JP3584703B2 - Sliding vane compressor - Google Patents

Sliding vane compressor Download PDF

Info

Publication number
JP3584703B2
JP3584703B2 JP28941097A JP28941097A JP3584703B2 JP 3584703 B2 JP3584703 B2 JP 3584703B2 JP 28941097 A JP28941097 A JP 28941097A JP 28941097 A JP28941097 A JP 28941097A JP 3584703 B2 JP3584703 B2 JP 3584703B2
Authority
JP
Japan
Prior art keywords
gas supply
pressure
supply passage
vane
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28941097A
Other languages
Japanese (ja)
Other versions
JPH11125190A (en
Inventor
隆博 葉瀬垣
次男 阪本
武史 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP28941097A priority Critical patent/JP3584703B2/en
Publication of JPH11125190A publication Critical patent/JPH11125190A/en
Application granted granted Critical
Publication of JP3584703B2 publication Critical patent/JP3584703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用空調装置などに供されるスライディングベーン式圧縮機である。
【0002】
【従来の技術】
従来、周知のようにスライディングベーン式圧縮機においては、ロータの回転に伴ってベーンがその先端をシリンダ内壁に接して回転摺動運動をするようベーン後端に高圧の潤滑油を圧力差により供給する構造が広く用いられている。以下図面を参照しながら、上述した従来のスライディングベーン式圧縮機について説明する。
【0003】
図6乃至図10は従来の差圧給油方式のスライディングベーン式圧縮機の具体構成を示すものである。同図において、1は円筒内壁を有するシリンダ、2はその外周の一部がシリンダ1内壁と微少隙間を形成するロータ、3はロータ2に設けられた複数のベーンスロット、4はベーンスロット4内に摺動自在に挿入された複数のベーン、5はロータ2と一体的に形成され回転自在に軸支される駆動軸、6及び7はそれぞれシリンダ1の両端を閉塞して内部に作動室8を形成する前部側板及び後部側板である。
【0004】
9は低圧側の作動室8に連通する吸入口、10は高圧側の作動室8に連通する吐出口、11は吐出口に配設された吐出弁、12は高圧通路13に連通する高圧室14を形成して圧縮された高圧流体中の潤滑油を分離捕捉するセパレータ15を配設した高圧ケースである。16は後部側板に配設されたベーン背圧付与装置で、高圧室14下方の油溜り部の潤滑油をベーン背圧室17に供給している。
【0005】
18は高圧室14下方の油溜り部とベーン背圧室17とを連通する給油通路、39は後部側板7に設けられベーン背圧室17と給油通路を連通遮断する油溝、19は差圧による給油量を制限する通路、20は給油通路途中に設けられた第1球座、21は第1球座20と遊離あるいは当接して給油通路18を連通遮断する第1球体、22は第1球座20に第1球体21と反対側で開口する第1プランジャ室、23は第1プランジャ室22内室に摺動自在に配設され第1球座20側へ移動した時第1球体21を第1球座20から遊離される第1プランジャ、24は第1プランジャ23下端の第1上部プランジャ室25と吐出弁直前の作動室8とを連通する第1圧力導入路、27はその一端をベーン背圧室17に連通する第1ガス供給通路、28はその一端を高圧室14の上方部分に連通する第2ガス供給通路、29は第1ガス供給通路27と第2ガス供給通路28の連通部に設けられた第2球座、30は第2球座29と遊離あるいは当接して第1ガス供給通路27と第2ガス供給通路28とを連通遮断する第2球体、31は第2球体30の動きを制限するストッパー、33は第2プランジャ室32内部に摺動自在に配設され第2球座29側へ移動した時第2球体30を第2球座29から遊離される第2プランジャ、35は第2プランジャ33下端の第2下部プランジャ室34にあり第2プランジャ33を介して第2球体30を第2球座29から遊離する向きに付勢するばね、36は第2プランジャ33の下端の第2下部プランジャ室34と作動室8の中間圧部分に連通する第2圧力導入路、37はベーン背圧室17に連通する第1ガス供給通路27途中に設けられた第3球座、38は第1ガス供給通路27内のガスの流れを一方向のみとするとともに第1ガス供給通路27内の流れを連通遮断する第3球体である。
【0006】
以上のように構成されたスライディングベーン式圧縮機について以下その動作を説明する。エンジンなどの駆動源より動力伝達を受けて駆動軸5及びロータ2が図7において時計方向に回転すると、これに伴い低圧流体が吸入口9より作動室8内に流入する。
【0007】
ロータ2の回転に伴い圧縮された高圧流体は吐出口10より吐出弁11を押し上げて高圧通路13より高圧室14内に流入し、セパレータ15によって潤滑油が分離捕捉される。一方、第1圧力導入路24からは高圧流体の圧力に打ち勝って吐出弁11を押し上げるだけの圧力を有する作動室8内の過圧縮ガスが第1上部プランジャ室25へ供給されるので、第1プランジャ23は第1球座20側へ移動して第1球体21を第1球座20から遊離させる。
【0008】
また、第2ガス供給通路28は高圧室14の上方部分に連通しているため、第2圧力導入路36から第2下部プランジャ室34に流入する作動室8の中間圧の圧力とばね35の付勢力に打ち勝って図10に示す位置に第2プランジャ33を保持する。
【0009】
すなわち、第2球体30は第2球座31に当接し第1ガス供給通路27と第2ガス供給通路28は遮断される。また、第1ガス供給通路27に設けられた第3球体38は第1ガス供給通路27のベーン背圧室17側の圧力が高いため第3球座37に当接し第1ガス供給通路27を遮断する。
【0010】
したがって、ベーン背圧室17へは高圧室14下方の油溜り部に蓄えられた潤滑油が通路19、給油通路18から供給されてベーン4の押圧に供されロータ2と前部側板6及び後部側板7との隙間を通り作動室8内へ流入するのである(図8)。
【0011】
また圧縮機が停止した場合は、作動室8内の圧力は急激に低圧流体の圧力まで降下し、作動室8内に開口する第1圧力導入路24に連通する第1プランジャ23下端の圧力は第1プランジャ23の上端の圧力より小さくなるので第1プランジャ23は下部プランジャ側へ移動して第1球体21は第1球座20に当接する。
【0012】
また、冷凍サイクル内の高圧側と圧縮機内部は第1球体21を境に仕切られるため高圧室14の上方部分の圧力は高く図9に示す位置に第2プランジャを保持する。すなわち第2球体30は第2球座29に当接し、第1ガス供給通路27と第2ガス供給通路28は遮断される。
【0013】
また、圧縮機内部すなわち作動室8内の圧力は急激に低圧側流体の圧力まで降下するため第3球体38は第3球座37から遊離する。したがって圧縮機停止後潤滑油は供給されないから、作動室8内に潤滑油が滞留することによって生ずる圧縮機起動時の液圧縮を防止することができる。
【0014】
圧縮機停止後ある時間が経過して高圧側と低圧側の圧力差が所定値になるとばね35は第2プランジャ33を第2球座29側に移動させるため図10に示す状態になり、この状態から圧縮機を始動した場合には瞬時にガス状流体が第2ガス供給通路28から第1ガス供給通路27,供給通路18を介してベーン背圧室17に供給される。
【0015】
【発明が解決しようとする課題】
しかしながら、上記従来のスライディングベーン式圧縮機では、圧縮機停止後ある時間が経過し、高圧側と低圧側の圧力差が第2球体が第2球座より遊離する高圧側(高圧室)と低圧側(低圧室)の圧力差より若干大きい状態で、特に給油通路途中に潤滑油が充満している時に圧縮機を起動すると、第2球体が第2球座に当接しているためガス状流体を第2ガス供給通路よりベーン背圧室には供給できず、給油通路より潤滑油を供給するが、潤滑油の水頭、粘性及び慣性による流れ始めの抵抗が大きいことなどのため、結果としてベーンの伸張没入の際生ずるベーン背圧室の容積変動に対し十分な潤滑油量が供給できない。
【0016】
このため特に圧縮機始動時の回転数が低い場合にベーン背圧室の圧力低下を生じベーンがシリンダ内壁から遊離し再び衝突する周知の不調現象や流体を圧縮しない圧縮不良現象が生ずるという問題点を有していた。
【0017】
そのため、潤滑油が給油通路よりベーン背圧室に充分供給できるだけの高圧側と低圧側の圧力差を確保するために、ばねの荷重を大きくする方法がある。しかし、ばね荷重を大きくすると低負荷における定常運転時に常時ベーン背圧室にガス状流体を供給するため、潤滑油の供給が全くなされず、圧縮機の異常摩耗等を引き起こす問題点を有していた。
【0018】
【課題を解決するための手段】
上記課題を解決するために本発明のスライディングベーン式圧縮機は、従来の圧縮機の高圧側と低圧側の流体との圧力差が所定値以下の時、二つのガス供給通路を連通し、所定値より大きい時は常に二つのガス供給通路の通路断面積が小さいもののみ連通するガス開閉手段を備えたものである。
【0019】
【発明の実施の形態】
上記課題を解決するための請求項1に記載の発明は、スライディングベーン式圧縮機において、高圧側と低圧側の流体との圧力差が所定値以下の時、二つのガス供給通路を連通し、所定値より大きい時は常に前記二つのガス供給通路の通路断面積が小さいもののみ連通するガス開閉手段を設けることにより、高圧側と低圧側の流体の圧力差が小さい時に圧縮機を始動すると二つのガス供給通路からベーン背圧室へガス状流体を供給し、更に圧力差が所定値より大きい時に圧縮機を始動すると、前記二つのガス供給通路の通路断面積が小さいものよりガス状流体を供給し、シリンダ内壁から遊離し、再び衝突する周知の不調現象や流体を圧縮しない圧縮不良現象を防止することができる。
【0020】
請求項2に記載の発明は、前記二つのガス供給通路の通路断面積が小さいものをベーン背圧付与装置の外装ケースに一体的に設けることにより、請求項1記載の発明による効果とともに、部品点数の低減と加工性の向上によるコストダウンが図れる。
【0021】
請求項3記載の発明は、前記二つのガス供給通路断面積が小さいものを従来のスライディングベーン式圧縮機と同一の構成である鋼球と球座からなるガス開閉手段の球座に凹部を設けることにより、請求項1記載の発明による効果とともに、請求項2記載の発明による効果もある。
【0022】
【実施例】
以下本発明の実施例について図面の図1乃至図5を参照しながら説明する。同図において前記従来のスライディングベーン式圧縮機と同一の作用効果を有するものは同一の符号を記して説明を省略する。
【0023】
同図において50は第1ガス供給通路27と第2ガス供給通路28間に設けられた通路断面積が小さい第3ガス供給通路51aと、通路断面積が大きい第3ガス供給通路51bを一体的に形成した第3プランジャ、52は第3プランジャ端面が当接することにより、第1,2ガス通路を遮断するシール座面である。
【0024】
以上のように構成されたスライディングベーン式圧縮機について以下その動作を説明する。
【0025】
(実施例1)
圧縮機始動後ある時間が経過して給油するのに充分な高圧側と低圧側の圧力差が存在するような定常運転状態では、第1圧力導入路24からは高圧流体の圧力に打ち勝って吐出弁11を押し上げるだけの圧力を有する作動室8内の過圧縮ガスが第1プランジャ室25へ供給されるので、第1プランジャ23は第1球座20側へ移動して第1球体20から遊離される。
【0026】
また、第2ガス供給通路28は高圧室14の上方部分に連通しているため、第2圧力導入路36から第2下部プランジャ室34に流入する作動室8の中間圧力の圧力とばね35の付勢力に打ち勝って図1に示す位置に第2プランジャ33を保持する。すなわち第3プランジャ50下端はシール座面52に当接し、通路断面積が大きい第3ガス供給通路51bを遮断する。
【0027】
また、第1ガス供給通路27途中に設けられた第3球体38は第1ガス供給通路27のベーン背圧室17側の圧力が高いため第3球座37に当接し第1ガス供給通路27を遮断する。従って、第3ガス供給通路51aは第1,2ガス供給通路27,28を連通するが極めて通路断面積が小さいため、ベーン背圧室17へは高圧室14下方の油溜り部に蓄えられた潤滑油が通路19,給油通路18から供給されてベーン4の押圧に供される。
【0028】
圧縮機が停止すると、作動室内8の圧力は急激に低圧側流体の圧力まで低下するため、第1下部プランジャ室25内の圧力も低圧側流体の圧力まで降下し第1プランジャ23下端の圧力は第1プランジャ23上端の圧力より小さくなるので第1プランジャ23は下部プランジャ室側へ移動して第1球体21は第1球座20に当接する。
【0029】
また、冷凍サイクル内の高圧側と圧縮機内部は第1球体21を境に仕切られているため高圧室14の上方部分の圧力は高く図2に示す位置に第2プランジャ33を保持する。すなわち、第3プランジャ50下端はシール座面52に当接し、通路断面積が大きい第3ガス供給通路51bを遮断する。
【0030】
また、圧縮機内部の圧力は低圧側流体の圧力まで降下するため第3球体38は第3球座37から遊離する。したがって、作動室8内への潤滑油の流入が防止できることは従来のスライディングベーン式圧縮機のベーン背圧付与装置と同様である。停止後時間が経過し起動しても、第3プランジャ50は、シール座面52に当接し、通路断面積が大きい第3ガス供給通路51bは遮断されているが、通路断面積が小さい第3ガス供給通路51aは第1,2ガス供給通路28,27を連通しているため、瞬時にガス状流体をベーン背圧室17に供給することができる。
【0031】
圧縮機停止後ある時間が経過して高圧側と低圧側の圧力差が小さくなるとばね35は第2プランジャ33をシール座面側52に移動させるため図3に示す状態となり、この状態から圧縮機を始動した場合には瞬時にガス状流体が第2ガス供給通路28から第3ガス供給通路51a,51b,第1ガス供給通路27,給油通路18を介してベーン背圧室17に供給する。
【0032】
その直後、高圧室14内の圧力上昇に伴いその圧力がばね35の付勢力及び第2下部プランジャ室34の圧力に打ち勝って、すなわち、第3プランジャ50下端はシール座面52に当接し、通路断面積が大きい第3ガス供給通路51bを遮断することによりオイル供給へと切り替えられる。
【0033】
以上のように本実施例によれば、スライディングベーン式圧縮機として、高圧側と低圧側の流体との圧力差が所定値以下の時、二つのガス供給通路を連通し、圧力差が所定値以上の時は常に、前記二つのガス供給通路の通路断面積が小さいもののみ連通するガス開閉手段を一体的に備えることにより、圧縮機停止後高圧側と低圧側の圧力差がいかなる状態の時も、瞬時に高圧のガス状流体をベーン背圧室に供給するため、ベーンがシリンダ内壁から遊離し再び衝突する周知の不調現象や流体を圧縮しない圧縮不良現象が防止できるとともに、圧縮機の耐久性や効率を損なうことがない。
【0034】
(実施例2)
図4は、本発明の実施例2におけるベーン背圧付与装置の要部拡大図である。
実施例1は、第3プランジャ50内に第3ガス供給通路51a,51bを一体的に設けたが、第3プランジャ50はFe系の材料よりなることから、通路断面積が極めて小さい第3ガス供給通路51aの加工が非常に困難であるため、一般的にAl系の材料からなるベーン背圧付与装置1の外装ケースに設けることにより、請求項1記載の発明の効果とともに、加工性の向上、また、その他部品が従来のものと共用できるためコストダウンが図れる。
【0035】
(実施例3)
図5は、(a)本発明の実施例3におけるベーン背圧付与装置の要部拡大図、(b)(a)の矢印矢視図(球座の拡大図)である。
従来のベーン背圧付与装置16において第3ガス供給通路51aを第2球座29の一部に凹部となる追加加工をすることにより、請求項1記載の発明効果とともに請求項2の記載の発明の効果も有する。
【0036】
さらに、実施例においてスライディングベーン式圧縮機は吸入口9,吐出口10が各々一つしかない真円式を示したが吸入口9,吐出口10が各々複数ある型式のものでもよいし、ベーン枚数は3枚のものを示したが何枚あってもよい。
【0037】
【発明の効果】
本発明は上記説明から明らかなように、上記課題を解決するための請求項1に記載の発明は、スライディングベーン式圧縮機において、高圧側と低圧側の流体との圧力差が所定値以下の時、二つのガス供給通路を連通し、所定値より大きい時は前記ガス供給通路の通路断面積が小さいもののみ連通するガス開閉手段を一体的に設けることにより、圧縮機停止後いかなる条件下で圧縮機を起動させても、少なくとも断面積が小さいガス供給通路よりベーン背圧室にガス状流体を供給することによりシリンダ内壁から遊離し、再び衝突する周知の不調現象や流体を圧縮しない圧縮不良現象を防止することができる。
【0038】
請求項2に記載の発明は、前記二つのガス供給通路の通路断面積が小さいものをベーン背圧付与装置の外装ケースに一体的に設けることにより、圧縮機停止後いかなる条件下で圧縮機を起動させても、少なくとも断面積が小さいガス供給通路よりベーン背圧室にガス状流体を供給することにより、シリンダ内壁から遊離し再び衝突する周知の不調現象や流体を圧縮しない圧縮不良現象を防止することができるとともに、部品点数の低減と加工性の向上によるコストダウンが図れる。
【0039】
請求項3記載の発明は、前記二つのガス供給通路の通路断面積の小さいものを球座に凹部を設けることにより、圧縮機停止後いかなる条件下で圧縮機を起動させても、少なくとも断面積が小さいガス供給通路よりベーン背圧室にガス状流体を供給することにより、シリンダ内壁から遊離し再び衝突する周知の不調現象や流体を圧縮しない圧縮不良現象を防止することができるとともに、部品点数の低減と加工性の向上によるコストダウンが図れる。
【図面の簡単な説明】
【図1】本発明の実施例1におけるベーン背圧付与装置の要部拡大図(定常運転時)
【図2】本発明の実施例1におけるベーン背圧付与装置の要部拡大図(停止時)
【図3】本発明の実施例1におけるベーン背圧付与装置の要部拡大図(始動時)
【図4】本発明の実施例2におけるベーン背圧付与装置の要部拡大図
【図5】(a)本発明の実施例3におけるベーン背圧付与装置の要部拡大図
(b)(a)の矢印矢視図(球座の拡大図)
【図6】従来のスライディングベーン式圧縮機の縦断面図
【図7】図6のX−X線による断面図
【図8】従来のベーン背圧付与装置の要部拡大図(定常運転時)
【図9】従来のベーン背圧付与装置の要部拡大図(停止時)
【図10】従来のベーン背圧付与装置の要部拡大図(始動時)
【符号の説明】
1 シリンダ
2 ロータ
3 ベーンスロット
4 ベーン
5 駆動軸
6 前部側板
7 後部側板
8 作動室
9 吸入口
10 吐出口
11 吐出弁
12 高圧ケース
13 高圧通路
14 高圧室
15 スクリーン
16 ベーン背圧付与装置
17 ベーン背圧室
18 給油通路
19 通路
20 第1球座
21 第1球体
22 第1プランジャ室
23 第1プランジャ
24 第1圧力導入路
25 第1上部プランジャ室
27 第1ガス供給通路
28 第2ガス供給通路
29 第2球座
30 第2球体
31 ストッパー
32 第2プランジャ室
33 第2プランジャ
34 第2下部プランジャ室
35 ばね
36 第3圧力導入路
37 第3球座
38 第3球体
50 第3プランジャ
51a,51b 第3ガス供給通路
52 シール座面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is a sliding vane type compressor used for an air conditioner for a vehicle or the like.
[0002]
[Prior art]
Conventionally, as is well known, in a sliding vane type compressor, a high pressure lubricating oil is supplied to a rear end of a vane by a pressure difference so that the vane makes a rotary sliding motion with the tip of the vane contacting the inner wall of the cylinder as the rotor rotates. Is widely used. Hereinafter, the above-mentioned conventional sliding vane type compressor will be described with reference to the drawings.
[0003]
6 to 10 show a specific configuration of a conventional sliding vane compressor of the differential pressure oil supply system. In FIG. 1, reference numeral 1 denotes a cylinder having a cylindrical inner wall, 2 denotes a rotor having a part of its outer periphery forming a minute gap with the inner wall of the cylinder 1, 3 denotes a plurality of vane slots provided in the rotor 2, 4 denotes a vane slot 4 A plurality of vanes 5 are slidably inserted into the rotor 5, a drive shaft integrally formed with the rotor 2 and rotatably supported, and 6 and 7 respectively close both ends of the cylinder 1 to form a working chamber 8 therein. Are a front side plate and a rear side plate.
[0004]
9 is a suction port communicating with the low-pressure side working chamber 8, 10 is a discharge port communicating with the high-pressure side working chamber 8, 11 is a discharge valve arranged at the discharge port, 12 is a high-pressure chamber communicating with the high-pressure passage 13. 14 is a high-pressure case in which a separator 15 for forming and separating a lubricating oil in a compressed high-pressure fluid is disposed. 16 is a vane back pressure imparting equipment disposed at the rear side plate and supplies the lubricating oil in the oil sump of the high-pressure chamber 14 downwardly to the vane back pressure chamber 17.
[0005]
Reference numeral 18 denotes an oil supply passage communicating between the oil reservoir below the high-pressure chamber 14 and the vane back pressure chamber 17, reference numeral 39 denotes an oil groove provided in the rear side plate 7 for interrupting communication between the vane back pressure chamber 17 and the oil supply passage, and reference numeral 19 denotes a differential pressure. 20 is a first ball seat provided in the middle of the refueling passage, 21 is a first sphere that is free or in contact with the first ball seat 20 to block communication with the refueling passage 18, and 22 is a first ball. A first plunger chamber 23, which is open to the ball seat 20 on the opposite side to the first ball 21, is slidably disposed in the inner chamber of the first plunger chamber 22 and moves to the first ball seat 20 side when the first ball 21 is moved to the first ball seat 20 side. The first plunger released from the first ball seat 20 is a first pressure introducing passage which communicates the first upper plunger chamber 25 at the lower end of the first plunger 23 with the working chamber 8 immediately before the discharge valve, and 27 is one end thereof. Is connected to the vane back pressure chamber 17, a first gas supply passage, Is connected to the upper part of the high-pressure chamber 14 at a second gas supply passage, 29 is a second ball seat provided at a communicating portion between the first gas supply passage 27 and the second gas supply passage 28, and 30 is a second ball. A second sphere, which separates or abuts on the seat 29 and blocks communication between the first gas supply passage 27 and the second gas supply passage 28, 31 is a stopper for restricting the movement of the second sphere 30, and 33 is a second plunger chamber 32 The second plunger 35, which is slidably disposed inside and releases the second sphere 30 from the second sphere 29 when it moves toward the second sphere 29, is a second lower plunger chamber at the lower end of the second plunger 33. 34, a spring for urging the second sphere 30 in a direction of being released from the second ball seat 29 via the second plunger 33, and a spring 36 for connecting the second lower plunger chamber 34 at the lower end of the second plunger 33 and the working chamber 8 Introducing a second pressure communicating with the intermediate pressure part , 37 are third ball seats provided in the middle of the first gas supply passage 27 communicating with the vane back pressure chamber 17, and 38 is a first gas supply passage 27 in which the gas flows only in one direction. This is a third sphere that blocks and interrupts the flow in the supply passage 27.
[0006]
The operation of the sliding vane compressor configured as described above will be described below. When the drive shaft 5 and the rotor 2 are rotated clockwise in FIG. 7 by receiving power transmission from a drive source such as an engine, a low-pressure fluid flows into the working chamber 8 from the suction port 9 accordingly.
[0007]
The high-pressure fluid compressed with the rotation of the rotor 2 pushes up the discharge valve 11 from the discharge port 10 and flows into the high-pressure chamber 14 from the high-pressure passage 13, and the lubricating oil is separated and captured by the separator 15. On the other hand, since the over-compressed gas in the working chamber 8 having a pressure enough to overcome the pressure of the high-pressure fluid and push up the discharge valve 11 from the first pressure introducing passage 24 is supplied to the first upper plunger chamber 25, The plunger 23 moves toward the first sphere 20 and releases the first sphere 21 from the first sphere 20.
[0008]
Further, since the second gas supply passage 28 communicates with the upper part of the high pressure chamber 14, the pressure of the intermediate pressure of the working chamber 8 flowing from the second pressure introduction passage 36 into the second lower plunger chamber 34 and the spring 35 The second plunger 33 is held at the position shown in FIG. 10 by overcoming the urging force.
[0009]
That is, the second sphere 30 comes into contact with the second sphere 31 and the first gas supply passage 27 and the second gas supply passage 28 are shut off. Further, the third sphere 38 provided in the first gas supply passage 27 abuts on the third ball seat 37 because the pressure of the first gas supply passage 27 on the side of the vane back pressure chamber 17 is high, and the first gas supply passage 27 is closed. Cut off.
[0010]
Therefore, the lubricating oil stored in the oil reservoir below the high pressure chamber 14 is supplied to the vane back pressure chamber 17 from the passage 19 and the oil supply passage 18 and is used to press the vane 4 to be used for pressing the rotor 2, the front side plate 6, and the rear part. It flows into the working chamber 8 through the gap with the side plate 7 (FIG. 8).
[0011]
When the compressor is stopped, the pressure in the working chamber 8 rapidly drops to the pressure of the low-pressure fluid, and the pressure at the lower end of the first plunger 23 that communicates with the first pressure introducing passage 24 that opens into the working chamber 8 is reduced. Since the pressure becomes lower than the pressure at the upper end of the first plunger 23, the first plunger 23 moves toward the lower plunger, and the first sphere 21 comes into contact with the first ball seat 20.
[0012]
Further, since the high pressure side in the refrigeration cycle and the inside of the compressor are separated by the first sphere 21, the pressure in the upper part of the high pressure chamber 14 is high, and the second plunger is held at the position shown in FIG. That is, the second sphere 30 contacts the second sphere 29, and the first gas supply passage 27 and the second gas supply passage 28 are shut off.
[0013]
Further, the pressure inside the compressor, that is, inside the working chamber 8 rapidly drops to the pressure of the low-pressure side fluid, so that the third sphere 38 is released from the third ball seat 37. Therefore, since the lubricating oil is not supplied after the compressor is stopped, the liquid compression at the time of starting the compressor, which is caused by the lubricating oil remaining in the working chamber 8, can be prevented.
[0014]
When a certain time elapses after the compressor is stopped and the pressure difference between the high pressure side and the low pressure side reaches a predetermined value, the spring 35 moves the second plunger 33 to the second ball seat 29 side, so that the state shown in FIG. When the compressor is started from this state, the gaseous fluid is instantaneously supplied from the second gas supply passage 28 to the vane back pressure chamber 17 via the first gas supply passage 27 and the supply passage 18.
[0015]
[Problems to be solved by the invention]
However, in the above-described conventional sliding vane type compressor, a certain time has elapsed after the compressor was stopped, and the pressure difference between the high pressure side and the low pressure side becomes lower than the high pressure side (high pressure chamber) where the second sphere is released from the second ball seat. When the compressor is started in a state slightly larger than the pressure difference on the side (low pressure chamber), particularly when lubricating oil is filled in the middle of the oil supply passage, the gaseous fluid is in contact with the second sphere because it is in contact with the second sphere seat. Cannot be supplied from the second gas supply passage to the vane back pressure chamber, and the lubricating oil is supplied from the oil supply passage. A sufficient amount of lubricating oil cannot be supplied with respect to the volume fluctuation of the vane back pressure chamber caused by the extension and retraction of the vane.
[0016]
For this reason, particularly when the number of revolutions at the time of starting the compressor is low, a pressure drop in the vane back pressure chamber occurs, and the well-known malfunctioning phenomenon in which the vane separates from the inner wall of the cylinder and collides again, and a poor compression phenomenon in which the fluid is not compressed occur. Had.
[0017]
For this reason, there is a method of increasing the load of the spring in order to secure a pressure difference between the high pressure side and the low pressure side that can supply the lubricating oil from the oil supply passage to the vane back pressure chamber sufficiently. However, when the spring load is increased, a gaseous fluid is always supplied to the vane back pressure chamber during steady operation at a low load, so that lubricating oil is not supplied at all, and there is a problem of causing abnormal wear of the compressor and the like. Was.
[0018]
[Means for Solving the Problems]
In order to solve the above problems, a sliding vane compressor according to the present invention communicates two gas supply passages when a pressure difference between a high-pressure side and a low-pressure side fluid of a conventional compressor is equal to or less than a predetermined value. When the value is larger than the value, a gas opening / closing means is provided for communicating only the two gas supply passages each having a small passage sectional area.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 for solving the above-mentioned problem is characterized in that in a sliding vane compressor, when a pressure difference between a high-pressure side and a low-pressure side fluid is equal to or less than a predetermined value, two gas supply passages are communicated, By providing a gas opening / closing means for communicating only when the cross-sectional area of the two gas supply passages is small when the pressure is larger than a predetermined value, the compressor is started when the pressure difference between the high-pressure side and the low-pressure side fluid is small. When the gaseous fluid is supplied from the two gas supply passages to the vane back pressure chamber and the compressor is started when the pressure difference is larger than a predetermined value, the gaseous fluid is supplied from the two gas supply passages whose passage cross-sectional area is smaller. It is possible to prevent the well-known malfunctioning phenomenon and the poor compression phenomenon that does not compress the fluid, which are supplied, released from the inner wall of the cylinder, and collide again.
[0020]
According to a second aspect of the invention, by providing the one cross-sectional area of the two gas supply passage is smaller integrally with the outer casing of the vane back pressure applying equipment, together with the effect of the invention of claim 1, wherein, Cost reduction can be achieved by reducing the number of parts and improving workability.
[0021]
According to a third aspect of the present invention, the two gas supply passages having a small cross-sectional area are provided with a concave portion in the ball seat of the gas opening / closing means having the same configuration as that of the conventional sliding vane type compressor. Thus, there is the effect of the invention of claim 2 as well as the effect of the invention of claim 1.
[0022]
【Example】
The following examples of the present invention will be described with reference to FIGS. 1 to 5 of the drawings. In the figure, components having the same functions and effects as those of the conventional sliding vane type compressor are denoted by the same reference numerals and description thereof is omitted.
[0023]
In the figure, reference numeral 50 denotes a third gas supply passage 51a having a small passage cross-sectional area provided between the first gas supply passage 27 and the second gas supply passage 28 and a third gas supply passage 51b having a large passage cross-section. The third plunger 52 is a seal seat surface that shuts off the first and second gas passages when the end face of the third plunger abuts.
[0024]
The operation of the sliding vane compressor configured as described above will be described below.
[0025]
(Example 1)
In a steady operation state in which there is a sufficient pressure difference between the high pressure side and the low pressure side to refuel after a certain period of time has elapsed since the start of the compressor, the discharge from the first pressure introduction passage 24 overcomes the pressure of the high pressure fluid. Since the over-compressed gas in the working chamber 8 having a pressure enough to push up the valve 11 is supplied to the first plunger chamber 25, the first plunger 23 moves to the first ball seat 20 side and is released from the first ball 20. Is done.
[0026]
Further, since the second gas supply passage 28 communicates with the upper part of the high-pressure chamber 14 , the pressure of the intermediate pressure of the working chamber 8 flowing into the second lower plunger chamber 34 from the second pressure introduction path 36 and the spring 35 The second plunger 33 is held at the position shown in FIG. 1 by overcoming the urging force. That is, the lower end of the third plunger 50 abuts on the seal seat surface 52 to shut off the third gas supply passage 51b having a large passage cross-sectional area.
[0027]
Further, the third sphere 38 provided in the middle of the first gas supply passage 27 abuts on the third ball seat 37 because the pressure on the side of the vane back pressure chamber 17 of the first gas supply passage 27 is high, and the third sphere 38 contacts the first gas supply passage 27. Cut off. Therefore, the third gas supply passage 51a communicates with the first and second gas supply passages 27 and 28, but has a very small passage cross-sectional area, so that the third gas supply passage 51a is stored in the oil reservoir below the high pressure chamber 14 in the vane back pressure chamber 17. Lubricating oil is supplied from the passage 19 and the oil supply passage 18 and is used to press the vane 4.
[0028]
When the compressor stops, the pressure in the working chamber 8 rapidly drops to the pressure of the low-pressure side fluid, so that the pressure in the first lower plunger chamber 25 also drops to the pressure of the low-pressure side fluid, and the pressure at the lower end of the first plunger 23 decreases. Since the pressure becomes lower than the pressure at the upper end of the first plunger 23, the first plunger 23 moves to the lower plunger chamber side, and the first sphere 21 comes into contact with the first ball seat 20.
[0029]
Since the high pressure side in the refrigeration cycle and the inside of the compressor are separated by the first sphere 21, the pressure in the upper part of the high pressure chamber 14 is high, and the second plunger 33 is held at the position shown in FIG. That is, the lower end of the third plunger 50 abuts on the seal seat surface 52 to shut off the third gas supply passage 51b having a large passage cross-sectional area.
[0030]
Further, the pressure inside the compressor drops to the pressure of the low-pressure side fluid, so that the third sphere 38 is released from the third ball seat 37. Therefore, the inflow of the lubricating oil into the working chamber 8 can be prevented as in the conventional vane back pressure applying device of the sliding vane type compressor. Even after a lapse of time after the stop, the third plunger 50 abuts on the seal seat surface 52, and the third gas supply passage 51b having a large passage cross-sectional area is shut off, but the third gas supply passage 51b having a small passage cross-sectional area is closed. Since the gas supply passage 51a communicates with the first and second gas supply passages 28 and 27, a gaseous fluid can be instantaneously supplied to the vane back pressure chamber 17.
[0031]
When the pressure difference between the high-pressure side and the low-pressure side decreases after a certain period of time after the compressor stops, the spring 35 moves the second plunger 33 to the seal seat side 52 as shown in FIG. Is started, the gaseous fluid is instantaneously supplied from the second gas supply passage 28 to the vane back pressure chamber 17 via the third gas supply passages 51a and 51b, the first gas supply passage 27, and the oil supply passage 18.
[0032]
Immediately thereafter, as the pressure in the high-pressure chamber 14 increases, the pressure overcomes the urging force of the spring 35 and the pressure of the second lower plunger chamber 34, that is, the lower end of the third plunger 50 contacts the seal seat surface 52, and By switching off the third gas supply passage 51b having a large cross-sectional area, the supply is switched to oil supply.
[0033]
As described above, according to the present embodiment, as a sliding vane type compressor, when the pressure difference between the high-pressure side and the low-pressure side fluid is equal to or less than a predetermined value, two gas supply passages are communicated, and the pressure difference is equal to the predetermined value. In any of the above cases, by always integrally providing the gas opening / closing means for communicating only those having a small passage cross-sectional area of the two gas supply passages, when the pressure difference between the high-pressure side and the low-pressure side after the compressor is stopped, In addition, the instantaneous supply of high-pressure gaseous fluid to the vane back pressure chamber prevents the well-known malfunctioning phenomenon in which the vane separates from the inner wall of the cylinder and collides again, and the poor compression phenomenon in which the fluid is not compressed, and the durability of the compressor. There is no loss in performance or efficiency.
[0034]
(Example 2)
FIG. 4 is an enlarged view of a main part of the vane back pressure applying device according to the second embodiment of the present invention.
In the first embodiment, the third gas supply passages 51a and 51b are integrally provided in the third plunger 50. However, since the third plunger 50 is made of an Fe-based material, the third gas having an extremely small passage cross-sectional area is used. for processing the supply passage 51a it is very difficult, by commonly provided on the exterior casing of the vane back pressure applying equipment 1 6 made of an Al-based material, together with the effect of the first aspect, processability In addition, the cost can be reduced because other parts can be shared with conventional ones.
[0035]
(Example 3)
5A is an enlarged view of a main part of the vane back pressure applying device according to the third embodiment of the present invention, and FIG. 5B is an enlarged view of an arrow in FIG.
In the conventional vane back pressure applying device 16 , the third gas supply passage 51a is subjected to an additional process of forming a recess in a part of the second ball seat 29 , so that the invention according to claim 1 and the invention according to claim 2 are achieved. It also has the effect of
[0036]
Further, in the embodiment, the sliding vane type compressor has a perfect circular type having only one suction port 9 and one discharge port 10. However, a type having a plurality of suction ports 9 and discharge ports 10 may be used. Although the number is shown as three, any number may be used.
[0037]
【The invention's effect】
As is apparent from the above description, the present invention according to claim 1 for solving the above-mentioned problem is a sliding vane type compressor in which the pressure difference between the high pressure side and the low pressure side fluid is equal to or less than a predetermined value. When the two gas supply passages communicate with each other, and when the gas supply passage is larger than a predetermined value, the gas supply passage has a gas opening / closing means that communicates only with a small passage cross-sectional area. Even when the compressor is started, the gaseous fluid is supplied to the vane back pressure chamber from the gas supply passage having at least a small cross-sectional area, the gaseous fluid is released from the inner wall of the cylinder, and the well-known malfunctioning phenomenon that causes collision again and poor compression that does not compress the fluid. The phenomenon can be prevented.
[0038]
The invention according to claim 2, wherein the one cross-sectional area of the two gas supply passage is smaller in the outer casing of the vane back pressure applying equipment by providing integrally with the compressor stops after the compressor under any conditions Even if the gas supply fluid is supplied to the vane back pressure chamber from at least the gas supply passage having a small cross-sectional area, the well-known malfunctioning phenomenon that separates from the inner wall of the cylinder and collides again and the poor compression phenomenon that does not compress the fluid are performed. In addition to reducing the number of parts, the cost can be reduced by reducing the number of parts and improving the workability.
[0039]
According to a third aspect of the present invention, the two gas supply passages each having a small passage cross-sectional area are provided with a concave portion in a ball seat, so that at least the cross-sectional area can be increased under any condition after the compressor is stopped. By supplying gaseous fluid to the vane back pressure chamber from the small gas supply passage, it is possible to prevent the well-known malfunctioning phenomenon that separates from the cylinder inner wall and collides again and the poor compression phenomenon that does not compress the fluid, and also reduces the number of parts. The cost can be reduced by reducing the cost and improving the workability.
[Brief description of the drawings]
FIG. 1 is an enlarged view of a main part of a vane back pressure applying device according to a first embodiment of the present invention (during steady operation).
FIG. 2 is an enlarged view of a main part of the vane back pressure applying device according to the first embodiment of the present invention (when stopped).
FIG. 3 is an enlarged view of a main part of the vane back pressure applying device according to the first embodiment of the present invention (at start-up).
FIG. 4 is an enlarged view of a main part of a vane back pressure applying device according to a second embodiment of the present invention. FIG. 5 (a) is an enlarged view of a main part of a vane back pressure applying device according to a third embodiment of the present invention. ) Arrow view (enlarged view of the ball seat)
6 is a longitudinal sectional view of a conventional sliding vane type compressor. FIG. 7 is a sectional view taken along line XX of FIG. 6. FIG. 8 is an enlarged view of a main part of the conventional vane back pressure applying device (at the time of steady operation).
FIG. 9 is an enlarged view of a main part of the conventional vane back pressure applying device (when stopped).
FIG. 10 is an enlarged view of a main part of a conventional vane back pressure applying device (at start-up).
[Explanation of symbols]
REFERENCE SIGNS LIST 1 cylinder 2 rotor 3 vane slot 4 vane 5 drive shaft 6 front side plate 7 rear side plate 8 working chamber 9 suction port 10 discharge port 11 discharge valve 12 high pressure case 13 high pressure passage 14 high pressure chamber 15 screen 16 vane back pressure applying device 17 vane Back pressure chamber 18 Oil supply passage 19 Passage 20 First ball seat 21 First sphere 22 First plunger chamber 23 First plunger 24 First pressure introduction path 25 First upper plunger chamber 27 First gas supply path 28 Second gas supply path 29 second ball seat 30 second ball 31 stopper 32 second plunger chamber 33 second plunger 34 second lower plunger chamber 35 spring 36 third pressure introduction path 37 third ball seat 38 third ball 50 third plungers 51a, 51b Third gas supply passage 52 Seal seat surface

Claims (3)

筒状内壁を有するシリンダと、このシリンダの内部に配設されるとともに、その外周の一部がシリンダ内壁と微小隙間を形成するロータと、このロータに設けられたベーンスット内に摺動自在に挿入された複数のベーンと、前記ロータに設けられ回転自在に軸支される駆動軸と、前記シリンダの両端を閉塞して内部に作動室を形成する前部側板及び後部側板と、前記ロータ外周とシリンダ内壁が近接している部分をはさんで作動室に連通する吸入口及び吐出口と、この吐出口に設けられた吐出弁と、吐出口に連通し圧縮された高圧流体中の潤滑油を分離しかつその下方部分に油溜り部を含む高圧と、前記ベーンスロットとベーン端部とで形成されるベーン背圧室と、前記高圧室の油溜り部とを連通する給油通路と、この給油通路を連通遮断する油路開閉手段と、前記ベーン背圧室と前記高圧内の油溜り部を除く部分に連通するガス供給通路と、前記ガス供給通路内に、通路断面積が異なる二つのガス供給通路を一体的に備えたガス開閉手段を具備し、高圧側と低圧側の流体の圧力差が所定値以下の時、前記二つのガス供給通路を連通させ、高圧側と低圧側の流体の圧力が所定値より大きい時、前記二つのガス供給通路の通路断面積が小さいもののみ連通させることを特徴とするスライディングベーン式圧縮機。Sliding a cylinder having a cylindrical inner wall, while being arranged inside the cylinder, a rotor portion of an outer periphery thereof to form the inner wall of the cylinder and small gap, the Bensu Lock in preparative provided on the rotor A plurality of vanes freely inserted, a drive shaft provided on the rotor and rotatably supported, a front side plate and a rear side plate closing both ends of the cylinder to form a working chamber therein, A suction port and a discharge port communicating with the working chamber across a portion where the rotor outer periphery and the cylinder inner wall are close to each other; a discharge valve provided at the discharge port; An oil supply passage for separating a lubricating oil and including a high-pressure chamber including an oil reservoir at a lower portion thereof, a vane back pressure chamber formed by the vane slot and a vane end, and an oil reservoir of the high-pressure chamber; And the oil supply passage An oil passage opening and closing means for the gas supply passage communicating with the portion except for the oil reservoir portion in said high pressure chamber and the vane back pressure chamber, the gas supply passage, the two gas supply passages are cross-sectional area different When the pressure difference between the high-pressure side and the low-pressure side fluid is equal to or less than a predetermined value, the two gas supply passages communicate with each other, and the pressure difference between the high-pressure side and the low-pressure side fluid is reduced. A sliding vane-type compressor, wherein when the gas supply passage is larger than a predetermined value, only the two gas supply passages having a small cross-sectional area communicate with each other. 二つのガス供給通路の通路断面積が小さいものをベーン背圧付与装置の外装ケースに設けた請求項1記載のスライディングベーン式圧縮機。Sliding vane compressor according to claim 1, wherein providing the one cross-sectional area of the two gas supply passage is smaller in the outer casing of the vane back pressure applying equipment. 二つのガス供給通路の通路断面積が小さいものを鋼球と球座からなるガス開閉手段の球座に凹を設けた請求項1記載のスライディングベーン式圧縮機。Sliding vane compressor according to claim 1, wherein providing the recess what the passage cross-sectional area of the two gas supply passages is small ball seat of gas on-off means consisting of a steel ball and ball seat.
JP28941097A 1997-10-22 1997-10-22 Sliding vane compressor Expired - Fee Related JP3584703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28941097A JP3584703B2 (en) 1997-10-22 1997-10-22 Sliding vane compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28941097A JP3584703B2 (en) 1997-10-22 1997-10-22 Sliding vane compressor

Publications (2)

Publication Number Publication Date
JPH11125190A JPH11125190A (en) 1999-05-11
JP3584703B2 true JP3584703B2 (en) 2004-11-04

Family

ID=17742889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28941097A Expired - Fee Related JP3584703B2 (en) 1997-10-22 1997-10-22 Sliding vane compressor

Country Status (1)

Country Link
JP (1) JP3584703B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125362A (en) * 2004-11-01 2006-05-18 Matsushita Electric Ind Co Ltd Vane rotary type compressor
JP2006132370A (en) * 2004-11-04 2006-05-25 Matsushita Electric Ind Co Ltd Vane rotary type compressor
JP5445550B2 (en) 2011-09-29 2014-03-19 三菱電機株式会社 Vane rotary compressor

Also Published As

Publication number Publication date
JPH11125190A (en) 1999-05-11

Similar Documents

Publication Publication Date Title
JPH11132165A (en) Scroll fluid machine
JP3584703B2 (en) Sliding vane compressor
KR930002464B1 (en) Sliding vane type compressor
JP2913155B2 (en) Gas compressor
JPH0737796B2 (en) Rotary compressor
KR20090093816A (en) Gas compressor
JP2000297770A (en) Clutchless scroll type fluid machine
JPH0745877B2 (en) Vane back pressure application device for sliding vane compressor
JPH0528396Y2 (en)
JP2001165079A (en) Sliding vane compressor and refrigerating or cooling device possessed of refrigerating cycle with the compressor
JPH0528397Y2 (en)
JPS63176687A (en) Applying device for vane back pressure in sliding vane type compressor
JPH1162832A (en) Oil injection type compressor
JP2964073B2 (en) Gas compressor
JP4044793B2 (en) Scroll compressor
JPH0745878B2 (en) Vane back pressure application device for sliding vane compressor
JPH02102390A (en) Vane back-pressure giving device of sliding vane type compressor
JPH0196489A (en) Vane back pressure exerting device for sliding vane type compressor
JPH10148194A (en) Gas compressor
JP2001280281A (en) Internal pressure relief device for compressor
JPH11201064A (en) Sliding vane type compressor
KR20220169953A (en) Back pressure control valve
JP2001165078A (en) Sliding vane compressor and refrigerating or cooling device possessed of refrigerating cycle with the compressor
JP2001342980A (en) Compressor
JPH0524357B2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140813

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees