JP3585253B2 - Adhesion method of resin tube - Google Patents

Adhesion method of resin tube Download PDF

Info

Publication number
JP3585253B2
JP3585253B2 JP32896193A JP32896193A JP3585253B2 JP 3585253 B2 JP3585253 B2 JP 3585253B2 JP 32896193 A JP32896193 A JP 32896193A JP 32896193 A JP32896193 A JP 32896193A JP 3585253 B2 JP3585253 B2 JP 3585253B2
Authority
JP
Japan
Prior art keywords
tube
bonding
adhesive
irradiated
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32896193A
Other languages
Japanese (ja)
Other versions
JPH07186273A (en
Inventor
広明 葛西
雅道 ▲土▼野
重美 井浦
正隆 村原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Tokai University Educational Systems
Original Assignee
Olympus Corp
Tokai University Educational Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Tokai University Educational Systems filed Critical Olympus Corp
Priority to JP32896193A priority Critical patent/JP3585253B2/en
Publication of JPH07186273A publication Critical patent/JPH07186273A/en
Application granted granted Critical
Publication of JP3585253B2 publication Critical patent/JP3585253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1406Ultraviolet [UV] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1435Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1454Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1477Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier
    • B29C65/1483Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier coated on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1487Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/168Laser beams making use of an absorber or impact modifier placed at the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/1683Laser beams making use of an absorber or impact modifier coated on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • B29C65/4845Radiation curing adhesives, e.g. UV light curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/61Joining from or joining on the inside
    • B29C66/612Making circumferential joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/63Internally supporting the article during joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1409Visible light radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1606Ultraviolet [UV] radiation, e.g. by ultraviolet excimer lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To simultaneously perform modification and bonding regardless of the region and diameter of a resin tube by interposing an adhesive and/or a compd. having functional group showing compatibility with respect to the tube between the resin tube and an article to be bonded and irradiating the tube with laser or ultraviolet rays of specific energy to bond the tube and the article to be bonded. CONSTITUTION:An adhesive and/or a compd. having a functional group showing compatibility with respect to the tube is interposed between the inner or outer wall of a resin tube and an article to be bonded and the tube is irradiated with laser or energy beam containing ultraviolet rays with photon energy of 80kcal/md or more from the exterior or interior or both of the interior or exterior thereof to chemically bond the tube and the adhesive and/or the compd. having the functional group showing compatibility with respect to the adhesive to bond the tube and the article to be bonded. That is, laser beam passes through a light path 7 and a mirror 2 from an excimer device 1 to be guided to a sample 3 and reaches the adhesive while it is absorbed into the resin tube 4 and the adhesive is cured to bond the tube 4 and the article 5 to be bonded.

Description

【0001】
【産業上の利用分野】
本発明はチューブ形状を有する樹脂の接着方法に関する。
【0002】
【従来技術】
従来より、樹脂の接着においては、特にフッ素樹脂、あるいはPE等の難接着材においては、その接着性の悪さから、ナトリウム処理、あるいは重クロム酸処理等の薬液処理、あるいはコロナ放電処理、あるいは紫外レーザ処理等の前処理が不可欠であり、前処理によって樹脂の接着性を高めた後に、接着剤を用いて接着を行ってきた。特開平4−370123号公報に開示されている方法は、フッ素樹脂にアクリル酸、アクリル酸メチル等の重合性モノマーを接触させ、これにエキシマレーザを照射すると、モノマーがフッ素樹脂表面にグラフト重合し、フッ素樹脂表面の接着性を向上させるものである。
【0003】
【発明が解決しようとする課題】
しかしながら、重クロム酸等の薬液処理では、接着物を薬液に浸漬する必要があり、チューブの内側、あるいは外側だけ、あるいはチューブ開口端から離れた部位を選択的に処理、接着を行うのは困難であり、薬液処理を施した後に接着物の洗浄、および乾燥が必要であるため、接着までの工程が非常に長くなってしまう。さらに、重クロム酸等の薬液は非常に有毒であり、人体に対して危険性がある。また、コロナ放電処理では、電極を使用する事から、非常に細いチューブへの安定した処理、接着は困難である。また、特開平4−370123号公報に開示されている方法では、重合性モノマーが不可欠であり、接着物に適したモノマーを用意し、改質面に適した接着剤を用いた接着工程が必要である。
【0004】
本発明は前記従来技術の問題点に鑑みてなされたものであり、樹脂製チューブの部位、径に関わらず、改質と接着を同時に行う事が可能であり、また、改質後接着を行う際にも接着剤が限定されないため、短時間で、簡便に接着強さが向上し、かつ安全な樹脂製チューブの接着方法を提供する事を目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明は、内壁と外壁とを併せ持つフッ素樹脂製チューブと被接着物とを接着する樹脂製チューブの接着方法において、前記チューブの内壁および外壁の少なくとも一方と前記被接着物との間に、少なくとも接着剤を介在させる工程と、前記チューブの内部および外部の少なくとも一方より、光子エネルギーが80kcal/mol以上であるレーザまたは紫外光を含むエネルギー線を照射し、前記接着剤と前記チューブとを化学結合させ、接着する工程と、を有することを特徴とする樹脂製チューブの接着方法を提供する。
また、本発明は、内壁と外壁とを併せ持つフッ素樹脂製チューブと被接着物とを接着する樹脂製チューブの接着方法において、前記チューブの内壁および外壁の少なくとも一方と、前記フッ素樹脂製チューブと同じ元素を側鎖に有するかまたは80kcal/mol以上の光子エネルギーのエネルギー線を照射した際に切断される元素を側鎖に有する被接着物との間に、少なくとも水素含有化合物を介在させる工程と、前記チューブの内部および外部の少なくとも一方より、光子エネルギーが80kcal/mol以上であるレーザまたは紫外光を含むエネルギー線を照射し、前記水素化合物と前記チューブとを、あるいは前記チューブと被接着物とを化学結合させ、接着する工程と、を有することを特徴とする樹脂製チューブの接着方法を提供する。
【0006】
ここで樹脂製チューブとは、フッ素樹脂、PE、PP、PMMA、PET、POM等種々の物に適するが、中でもフッ素樹脂、PE、PPが望ましい。また更に望ましくはフッ素樹脂の中でもPTFE、FEP、ETFEが好適である。ただし、これらの樹脂以外の物でも特に限定される物ではない。また、樹脂製チューブの形状としては、軸方向に垂直な断面が円である場合以外にも、正方形、長方形、三角形等の多角形、楕円等あらゆる物が可能であり、また断面の一部に切り欠き部を有する形状においても適用可能である。
【0007】
本発明における紫外光は300nm以下の波長を指し、望ましくはArF、またはKrF、またはXeClによるエキシマレーザが好適である。但し、接着剤の形態により、反応開始剤の吸収波長、あるいは熱線を同時に、あるいは遅延を伴い照射する事も可能である。
【0008】
本発明における接着剤はあらゆる接着形態を有する接着剤を用いる事が可能である。本発明における接着剤とは、例えば電子線硬化形、あるいは紫外線硬化形等のエネルギー線硬化形接着剤、あるいは熱硬化形接着剤である。ここでエネルギー線硬化形接着剤としては、特に限定されないが、具体的には変性アクリレートあるいはメタクリレートを主成分とした紫外線硬化形接着剤が運用できる。また熱硬化形接着剤としてはエポキシ系、ポリウレタン系、フェノール系、ポリエステル系接着剤などが適用できるが、とくにエポキシ系接着剤が好ましい。また更に、熱硬化性を付与した紫外線硬化形接着剤、例えば変性エポキシ−アクリレート系も適用可能である。また本発明において、水素含有化合物とは、具体的には水素を含有する有機酸、炭化水素類、ハロゲン化炭化水素類、アルコール類、フェノール類、エーテル類、アセタール類、ケトン類、脂肪酸類、酸無水物類、エステル類、窒素化合物類、硫黄化合物類、あるいは無機酸、無機塩基化合物類、その他無機水素化合物類、あるいは水よりなる化合物、及びその誘導体から選ばれる1種あるいは混合物等であり、前記エネルギー線を照射すると同時に、あるいはその後に前記これらの接着剤あるいは化合物を硬化、あるいは化学結合させる。
【0009】
本発明における被接着物は特に限定されるものではないが、樹脂製チューブと被接着物との間に介在する水素含有化合物から選ばれる1種あるいは混合物を用いる場合には、樹脂製チューブと同じ元素を側鎖に有する被接着物、あるいは光子エネルギー80kcal/mol以上のエネルギー線を照射した側鎖の元素が切断される被接着物を使用することが可能である。ここで圧力を加えると接着層の薄層化、均一化、及び前記水素含有化合物の数分子レベルで樹脂同士の近接が図れるため望ましい。この時、圧力による変形が容易な液状化合物が水素含有化合物としては望ましい。
【0010】
前記水素含有化合物に圧力を加える方法としては、あらゆる手法を用いる事が可能であり特に限定されるものではないが、例えば前記水素含有化合物中で部材を嵌合し、そのまま静水圧を加える方法、あるいは、前記水素含有化合物を介在させる部位の径を、内側の部材の外径よりも外側の部材の内径を小さくし、嵌合部をシマリバメにする方法、あるいは、前記水素含有化合物を介在させた部位の外側から、熱収縮チューブをかぶせ、加熱して接着部を収縮する方法等が挙げられる。
【0011】
エネルギー線照射手段としては、特に限定されるものではないが、接着部への均一な照射が望ましく、例えば前記チューブを軸方向に垂直な断面に対する重心を中心として回転させる手段や、あるいはミラー、レンズ等の光学素子を用いて、前記チューブの軸方向に垂直な断面に対する重心を中心としてエネルギー線を回転させながら前記チューブに照射する手段、更に前記エネルギー線をガラス製導波路、あるいは蛍石、フッ化カルシウム等のハロゲン化合物製の導波路、あるいは光学素子を用いて照射部まで導いた後に照射する手段が考えられる。また、短時間の照射においては非晶質フッ素樹脂等の樹脂製導波路も使用できる。導波路の材質としては前記エネルギー線を透過する物であれば種々の物が利用可能であるが、特に合成石英を用いる事が好ましい。
【0012】
【作用】
以下に本発明の作用を説明する。
【0013】
樹脂製チューブと被接着物との間に接着剤、あるいは水素を含む化合物を介在させた状態で紫外光を含むエネルギー線を照射すると、樹脂及び接着剤あるいは水素含有化合物は紫外光に対する吸収が大きいため、紫外光のエネルギーにより分子鎖の内、側鎖の元素が選択的に切断される。本来ならば、切断され遊離した元素はエネルギー線の照射を止めると共に、再び主鎖骨格と結合してしまう。しかし、樹脂製チューブと接着剤あるいは水素含有化合物が接触しているために、再結合せずにより安定した状態に結合し、樹脂と接着剤あるいは水素含有化合物が化学結合する。例えば、樹脂製チューブをPTFEとするならば、紫外光を照射するとPTFEに存在するC−F結合が紫外光のエネルギーにより解離(C−F結合解離エネルギー128kcal/mol)し、Fが遊離する。また、接着剤に存在するC−H結合の水素(H)も同様に遊離(C−H結合解離エネルギー80.4kcal/mol)される。そして水素とフッ素が結合し、HFを形成する。さらに、PTFEの炭素(C)と接着剤の炭素が結合し、炭素結合(C−C結合)を形成する。このとき、HFの紫外光の吸収帯は161nm以下と非常に短いため、解離することはなく、フッ素が再びC−Fの結合をとる可能性は低い。
【0014】
特に、手段を選ぶ事によって以下のような特徴的な作用が発生する。
【0015】
エネルギー線として光子エネルギーが高いエネルギー線、特にArFエキシマレーザ光(148kcal/mol)、KrFエキシマレーザ光(114kcal/mol)、XeClエキシマレーザ光(92.2kcal/mol)を使用する事により、結合解離エネルギーが高い樹脂でも、分子の結合を容易に切断する事が可能である。
【0016】
また、接着剤としてエネルギー線硬化形接着剤を使用した場合、紫外光を照射する事により樹脂製チューブと接着剤を化学結合させると共に、接着剤の硬化まで同時に行う事が可能である。また、熱硬化形接着剤を使用する事により、エネルギー線を照射しながら加熱すれば樹脂製チューブと接着剤の化学結合と、接着剤の硬化を同時に行う事が可能である。また、速硬化形の接着剤を用いる場合は、可視光線、電子線、熱を遅延を伴って与える事が望ましい。
【0017】
被接着物が側鎖に、樹脂製チューブと同じ元素、あるいは光子エネルギー80kcal/mol以上のエネルギー線を照射した際に切断される元素を有する場合には、接着剤として水素含有化合物を使用し、前記水素含有化合物に圧力をかけて非常に薄い層を形成し、樹脂製チューブと前記被接着物との距離を数分子レベルに近接させた状態で、エネルギー線を照射する事によりD−F、C−H結合に存在するフッ素や水素等の元素が切り離され、HFやH等を形成し安定する。そして元素が切り離された主鎖同士が結びつき、前記チューブと前記被接着物を接着する事が可能となる。
【0018】
さらに、エネルギー線を、ガラス製導波路、あるいは樹脂製導波路、あるいはハロゲン化合物製導波路、あるいはミラー、レンズ等の光学素子を使用して照射部まで導いた後に照射する事により、エネルギー線を減衰、劣化させる事なく、前記チューブの全周にわたって均一に接着する事が可能となる。特にチューブ外壁に厚肉あるいは紫外光を透過しない樹脂や金属等を接着する際、チューブ内部にエネルギー線を前記方法で導き、照射する事により接着が可能となる。
【0019】
【実施例】
(第1実施例)
(構成)
図5,図6を用いて本発明の第1実施例を説明する。
【0020】
図5において、1はArFエキシマレーザである。14は直径2.5mmの合成石英製の導波路であり、導波路14は回転及び軸方向への移動機構を備えている。19は被接着物、水、チューブが組み合わされたサンプルであり、導波路14と嵌合している。図6はサンプル19と導波路14の嵌合部を拡大した断面図である。7は導波路14内のエキシマレーザ光の光路を示している。16はFEP製のチューブであり、内径が3.0mm、外径が13.0mmであり、18はFEP製のチューブであり、内径が2.5mm、外径が3.1mmである。FEPチューブ16は肉厚が5mmと厚いため、レーザ光は吸収されてしまい、被接着面に到着する光量は僅かである。FEPチューブ16とFEPチューブ18の嵌合長は30mmであり、嵌合部には水素化合物として水17が介在している。このうち接着部はFEPチューブ先端から20mm離れたところから30mmまでの10mmである。サンプル19は、水中でFEPチューブ16とFEPチューブ18を嵌合させる事により構成した。また、FEPチューブ16とFEPチューブ18の嵌合はシマリバメとなっているため、水17には圧力がかかっている。また、導波路14の先端20は軸に対して45°の角度をなす平面となっており、エキシマレーザ光を反射するミラーが設けられている。導波路14は移動機構により軸方向へ5分おきに2.5mm移動を3回繰り返し、計10mmを照射する。また回転機構により、2rpmにて回転している。レーザ照射条件はエネルギー密度50mJ/cm、繰り返し数10ppsにて3000ショットを導波路の移動に合わせて4回繰り返した。
【0021】
(作用)
ArFエキシマレーザ装置1から放射されたレーザ光は導波路14内を光路7の様に通って導波路14の先端部20に設けられたミラーにより反射される。反射されたレーザ光はFEPチューブ18及び水17に吸収されながら透過し、FEPチューブ16に内面から達する。この時、導波路14は回転しているため、チューブの全周にわたってレーザ光が照射される。また、導波路が移動機構により軸方向に移動し、長さ10mmが照射される。チューブ16の内壁と水17の界面及びチューブ18の外壁と水17の界面では、以下のような反応が起こる。レーザ光によりチューブ16及びチューブ18の表面ではC−F結合が切断され、Fが遊離する。遊離したFは、水中のHと結合し、HFを形成する。一方チューブ16とチューブ18の炭素は水中の酸素を介して、エーテル結合(C−O−C結合)、あるいは直接炭素結合(C−C結合)を形成し、チューブ16とチューブ18は接着される。
【0022】
本実施例における作用を確認するためにX線光電子分光法(XPS)にて分析を行った。分析にはサンプルを切り開き、接着部分を剥して行った。結果を図11及び図12に示す。図11がレーザ照射前の結合エネルギーの分布であり、図12がレーザ照射後である。XPSチャートから分かるように、FEP表面においてC−F結合が減少し、C−O結合が形成されている事から、脱フッ素(F)が行われ、酸素(O)が導入されている事が確認できる。
【0023】
(効果)
効果を確認するために、接着したサンプルをチャックにより引っ張り試験機に保持し、鉛直方向に引っ張り、そのときの接着強さを求めた。第2実施例以降も同様の方法で引っ張り接着試験を行った。また、同様の方法でレーザを照射せずに接着した物も比較として引っ張り接着試験を行った。第2実施例以降も同様である。表1に引っ張り接着試験の結果を示す。レーザ未照射では当然ながら接着はできないが、本発明を用いる事により、3.89kgf/cmの接着強さが得られた。
【0024】
本実施例においては、水を接着剤として使用しているため、別に接着剤を用意する必要がなく、接着剤を硬化させる必要もないため、非常に簡便な接着方法となっている。
【0025】
また、本実施例ではチューブ18の開口端から20mmの所から30mmの所までを接着しているが、接着部位は、開口端、あるいは開口端から離れたところ、あるいは断続的に任意に設定することが可能である。
【0026】
なお、本実施例においては導波路としてハロゲン化合物、非晶質フッ素樹脂を用いても同様の効果が得られた。
【0027】
(第2実施例)
(構成)
図1及び図2を用いて本発明の第2実施例を説明する。
【0028】
図1において、1はArFエキシマレーザ装置、2は導光装置であり、3は樹脂製チューブ、被接着物、接着剤を組み合わせたサンプルであり、7はエキシマレーザ光の光路を示している。図2は図1におけるサンプル3を拡大した断面図である。4は樹脂製チューブ、5は被接着物、6は接着剤である。第2実施例においてはフッ素樹脂製チューブ4にPTFE、被接着物5にはSUS304丸棒、接着剤6には熱硬化性エポキシ接着剤を用いた。レーザ照射条件は、エネルギー密度50mJ/cm、繰り返し数10ppsにて600ショットであり、1度前記の条件で照射した後に、軸を中心に180°回転させて再び同条件にて照射した。その後サンプル3をオーブンに投入し、80℃、15時間にて接着剤を硬化させた。
【0029】
(作用)
エキシマレーザ装置1から放射されたレーザ光は光路7を通ってミラーによりサンプル3に導かれる。サンプル3に到達したエキシマレーザ光は、フッ素樹脂製チューブ4に吸収されながら接着剤6に到達する。チューブ4及び接着剤6に到達したレーザ光により、チューブ4と接着剤6との界面においてC−F結合の切断とH−Fの形成が発生し、チューブ4と接着剤6がC−C結合で化学結合する。その後に接着剤を硬化する事により、チューブ4と被接着物5が接着剤6を介して接着される。
【0030】
(効果)
表1に引っ張り接着強さを示す。引っ張り試験の結果、レーザ光を照射したサンプルは、接着部で破壊せず、チューブが切れる材料破壊となった。本実施例において、チューブ自体の強度よりも接着強さが上回るほど強力な接着が行えた。レーザ光未照射のサンプルと比較しても接着強さの向上が確認できる。
【0031】
(第3実施例)
(構成)
図2,図3,図4を用いて本発明の第3実施例を説明した。
【0032】
図3において、1はArFエキシマレーザ装置であり、7はレーザ光路であり、3は接着剤と樹脂製チューブと被接着物とを組み合わせたサンプル、12はレーザ光回転照射装置である。また、12は加熱装置13の中に入っている。サンプル3の拡大図を図2に示す。4はFEP製チューブであり、5はSUS304丸棒の被接着物、6は熱硬化性付与形紫外線硬化形接着剤である。図4にレーザ光回転照射装置12の拡大図を示す。レーザ光回転照射装置12は回転可能な円筒体をしており、12の内部にはレーザ光を導くためのミラー9が固定されている。7はレーザ光路であり、12は10rpmにて回転される。サンプル3は12の回転中心に固定されている。
【0033】
31は接着剤6を硬化するための水銀紫外線ランプ光源であり、サンプル3の接着部に照射される。
【0034】
レーザ照射条件はエネルギー密度100mJ/cm、繰り返し数10ppsにて6000ショットである。また、加熱装置の内部は100℃に保たれている。
【0035】
(作用)
エキシマレーザ装置1から放射されたレーザ光は、加熱装置13内に入射し、そのまま照射装置12内へ導かれる。照射装置内へ導かれたレーザ光はミラー9に反射され、光路7を通ってサンプル3に照射される。ここで、12は回転しているために、12に固定されたミラーによって導かれるレーザ光もサンプル3を中心として回転する。そのため、サンプル3の全周にわたって均一にレーザ光が照射される。レーザ光が照射されたサンプル3には第2実施例と同様の作用が発生し、チューブ4と接着剤6が化学結合される。また、接着剤に熱硬化性を付与した紫外線硬化形接着剤を使用しているため、レーザと同時に照射された紫外線、あるいはエキシマレーザ光により重合が開始され、かつ加熱装置により熱が与えられることにより、接着剤が硬化する。
【0036】
(効果)
表1に示したように第2実施例と同様に接着強さの向上がみられる。
【0037】
また、本実施例においてはレーザ光を回転させるためチューブ全周にわたって安定した接着が行える。さらに、チューブと接着剤の化学結合と、接着剤の硬化が同時に行えるため、接着工程の短縮がはかれる。
【0038】
なお、本実施例においては接着剤として熱硬化性を付与した紫外線硬化形接着剤を使用したが、接着剤として熱硬化性を有さない紫外線硬化形接着剤、電子線硬化形接着剤あるいは熱硬化形接着剤を使用しても同様の硬化が得られた。熱硬化性を有さない紫外線硬化形接着剤を用いる場合は、加熱装置13は不要となる。
【0039】
(第4実施例)
(構成)
図5,図6を用いて本発明の第4実施例を説明する。
【0040】
14は第1実施例と同様である。1はKrFエキシマレーザ装置である。19はPE製チューブ、接着剤、被接着物を組み合わせたサンプルである。図6にサンプル19及び導波路14の嵌合部を拡大した断面図を示す。7及び14は第1実施例と同様である。16はSUS303製のパイプであり、内径が3.2mmである。18はPE製のチューブであり、外径が3.0mm、内径が2.5mmである。パイプ16とチューブ18の間には2液混合形エポキシ系接着剤17が塗布してある。レーザ照射条件及び導波路移動条件は第1実施例と同様である。その後、室温にて24時間放置し接着剤を硬化させた。
【0041】
(作用)
第1実施例と同様に、光路7を通ったレーザ光はチューブ18に吸収されながら接着剤17に達する。チューブ18と接着剤17の界面では、チューブ18の表面のC−H結合が切断されHが遊離する。遊離したHは接着剤中のHと結合としHを形成する。一方Hが遊離したCは、接着剤中のCと結びつき、チューブ18の表面と接着剤は化学結合する。その後、接着剤を硬化させることにより、チューブ18とパイプ16は接着剤17を介して接着される。
【0042】
(効果)
表1に示すように、接着強さの向上がみられる。
【0043】
また、本実施例のように外側からレーザ光を照射できない場合でも、導波路を用いて内側から照射することにより簡便な接着が可能となる。
【0044】
また、導波路14の先端部20を図7(A)の様な形状にしておけば、レーザ光は光路7を通り、導波路14の全周から均一に放射される。あるいは図7(B)では、導波路14の先端20を円錐状に成形する事により光路7は屈折して、レーザ光はチューブ全周に照射される。この場合回転機構は不要となる。
【0045】
(第5実施例)
(構成)
図8,図9を用いて本発明の第5実施例を説明する。
【0046】
図8において1はArFエキシマレーザ装置、27は加熱装置、22は内径3.5mm、肉厚5mmの合成石英製のパイプ状導波路、導波路22は軸方向への移動機構を備えている。23はチューブと接着剤と被接着物を組み合わせたサンプルである。図9はサンプル23と導波路22の嵌合部を拡大した断面図である。導波路22の先端部はミラー28となっている。7はレーザ光の光路、26は経路PP製のチューブであり、内径が2.5mm、外径が3.5mmである。25は2.2mmのピアノ線である。チューブ26とピアノ線25の間には熱硬化性1液付加形シリコーン系接着剤24を塗布してある。導波路22とPPチューブ26は嵌合している。レーザ照射条件はエネルギー密度50mJ/cm、繰り返し数10ppsにて6000ショットである。導波路22は移動機構により、5mm/sec、振幅5mmにて往復運動をしている。加熱装置27の内部は120℃に保持されている。
【0047】
(作用)
レーザ装置1から放射されたレーザ光は光路7を通り、ミラー28にて反射され、チューブ26に一部吸収されながら接着剤24に到達し、吸収される。チューブ26と接着剤24の界面では第2実施例と同様の作用が発生し、また、導波路22が往復運動することにより10mmにわたってチューブ26と接着剤24は化学結合する。同時に加熱装置にて120℃で加熱されているため、接着剤24の硬化が進む。レーザ照射終了後、さらに3時間加熱することにより、接着剤は完全硬化し、チューブ26とピアノ線25は接着剤24を介して接着される。
【0048】
(効果)
表1に示すように接着強さの向上がみられる。
【0049】
また、パイプ状導波路を用いたことにより、チューブの全周を一度に、かつ均一に接着することが可能となる。
【0050】
(第6実施例)
(構成)
図1,図2を用いて本発明における第6実施例を説明する。
【0051】
図1において、1,2,3,7は第2実施例と同様である。また、サンプル3はモーターにより回転及び軸方向への移動が可能である。図2はサンプル3の断面を示した物である。4は内径300mmのPTFEチューブであり、5は外径が296mmのSUSパイプである。チューブ4とパイプ5の間には紫外線硬化形接着剤TR3102((株)スリーボンド製)が塗布してある。レーザ照射条件は第3実施例と同様であり、照射面積はチューブ軸方向に20mm、軸と垂直方向に10mmである。サンプル3はモーターにより10rpmで回転している。
【0052】
(作用)
チューブ4とパイプ5は第2実施例と同様の作用により化学結合する。また、接着剤6は紫外線硬化形であるため、同時に接着剤の硬化も進行する。さらに、サンプルを回転しているため全周にわたって、チューブ4とパイプ5の接着が行われる。
【0053】
(効果)
表1に示すように接着強さの向上がみられる。なお、本実施例においては接着面積が広いため、単位面積当たりの接着強さを求めた。
【0054】
本実施例においてはチューブ径が大きいため、第3実施例のような光学素子の回転は困難である。しかし、サンプルを回転させることにより、チューブ径に関わらずチューブ全周にわたって均一な接着が可能となる。
【0055】
(第7実施例)
(構成)
図8,図9,図10を用いて本発明による第7実施例を説明する。
【0056】
図8,図9において1,7,23,24,25,26,27,28は第5実施例と同様であり、22は非晶質フッ素樹脂を成型した中空パイプ状導波路である。導波路22の拡大断面図を図10に示す。導波路22は第5実施例と同様にパイプ状であるが、本実施例においては更に中空構造となっており、中空部29には窒素が充填されている。光路7の大部分は中空部29の窒素中を通るようになっている。
【0057】
(作用)
第5実施例と同様の作用が発生する。さらに本実施例においてはレーザ光が窒素中を通過するため、空気中、あるいは合成石英中を通過させるよりもレーザ光の減衰が少なくなっている。
【0058】
(効果)
表1に示すように接着強さの向上が見られる。また、第5実施例と同様に均一な接着が可能となった。
【0059】
また、レーザ光は酸素による吸収が大きいため、大気中において放射部から照射部までの光路が1m以上になるとレーザ光の劣化、減衰が大きくなるが、本実施例では光の吸収が少ない窒素を充填しているため光路が長くなってもレーザ光が劣化、減衰を起こさずに照射可能となっている。
【0060】
【表1】

Figure 0003585253
【0061】
【発明の効果】
以上説明してきたように本発明は、チューブの径、部位に関わらず、改質と接着を同時に行う事が可能であり、また、改質後接着を行う際にも接着剤が限定されないため、短時間で、簡便に接着強さが向上し、人体に悪影響を及ぼす物質を使用しない安全な樹脂製チューブの接着方法となっている。
【図面の簡単な説明】
【図1】本発明の方法を実施するための装置の斜視図。
【図2】図1の装置の一部を拡大して示す断面図。
【図3】本発明の方法を実施するための他の装置の斜視図。
【図4】図3の装置の一部を拡大して示す説明図。
【図5】本発明の方法を実施するための他の装置の斜視図。
【図6】図5の装置の一部を拡大して示す断面図。
【図7】図6の装置の一部を模式的に示す説明図。
【図8】本発明の方法を実施するための他の装置の斜視図。
【図9】図8の装置の一部を拡大して示す断面図。
【図10】図8の装置の一部を拡大して示す断面図。
【図11】X線光電子分析法で分析を行い、試料にX線を入射して、そこから跳ね返ってくる光電子を検出器でカウントし、そのカウント量から試料がどの結合エネルギーを持っているかを示す図であり、本図はこの場合のレーザ照射前のエネルギー分布を示す線図。
【図12】図11に対応する図で、特にレーザ照射後のエネルギー分布を示す線図。
【符号の説明】
1…ArFエキシマレーザ、4…樹脂製チューブ、5…被接着物、6…接着剤、14…導波路、19…サンプル、22…導波路、23…サンプル、27…加熱装置。[0001]
[Industrial applications]
The present invention relates to a method for bonding a resin having a tube shape.
[0002]
[Prior art]
Conventionally, in the bonding of resins, particularly in the case of difficult-to-bond materials such as fluororesin or PE, due to poor adhesion, chemical treatment such as sodium treatment or dichromic acid treatment, corona discharge treatment, or ultraviolet light Pretreatment such as laser treatment is indispensable, and the adhesion has been performed using an adhesive after increasing the adhesiveness of the resin by the pretreatment. In the method disclosed in JP-A-4-370123, a polymerizable monomer such as acrylic acid or methyl acrylate is brought into contact with a fluororesin, and when this is irradiated with an excimer laser, the monomer is graft-polymerized on the fluororesin surface. And to improve the adhesiveness of the fluororesin surface.
[0003]
[Problems to be solved by the invention]
However, in the treatment with a chemical solution such as dichromic acid, it is necessary to immerse the adhesive in the chemical solution, and it is difficult to selectively treat and bond the inside or outside of the tube, or a portion away from the tube opening end. In addition, since it is necessary to wash and dry the adhesive after performing the chemical treatment, the process up to bonding becomes extremely long. Furthermore, chemicals such as dichromic acid are very toxic and dangerous to the human body. In the corona discharge treatment, since an electrode is used, it is difficult to perform stable treatment and adhesion to a very thin tube. Further, in the method disclosed in JP-A-4-370123, a polymerizable monomer is indispensable, and a bonding step using an adhesive suitable for a modified surface is required by preparing a monomer suitable for an adhesive. It is.
[0004]
The present invention has been made in view of the problems of the prior art, and it is possible to simultaneously perform modification and adhesion, regardless of the position and diameter of the resin tube, and perform adhesion after modification. The purpose of the present invention is to provide a method for securely bonding a resin tube in which the adhesive strength is easily improved in a short time because the adhesive is not limited.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method of bonding a resin tube for bonding a fluororesin tube having an inner wall and an outer wall to an object to be bonded, wherein at least one of an inner wall and an outer wall of the tube is connected to the outer wall. A step of interposing at least an adhesive between the adhesive and an adhesive; and irradiating an energy ray including a laser or ultraviolet light having a photon energy of 80 kcal / mol or more from at least one of the inside and the outside of the tube, And a step of chemically bonding an agent to the tube and bonding the tube to the resin tube.
Further, the present invention provides a method of bonding a resin tube for bonding a fluororesin tube having an inner wall and an outer wall and an object to be bonded, wherein at least one of the inner wall and the outer wall of the tube is the same as the fluororesin tube. A step of interposing at least a hydrogen-containing compound between the element having a side chain and an adherend having an element which is cut when irradiated with an energy ray having a photon energy of 80 kcal / mol or more, At least one of the inside and the outside of the tube is irradiated with an energy ray including a laser or ultraviolet light having a photon energy of 80 kcal / mol or more, and the hydrogen compound and the tube, or the tube and the adherend, are irradiated. Chemically bonding and bonding, a method of bonding a resin tube, comprising: Subjected to.
[0006]
Here, the resin tube is suitable for various materials such as fluororesin, PE, PP, PMMA, PET, and POM, and among them, fluororesin, PE, and PP are preferable. PTFE, FEP and ETFE are more preferable among fluororesins. However, materials other than these resins are not particularly limited. In addition, as the shape of the resin tube, other than the case where the cross section perpendicular to the axial direction is a circle, square, rectangle, polygons such as triangles, ellipses, and any other objects are possible. The present invention is also applicable to a shape having a notch.
[0007]
Ultraviolet light in the present invention refers to a wavelength of 300 nm or less, and an excimer laser using ArF, KrF, or XeCl is preferable. However, depending on the form of the adhesive, the irradiation with the absorption wavelength of the reaction initiator or the heat ray can be performed simultaneously or with a delay.
[0008]
As the adhesive in the present invention, an adhesive having any bonding form can be used. The adhesive in the present invention is, for example, an energy ray-curable adhesive such as an electron beam-curable type or an ultraviolet ray-curable type, or a thermosetting adhesive. Here, the energy ray-curable adhesive is not particularly limited, but specifically, an ultraviolet ray-curable adhesive mainly containing modified acrylate or methacrylate can be used. As the thermosetting adhesive, an epoxy-based, polyurethane-based, phenol-based, polyester-based adhesive or the like can be used, but an epoxy-based adhesive is particularly preferable. Further, a UV-curable adhesive having a thermosetting property, for example, a modified epoxy-acrylate-based adhesive is also applicable. In the present invention, the hydrogen-containing compound, specifically, organic acids containing hydrogen, hydrocarbons, halogenated hydrocarbons, alcohols, phenols, ethers, acetals, ketones, fatty acids, One or a mixture of acid anhydrides, esters, nitrogen compounds, sulfur compounds, or inorganic acids, inorganic base compounds, other inorganic hydrogen compounds, or compounds consisting of water, and derivatives thereof. Simultaneously with or after the irradiation with the energy beam, the adhesive or the compound is cured or chemically bonded.
[0009]
The adherend in the present invention is not particularly limited, but when using one or a mixture selected from hydrogen-containing compounds interposed between the resin tube and the adherend, the same as the resin tube is used. It is possible to use an adherend having an element in a side chain or an adherend from which an element in a side chain irradiated with an energy ray having a photon energy of 80 kcal / mol or more is cut. Applying pressure here is desirable because the resin can be made thinner and more uniform, and the resins can be close to each other at the level of several molecules of the hydrogen-containing compound. At this time, a liquid compound that is easily deformed by pressure is desirable as the hydrogen-containing compound.
[0010]
The method of applying pressure to the hydrogen-containing compound is not particularly limited as it is possible to use any method, for example, a method of fitting a member in the hydrogen-containing compound and applying a hydrostatic pressure as it is, Alternatively, the diameter of the portion where the hydrogen-containing compound is interposed, the inner diameter of the outer member is made smaller than the outer diameter of the inner member, and the fitting portion is shrunk, or the hydrogen-containing compound is interposed. A method of covering the heat-shrinkable tube from the outside of the site and shrinking the bonded portion by heating is used.
[0011]
The energy beam irradiating means is not particularly limited, but is preferably uniform irradiation to the bonding portion. For example, a means for rotating the tube around a center of gravity with respect to a cross section perpendicular to the axial direction, or a mirror or a lens Means for irradiating the tube while rotating the energy beam about the center of gravity with respect to a cross section perpendicular to the axial direction of the tube using an optical element such as Means for irradiating after guiding to an irradiation unit using a waveguide made of a halogen compound such as calcium iodide or an optical element may be considered. For short-time irradiation, a resin waveguide such as an amorphous fluororesin can be used. As the material of the waveguide, various materials can be used as long as the material transmits the energy rays, but it is particularly preferable to use synthetic quartz.
[0012]
[Action]
Hereinafter, the operation of the present invention will be described.
[0013]
When an energy ray containing ultraviolet light is irradiated with an adhesive or a compound containing hydrogen interposed between the resin tube and the adherend, the resin and the adhesive or the hydrogen-containing compound have a large absorption for ultraviolet light. Therefore, the element of the side chain in the molecular chain is selectively cut by the energy of the ultraviolet light. Normally, the cut and released elements stop the irradiation of the energy rays and combine again with the main chain skeleton. However, since the resin tube and the adhesive or the hydrogen-containing compound are in contact with each other, they are bonded in a more stable state without re-bonding, and the resin and the adhesive or the hydrogen-containing compound are chemically bonded. For example, if the resin tube is made of PTFE, when ultraviolet light is irradiated, the CF bond existing in the PTFE is dissociated by the energy of the ultraviolet light (CF bond dissociation energy 128 kcal / mol), and F is released. In addition, hydrogen (H) of C—H bond existing in the adhesive is also released (C—H bond dissociation energy: 80.4 kcal / mol). Then, hydrogen and fluorine combine to form HF. Furthermore, carbon (C) of PTFE and carbon of the adhesive bond to form a carbon bond (CC bond). At this time, since the absorption band of ultraviolet light of HF is very short at 161 nm or less, there is no possibility of dissociation, and there is a low possibility that fluorine takes a CF bond again.
[0014]
In particular, the following characteristic actions occur by selecting the means.
[0015]
The bond dissociation is achieved by using energy rays having high photon energy as energy rays, particularly ArF excimer laser light (148 kcal / mol), KrF excimer laser light (114 kcal / mol), and XeCl excimer laser light (92.2 kcal / mol). Even with a resin having high energy, it is possible to easily break the bond between molecules.
[0016]
When an energy ray-curable adhesive is used as the adhesive, it is possible to chemically bond the resin tube and the adhesive by irradiating ultraviolet light, and to simultaneously cure the adhesive. In addition, by using a thermosetting adhesive, by heating while irradiating energy rays, it is possible to simultaneously perform chemical bonding between the resin tube and the adhesive and curing of the adhesive. When a fast-curing adhesive is used, it is desirable to apply visible light, electron beam, and heat with a delay.
[0017]
When the adherend has, in the side chain, the same element as the resin tube or an element that is cut when irradiated with an energy ray having a photon energy of 80 kcal / mol or more, a hydrogen-containing compound is used as an adhesive, By applying a pressure to the hydrogen-containing compound to form a very thin layer, and in a state where the distance between the resin tube and the object to be bonded is close to several molecular levels, DF, Elements such as fluorine and hydrogen present in the C—H bond are cut off, and HF and H 2 Form and stabilize. Then, the main chains from which the elements have been separated are connected to each other, so that the tube and the adherend can be bonded to each other.
[0018]
Furthermore, the energy ray is guided by using an optical element such as a glass waveguide, a resin waveguide, or a halide waveguide, or an optical element such as a mirror or a lens. It is possible to adhere uniformly over the entire circumference of the tube without damping or deterioration. In particular, when bonding a resin or a metal which does not transmit ultraviolet light to the outer wall of the tube, the energy beam is guided into the tube by the above-described method, and the tube is irradiated with the energy beam, thereby enabling the bonding.
[0019]
【Example】
(First embodiment)
(Constitution)
A first embodiment of the present invention will be described with reference to FIGS.
[0020]
In FIG. 5, reference numeral 1 denotes an ArF excimer laser. Reference numeral 14 denotes a synthetic quartz waveguide having a diameter of 2.5 mm. The waveguide 14 has a rotation and axial movement mechanism. Reference numeral 19 denotes a sample in which an adherend, water, and a tube are combined, and is fitted to the waveguide 14. FIG. 6 is an enlarged sectional view of a fitting portion between the sample 19 and the waveguide 14. Reference numeral 7 denotes an optical path of the excimer laser light in the waveguide 14. Reference numeral 16 denotes a tube made of FEP having an inner diameter of 3.0 mm and an outer diameter of 13.0 mm, and reference numeral 18 denotes a tube made of FEP having an inner diameter of 2.5 mm and an outer diameter of 3.1 mm. Since the FEP tube 16 is as thick as 5 mm, the laser light is absorbed, and the amount of light reaching the surface to be bonded is small. The fitting length between the FEP tube 16 and the FEP tube 18 is 30 mm, and water 17 is interposed in the fitting portion as a hydrogen compound. The bonding portion is 10 mm from 20 mm away from the tip of the FEP tube to 30 mm. The sample 19 was constituted by fitting the FEP tube 16 and the FEP tube 18 in water. Further, since the fitting between the FEP tube 16 and the FEP tube 18 is a shrink fit, the water 17 is under pressure. Further, the tip 20 of the waveguide 14 is a plane that forms an angle of 45 ° with respect to the axis, and is provided with a mirror that reflects excimer laser light. The waveguide 14 is repeatedly moved three times in the axial direction by 2.5 mm every five minutes by a moving mechanism three times to irradiate a total of 10 mm. Also, it is rotated at 2 rpm by a rotation mechanism. Laser irradiation condition is energy density 50mJ / cm 2 3000 shots were repeated four times at a repetition rate of 10 pps in accordance with the movement of the waveguide.
[0021]
(Action)
The laser light emitted from the ArF excimer laser device 1 passes through the waveguide 14 like the optical path 7 and is reflected by a mirror provided at the tip 20 of the waveguide 14. The reflected laser light is transmitted while being absorbed by the FEP tube 18 and the water 17 and reaches the FEP tube 16 from the inner surface. At this time, since the waveguide 14 is rotating, the laser light is irradiated over the entire circumference of the tube. Further, the waveguide is moved in the axial direction by the moving mechanism, and a length of 10 mm is irradiated. The following reaction occurs at the interface between the inner wall of the tube 16 and the water 17 and at the interface between the outer wall of the tube 18 and the water 17. The laser beam breaks the CF bond on the surfaces of the tubes 16 and 18 to release F. The liberated F combines with H in water to form HF. On the other hand, the carbon in the tubes 16 and 18 forms an ether bond (CO-C bond) or a direct carbon bond (CC bond) via oxygen in water, and the tubes 16 and 18 are bonded to each other. .
[0022]
Analysis was performed by X-ray photoelectron spectroscopy (XPS) in order to confirm the operation in this example. For the analysis, the sample was cut open, and the bonded portion was peeled off. The results are shown in FIGS. FIG. 11 shows the distribution of the binding energy before the laser irradiation, and FIG. 12 shows the distribution after the laser irradiation. As can be seen from the XPS chart, since the CF bond is reduced on the FEP surface and the CO bond is formed, defluorination (F) is performed and oxygen (O) is introduced. You can check.
[0023]
(effect)
In order to confirm the effect, the bonded sample was held in a tensile tester by a chuck and pulled in a vertical direction, and the bonding strength at that time was determined. The tensile adhesion test was performed in the same manner as in the second and subsequent examples. In addition, a tensile adhesion test was performed for a product bonded by using the same method without irradiating a laser. The same applies to the second and subsequent embodiments. Table 1 shows the results of the tensile adhesion test. Naturally, adhesion cannot be achieved without laser irradiation, but by using the present invention, an adhesion strength of 3.89 kgf / cm was obtained.
[0024]
In this embodiment, since water is used as the adhesive, it is not necessary to prepare an adhesive separately, and it is not necessary to cure the adhesive, so that the bonding method is very simple.
[0025]
Further, in the present embodiment, the portion from 20 mm to 30 mm from the opening end of the tube 18 is bonded, but the bonding portion is set arbitrarily at the opening end, at a position away from the opening end, or intermittently. It is possible.
[0026]
In this example, similar effects were obtained even when a halogen compound or an amorphous fluororesin was used for the waveguide.
[0027]
(Second embodiment)
(Constitution)
A second embodiment of the present invention will be described with reference to FIGS.
[0028]
In FIG. 1, reference numeral 1 denotes an ArF excimer laser device, 2 denotes a light guide device, 3 denotes a sample in which a resin tube, an object to be bonded, and an adhesive are combined, and 7 denotes an optical path of the excimer laser light. FIG. 2 is an enlarged sectional view of Sample 3 in FIG. 4 is a resin tube, 5 is an adherend, and 6 is an adhesive. In the second embodiment, PTFE was used for the fluororesin tube 4, SUS304 round bar was used for the adherend 5, and thermosetting epoxy adhesive was used for the adhesive 6. The laser irradiation conditions are as follows: energy density 50 mJ / cm 2 The number of repetitions was 600 shots at 10 pps, and irradiation was performed once under the above-mentioned conditions, then rotated 180 ° about the axis, and again irradiated under the same conditions. Thereafter, Sample 3 was put into an oven, and the adhesive was cured at 80 ° C. for 15 hours.
[0029]
(Action)
Laser light emitted from the excimer laser device 1 passes through the optical path 7 and is guided to the sample 3 by a mirror. The excimer laser light that has reached the sample 3 reaches the adhesive 6 while being absorbed by the fluororesin tube 4. The laser beam that has reached the tube 4 and the adhesive 6 breaks the C—F bond and forms HF at the interface between the tube 4 and the adhesive 6, and the tube 4 and the adhesive 6 are bonded to the C—C bond. To form a chemical bond. After that, the adhesive is cured, so that the tube 4 and the adherend 5 are adhered through the adhesive 6.
[0030]
(effect)
Table 1 shows the tensile adhesive strength. As a result of the tensile test, the sample irradiated with the laser beam did not break at the bonding portion, but the material was broken such that the tube was cut. In this example, the stronger the bonding strength was than the strength of the tube itself, the stronger the bonding was performed. An improvement in the adhesive strength can be confirmed even when compared with a sample not irradiated with laser light.
[0031]
(Third embodiment)
(Constitution)
The third embodiment of the present invention has been described with reference to FIGS.
[0032]
In FIG. 3, 1 is an ArF excimer laser device, 7 is a laser beam path, 3 is a sample in which an adhesive, a resin tube, and an object are combined, and 12 is a laser beam rotating irradiation device. Also, 12 is contained in a heating device 13. An enlarged view of Sample 3 is shown in FIG. Reference numeral 4 denotes a tube made of FEP, reference numeral 5 denotes an adherend of a SUS304 round bar, and reference numeral 6 denotes a thermosetting imparting type ultraviolet curable adhesive. FIG. 4 is an enlarged view of the laser beam rotary irradiation device 12. The laser beam rotating irradiation device 12 has a rotatable cylindrical body, and a mirror 9 for guiding the laser beam is fixed inside the laser beam irradiation device 12. 7 is a laser beam path, and 12 is rotated at 10 rpm. Sample 3 is fixed at twelve centers of rotation.
[0033]
31 Is a mercury ultraviolet lamp light source for curing the adhesive 6, and is applied to the bonded portion of the sample 3.
[0034]
Laser irradiation condition is energy density 100mJ / cm 2 6,000 shots at a repetition rate of 10 pps. The inside of the heating device is kept at 100 ° C.
[0035]
(Action)
The laser light emitted from the excimer laser device 1 enters the heating device 13 and is guided into the irradiation device 12 as it is. The laser light guided into the irradiation device is reflected by the mirror 9 and irradiates the sample 3 through the optical path 7. Here, since 12 is rotating, the laser light guided by the mirror fixed to 12 also rotates around the sample 3. Therefore, the laser light is uniformly irradiated over the entire circumference of the sample 3. The same operation as in the second embodiment occurs in the sample 3 irradiated with the laser light, and the tube 4 and the adhesive 6 are chemically bonded. In addition, since an ultraviolet-curing adhesive with thermosetting properties is used for the adhesive, polymerization is started by ultraviolet light or excimer laser light irradiated simultaneously with the laser, and heat is applied by a heating device. Thereby, the adhesive is cured.
[0036]
(effect)
As shown in Table 1, similar to the second example, an improvement in the adhesive strength is observed.
[0037]
Further, in this embodiment, since the laser beam is rotated, stable bonding can be performed over the entire circumference of the tube. Further, since the chemical bonding between the tube and the adhesive and the curing of the adhesive can be performed at the same time, the bonding step can be shortened.
[0038]
In this example, an ultraviolet-curable adhesive having thermosetting properties was used as an adhesive, but an ultraviolet-curing adhesive having no thermosetting properties, an electron beam-curing adhesive or a thermosetting adhesive having no thermosetting properties was used as the adhesive. Similar curing was obtained using a curable adhesive. When an ultraviolet-curable adhesive having no thermosetting property is used, the heating device 13 becomes unnecessary.
[0039]
(Fourth embodiment)
(Constitution)
A fourth embodiment of the present invention will be described with reference to FIGS.
[0040]
14 is the same as in the first embodiment. Reference numeral 1 denotes a KrF excimer laser device. Reference numeral 19 denotes a sample in which a PE tube, an adhesive, and an adherend are combined. FIG. 6 is an enlarged sectional view of a fitting portion between the sample 19 and the waveguide 14. 7 and 14 are the same as in the first embodiment. Reference numeral 16 denotes a SUS303 pipe having an inner diameter of 3.2 mm. Reference numeral 18 denotes a PE tube having an outer diameter of 3.0 mm and an inner diameter of 2.5 mm. A two-component epoxy adhesive 17 is applied between the pipe 16 and the tube 18. Laser irradiation conditions and waveguide moving conditions are the same as in the first embodiment. Thereafter, the adhesive was left at room temperature for 24 hours to cure the adhesive.
[0041]
(Action)
As in the first embodiment, the laser light passing through the optical path 7 reaches the adhesive 17 while being absorbed by the tube 18. At the interface between the tube 18 and the adhesive 17, the C—H bond on the surface of the tube 18 is broken and H is released. The released H is combined with H in the adhesive to form H 2 To form On the other hand, C from which H is released is bonded to C in the adhesive, and the surface of the tube 18 is chemically bonded to the adhesive. Thereafter, the tube 18 and the pipe 16 are bonded via the adhesive 17 by curing the adhesive.
[0042]
(effect)
As shown in Table 1, improvement in the adhesive strength is observed.
[0043]
Further, even when laser light cannot be irradiated from the outside as in the present embodiment, simple adhesion can be achieved by irradiating from the inside using a waveguide.
[0044]
If the tip 20 of the waveguide 14 is shaped as shown in FIG. 7A, the laser beam passes through the optical path 7 and is uniformly emitted from the entire circumference of the waveguide 14. Alternatively, in FIG. 7B, the optical path 7 is refracted by shaping the distal end 20 of the waveguide 14 into a conical shape, and the laser light is applied to the entire circumference of the tube. In this case, a rotating mechanism is unnecessary.
[0045]
(Fifth embodiment)
(Constitution)
A fifth embodiment of the present invention will be described with reference to FIGS.
[0046]
In FIG. 8, 1 is an ArF excimer laser device, 27 is a heating device, 22 is a synthetic quartz pipe waveguide having an inner diameter of 3.5 mm and a thickness of 5 mm, and the waveguide 22 is provided with a moving mechanism in the axial direction. Reference numeral 23 denotes a sample in which a tube, an adhesive, and an adherend are combined. FIG. 9 is an enlarged sectional view of a fitting portion between the sample 23 and the waveguide 22. The tip of the waveguide 22 is a mirror 28. 7 is the optical path of the laser beam, 26 is Route It is a tube made of PP with an inner diameter of 2.5 mm and an outer diameter of 3.5 mm. 25 is a 2.2 mm piano wire. A thermosetting one-liquid addition type silicone adhesive 24 is applied between the tube 26 and the piano wire 25. The waveguide 22 and the PP tube 26 are fitted. Laser irradiation condition is energy density 50mJ / cm 2 6,000 shots at a repetition rate of 10 pps. The waveguide 22 reciprocates at a rate of 5 mm / sec and an amplitude of 5 mm by the moving mechanism. The inside of the heating device 27 is maintained at 120 ° C.
[0047]
(Action)
The laser light emitted from the laser device 1 passes through the optical path 7 and is reflected by the mirror 28, reaches the adhesive 24 while being partially absorbed by the tube 26, and is absorbed. The same operation as in the second embodiment occurs at the interface between the tube 26 and the adhesive 24, and the tube 26 and the adhesive 24 are chemically bonded over 10 mm by reciprocating the waveguide 22. At the same time, the adhesive is heated at 120 ° C. by the heating device, so that the curing of the adhesive 24 proceeds. After the laser irradiation, the adhesive is completely cured by heating for further 3 hours, and the tube 26 and the piano wire 25 are bonded via the adhesive 24.
[0048]
(effect)
As shown in Table 1, the adhesive strength is improved.
[0049]
In addition, the use of the pipe-shaped waveguide makes it possible to bond the entire circumference of the tube at once and uniformly.
[0050]
(Sixth embodiment)
(Constitution)
A sixth embodiment of the present invention will be described with reference to FIGS.
[0051]
In FIG. 1, 1, 2, 3, and 7 are the same as in the second embodiment. The sample 3 can be rotated and moved in the axial direction by a motor. FIG. 2 shows a cross section of Sample 3. 4 is a PTFE tube having an inner diameter of 300 mm, and 5 is a SUS pipe having an outer diameter of 296 mm. An ultraviolet curable adhesive TR3102 (manufactured by Three Bond Co., Ltd.) is applied between the tube 4 and the pipe 5. The laser irradiation conditions were the same as in the third embodiment, and the irradiation area was 20 mm in the tube axis direction and 10 mm in the direction perpendicular to the axis. Sample 3 is rotated at 10 rpm by a motor.
[0052]
(Action)
The tube 4 and the pipe 5 are chemically bonded by the same operation as in the second embodiment. Further, since the adhesive 6 is of an ultraviolet curing type, the curing of the adhesive also proceeds at the same time. Furthermore, since the sample is rotating, the tube 4 and the pipe 5 are bonded over the entire circumference.
[0053]
(effect)
As shown in Table 1, the adhesive strength is improved. In this example, since the bonding area was large, the bonding strength per unit area was determined.
[0054]
In this embodiment, since the tube diameter is large, it is difficult to rotate the optical element as in the third embodiment. However, by rotating the sample, uniform bonding can be achieved over the entire circumference of the tube regardless of the tube diameter.
[0055]
(Seventh embodiment)
(Constitution)
A seventh embodiment according to the present invention will be described with reference to FIGS.
[0056]
8 and 9, 1, 7, 23, 24, 25, 26, 27, and 28 are the same as those in the fifth embodiment, and 22 is a hollow pipe-shaped waveguide formed by molding an amorphous fluororesin. FIG. 10 shows an enlarged cross-sectional view of the waveguide 22. The waveguide 22 has a pipe shape as in the fifth embodiment, but has a hollow structure in this embodiment, and the hollow portion 29 is filled with nitrogen. Most of the optical path 7 passes through the nitrogen in the hollow portion 29.
[0057]
(Action)
The same operation as in the fifth embodiment occurs. Further, in this embodiment, since the laser light passes through nitrogen, the attenuation of the laser light is smaller than that in air or through synthetic quartz.
[0058]
(effect)
As shown in Table 1, the adhesive strength is improved. In addition, uniform bonding became possible as in the fifth embodiment.
[0059]
Further, since the laser light is largely absorbed by oxygen, the deterioration and attenuation of the laser light increase when the optical path from the radiation part to the irradiation part is 1 m or more in the atmosphere. Even if the optical path becomes longer due to the filling, the laser beam can be irradiated without deterioration and attenuation.
[0060]
[Table 1]
Figure 0003585253
[0061]
【The invention's effect】
As described above, the present invention is capable of performing modification and bonding simultaneously regardless of the diameter and the site of the tube, and also does not limit the adhesive when performing the bonding after the modification. This is a safe method of bonding a resin tube in a short time, in which the bonding strength is easily improved and a substance which has a bad effect on the human body is not used.
[Brief description of the drawings]
FIG. 1 is a perspective view of an apparatus for performing the method of the present invention.
FIG. 2 is an enlarged sectional view showing a part of the apparatus shown in FIG. 1;
FIG. 3 is a perspective view of another apparatus for performing the method of the present invention.
FIG. 4 is an explanatory view showing a part of the apparatus of FIG. 3 in an enlarged manner.
FIG. 5 is a perspective view of another apparatus for performing the method of the present invention.
FIG. 6 is an enlarged sectional view showing a part of the apparatus shown in FIG. 5;
FIG. 7 is an explanatory view schematically showing a part of the apparatus shown in FIG. 6;
FIG. 8 is a perspective view of another apparatus for performing the method of the present invention.
FIG. 9 is an enlarged sectional view showing a part of the apparatus shown in FIG. 8;
FIG. 10 is an enlarged sectional view showing a part of the apparatus shown in FIG. 8;
[FIG. 11] X-ray photoelectron analysis is performed, X-rays are incident on a sample, and photoelectrons bounced from the sample are counted by a detector. From the count amount, it is possible to determine what binding energy the sample has. FIG. 3 is a diagram showing an energy distribution before laser irradiation in this case.
FIG. 12 is a diagram corresponding to FIG. 11, and particularly a diagram showing an energy distribution after laser irradiation.
[Explanation of symbols]
1 ArF excimer laser, 4 resin tube, 5 adherend, 6 adhesive, 14 waveguide, 19 sample, 22 waveguide, 23 sample, 27 heating device.

Claims (13)

内壁と外壁とを併せ持つフッ素樹脂製チューブと被接着物とを接着する樹脂製チューブの接着方法において、
前記チューブの内壁および外壁の少なくとも一方と前記被接着物との間に、少なくとも接着剤を介在させる工程と、
前記チューブの内部および外部の少なくとも一方より、光子エネルギーが80kcal/mol以上であるレーザまたは紫外光を含むエネルギー線を照射し、前記接着剤と前記チューブとを化学結合させ、接着する工程と、
を有することを特徴とする樹脂製チューブの接着方法。
In a method for bonding a resin tube for bonding a fluororesin tube having both an inner wall and an outer wall and an object to be bonded,
A step of interposing at least an adhesive between at least one of the inner wall and the outer wall of the tube and the adherend,
A step of irradiating an energy ray containing a laser or ultraviolet light having a photon energy of 80 kcal / mol or more from at least one of the inside and the outside of the tube, chemically bonding the adhesive to the tube, and bonding the tube;
A method of bonding a resin tube, comprising:
前記接着剤が、エネルギー線硬化形、あるいは熱硬化形の1種であり、エネルギー線照射時に重合を開始する特定波長、あるいは熱を同時、あるいは遅延を伴い照射し、前記接着剤を硬化することを特徴とする請求項1に記載の樹脂製チューブの接着方法。The adhesive is an energy ray-curable type or a heat-curable type, and is irradiated with a specific wavelength or heat at the start of polymerization at the time of energy ray irradiation, or simultaneously or with a delay to cure the adhesive. The method for bonding a resin tube according to claim 1, wherein: 前記接着剤が、液状接着剤であることを特徴とする請求項1または2に記載の樹脂製チューブの接着方法。3. The method according to claim 1, wherein the adhesive is a liquid adhesive. 前記接着剤に圧力を加えた状態で前記エネルギー線を照射することを特徴とする請求項1〜3のいずれか1項に記載の樹脂製チューブの接着方法。The method for bonding a resin tube according to any one of claims 1 to 3, wherein the energy ray is irradiated while pressure is applied to the adhesive. 内壁と外壁とを併せ持つフッ素樹脂製チューブと被接着物とを接着する樹脂製チューブの接着方法において、
前記チューブの内壁および外壁の少なくとも一方と、前記フッ素樹脂製チューブと同じ元素を側鎖に有するかまたは80kcal/mol以上の光子エネルギーのエネルギー線を照射した際に切断される元素を側鎖に有する被接着物との間に、少なくとも水素含有化合物を介在させる工程と、
前記チューブの内部および外部の少なくとも一方より、光子エネルギーが80kcal/mol以上であるレーザまたは紫外光を含むエネルギー線を照射し、前記水素化合物と前記チューブとを、あるいは前記チューブと被接着物とを化学結合させ、接着する工程と、
を有することを特徴とする樹脂製チューブの接着方法。
In a method for bonding a resin tube for bonding a fluororesin tube having both an inner wall and an outer wall and an object to be bonded,
At least one of the inner wall and the outer wall of the tube and the side chain having the same element as the fluororesin tube or an element which is cut when irradiated with an energy ray having a photon energy of 80 kcal / mol or more. Between the adherend, at least a step of interposing a hydrogen-containing compound,
At least one of the inside and the outside of the tube is irradiated with an energy ray including a laser or ultraviolet light having a photon energy of 80 kcal / mol or more, and the hydrogen compound and the tube, or the tube and the adherend, are irradiated. Chemically bonding and bonding,
A method of bonding a resin tube, comprising:
前記水素含有化合物が、水素を含有する有機酸、炭化水素類、ハロゲン化炭化水素類、アルコール類、フェノール類、エーテル類、アセタール類、ケトン類、脂肪酸類、酸無水物類、エステル類、窒素化合物類、硫黄化合物類、あるいは無機酸、無機塩基化合物類、その他無機水素化合物類、あるいは水よりなる化合物、及びその誘導体から選ばれる1種あるいは混合物であることを特徴とする請求項5に記載の樹脂製チューブの接着方法。The hydrogen-containing compound is an organic acid containing hydrogen, a hydrocarbon, a halogenated hydrocarbon, an alcohol, a phenol, an ether, an acetal, a ketone, a fatty acid, an acid anhydride, an ester, or nitrogen. 6. A compound or sulfur compound, or one or a mixture selected from inorganic acids, inorganic base compounds, other inorganic hydrogen compounds, and compounds composed of water, and derivatives thereof. Method for bonding resin tubes. 前記水素含有化合物が、液状化合物であることを特徴とする請求項5または6に記載の樹脂製チューブの接着方法。The method for bonding a resin tube according to claim 5 or 6, wherein the hydrogen-containing compound is a liquid compound. 前記水素含有化合物に圧力を加えた状態で前記エネルギー線を照射することを特徴とする請求項5〜7のいずれか1項に記載の樹脂製チューブの接着方法。The method for bonding a resin tube according to any one of claims 5 to 7, wherein the energy ray is irradiated while applying pressure to the hydrogen-containing compound. 前記エネルギー線が、ArFエキシマレーザ、KrFエキシマレーザ、XeClエキシマレーザあるいは固体、ガス、色素のレーザによる倍波、あるいは紫外ランプから選ばれる、少なくとも1種のエネルギー線であることを特徴とする請求項1〜8のいずれか1項に記載の樹脂製チューブの接着方法。The energy ray is at least one kind of energy ray selected from an ArF excimer laser, a KrF excimer laser, a XeCl excimer laser, a harmonic wave of a solid, gas, or dye laser, or an ultraviolet lamp. The method for bonding a resin tube according to any one of claims 1 to 8. 前記チューブの軸方向に垂直な断面に対する重心を中心として前記チューブを回転させながら、前記チューブの内部および外部の少なくとも一方より前記エネルギー線を照射することを特徴とする請求項1〜9のいずれか1項に記載の樹脂製チューブの接着方法。10. The energy beam is emitted from at least one of the inside and the outside of the tube while rotating the tube around a center of gravity with respect to a cross section perpendicular to the axial direction of the tube. 2. The method for bonding a resin tube according to claim 1. 前記チューブの軸方向に垂直な断面に対する重心を中心として前記エネルギー線を回転させながら、前記チューブの内部および外部の少なくとも一方に前記エネルギー線を照射することを特徴とする請求項1〜9のいずれか1項に記載の樹脂製チューブの接着方法。The method according to any one of claims 1 to 9, wherein at least one of the inside and the outside of the tube is irradiated with the energy beam while rotating the energy beam around a center of gravity with respect to a cross section perpendicular to the axial direction of the tube. 3. The method for bonding a resin tube according to claim 1. 前記エネルギー線が透過する導波路を用いて、前記エネルギー線を照射することを特徴とする請求項1〜11のいずれか1項に記載の樹脂製チューブの接着方法。The method of bonding a resin tube according to any one of claims 1 to 11, wherein the energy ray is irradiated using a waveguide through which the energy ray is transmitted. 前記導波路の材質が、合成石英、あるいはUVガラス、ハロゲン化合物あるいはハロゲン化誘導体であることを特徴とする請求項12に記載の樹脂製チューブの接着方法。The method according to claim 12, wherein the waveguide is made of synthetic quartz, UV glass, a halogen compound or a halogenated derivative.
JP32896193A 1993-12-24 1993-12-24 Adhesion method of resin tube Expired - Fee Related JP3585253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32896193A JP3585253B2 (en) 1993-12-24 1993-12-24 Adhesion method of resin tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32896193A JP3585253B2 (en) 1993-12-24 1993-12-24 Adhesion method of resin tube

Publications (2)

Publication Number Publication Date
JPH07186273A JPH07186273A (en) 1995-07-25
JP3585253B2 true JP3585253B2 (en) 2004-11-04

Family

ID=18216053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32896193A Expired - Fee Related JP3585253B2 (en) 1993-12-24 1993-12-24 Adhesion method of resin tube

Country Status (1)

Country Link
JP (1) JP3585253B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4465242B2 (en) * 2003-10-20 2010-05-19 東海電化工業株式会社 Laser welding method and laser welding apparatus
WO2015144863A1 (en) * 2014-03-27 2015-10-01 Sofic (Sté Francaise D'instruments De Chirurgie) Bonding method
JP7130382B2 (en) * 2018-02-06 2022-09-05 三井化学株式会社 ARTICLE, METAL-RESIN JOINT, METHOD FOR MANUFACTURING METAL-RESIN JOINT, COLD PLATE, AND COOLING DEVICE

Also Published As

Publication number Publication date
JPH07186273A (en) 1995-07-25

Similar Documents

Publication Publication Date Title
EP0155406B1 (en) Improvements relating to the lining of passageways and pipelines
US5671314A (en) Illuminator devices for ultraviolet light delivery and methods of making same
CA2145371C (en) Light diffuser and process for the manufacturing of a light diffuser
US5954974A (en) Laser-assisted coating removal from optical fibers
US20090210038A1 (en) Medical Light Diffusers for High Power Applications and their Manufacture
JP2519701B2 (en) UV sterilizer
JPH0736101U (en) Optical fiber laser light guide diffusion probe
JP3585253B2 (en) Adhesion method of resin tube
JP3390763B2 (en) Surface modification method for resin tube
KR890006307A (en) Curing method and apparatus of optical fiber coating
US4753704A (en) Process using light and light activated adhesive compositions to secure light opaque end caps to fluorescent tubes
JP2003535806A (en) UV curing of optical fiber coatings using lasers
JPS63287803A (en) Photoirradiation device
US6804439B1 (en) Method of attaching a fiber optic connector
JP6266172B2 (en) Optical fiber manufacturing method and ultraviolet irradiation device
JPS6487536A (en) Method for curing resin coating optical fiber
JP3527969B2 (en) Method and apparatus for modifying solid surface
JPS63183063A (en) Sterilization apparatus
JPH09124810A (en) Method for modifying surface of polymer and apparatus therefor
WO1998051960A1 (en) Improvements relating to curing of synthetic resin systems, for example, in the lining of pipelines and passageways
JPH0697563B2 (en) Light irradiation device
JPH04240137A (en) Production of optical fiber
JPH02144505A (en) Method for removing wire rod coating
Asano et al. Photochemical bonding of fluorocarbon and fused silica glass for ultraviolet ray transmitting
Hazama et al. Mid-Infrared pulsed Laser lithotripsy with a tunable laser using difference-frequency generation

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees