JP3585114B2 - Divider - Google Patents

Divider Download PDF

Info

Publication number
JP3585114B2
JP3585114B2 JP2000215288A JP2000215288A JP3585114B2 JP 3585114 B2 JP3585114 B2 JP 3585114B2 JP 2000215288 A JP2000215288 A JP 2000215288A JP 2000215288 A JP2000215288 A JP 2000215288A JP 3585114 B2 JP3585114 B2 JP 3585114B2
Authority
JP
Japan
Prior art keywords
frequency divider
output
integrated circuit
frequency
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000215288A
Other languages
Japanese (ja)
Other versions
JP2002033655A (en
Inventor
信孝 若井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kenwood KK
Original Assignee
Kenwood KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kenwood KK filed Critical Kenwood KK
Priority to JP2000215288A priority Critical patent/JP3585114B2/en
Publication of JP2002033655A publication Critical patent/JP2002033655A/en
Application granted granted Critical
Publication of JP3585114B2 publication Critical patent/JP3585114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は無線通信機の局部発振器等に利用することができる分周器に関し、さらに詳細には選択的に入力信号(本明細書において、基本波とも記す)をそのまま出力できる分周器に関する。
【0002】
【従来の技術】
従来の分周器には、例えば図5に示すように、分周器を構成する分周器集積回路1に端子SW1および端子SW2を有し、端子SW1および端子SW2に印加する制御信号のHレベル、Lレベルに基づいて、図6に示すように、分周比を1/2、1/4、1/8に切り換えることができるものが存在する。かかる分周器集積回路1の一つに例えば、モトローラ社製のMC12093がある。図5において、端子SBはスタンバイモードのための端子を、端子INは入力端子を、端子Vccは電源端子を、端子GNDはアース端子を、端子OUTは出力端を示し、符号C1およびC2は結合コンデンサである。
【0003】
かかる分周器を無線通信機の局部発振器等を構成する周波数シンセサイザの一部に使用することにより、該周波数シンセサイザの一部を構成する電圧制御発振器の発振周波数範囲を狭くすることが可能になる。
【0004】
しかしながら、かかる分周器集積回路1には入力信号、すなわち基本波をそのまま(分周比1/1)で出力する機能はなく、基本波をも選択的に出力したい分周器を構成する場合、図7に示す如く、分周器集積回路1の外部に、例えば入力信号発生源である電圧制御発振器2の発振出力を分周器集積回路1に選択的に入力するための切り換えスイッチ回路3および電圧制御発振器2の発振出力を分周器集積回路1の分周出力に代わって選択的に出力するための切り換えスイッチ回路4を設けて、分周器集積回路1の端子SW1および端子SW2に各別に制御信号1、制御信号2を供給すると共に、切り換えスイッチ回路3には制御信号3をインバータ6を介して供給して切り換えスイッチ回路3を切り換え、切り換えスイッチ回路4には制御信号3を直接供給して切り換えスイッチ回路4を切り換えるように構成していた。
【0005】
このように構成することによって、図8に示す如く、制御信号がLレベルのときにおける制御信号1、2のHレベル、Lレベルの組み合わせに基づいて、分周比1/2、1/4、1/8の出力信号のほかに、制御信号3がHレベルのとき制御信号1および2のレベルにかかわらず分周比1/1の出力信号、すなわち基本波が送出される。図8において×はHまたはLレベルの何れでもよいことを示している。
【0006】
【発明が解決しようとする課題】
しかしながら、上記したような従来の分周器では、分周器集積回路の制御に基本波を出力する制御がなかったために、基本波を選択的に通す切り換えスイッチ回路を設け、該切り換えスイッチ回路を切り換制御するための制御信号が必要となるという問題点があった。
【0007】
このために、制御のための信号線の数が増加するという問題点もあった。
【0008】
本発明は、分周器制御のための信号線の数を増加させることなく、基本波を選択的に出力することができる分周器を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明にかかる請求項1の分周器は、入力された制御信号の組み合わせに基づく分周比で入力信号を分周して出力する分周器集積回路と、
該分周器集積回路に供給される入力信号を選択的に遮断する第1の切り換え手段と、
前記分周器集積回路の出力に代わって前記入力信号を選択的に送出する第2の切り換え手段と、
前記分周器集積回路が同一分周比の出力を送出させる制御信号の複数の組み合わせ中の一方の組み合わせのみの制御信号が入力されたとき出力によって第2の切り換え手段を導通状態に制御するアンドゲートと、該アンドゲートの出力を入力とし前記第2の切換手段が導通状態に制御されているとき出力によって第1の切り換え手段を遮断状態に制御するインバータとを含む制御手段と、
を備えたことを特徴とし、
本発明にかかる請求項2の分周器は、入力された制御信号の組み合わせに基づく分周比で入力信号を分周して出力する分周器集積回路と、
該分周器集積回路に供給される入力信号を選択的に遮断する第1のダイオードを含む第1の切り換え手段と、
前記分周器集積回路の出力に代わって前記入力信号を選択的に送出する第2のダイオードを含む第2の切り換え手段と、
前記分周器集積回路が同一分周比の出力を送出させる制御信号の複数の組み合わせ中の一方の組み合わせのみの制御信号が入力されたとき、第1のダイオードをオフ状態に制御し、かつ第2のダイオードをオン状態に制御する制御手段と、
を備えたことを特徴とする。
【0010】
本発明にかかる請求項1および2の分周器によれば、分周器集積回路が同一分周比の出力を送出させる制御信号の複数の組み合わせ中の一方の組み合わせの制御信号のみが制御手段に供給されたとき、第1の切り換え手段が遮断状態に制御されて分周器集積回路への入力信号の供給が遮断され、第2の切り換え手段が導通状態に制御されて分周器集積回路の分周出力に代わって入力信号がそのまま出力されるため、分周のための制御信号の数を増加させることなしに、分周比1/1である入力信号をそのまま送出することができることになる。また、前記一方の組み合わせの制御信号以外の組み合わせの制御信号が分周器集積回路に供給されているときは、供給された制御信号の組み合わせに基づく分周比で分周された入力信号が、分周器の出力信号として出力される。
【0011】
【発明の実施の形態】
以下、本発明にかかる分周器を実施の一形態によって説明する。
【0012】
図1は本発明の実施の一形態にかかる分周器10の構成を示すブロック図であり、図1において図5および図7に示した構成要素と同一の構成要素には同一の符号を付して示し、分周器集積回路1の各端子の説明は省略する。
【0013】
本発明の実施の一形態にかかる分周器10は、分周器集積回路1の外部に、入力信号発生源である電圧制御発振器2の発振出力を分周器集積回路1に選択的に入力するための切り換えスイッチ回路3および電圧制御発振器2の発振出力を分周器集積回路1の分周出力に代わって選択的に出力するための切り換えスイッチ回路4と、制御信号1と制御信号2を反転した信号を入力するアンドゲート5と、アンドゲート5の出力を反転するインバータ6とを設けて、分周器集積回路1の端子SW1および端子SW2に各別に制御信号1、制御信号2を供給すると共に、切り換えスイッチ回路3にはインバータ6を介してアンドゲート5の出力を供給して切り換えスイッチ回路3を切り換え、切り換えスイッチ回路4にはアンドゲート5の出力を直接供給して切り換えスイッチ回路4を切り換えるように構成する。
【0014】
ここで、切り換えスイッチ回路3は第1の切り換え手段に対応し、切り換えスイッチ回路4は第2の切り換え手段に対応し、アンドゲート5およびインバータ6は制御手段に対応している。
【0015】
上記のように構成した分周器10において、制御信号1および制御信号2が共にLレベルのときは、アンドゲート5の出力はLレベルであって、切り換えスイッチ回路4はオフ状態に制御され、オフ状態に制御された切り換えスイッチ回路4によって電圧制御発振器2の発振出力は遮断されて分周器10から出力されず、インバータ6の出力はHレベルであって、切り換えスイッチ回路3はオン状態に制御され、オン状態に制御された切り換えスイッチ回路3を介して電圧制御発振器2の発振出力は分周器集積回路1に供給されて、分周器集積回路1の分周出力が分周器10の出力として送出される。一方、分周器集積回路1の端子SW1および端子SW2にはLレベルの制御信号1および2が供給されるために、分周器10の分周比は、図2に示す如く、1/8となる。
【0016】
制御信号1がHレベルであり、かつ制御信号2がLレベルのときは、アンドゲート5の出力はHレベルであって、インバータ6の出力はLレベルであり、切り換えスイッチ回路3はオフ状態に制御され、オフ状態に制御された切り換えスイッチ回路3によって電圧制御発振器2の発振出力は遮断されて分周器集積回路1には供給されず、切り換えスイッチ回路4はオン状態に制御され、オン状態に制御された切り換えスイッチ回路4を介して電圧制御発振器2の発振出力はそのまま分周器10の出力として送出される。すなわち、分周器10の分周比は、図2に示す如く、1/1となる。
【0017】
制御信号1がLレベルであり、かつ制御信号2がHレベルのときは、アンドゲート5の出力はLレベルであって、切り換えスイッチ回路4はオフ状態に制御され、オフ状態に制御された切り換えスイッチ回路4によって電圧制御発振器の発振出力は遮断されて分周器10から出力されず、インバータ6の出力はHレベルであって、切り換えスイッチ回路3はオン状態に制御され、オン状態に制御された切り換えスイッチ回路3を介して電圧制御発振器2の発振出力は分周器集積回路1に供給されて、分周器集積回路1の分周出力が分周器10の出力として送出される。一方、分周器集積回路1の端子SW1にはLレベルの制御信号1が供給され、かつ分周器集積回路1の端子SW2にはHレベルの制御信号2が供給されるために、分周器10の分周比は、図2に示す如く、1/4となる。
【0018】
制御信号1および制御信号2が共にHレベルのときは、アンドゲート5の出力はLレベルであって、切り換えスイッチ回路4はオフ状態に制御され、オフ状態に制御された切り換えスイッチ回路4によって電圧制御発振器の発振出力は遮断されて分周器10から出力されず、インバータ6の出力はHレベルであって、切り換えスイッチ回路3はオン状態に制御され、オン状態に制御された切り換えスイッチ回路3を介して電圧制御発振器2の発振出力は分周器集積回路1に供給されて、分周器集積回路1の分周出力が分周器10の出力として送出される。一方、分周器集積回路1の端子SW1および端子SW2にはHレベルの制御信号が供給されるために、分周器10の出力の分周比は、図2に示す如く、1/2となる。
【0019】
上記のように、分周器10によれば、分周器集積回路1に供給される入力信号を選択的に遮断する切り換えスイッチ回路3と、前記入力信号を分周集積回路1の出力に代わって選択的に送出する切り換えスイッチ回路4とを設けて、分周器集積回路1が同一の分周比の出力を送出する制御信号の2つの組み合わせを利用して、該2つの組み合わせの一方の組み合わせの制御信号によって切り換えスイッチ回路3および4を制御して、入力信号を分周器集積回路1の出力に代わって分周器10の出力としたため、制御信号の数を増加させずに、選択的に分周器集積回路1による分周出力と分周器集積回路1をバイパスさせた入力信号とを送出することができる。
【0020】
次に本発明にかかる分周器の他の実施の形態について説明する。
【0021】
図3は本発明の他の実施の形態にかかる分周器20の構成を示すブロック図である。
【0022】
分周器20は、分周器集積回路1の端子SW1および端子SW2に各別に制御信号1と制御信号2を印加し、分周器集積回路1の端子OUTからの分周出力を結合コンデンサC4を介して分周器20の分周出力として選択的に送出させる。
【0023】
一方、電源電圧がエミッタに供給されたトランジスタQ2のベースに抵抗R5およびダイオードD1の直列回路を介して制御信号1を印加して、制御信号1に基づいてダイオードD1をオン・オフ制御して、ダイオードD1のオン・オフに基づいてトランジスタQ2をオン・オフ制御する。
【0024】
さらに、トランジスタQ2のベースを抵抗R5とトランジスタQ1との直列回路を介してアースし、トランジスタQ1のベースに制御信号2を印加して、制御信号2に基づいてトランジスタQ1をオン・オフ制御して、トランジスタQ1のオン・オフに基づいてトランジスタQ2をオン・オフ制御する。
【0025】
トランジスタQ2のコレクタは分周器集積回路1の端子Vccおよび端子SBに接続して、トランジスタQ2を介して分周器集積回路1の端子Vccおよび端子SBに電源電圧Vccを印加すると共に、トランジスタQ2のコレクタを介して出力される電源電圧Vccを抵抗R1を介して分周器集積回路1の入力端子INおよびダイオードD2のアノードに印加する。抵抗R1を介した電源電圧Vccの印加によってダイオードD2をオン状態に制御して、結合コンデンサC1およびダイオードD2を介して供給される入力信号を分周器20の端子INに印加する。
【0026】
一方、電源電圧Vccを抵抗R3とR4とによって分圧し、ダイオードD2のカソードは抵抗R2を介してアースして、ダイオードD2を介して抵抗R1と抵抗R2とによって電源電圧Vccを分圧し、抵抗R3と抵抗R4との分圧電圧をダイオードD3のアノードに供給し、抵抗R1と抵抗R2との分圧電圧をダイオードD3のカソードに印加して、抵抗R1と抵抗R2による分圧電圧に基づいてダイオードD3をオン・オフ制御して、結合コンデンサC1を介して供給される入力信号をダイオードD3および結合コンデンサC3を介して分周器20の出力として選択的に送出させる。
【0027】
ここで、トランジスタQ2がオン状態の時には、抵抗R1と抵抗R2とによる分圧電圧が抵抗R3と抵抗R4とによる分圧電圧より高くなるように、逆にトランジスタQ2がオフ状態の時には、抵抗R1と抵抗R2とによる分圧電圧が抵抗R3と抵抗R4とによる分圧電圧より低くなるように、抵抗R1、R2、R3、R4の抵抗値が選択してある。
【0028】
ここで、ダイオードD2が第1の切り換え手段に対応し、ダイオードD3が第2の切り換え手段に対応し、トランジスタQ1およびQ2、ダイオードD1、抵抗R1〜抵抗R4が実質的に制御手段に対応している。
【0029】
上記のように構成された分周器20において、制御信号1および制御信号2が共にLレベルのときは、トランジスタQ1がオフ状態に制御され、ダイオードD1がオン状態に制御されて、トランジスタQ2はオン状態になって電源電圧Vccが分周器集積回路1の端子SB、端子Vccおよび抵抗R1に印加される。したがって、ダイオードD2はオン状態に制御され、かつ抵抗R1と抵抗R2による分圧電圧によってダイオードD3はオフ状態に制御されて、分周器20の入力はダイオードD2を介して分周器集積回路1の端子INに供給されて分周され、分周器集積回路1の分周出力が分周器20の分周出力として送出される。この場合、出力の分周比は制御信号1および制御信号2が共にLレベルのため、図4に示す如く、1/8となる。
【0030】
制御信号1がHレベルであり、かつ制御信号2がLレベルのときは、ダイオードD1およびトランジスタQ1が共にオフ状態に制御されて、トランジスタQ2はオフ状態になって電源電圧Vccは分周器集積回路1の端子SB、端子Vccおよび抵抗R1に印加されない。したがって、ダイオードD2はオフ状態に制御され、かつ抵抗R3と抵抗R4による分圧電圧によってダイオードD3はオン状態に制御されて、分周器20の入力はダイオードD3および結合コンデンサC3を介して分周器20の出力としてそのまま送出される。すなわちこの場合は、分周器20の出力は、図4に示す如く、1/1となる。
【0031】
制御信号1がLレベルであり、かつ制御信号2がHレベルのときは、ダイオードD1がオン状態に制御され、かつトランジスタQ1もオン状態に制御されて、トランジスタQ2はオン状態になって電源電圧Vccが分周器集積回路1の端子SB、端子Vccおよび抵抗R1に印加される。したがって、ダイオードD2はオン状態に制御され、かつ抵抗R1と抵抗R2による分圧電圧によってダイオードD3はオフ状態に制御されて、分周器20の入力はダイオードD2を介して分周器集積回路1の端子INに供給されて分周され、分周器集積回路1の分周出力が分周器20の分周出力として送出される。この場合、出力の分周比は制御信号1がLレベルであり、かつ制御信号2がHレベルのため、図4に示す如く、1/4となる。
【0032】
制御信号1および制御信号2が共にHレベルのときは、ダイオードD1がオフ状態に制御されるが、トランジスタQ1がオン状態に制御されて、トランジスタQ2はオン状態になって電源電圧Vccが分周器集積回路1の端子SB、端子Vccおよび抵抗R1に印加される。したがって、ダイオードD2はオン状態に制御され、かつ抵抗R1と抵抗R2による分圧電圧によってダイオードD3はオフ状態に制御されて、分周器20の入力はダイオードD2を介して分周器集積回路1の端子INに供給されて分周され、分周器集積回路1の分周出力が分周器20の分周出力として送出される。この場合、出力の分周比は制御信号1および制御信号2が共にHレベルのため、図4に示す如く、1/2となる。
【0033】
以上説明したように分周器20によれば、分周器集積回路1に供給される入力信号を選択的に遮断するダイオードD2と、前記入力信号を分周集積回路1の出力に代わって選択的に送出するダイオードD3とを設けて、分周器集積回路1が同一の分周比の出力を送出する制御信号の2つの組み合わせを利用して、該2つの組み合わせの一方の組み合わせの制御信号によってダイオードD2およびD3を制御して、入力信号を分周器集積回路1の出力に代わって分周器20の出力としたため、制御信号の数を増加させずに、選択的に分周器集積回路1による分周出力と分周器集積回路1をバイパスさせた入力信号とを送出することができる。
【0034】
【発明の効果】
以上説明したように本発明にかかる分周器によれば、分周器制御のための信号線の数を増加させることなく、基本波を選択的に出力することができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施の一形態にかかる分周器の構成を示すブロック図である。
【図2】図1に示した分周器の作用の説明に供する説明図である。
【図3】本発明の他の実施の形態にかかる分周器の構成を示すブロック図である。
【図4】図3に示した分周器の作用の説明に供する説明図である。
【図5】分周器集積回路の説明に供するブロック図である。
【図6】図5に示した分周器集積回路の作用の説明に供する説明図である。
【図7】従来の分周器の構成を示すブロック図である。
【図8】図7に示した分周器集積回路の作用の説明に供する説明図である。
【符号の説明】
1 分周器集積回路
3および4 切り換えスイッチ回路
5 アンドゲート
6 インバータ
10および20 分周器
D1〜D3 ダイオード
Q1およびQ2 トランジスタ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a frequency divider that can be used as a local oscillator of a wireless communication device, and more particularly, to a frequency divider that can selectively output an input signal (also referred to as a fundamental wave in this specification) as it is.
[0002]
[Prior art]
In a conventional frequency divider, for example, as shown in FIG. 5, a frequency divider integrated circuit 1 constituting a frequency divider has a terminal SW1 and a terminal SW2, and a control signal H applied to the terminal SW1 and the terminal SW2. As shown in FIG. 6, there is a type in which the frequency division ratio can be switched to 、, 4, 1 / based on the level and the L level. One of the frequency divider integrated circuits 1 is, for example, MC12093 manufactured by Motorola. In FIG. 5, a terminal SB is a terminal for a standby mode, a terminal IN is an input terminal, a terminal Vcc is a power supply terminal, a terminal GND is a ground terminal, a terminal OUT is an output terminal, and reference numerals C1 and C2 are coupled. It is a capacitor.
[0003]
By using such a frequency divider as a part of a frequency synthesizer constituting a local oscillator or the like of a wireless communication device, it becomes possible to narrow an oscillation frequency range of a voltage controlled oscillator constituting a part of the frequency synthesizer. .
[0004]
However, such a frequency divider integrated circuit 1 does not have a function of outputting an input signal, that is, a fundamental wave as it is (frequency division ratio 1/1), and configures a frequency divider that also wants to selectively output a fundamental wave. As shown in FIG. 7, a changeover switch circuit 3 for selectively inputting, for example, an oscillation output of a voltage controlled oscillator 2 which is an input signal generation source to the frequency divider integrated circuit 1 outside the frequency divider integrated circuit 1. And a changeover switch circuit 4 for selectively outputting the oscillation output of the voltage controlled oscillator 2 instead of the frequency division output of the frequency divider integrated circuit 1, and connecting the terminals SW 1 and SW 2 of the frequency division integrated circuit 1 to the terminals SW 1 and SW 2. The control signal 1 and the control signal 2 are separately supplied, and the control signal 3 is supplied to the changeover switch circuit 3 via the inverter 6 to switch the changeover switch circuit 3, and the control is performed to the changeover switch circuit 4. Supplies issue 3 directly was configured to switch the changeover switch circuit 4.
[0005]
With this configuration, as shown in FIG. 8, based on a combination of the H level and the L level of the control signals 1 and 2 when the control signal is at the L level, the frequency division ratios 1/2, 1/4, In addition to the 1/8 output signal, when the control signal 3 is at the H level, an output signal having a division ratio of 1/1, that is, a fundamental wave, is transmitted regardless of the levels of the control signals 1 and 2. In FIG. 8, x indicates that the signal may be at either the H or L level.
[0006]
[Problems to be solved by the invention]
However, in the conventional frequency divider as described above, since there is no control to output a fundamental wave in the control of the frequency divider integrated circuit, a switch circuit for selectively passing the fundamental wave is provided. There is a problem that a control signal for switching control is required.
[0007]
For this reason, there is also a problem that the number of signal lines for control increases.
[0008]
An object of the present invention is to provide a frequency divider that can selectively output a fundamental wave without increasing the number of signal lines for frequency divider control.
[0009]
[Means for Solving the Problems]
The frequency divider according to claim 1 of the present invention is a frequency divider integrated circuit that divides an input signal by a frequency division ratio based on a combination of input control signals and outputs the divided signal.
First switching means for selectively blocking an input signal supplied to the frequency divider integrated circuit;
Second switching means for selectively transmitting the input signal instead of the output of the frequency divider integrated circuit;
When the frequency divider integrated circuit receives a control signal of only one of a plurality of combinations of control signals for causing the output of the same frequency division ratio to be output, the second switching means is controlled to be conductive by the output. Control means comprising: a gate; and an inverter which receives an output of the AND gate as an input, and controls the first switching means to be in a cut-off state by an output when the second switching means is controlled to be in a conductive state ;
It is characterized by having
The frequency divider according to claim 2 of the present invention is a frequency divider integrated circuit that divides an input signal by a frequency division ratio based on a combination of input control signals and outputs the divided signal.
First switching means including a first diode for selectively blocking an input signal supplied to the frequency divider integrated circuit;
Second switching means including a second diode for selectively transmitting the input signal instead of the output of the frequency divider integrated circuit;
When the frequency divider integrated circuit receives a control signal of only one of a plurality of combinations of control signals for causing the output of the same frequency division ratio to be output, the first diode is turned off, and Control means for controlling the second diode to an on state;
It is characterized by having.
[0010]
According to the frequency divider of the first and second aspects of the present invention, only one of a plurality of combinations of control signals for causing the frequency divider integrated circuit to output an output having the same frequency division ratio is controlled by the control means. Is supplied to the frequency divider integrated circuit, the first switching means is controlled to be in the cutoff state, the supply of the input signal to the frequency divider integrated circuit is cut off, and the second switching means is controlled to be in the conductive state. Since the input signal is output as it is in place of the frequency division output, the input signal having the frequency division ratio of 1/1 can be transmitted without any increase in the number of control signals for frequency division. Become. Further, when a control signal of a combination other than the control signal of the one combination is supplied to the frequency divider integrated circuit, the input signal divided by the frequency division ratio based on the combination of the supplied control signals is It is output as the output signal of the frequency divider.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a frequency divider according to the present invention will be described with reference to an embodiment.
[0012]
FIG. 1 is a block diagram showing a configuration of a frequency divider 10 according to an embodiment of the present invention. In FIG. 1, the same components as those shown in FIGS. 5 and 7 are denoted by the same reference numerals. The description of each terminal of the frequency divider integrated circuit 1 is omitted.
[0013]
A frequency divider 10 according to an embodiment of the present invention selectively inputs an oscillation output of a voltage controlled oscillator 2 as an input signal generation source to the frequency divider integrated circuit 1 outside the frequency divider integrated circuit 1. Switch circuit 4 for selectively outputting the oscillation output of the voltage-controlled oscillator 2 instead of the frequency-divided output of the frequency-divider integrated circuit 1, and the control signal 1 and the control signal 2. An AND gate 5 for inputting the inverted signal and an inverter 6 for inverting the output of the AND gate 5 are provided, and control signals 1 and 2 are separately supplied to the terminals SW1 and SW2 of the frequency divider integrated circuit 1. At the same time, the output of the AND gate 5 is supplied to the switching circuit 3 via the inverter 6 to switch the switching circuit 3, and the output of the AND gate 5 is directly supplied to the switching circuit 4. Supply to be configured to switch the changeover switch circuit 4.
[0014]
Here, the changeover switch circuit 3 corresponds to first changeover means, the changeover switch circuit 4 corresponds to second changeover means, and the AND gate 5 and the inverter 6 correspond to control means.
[0015]
In the frequency divider 10 configured as described above, when both the control signal 1 and the control signal 2 are at the L level, the output of the AND gate 5 is at the L level, and the changeover switch circuit 4 is controlled to be in the off state. The oscillation output of the voltage controlled oscillator 2 is cut off by the changeover switch circuit 4 controlled to the off state and is not output from the frequency divider 10, the output of the inverter 6 is at the H level, and the changeover switch circuit 3 is turned on. The oscillation output of the voltage controlled oscillator 2 is supplied to the frequency divider integrated circuit 1 via the controlled and on-state control switch circuit 3, and the frequency divided output of the frequency divider integrated circuit 1 is divided by the frequency divider 10. Sent as the output of On the other hand, since the L level control signals 1 and 2 are supplied to the terminals SW1 and SW2 of the frequency divider integrated circuit 1, the frequency division ratio of the frequency divider 10 is 1/8 as shown in FIG. It becomes.
[0016]
When the control signal 1 is at the H level and the control signal 2 is at the L level, the output of the AND gate 5 is at the H level, the output of the inverter 6 is at the L level, and the switch circuit 3 is turned off. The oscillating output of the voltage controlled oscillator 2 is cut off by the controlled and controlled off switch circuit 3 and is not supplied to the frequency divider integrated circuit 1, and the changeover switch circuit 4 is controlled on and off. The oscillation output of the voltage-controlled oscillator 2 is transmitted as it is as the output of the frequency divider 10 via the changeover switch circuit 4 controlled as follows. That is, the frequency division ratio of the frequency divider 10 is 1/1 as shown in FIG.
[0017]
When the control signal 1 is at the L level and the control signal 2 is at the H level, the output of the AND gate 5 is at the L level, the changeover switch circuit 4 is controlled to the off state, and the switching controlled to the off state is performed. The oscillating output of the voltage controlled oscillator is cut off by the switch circuit 4 and is not output from the frequency divider 10, the output of the inverter 6 is at the H level, and the changeover switch circuit 3 is controlled to the ON state and controlled to the ON state. The oscillation output of the voltage controlled oscillator 2 is supplied to the frequency divider integrated circuit 1 via the changeover switch circuit 3, and the frequency divided output of the frequency divider integrated circuit 1 is sent out as the output of the frequency divider 10. On the other hand, since the L level control signal 1 is supplied to the terminal SW1 of the frequency divider integrated circuit 1 and the H level control signal 2 is supplied to the terminal SW2 of the frequency divider integrated circuit 1, the frequency division is performed. The frequency division ratio of the device 10 is 1/4 as shown in FIG.
[0018]
When both the control signal 1 and the control signal 2 are at the H level, the output of the AND gate 5 is at the L level, the changeover switch circuit 4 is controlled to the off state, and the voltage is controlled by the changeover switch circuit 4 controlled to the off state. The oscillation output of the control oscillator is cut off and is not output from the frequency divider 10, the output of the inverter 6 is at the H level, the changeover switch circuit 3 is controlled to the on state, and the changeover switch circuit 3 controlled to the on state is controlled. The oscillation output of the voltage-controlled oscillator 2 is supplied to the frequency divider integrated circuit 1 via the frequency divider and the frequency division output of the frequency divider integrated circuit 1 is sent out as the output of the frequency divider 10. On the other hand, since the H level control signal is supplied to the terminals SW1 and SW2 of the frequency divider integrated circuit 1, the frequency division ratio of the output of the frequency divider 10 is 1/2 as shown in FIG. Become.
[0019]
As described above, according to the frequency divider 10, the switch circuit 3 for selectively cutting off the input signal supplied to the frequency divider integrated circuit 1, and the input signal is replaced by the output of the frequency divider integrated circuit 1. And a selector switch circuit 4 for selectively transmitting the divided signals, and the frequency divider integrated circuit 1 utilizes two combinations of control signals for transmitting outputs of the same frequency division ratio, and uses one of the two combinations. The changeover switch circuits 3 and 4 are controlled by the combination of the control signals, and the input signal is used as the output of the frequency divider 10 instead of the output of the frequency divider integrated circuit 1, so that the selection can be made without increasing the number of control signals. In particular, the frequency division output by the frequency divider integrated circuit 1 and the input signal bypassing the frequency divider integrated circuit 1 can be transmitted.
[0020]
Next, another embodiment of the frequency divider according to the present invention will be described.
[0021]
FIG. 3 is a block diagram showing a configuration of a frequency divider 20 according to another embodiment of the present invention.
[0022]
The frequency divider 20 applies the control signal 1 and the control signal 2 to the terminals SW1 and SW2 of the frequency divider integrated circuit 1 respectively, and outputs the frequency division output from the terminal OUT of the frequency divider integrated circuit 1 to the coupling capacitor C4. Via the frequency divider 20 to selectively output the frequency-divided output.
[0023]
On the other hand, the control signal 1 is applied to the base of the transistor Q2 whose power supply voltage is supplied to the emitter via a series circuit of the resistor R5 and the diode D1, and the diode D1 is turned on / off based on the control signal 1, The on / off control of the transistor Q2 is performed based on the on / off of the diode D1.
[0024]
Further, the base of the transistor Q2 is grounded via a series circuit of the resistor R5 and the transistor Q1, a control signal 2 is applied to the base of the transistor Q1, and the transistor Q1 is turned on / off based on the control signal 2. , On / off control of the transistor Q2 based on the on / off of the transistor Q1.
[0025]
The collector of the transistor Q2 is connected to the terminals Vcc and SB of the frequency divider integrated circuit 1 to apply the power supply voltage Vcc to the terminals Vcc and SB of the frequency divider integrated circuit 1 via the transistor Q2. Is applied to the input terminal IN of the frequency divider integrated circuit 1 and the anode of the diode D2 via the resistor R1. The diode D2 is turned on by applying the power supply voltage Vcc via the resistor R1, and the input signal supplied via the coupling capacitor C1 and the diode D2 is applied to the terminal IN of the frequency divider 20.
[0026]
On the other hand, the power supply voltage Vcc is divided by the resistors R3 and R4, the cathode of the diode D2 is grounded via the resistor R2, and the power supply voltage Vcc is divided by the resistors R1 and R2 via the diode D2. The divided voltage of the resistor R4 and the resistor R4 is supplied to the anode of the diode D3, the divided voltage of the resistor R1 and the resistor R2 is applied to the cathode of the diode D3, and the diode is divided based on the divided voltage of the resistor R1 and the resistor R2. D3 is controlled to be turned on and off so that an input signal supplied via the coupling capacitor C1 is selectively transmitted as an output of the frequency divider 20 via the diode D3 and the coupling capacitor C3.
[0027]
Here, when the transistor Q2 is on, the voltage divided by the resistors R1 and R2 is higher than the voltage divided by the resistors R3 and R4. The resistance values of the resistors R1, R2, R3, and R4 are selected such that the divided voltage by the resistor R2 and the resistor R2 is lower than the divided voltage by the resistors R3 and R4.
[0028]
Here, the diode D2 corresponds to the first switching means, the diode D3 corresponds to the second switching means, and the transistors Q1 and Q2, the diode D1, and the resistors R1 to R4 substantially correspond to the control means. I have.
[0029]
In the frequency divider 20 configured as described above, when the control signal 1 and the control signal 2 are both at the L level, the transistor Q1 is controlled to be off, the diode D1 is controlled to be on, and the transistor Q2 is In the ON state, the power supply voltage Vcc is applied to the terminal SB, the terminal Vcc, and the resistor R1 of the frequency divider integrated circuit 1. Therefore, the diode D2 is controlled to the on state, the diode D3 is controlled to the off state by the divided voltage by the resistors R1 and R2, and the input of the frequency divider 20 is connected to the frequency divider integrated circuit 1 via the diode D2. Is supplied to the terminal IN, and the frequency is divided. The frequency-divided output of the frequency divider integrated circuit 1 is sent out as the frequency-divided output of the frequency divider 20. In this case, since the control signal 1 and the control signal 2 are both at L level, the frequency division ratio of the output is 1/8 as shown in FIG.
[0030]
When control signal 1 is at H level and control signal 2 is at L level, both diode D1 and transistor Q1 are controlled to be off, transistor Q2 is turned off, and power supply voltage Vcc is divided by the frequency divider integrated circuit. It is not applied to the terminal SB of the circuit 1, the terminal Vcc and the resistor R1. Therefore, the diode D2 is controlled to the off state, and the diode D3 is controlled to the on state by the divided voltage by the resistors R3 and R4. The input of the frequency divider 20 is divided by the diode D3 and the coupling capacitor C3. It is transmitted as it is as the output of the device 20. That is, in this case, the output of the frequency divider 20 becomes 1/1 as shown in FIG.
[0031]
When the control signal 1 is at the L level and the control signal 2 is at the H level, the diode D1 is controlled to be on, and the transistor Q1 is also controlled to be on. Vcc is applied to terminal SB, terminal Vcc and resistor R1 of frequency divider integrated circuit 1. Therefore, the diode D2 is controlled to the on state, the diode D3 is controlled to the off state by the divided voltage by the resistors R1 and R2, and the input of the frequency divider 20 is connected to the frequency divider integrated circuit 1 via the diode D2. Is supplied to the terminal IN, and the frequency is divided. The frequency-divided output of the frequency divider integrated circuit 1 is sent out as the frequency-divided output of the frequency divider 20. In this case, since the control signal 1 is at the L level and the control signal 2 is at the H level, the frequency division ratio of the output is 1/4 as shown in FIG.
[0032]
When both the control signal 1 and the control signal 2 are at the H level, the diode D1 is controlled to be off, but the transistor Q1 is controlled to be on, and the transistor Q2 is turned on to divide the power supply voltage Vcc. Is applied to the terminal SB, the terminal Vcc, and the resistor R1 of the integrated circuit 1. Therefore, the diode D2 is controlled to the on state, the diode D3 is controlled to the off state by the divided voltage by the resistors R1 and R2, and the input of the frequency divider 20 is connected to the frequency divider integrated circuit 1 via the diode D2. Is supplied to the terminal IN, and the frequency is divided. The frequency-divided output of the frequency divider integrated circuit 1 is sent out as the frequency-divided output of the frequency divider 20. In this case, since the control signal 1 and the control signal 2 are both at the H level, the frequency division ratio of the output is 1/2 as shown in FIG.
[0033]
As described above, according to the frequency divider 20, the diode D2 that selectively blocks the input signal supplied to the frequency divider integrated circuit 1 and the input signal is selected instead of the output of the frequency divider integrated circuit 1 And a frequency-division diode D3, and the frequency divider integrated circuit 1 uses two combinations of control signals for transmitting outputs having the same frequency division ratio, and a control signal of one of the two combinations is used. By controlling the diodes D2 and D3, the input signal is used as the output of the frequency divider 20 instead of the output of the frequency divider integrated circuit 1, so that the frequency of the frequency divider integrated circuit can be selectively increased without increasing the number of control signals. The frequency division output by the circuit 1 and the input signal bypassing the frequency divider integrated circuit 1 can be transmitted.
[0034]
【The invention's effect】
As described above, according to the frequency divider of the present invention, it is possible to obtain an effect that the fundamental wave can be selectively output without increasing the number of signal lines for controlling the frequency divider.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of a frequency divider according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram for explaining an operation of the frequency divider shown in FIG. 1;
FIG. 3 is a block diagram showing a configuration of a frequency divider according to another embodiment of the present invention.
FIG. 4 is an explanatory diagram for explaining an operation of the frequency divider shown in FIG. 3;
FIG. 5 is a block diagram for explaining a frequency divider integrated circuit;
FIG. 6 is an explanatory diagram for explaining an operation of the frequency divider integrated circuit shown in FIG. 5;
FIG. 7 is a block diagram showing a configuration of a conventional frequency divider.
FIG. 8 is an explanatory diagram for explaining an operation of the frequency divider integrated circuit shown in FIG. 7;
[Explanation of symbols]
1 Divider integrated circuits 3 and 4 Switching switch circuit 5 AND gate 6 Inverter 10 and 20 Dividers D1 to D3 Diodes Q1 and Q2 Transistors

Claims (2)

入力された制御信号の組み合わせに基づく分周比で入力信号を分周して出力する分周器集積回路と、
該分周器集積回路に供給される入力信号を選択的に遮断する第1の切り換え手段と、
前記分周器集積回路の出力に代わって前記入力信号を選択的に送出する第2の切り換え手段と、
前記分周器集積回路が同一分周比の出力を送出させる制御信号の複数の組み合わせ中の一方の組み合わせのみの制御信号が入力されたとき出力によって第2の切り換え手段を導通状態に制御するアンドゲートと、該アンドゲートの出力を入力とし前記第2の切換手段が導通状態に制御されているとき出力によって第1の切り換え手段を遮断状態に制御するインバータとを含む制御手段と、
を備えたことを特徴とする分周器。
A frequency divider integrated circuit that divides and outputs an input signal at a frequency division ratio based on a combination of input control signals;
First switching means for selectively blocking an input signal supplied to the frequency divider integrated circuit;
Second switching means for selectively transmitting the input signal instead of the output of the frequency divider integrated circuit;
When the frequency divider integrated circuit receives a control signal of only one of a plurality of combinations of control signals for causing the output of the same frequency division ratio to be output, the second switching means is controlled to be conductive by the output. Control means comprising: a gate; and an inverter which receives an output of the AND gate as an input, and controls the first switching means to be in a cut-off state by an output when the second switching means is controlled to be in a conductive state ;
A frequency divider comprising:
入力された制御信号の組み合わせに基づく分周比で入力信号を分周して出力する分周器集積回路と、
該分周器集積回路に供給される入力信号を選択的に遮断する第1のダイオードを含む第1の切り換え手段と、
前記分周器集積回路の出力に代わって前記入力信号を選択的に送出する第2のダイオードを含む第2の切り換え手段と、
前記分周器集積回路が同一分周比の出力を送出させる制御信号の複数の組み合わせ中の一方の組み合わせのみの制御信号が入力されたとき、第1のダイオードをオフ状態に制御し、かつ第2のダイオードをオン状態に制御する制御手段と、
を備えたことを特徴とする分周器。
A frequency divider integrated circuit that divides and outputs an input signal at a frequency division ratio based on a combination of input control signals;
First switching means including a first diode for selectively blocking an input signal supplied to the frequency divider integrated circuit;
Second switching means including a second diode for selectively transmitting the input signal instead of the output of the frequency divider integrated circuit;
When the frequency divider integrated circuit receives a control signal of only one of a plurality of combinations of control signals for causing the output of the same frequency division ratio to be output, the first diode is turned off, and Control means for controlling the second diode to an on state;
A frequency divider comprising:
JP2000215288A 2000-07-17 2000-07-17 Divider Expired - Lifetime JP3585114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000215288A JP3585114B2 (en) 2000-07-17 2000-07-17 Divider

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000215288A JP3585114B2 (en) 2000-07-17 2000-07-17 Divider

Publications (2)

Publication Number Publication Date
JP2002033655A JP2002033655A (en) 2002-01-31
JP3585114B2 true JP3585114B2 (en) 2004-11-04

Family

ID=18710729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000215288A Expired - Lifetime JP3585114B2 (en) 2000-07-17 2000-07-17 Divider

Country Status (1)

Country Link
JP (1) JP3585114B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631006B2 (en) 2005-08-24 2011-02-16 独立行政法人情報通信研究機構 Automatic adjustment system for FSK modulator
JP4465458B2 (en) 2005-09-20 2010-05-19 独立行政法人情報通信研究機構 Phase control optical FSK modulator

Also Published As

Publication number Publication date
JP2002033655A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
US7279994B2 (en) Variable capacitance circuit having on/off switch for variable capacitance function, and voltage controlled oscillator using the variable capacitance circuit
US7139548B2 (en) Semiconductor integrated circuit device and wireless communication system
JP3585114B2 (en) Divider
JP2004159207A (en) Radio communication device
US7375601B2 (en) Dual-band oscillator
US6294961B1 (en) Selectable voltage-controlled oscillation circuit
JPH09186587A (en) Pll circuit
WO2000072443A2 (en) Multifrequency low-power oscillator for telecommunication ic's
JP4073532B2 (en) Frequency variable filter device
JP2001345638A (en) Three band oscillator
JP5947934B2 (en) Wireless communication device
US20050093639A1 (en) Switching circuit and voltage-controlled oscillator including the same
JP3556917B2 (en) Frequency synthesizer
JP2004179706A (en) Two-frequency switching crystal oscillator
JP5621060B1 (en) Demodulator and modulator
JP2828811B2 (en) PLL integrated circuit
JP2004328533A (en) Frequency switching crystal oscillator
JPS58139523A (en) Phase locked loop circuit
JP2002359521A (en) Frequency switching type crystal oscillator
JP2004312588A (en) Crystal oscillator switching type pll oscillation circuit
JP2003332841A (en) Voltage controlled oscillator circuit
US20040113666A1 (en) Tri-state charge pump
KR960036351A (en) Wireless receiver
JPH0897712A (en) Pll circuit
JPH10107545A (en) Voltage controlled oscillator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040729

R150 Certificate of patent or registration of utility model

Ref document number: 3585114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

EXPY Cancellation because of completion of term