agents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15077395A JP3585289B2 (en) 1995-06-16 1995-06-16 New tricarbonyl group-containing silicon compounds and metal surface treatment agents

Publications (2)

Publication Number Publication Date
JPH093076A JPH093076A (en) 1997-01-07
JP3585289B2 true JP3585289B2 (en) 2004-11-04

Family

ID=15504113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15077395A Expired - Lifetime JP3585289B2 (en) 1995-06-16 1995-06-16 New tricarbonyl group-containing silicon compounds and metal surface treatment agents

Country Status (1)

Country Link
JP (1) JP3585289B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3784638B2 (en) 2000-11-24 2006-06-14 株式会社日鉱マテリアルズ Metal surface treatment agent and metal material coated with the same

Also Published As

Publication number Publication date
JPH093076A (en) 1997-01-07

Similar Documents

Publication Publication Date Title
US5258522A (en) Imidazole-silane compounds and metal surface finishing agent containing the same
CN110475782B (en) Triazole silane compound, method for synthesizing the compound, and use thereof
US20050173678A1 (en) Surface treatment agents for metal films of printed circuit boards
JP3555845B2 (en) Novel organosilicon compound, method for producing the same, surface treating agent and resin additive using the same
JP3523804B2 (en) Novel organosilicon compound, method for producing the same, surface treating agent and resin additive using the same
JPH06279461A (en) Novel azole silane compound and its production and metal surface-treating agent using the same
JP3585289B2 (en) New tricarbonyl group-containing silicon compounds and metal surface treatment agents
JP3202890B2 (en) Novel tricarbonyl group-containing silicon compound and metal surface treating agent containing the same as active ingredient
JPH06279463A (en) Novel benzotriazole silanes, their production and surface treatment agent containing the same
JP2004010487A (en) New organosilicon compound, method for producing the same and surface treating agent and resin additive using the same
JP3202827B2 (en) Novel azole silane compound, method for producing the same, and metal surface treating agent using the same
JPH06279464A (en) Novel azole silane, its production and surface treating agent containing the same
JP2015206115A (en) Surface treatment liquid of metal, and its utilization
JP4183999B2 (en) Surface treatment agent containing imidazole alcohol as an active ingredient
JPH09295988A (en) New organic silicon compound and its production and surface-treating agent and resin additive using the same
JP3555802B2 (en) Novel organosilicon compound, method for producing the same, surface treating agent and resin additive using the same
JP3578423B2 (en) Compound having three carbonyl groups and one or more double bonds and metal surface treating agent
JPH1192482A (en) New organic silicon compound, its production and surface-treating agent and resin additive produced by using the compound
JPH093127A (en) Tricarbonyl-group-containing polymer and metal surface treatment agent containing the same
JPH06293779A (en) New indazole silane compound, its production and metal surface treating agent containing the compound
JPH06279456A (en) Novel azole silane compound and its production and metal surface-treating agent using the same
JP3585394B2 (en) Novel tricarbonyl compound, method for producing the same, and metal rust inhibitor using the same
JPH07309846A (en) New benzotriazolylfluorosilane derivative, its production and surface treating agent using the same
JPH07228575A (en) New benzotriazole fluorine derivative, its production and metal surface treating agent produced by using the derivative
JPH06279462A (en) Novel azole silane compound and its production and metal surface-treating agent using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

EXPY Cancellation because of completion of term