JP3583878B2 - Electroplating method - Google Patents

Electroplating method Download PDF

Info

Publication number
JP3583878B2
JP3583878B2 JP30391796A JP30391796A JP3583878B2 JP 3583878 B2 JP3583878 B2 JP 3583878B2 JP 30391796 A JP30391796 A JP 30391796A JP 30391796 A JP30391796 A JP 30391796A JP 3583878 B2 JP3583878 B2 JP 3583878B2
Authority
JP
Japan
Prior art keywords
plating
plated
metal
electrode
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30391796A
Other languages
Japanese (ja)
Other versions
JPH10135156A (en
Inventor
吉田  孝
敦 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP30391796A priority Critical patent/JP3583878B2/en
Publication of JPH10135156A publication Critical patent/JPH10135156A/en
Application granted granted Critical
Publication of JP3583878B2 publication Critical patent/JP3583878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気化学反応により金属薄膜を形成する電解メッキ法に関し、特に、被メッキ部に供給する電荷量の差によって、形成する金属薄膜の膜厚を調整可能とした電解メッキ法に関する。
【0002】
【従来の技術】
メッキ法には、電解メッキ法及び無電解メッキ法があり、これらはいずれも、水溶液中の金属イオンを還元し、金属を析出させ、金属膜を形成する方法である。一般的に、短時間で厚い金属膜を形成する場合、電解メッキ法が採用される。
【0003】
半導体装置の製造工程では、半導体素子とリードフレームを金ワイヤで接続する際、半導体素子へのダメージの低減、あるいは金ワイヤの接着性を向上させるため、半導体素子のボンディングパッド上に厚いメッキ金属を形成する場合がある。また近年、半導体装置表面にメッキ法によりバンプを形成し、接続を行う方法が採用されている。
【0004】
図3に、従来のメッキ法により金属膜を形成する半導体装置の断面図を示す。図において、1はn型半導体領域、2はn型半導体領域1表面に形成されたp型半導体領域、3はp型半導体領域2上に形成された第1の電極、4はn型半導体領域1上に形成された第2の電極、5は電源(図示せず)に接続する金属薄膜からなるメッキ用電極、6はメッキ用電極5上に形成され、被メッキ部を開口するホトレジスト、7はメッキ用電極5に電荷を供給することにより析出するメッキ金属である。
【0005】
電源の負端子に接続されたメッキ用電極5を、電源の正端子に接続した対抗電極(図示せず)に対向させて配置し、メッキ液に浸積させ、電源から電流を供給する。ホトレジスト6の開口部に露出するメッキ用電極5表面では、メッキ液中に溶解している金属イオンが還元され、メッキ用電極5表面に金属が析出する。ホトレジスト6で被覆された部分では、金属の析出は無いので、ホトレジスト6の開口部に露出する第1及び第2の電極3、4上のみにメッキ金属7が析出することになる。電源から供給される電子は、メッキ用電極5を通り、半導体装置(通常は、複数の半導体装置が形成された半導体ウエハ)全面に均一に供給される。そのため、析出するメッキ金属7は、第1の電極3上と第2の電極4上とで、同じ厚さになる。
【0006】
【発明が解決しようとする課題】
通常半導体装置表面は、多層配線やメサ構造等によって段差があり、平坦ではない。段差のある表面に、従来の電解メッキ法により、メッキ金属を形成すると、析出するメッキ金属7の厚さは均一であるため、メッキされる表面の段差に応じて、メッキ金属7表面の高さがばらつくことになる。
【0007】
高さのばらついたメッキ金属7表面に金ワイヤをボンディングする場合、ボンディング装置がボンディングパッドを認識しづらくなる場合がある。また、メッキ法により形成したバンプ電極により、表面実装構造とする場合、高さがばらついて、接続が取れなくなることがある。本発明は、上記問題を解決するため、段差のある半導体装置表面にメッキを施す際、段差の高さに応じて析出するメッキ金属の厚さを変え、メッキ金属表面の高さを揃えることができる電解メッキ法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は上記目的を達成するため、電源の一方に対抗電極を、他方に被メッキ部を接続し、電解メッキ法により前記被メッキ部に金属を析出させる方法において、前記被メッキ部は同一基板上の少なくとも高さの異なる第1及び第2の被メッキ部からなり、該第1の被メッキ部は、電源と被メッキ部との間に整流作用を有する素子を順方向電流が流れる向きに接続し、前記電源から前記第1及び第2の被メッキ部に同時に電荷を供給し、前記素子の順方向の整流特性を利用して、前記第1の被メッキ部表面に析出する金属前記第2の被メッキ部表面に析出する金属との厚さを変え、前記第1及び第2の被メッキ部に析出するメッキ金属表面の高さを揃えるものである。
【0009】
特に、半導体装置表面にメッキを行う際には、整流作用を有する素子として、半導体装置内に形成されたダイオードを利用することで、簡便に、被メッキ部に析出するメッキ金属の厚さを調整することができる。
【0010】
【発明の実施の形態】
本発明の実施の形態を図1に示す。図において、1は表面に半導体素子が形成されるn型半導体領域、2はn型半導体領域1表面に形成されたp型半導体領域、3はp型半導体領域2上に形成された第1の電極、4はn型半導体領域1上に形成された第2の電極、6は被メッキ部を開口するホトレジスト、7はメッキ金属、8は電源(図示せず)に接続し、n型半導体領域1上に形成したメッキ用電極である。
【0011】
図に示すように、第1の電極3と第2の電極4の高さは、同一ではない。このような構造の半導体装置をメッキ液に浸積させ、次のように電解メッキを施す。(なお、メッキを行う際には、メッキ用電極8やn型半導体領域1側面は、メッキ液に接触しないように、メッキ液に不溶のマスク材でコーティングしておく。)電源の負端子に接続されたメッキ用電極8から供給された電子は、n型半導体領域1及びp型半導体領域2を介して第1の電極3に供給される。一方、第2の電極4へ供給される電子は、n型半導体領域1を通過するのみである。このとき、電源の電圧の設定によって、第1の電極3に供給される電荷(電子)量と第2の電極4の供給される電荷(電子)量に差が生じる。
【0012】
即ち、第1の電極3に供給される電子は、n型半導体領域1とp型半導体領域で構成されるpn接合ダイオードの電流−電圧特性に従い供給されるのに対し、第2の電極4に供給される電子は、n型半導体領域1のもつバルク抵抗の電流−電圧特性に従い供給されることになる。
【0013】
図2に、第1の電極3と第2の電極4に供給される電流−電圧特性を模式的に示す。第1の電極3に供給される電流は、曲線Aで示すように、順方向では指数関数的に電流が増加するダイオードの整流特性を示す。一方、第2の電極4に供給される電流は、直線Bで示すように、比例特性を示す。曲線Aで示す電流をIA、直線Bで示す電流をIBとすると、それぞれ次のように表される。
IA=I0(exp(qV/kT)−1)
IB=R・V
ここで、I0は飽和電流、qは素電荷量、Vは印加電圧、kはボルツマン定数、Tは温度、Rは抵抗である。
【0014】
説明を単純化するため、第1の電極3と第2の電極4の被メッキ部の面積を同じとすると、同一電圧値における図2の曲線Aと直線Bの電流値に比例した厚さのメッキ金属が、第1の電極及び第2の電極上に析出することになる。第1の電極3と第2の電極の被メッキ部の面積が同一でない場合、電流密度に比例した厚さのメッキ金属が形成されるので、被メッキ部の面積に応じて、曲線Aと直線Bが交わる電圧値以下の電圧値(IA<IBの関係を満たす範囲)を適宜設定することで、第1の電極3上に析出するメッキ金属の厚さに比べて、第2の電極4上に析出するメッキ金属の厚さが厚くなり、メッキ終了後のメッキ金属表面の高さが同じになるように調整できる。
【0015】
以上、n型半導体領域とp型半導体領域で構成したpn接合ダイオードを備えた半導体装置上に電解メッキを行う場合を説明したが、本発明はpn接合ダイオードに限定されるものではない。例えば、半導体装置上に形成されたPIN接合ダイオードやショットキー接合ダイオードのような整流特性を示す半導体素子でも、同様に、析出するメッキ金属の厚さを調整することが可能である。また、半導体装置上に形成された3端子素子、例えばPNP型トランジスタやショットキー接合トランジスタ等の各端子のうち、整流特性をもつ端子を選択して、整流特性を示す半導体素子を形成し、析出するメッキ金属の厚さを調整することも可能である。
【0016】
更に、n型あるいはp型半導体領域の不純物濃度、半導体の種類によっては、バルク抵抗が大きく、順方向電流の大きいダイオードが形成される場合もある。このような半導体装置についても、本発明を適用することが可能である。この場合、前述の実施の形態と異なり、整流作用を有するダイオードを接続した電極上に析出するメッキ金属厚に比べて、バルク抵抗が接続する電極上に析出するメッキ金属厚の方が薄くなる。段差の上にバルク抵抗の接続する電極があり、段差の下に整流作用を有するダイオードが接続されるような構造の場合は、このような組み合わせを選択すればよい。
【0017】
上記種々の変更に伴い、メッキ用電極8の形成方法も、半導体領域の裏面側に接続させる方法に限定されることなく、変更することができる。
【0018】
メッキ方法は、所定のメッキ時間にわたって、常に析出メッキ金属の厚さに差が生じる電圧に調整しても良いし、一定時間のみ析出メッキ金属の厚さに差を生じる電圧に調整し、一定時間は、析出メッキ金属の厚さに差を生じない電圧に調整しても良い。なお、電圧を高く設定すると、析出メッキ金属の厚さの差が小さくなる傾向となり、メッキ金属の質の低下を招くおそれがあるので、比較的低い電圧で電流を供給するのが好ましい。同様に、図2に示す直線Aと直線Bが交わる電圧以上では、整流作用を有する素子を接続した被メッキ部の方が、素子を接続しない被メッキ部に比べて電荷量が大きくなるが、このような高い電圧設定でも、析出するメッキ金属の質の低下を招き、好ましくない場合がある。
【0019】
以上のように本発明によれば、半導体装置上に形成するメッキ金属の厚さを調整することによって、メッキ金属の高さを一定に保つことが可能となる。メッキ金属の高さを一定に保つことにより、半導体装置のボンディングパッドに金ワイヤをボンディングする場合、ボンディング装置がボンディングパッドを認識しづらいという問題を解消することができる。また、本発明のメッキ法により形成したバンプ電極により、表面実装を行う場合、半導体装置表面の高さがばらついても、バンプ高さがばらつくことがないので、確実に接続することができる。
【0020】
【発明の効果】
以上説明したように本発明によれば、被メッキ部に供給する電荷量を、整流素子を利用して調整することによって、メッキ金属の厚さを簡便に調整することが可能となった。本発明を半導体装置のボンディングパッドやバンプの形成に適用した場合、半導体装置表面に高さのばらつきがあったとしても、メッキ金属の高さを一定にすることができるので、ボンディングパッドに認識の誤りや接続不良を防止することができ、歩留まり良く、半導体装置を製造することができる。
【0021】
さらに、本発明のメッキ方法は、供給する電流及び電圧を調整するのみであり、制御が簡便である。
【図面の簡単な説明】
【図1】本発明の実施の形態を説明する断面図である。
【図2】本発明の実施の形態を説明するグラフである。
【図3】従来の電解メッキ法を説明する断面図である。
【符号の説明】
1 n型半導体領域
2 p型半導体領域
3 第1の電極
4 第2の電極
5 メッキ用電極
6 ホトレジスト
7 メッキ金属
8 メッキ用電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrolytic plating method for forming a metal thin film by an electrochemical reaction, and more particularly to an electrolytic plating method in which the thickness of a formed metal thin film can be adjusted by a difference in the amount of charge supplied to a portion to be plated.
[0002]
[Prior art]
The plating method includes an electrolytic plating method and an electroless plating method, both of which are methods for reducing metal ions in an aqueous solution, depositing a metal, and forming a metal film. Generally, when a thick metal film is formed in a short time, an electrolytic plating method is employed.
[0003]
In the process of manufacturing a semiconductor device, when connecting a semiconductor element and a lead frame with a gold wire, a thick plating metal is formed on a bonding pad of the semiconductor element in order to reduce damage to the semiconductor element or improve adhesion of the gold wire. May form. In recent years, a method has been adopted in which bumps are formed on a surface of a semiconductor device by a plating method to perform connection.
[0004]
FIG. 3 is a sectional view of a semiconductor device in which a metal film is formed by a conventional plating method. In the figure, 1 is an n-type semiconductor region, 2 is a p-type semiconductor region formed on the surface of the n-type semiconductor region 1, 3 is a first electrode formed on the p-type semiconductor region 2, and 4 is an n-type semiconductor region A second electrode 5 formed on 1 is a plating electrode made of a metal thin film connected to a power supply (not shown), 6 is a photoresist formed on the plating electrode 5 and opening a portion to be plated, 7 Is a plating metal deposited by supplying a charge to the plating electrode 5.
[0005]
The plating electrode 5 connected to the negative terminal of the power supply is disposed so as to face a counter electrode (not shown) connected to the positive terminal of the power supply, immersed in a plating solution, and supplied with current from the power supply. On the surface of the plating electrode 5 exposed at the opening of the photoresist 6, the metal ions dissolved in the plating solution are reduced, and the metal is deposited on the surface of the plating electrode 5. Since there is no metal deposition in the portion covered with the photoresist 6, the plating metal 7 is deposited only on the first and second electrodes 3 and 4 exposed at the openings of the photoresist 6. The electrons supplied from the power supply pass through the plating electrode 5 and are uniformly supplied to the entire surface of the semiconductor device (normally, a semiconductor wafer on which a plurality of semiconductor devices are formed). Therefore, the deposited metal 7 has the same thickness on the first electrode 3 and the second electrode 4.
[0006]
[Problems to be solved by the invention]
Usually, the surface of a semiconductor device has a step due to a multilayer wiring, a mesa structure and the like, and is not flat. When a plating metal is formed on a stepped surface by a conventional electrolytic plating method, since the thickness of the deposited plating metal 7 is uniform, the height of the surface of the plating metal 7 depends on the step of the surface to be plated. Will vary.
[0007]
When bonding a gold wire to the surface of the plating metal 7 having a varied height, the bonding apparatus may have difficulty in recognizing the bonding pad. Further, when a bump electrode formed by a plating method is used to form a surface-mounted structure, the height may vary and a connection may not be established. The present invention solves the above-described problem by, when plating a semiconductor device surface having a step, changing the thickness of the plating metal deposited according to the height of the step, and making the height of the plating metal surface uniform. An object of the present invention is to provide a possible electrolytic plating method.
[0008]
[Means for Solving the Problems]
Since the present invention is to achieve the above object, one to the counter electrode of the power source, it is connected to be plated portion to the other, a method of depositing a metal on the object to be plated portion by electrolytic plating, the to-be-plated portion identical substrate The first and second portions to be plated are at least different in height from each other. The first portion to be plated has a rectifying function between the power supply and the portion to be plated in a direction in which a forward current flows. connect, simultaneously supplying a charge to the first and second to-be-plated portion from the power source, by utilizing the forward rectifying characteristics of the element, the metal to be deposited on the first of the plating part surface The thickness of the metal deposited on the surface of the second plated portion is changed, and the height of the surface of the plated metal deposited on the first and second plated portions is made uniform.
[0009]
In particular, when plating the surface of the semiconductor device, the thickness of the plating metal deposited on the portion to be plated can be easily adjusted by using a diode formed in the semiconductor device as an element having a rectifying action. can do.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment of the present invention. In the drawing, 1 is an n-type semiconductor region on the surface of which a semiconductor element is formed, 2 is a p-type semiconductor region formed on the surface of the n-type semiconductor region 1, and 3 is a first semiconductor region formed on the p-type semiconductor region 2. The electrodes 4, 4 are second electrodes formed on the n-type semiconductor region 1, 6 is a photoresist for opening a portion to be plated, 7 is plating metal, 8 is connected to a power supply (not shown), 1 is a plating electrode formed on the first electrode.
[0011]
As shown, the heights of the first electrode 3 and the second electrode 4 are not the same. The semiconductor device having such a structure is immersed in a plating solution and subjected to electrolytic plating as follows. (Note that when plating is performed, the plating electrode 8 and the side surface of the n-type semiconductor region 1 are coated with a mask material insoluble in the plating solution so as not to come into contact with the plating solution.) The electrons supplied from the connected plating electrode 8 are supplied to the first electrode 3 via the n-type semiconductor region 1 and the p-type semiconductor region 2. On the other hand, electrons supplied to the second electrode 4 only pass through the n-type semiconductor region 1. At this time, the amount of charge (electrons) supplied to the first electrode 3 and the amount of charge (electrons) supplied to the second electrode 4 differ depending on the setting of the voltage of the power supply.
[0012]
That is, the electrons supplied to the first electrode 3 are supplied according to the current-voltage characteristics of the pn junction diode composed of the n-type semiconductor region 1 and the p-type semiconductor region, whereas the electrons supplied to the second electrode 4 The supplied electrons are supplied according to the current-voltage characteristics of the bulk resistance of the n-type semiconductor region 1.
[0013]
FIG. 2 schematically shows current-voltage characteristics supplied to the first electrode 3 and the second electrode 4. As shown by the curve A, the current supplied to the first electrode 3 shows a rectifying characteristic of a diode in which the current increases exponentially in the forward direction. On the other hand, the current supplied to the second electrode 4 shows a proportional characteristic as shown by a straight line B. Assuming that the current indicated by the curve A is IA and the current indicated by the straight line B is IB, they are expressed as follows.
IA = I0 (exp (qV / kT) -1)
IB = RV
Here, I0 is the saturation current, q is the elementary charge, V is the applied voltage, k is the Boltzmann constant, T is the temperature, and R is the resistance.
[0014]
For simplicity of description, assuming that the area of the plated portion of the first electrode 3 and the second electrode 4 is the same, the thickness of the first electrode 3 and the thickness of the second electrode 4 are proportional to the current values of the curves A and B in FIG. Plated metal will be deposited on the first and second electrodes. If the areas of the plated portions of the first electrode 3 and the second electrode are not the same, a plated metal having a thickness proportional to the current density is formed. By appropriately setting a voltage value (a range satisfying the relationship of IA <IB) that is equal to or less than a voltage value at which B intersects, the thickness of the second electrode 4 is higher than the thickness of the plating metal deposited on the first electrode 3. Can be adjusted so that the thickness of the plating metal deposited on the substrate becomes thicker and the height of the plating metal surface after plating is the same.
[0015]
The case where electrolytic plating is performed on a semiconductor device having a pn junction diode formed of an n-type semiconductor region and a p-type semiconductor region has been described above, but the present invention is not limited to the pn junction diode. For example, it is also possible to adjust the thickness of the deposited plating metal in a semiconductor element having rectification characteristics such as a PIN junction diode or a Schottky junction diode formed on a semiconductor device. In addition, a terminal having rectification characteristics is selected from three-terminal devices formed on the semiconductor device, for example, terminals such as a PNP transistor and a Schottky junction transistor, and a semiconductor device having rectification characteristics is formed. It is also possible to adjust the thickness of the plated metal to be formed.
[0016]
Furthermore, depending on the impurity concentration of the n-type or p-type semiconductor region and the type of semiconductor, a diode having a large bulk resistance and a large forward current may be formed. The present invention can be applied to such a semiconductor device. In this case, unlike the above-described embodiment, the thickness of the plating metal deposited on the electrode to which the bulk resistance is connected is smaller than the thickness of the plating metal deposited on the electrode to which the diode having the rectifying action is connected. Such a combination may be selected for a structure in which an electrode to which a bulk resistor is connected is provided above the step and a diode having a rectifying action is connected below the step.
[0017]
With the various changes described above, the method of forming the plating electrode 8 can be changed without being limited to the method of connecting to the back surface side of the semiconductor region.
[0018]
The plating method may be adjusted to a voltage that causes a difference in the thickness of the deposited plating metal over a predetermined plating time, or may be adjusted to a voltage that causes a difference in the thickness of the deposited plating metal only for a fixed time, and may be adjusted for a fixed time. May be adjusted to a voltage that does not cause a difference in the thickness of the deposited plating metal. When the voltage is set to be high, the difference in the thickness of the deposited plating metal tends to be small, and the quality of the plating metal may be deteriorated. Therefore, it is preferable to supply the current at a relatively low voltage. Similarly, above the voltage at which the straight line A and the straight line B shown in FIG. 2 intersect, the charge amount of the plated portion connected with the element having the rectifying action is larger than that of the plated portion not connected with the element. Even with such a high voltage setting, the quality of the deposited plating metal may be degraded, which may be undesirable.
[0019]
As described above, according to the present invention, the height of the plating metal can be kept constant by adjusting the thickness of the plating metal formed on the semiconductor device. By keeping the height of the plated metal constant, it is possible to solve the problem that it is difficult for the bonding apparatus to recognize the bonding pad when bonding a gold wire to the bonding pad of the semiconductor device. In addition, when surface mounting is performed by using the bump electrode formed by the plating method of the present invention, even if the height of the semiconductor device surface varies, the bump height does not vary, so that the connection can be surely performed.
[0020]
【The invention's effect】
As described above, according to the present invention, it is possible to easily adjust the thickness of the plating metal by adjusting the amount of charge supplied to the portion to be plated by using the rectifying element. When the present invention is applied to the formation of bonding pads and bumps of a semiconductor device, the height of the plated metal can be kept constant even if the height of the surface of the semiconductor device varies. An error or poor connection can be prevented, and a semiconductor device can be manufactured with high yield.
[0021]
Further, the plating method of the present invention merely controls the supplied current and voltage, and is easy to control.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an embodiment of the present invention.
FIG. 2 is a graph illustrating an embodiment of the present invention.
FIG. 3 is a cross-sectional view illustrating a conventional electrolytic plating method.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 n-type semiconductor region 2 p-type semiconductor region 3 first electrode 4 second electrode 5 plating electrode 6 photoresist 7 plating metal 8 plating electrode

Claims (2)

電源の一方に対抗電極を、他方に被メッキ部を接続し、電解メッキ法により前記被メッキ部に金属を析出させる方法において、
前記被メッキ部は同一基板上の少なくとも高さの異なる第1及び第2の被メッキ部からなり、該第1の被メッキ部は、電源と被メッキ部との間に整流作用を有する素子を順方向電流が流れる向きに接続し、前記電源から前記第1及び第2の被メッキ部に同時に電荷を供給し、前記素子の順方向の整流特性を利用して、前記第1の被メッキ部表面に析出する金属前記第2の被メッキ部表面に析出する金属との厚さを変え、前記第1及び第2の被メッキ部に析出するメッキ金属表面の高さを揃えることを特徴とする電解メッキ法。
In a method of connecting a counter electrode to one of the power supplies and a plating portion to the other, and depositing metal on the plating portion by electrolytic plating,
The to-be-plated part includes first and second to-be-plated parts having at least different heights on the same substrate, and the first to-be-plated part has an element having a rectifying action between the power supply and the to-be-plated part. Connected in a direction in which a forward current flows , supplying electric charges simultaneously from the power source to the first and second plated portions, and utilizing the forward rectification characteristics of the element to form the first plated portion. and characterized by varying the thickness of the metal deposited on the metal and the second to-be-plated portion surface deposited on the surface, align the heights of the first and second plating a metal surface to be deposited on the plated portion Electrolytic plating method.
請求項1記載の電解メッキ法において、
前記被メッキ部は、半導体装置表面に形成され、前記素子は、該半導体装置内に形成されたダイオードであることを特徴とする電解メッキ法。
In the electrolytic plating method according to claim 1,
The electroplating method, wherein the plated portion is formed on a surface of a semiconductor device, and the element is a diode formed in the semiconductor device.
JP30391796A 1996-10-30 1996-10-30 Electroplating method Expired - Fee Related JP3583878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30391796A JP3583878B2 (en) 1996-10-30 1996-10-30 Electroplating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30391796A JP3583878B2 (en) 1996-10-30 1996-10-30 Electroplating method

Publications (2)

Publication Number Publication Date
JPH10135156A JPH10135156A (en) 1998-05-22
JP3583878B2 true JP3583878B2 (en) 2004-11-04

Family

ID=17926836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30391796A Expired - Fee Related JP3583878B2 (en) 1996-10-30 1996-10-30 Electroplating method

Country Status (1)

Country Link
JP (1) JP3583878B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100555680B1 (en) * 2003-12-17 2006-03-03 삼성전자주식회사 Method for fabricating various height metal structure
JP5766432B2 (en) * 2010-11-30 2015-08-19 ルネサスエレクトロニクス株式会社 Plated metal film substrate, method of manufacturing the same, and semiconductor device
US20200052135A1 (en) * 2017-03-31 2020-02-13 Kaneka Corporation Photoelectric conversion element and photoelectric conversion element manufacturing method

Also Published As

Publication number Publication date
JPH10135156A (en) 1998-05-22

Similar Documents

Publication Publication Date Title
KR940006083B1 (en) Loc package and manufacturing method thereof
US6093291A (en) Electroplating apparatus
US3993515A (en) Method of forming raised electrical contacts on a semiconductor device
US3212160A (en) Method of manufacturing semiconductive devices
US6095397A (en) Solder deposit support
US20020100975A1 (en) Semiconductor integrated circuit and fabrication process therefor
JP3583878B2 (en) Electroplating method
JP4498652B2 (en) Electroless plating method
GB2095904A (en) Semiconductor device with built-up low resistance contact and laterally conducting second contact
US3894919A (en) Contacting semiconductors during electrolytic oxidation
US5396702A (en) Method for forming solder bumps on a substrate using an electrodeposition technique
JP3212266B2 (en) Bump forming apparatus and bump forming method
CA1054725A (en) Discontinuous semiconductor contact layers
JP3077361B2 (en) Method for manufacturing semiconductor device
JP4011257B2 (en) LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
JPH09139387A (en) Formation of electrode of semiconductor device
JP3218514B2 (en) Circuit device and manufacturing method thereof
JPH0580141B2 (en)
KR0169471B1 (en) Bipolar bump transistor and method for its manufacture
JPS62188798A (en) Contact pin for plating
JP2754693B2 (en) Manufacturing method of plated electrode
JP3074023B2 (en) Method for manufacturing semiconductor device
JP2643141B2 (en) Method of manufacturing transfer bump
JP2002093834A (en) Jet flow bump-forming apparatus
JP3331635B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees