JP3582867B2 - Method for producing unsaturated carbonyl compound - Google Patents

Method for producing unsaturated carbonyl compound Download PDF

Info

Publication number
JP3582867B2
JP3582867B2 JP26656594A JP26656594A JP3582867B2 JP 3582867 B2 JP3582867 B2 JP 3582867B2 JP 26656594 A JP26656594 A JP 26656594A JP 26656594 A JP26656594 A JP 26656594A JP 3582867 B2 JP3582867 B2 JP 3582867B2
Authority
JP
Japan
Prior art keywords
group
formula
reaction
alkyl group
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26656594A
Other languages
Japanese (ja)
Other versions
JPH08127551A (en
Inventor
眞二 村井
直人 茶谷
史敏 垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP26656594A priority Critical patent/JP3582867B2/en
Publication of JPH08127551A publication Critical patent/JPH08127551A/en
Application granted granted Critical
Publication of JP3582867B2 publication Critical patent/JP3582867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/69Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by addition to carbon-to-carbon double or triple bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pyrane Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、不飽和カルボニル化合物の製造法に関するものである。さらに詳しくは、この発明は、各種の有機工業製品、医薬、農薬、香料、高分子製品等の分野において有用な不飽和カルボニル化合物の新しい製造方法と、この方法により得られる有用化合物に関するものである。
【0002】
【従来の技術とその課題】
カルボニル基を結合する炭素−炭素不飽和結合を有する不飽和カルボニル化合物は、化学工業の原料、中間製品および各種有用製品として重要なものであるが、カルボニル基を結合する炭素−炭素不飽和結合にさらに炭素鎖を付加した構造や、その炭素鎖に各種の官能基を結合した付加体構造を有するものを製造することはそれほど簡単ではなかった。
【0003】
このことは、オレフィンや芳香環の不飽和結合部位にある炭素と水素との結合を、他のオレフィン等の不飽和結合に直接付加させることが極めて困難であって、特に、不飽和結合部位に電子吸引性基のカルボニル基を有する構造の場合には、このような直接的付加反応はほとんど不可能であるとされていたからである。不飽和結合部位の炭素−水素結合をオレフィン等の不飽和結合に直接付加させる反応方法としては、これまでに知られているのは極めて限られた例だけであり、たとえば、ロジウム触媒を用いたアクリル酸エステルの2量化反応が知られているが、この場合には、アクリル酸エステルという特有の化合物を対象とすることに限られ、反応としての一般性を欠いている。
【0004】
また、類似例としては、ピリジン環の炭素−水素結合をルテニウムカルボニルを触媒として一酸化炭素、次いで1−オクテンなどへと逐次付加させる反応が知られている(J. Amer. Chem. Soc.,114,5888(1992))が、この反応では炭素−水素結合がオレフィンに直接付加した生成物を与えていない。また、ピリジン環の炭素−水素結合をシンロペンタジエニルジルコニウム錯体を触媒としてプロピレンへ付加させる反応が知られている(J. Amer. Chem. Soc.,111−778(1989))。しかしながらこれらの反応はピリジン環の炭素−水素結合に限られている。このような事情から、カルボニル基を有する不飽和結合に、各種の官能性炭素鎖等を付加させたカルボニル不飽和化合物を製造する場合には、大変に面倒な方法によって製造するほかになかった。たとえば不飽和結合部位にハロゲン原子を導入し、このハロゲン原子の置換反応によってアルキル基もしくは官能性アルキル基を導入したり、フリーデルフラフツ触媒によるアシル化反応方法等である。これらは、そのプロセスが面倒であるばかりでなく、反応の選択性および効率も制約されており、実用的に満足できるものでなく、しかも製造可能とされる目的物質も極めて限定されたものでしかなかった。
【0005】
そこで、この発明の発明者は、以上の通りの従来技術の欠点を解消し、簡便な手段によって、高い反応性と選択性とによって、これまで合成が困難であった化合物の製造を可能とする、新しい方法による不飽和カルボニル化合物の製造法について検討してきた。
その結果として、この発明の発明者は、次式
【0006】
【化5】
【0007】
で表わされるカルボニル置換不飽和結合構造に、遷移金属触媒の存在下に、オレフィン性炭素−炭素二重結合構造を付加反応させ、次式
【0008】
【化6】
【0009】
で表わされる付加構造物を生成させることを特徴とする不飽和カルボニル化合物の製造法を開発し、これをすでに提案している(特願平5−232054号)。この方法は、カルボニル基を有する不飽和結合部位の炭素−水素結合が、オレフィン結合に直接的に付加する新しい方法であって、これまで複雑、かつ面倒なプロセスによって合成し、あるいは合成そのものが困難であった不飽和カルボニル化合物の高い反応性と選択性での製造を可能としている。
【0010】
そして、製造された化合物は、各種の工業原料、医薬、農薬、香料、高分子製品等々として極めて有用なものである。
この付加反応は、極めて興味深いものであって、産業的利用性についても大きな期待が持たれることから、この発明の発明者は、この反応技術の適用の拡大についてさらに検討を進めてきた。
【0011】
その過程において、オレフィンに代えてアセチレン性化合物を用いた場合について注目し、新しい付加反応の実現を図ってきた。このことは、オレフィンに比べて、アセチレン性不飽和化合物としての三重結合を有する化合物については、オレフィンとは異なる反応性を示すものとして注目されてはいるが、いまだにその検討は必ずしも充分に進められていないとの認識に基づくものでもあった。
【0012】
この発明は、以上の通りの背景よりなされたものであって、より簡便な手段で、高い反応性と選択性とによって、不飽和結合構造に、アセチレン性の炭素−炭素三重結合の構造を付加させることのできる、新しい付加反応方法を提供することを目的としている。さらに詳しくは、この発明は、発明者がすでに提案しているオレフィン性炭素−炭素二重結合構造の付加反応の技術的発展を図ったものとして、カルボニル置換不飽和結合の構造に、アセチレン性炭素−炭素二重結合構造を付加反応させる新しい方法を提供することを目的としている。
【0013】
【課題を解決するための手段】
この発明は、上記の課題を解決するものとして、次式(
【0014】
【化7】
【0015】
(RaとRcは、結合して、芳香族炭化水素基または複素環式置換基を形成しており、Rbアルキル基であり、Rcと結合して環を形成していてもよい)
で表されるカルボニル置換不飽和結合構造に、ルテニウム錯体の存在下に、次式(II)
【0016】
【化8】
【0017】
(RdおよびReは、同一または別異に、アルキル基、フェニル基またはシリル基であり、これらはさらに、アルキル基またはアルキル置換シロキシ基で置換されていてもよい
で表されるアセチレン性炭素−炭素三重結合構造を付加反応させ、次式(III)
【化9】
(ただし、Ra、Rb、Rc、RdおよびReは前記のものであり、式中の波線は、シス体、トランス体、またはシス体とトランス体の混合物を表す
で表わされる付加構造物を生成させることを特徴とする不飽和カルボニル化合物の製造法を提供する。そしてまた、この発明は、上記の製造法によって得ることのできる、次式(III)
【0018】
【化10】
【0019】
(RaとRcは、結合して、芳香族炭化水素基または複素環式置換基を形成しており、Rbアルキル基であり、Rcと結合して環を形成していてもよく、RdおよびReは、同一または別異に、アルキル基、フェニル基またはシリル基であり、これらはさらに、アルキル基またはアルキル置換シロキシ基で置換されていてもよく、式中の波線は、シス体、トランス体、またはシス体とトランス体の混合物を表す)で表わされる不飽和カルボニル化合物をも提供する。
【0020】
これらの化合物は、各種の有機工業製品、医薬、農薬、香料、高分子製品等の分野において有用な不飽和カルボニル化合物として注目されるものである。
【0021】
【作用】
この発明においては、カルボニル基の結合した上記式(で表される「不飽和C−H化合物」を、式(II)のアセチレン化合物に反応させて、式(III)等としての付加構造化合物を製造する。これは、「不飽和C−H結合」のアルキンへの直接的付加として注目されるものである。
【0022】
この付加反応の実施においては、式(II)の構造を有するアセチレン化合物を、異なる分子としての、もしくは同一分子としての式()の化合物と分子間もしくは分子内反応させることになる。
分子間反応では、式()の構造化合物に対する式(II)のアセチレン化合物の使用割合は、モル比として、通常、約0.01〜1000、より好ましくは0.1〜20とする。反応には遷移金属触媒を使用するが、これらは金属、またはその化合物、もしくは錯体として適宜に用いることができる。金属元素は、好ましくは貴金属であって、特に好ましくはルテニウム、ルテニウム化合物、またはルテニウム錯体である。ルテニウム金属を用いる場合には、単独、もしくは、活性炭、アルミナ等の担体とともに使用することができる。ルテニウム化合物としては、ルテニウムの有機金属化合物が好適に使用され、またルテニウム錯体としても各種の有機錯体が使用される。
【0023】
ルテニウム錯体としては、たとえばHRu(PPh、HRu(CO)(PPh、Ru(CO)(PPh、Ru(CH=CH)(PPh等が挙げられる。これらの触媒は、二種以上併用することもでき、またこれらの触媒は他の通常知られている型の配位子と併用することもできる。さらにルテニウム塩を還元剤と併用することもできる。
【0024】
これらの触媒の使用量は前記の式(1)の不飽和化合物に対して、モル比で、通常0.0001〜0.1好ましくは0.001〜0.01である。
反応は、無溶媒でも進行するが、溶媒を用いることもできる。使用される溶媒は、反応に不活性な溶媒なら何でもよく、通常は、n−ヘキサン、n−ヘプタン、シクロヘキサン等の脂肪酸炭化水素溶媒、ベンゼン、トルエン等の芳香属炭化水素溶媒、ジエチルエーテル、THF等のエーテル系溶媒等が用いられる。
【0025】
反応温度は、通常室温〜200℃、好ましくは、50〜160℃程度である。また、反応時間は、通常0.5分〜200時間、好ましくは3分〜50時間程度である。
反応の終了後は、各種の分離精製手段、たとえばカラムクロマトグラフィーによる分離や、蒸留分離等によって、目的とする付加生成物を得ることができる。
【0026】
以上の直接的付加反応によって得られるこの発明の不飽和カルボニル化合物は、たとえば前記の式(III)によって例示されるものであるが、このうちの具体的なものとしては、 a とR c が結合して環を形成し、たとえばこの環がベンゼン環である(置換)アセトフェノン類(置換)ベンゾフェノン類、さらにR b とR c が結合して環を形成し、縮合環を構成している(置換)アセチルナフタレン類、あるいは異種原子を介した複素環を形成するもの等が例示される。
【0027】
また、 a とR c は、結合して脂環構造を形成していてもよい。このような環は、さらに、ハロゲン原子、アミノ基、置換アミノ基、ニトロ基、シアノ基、カルボキシル基、エステル基、ヒドロキシル基、エーテル基、チオール基、チオエーテル基、カルバモイル基、チオカルバモイル基、シリル基、金属原子含有基、複素環基、その他の適宜な原子や原子団からなる官能基を有していてもよい。
【0028】
以下、実施例を示し、さらに詳しくこの発明について説明する。もちろん、この発明は、以下の例によって何ら限定されるものではない。
【0029】
【実施例】
実施例1〜7
次式
【0030】
【化11】
【0031】
で表わされるα−テトラロン(α−tetralone)を、各種のアセチレン化合物と反応させた。
すなわち、RuH(CO)(PPh(0.12mmol)、トルエン(3mL)、α−テトラロン(2mmol)をアセチレン化合物(4mmol)とともにオイルバス135℃で激しく還流させながら反応させた。
【0032】
生成物をガスクロマトグラフィー分析した。
反応に使用したアセチレン化合物と反応時間(hr)、反応生成物、並びに反応生成物の単離収率を示したものが表1である。
ただ、実施例2においては、触媒としての上記Ru錯体の使用量は0.04mmolとした。
【0033】
この表1より、優れた選択性と収率で、アセチレン化合物の付加構造を有する不飽和カルボニル化合物が得られていることがわかる。
【0034】
【表1】
【0035】
実施例1〜7によって得られた生成物の物性体は、次の表2〜表8に示した通りであった。
【0036】
【表2】
【0037】
【表3】
【0038】
【表4】
【0039】
【表5】
【0040】
【表6】
【0041】
【表7】
【0042】
【表8】
【0043】
実施例8
次式
【0044】
【化12】
【0045】
に沿って反応を行った。
すなわち、RuH(CO)(PPh(0.12mmol)を用い、トルエン(3ml)に2−アセチルフラン(2mmol)、およびトリメチルシリル−フェニルアセチレン(4mmol)を混合し、バス温度135℃において24時間反応させた。
【0046】
その結果、単離収率83%で、α−付加体である2−アセチル−3−(1−フェニル−2−トリメチルシリルエテニル)フランを得た。このものの物性体は表9に示した通りであった。
【0047】
【表9】
【0048】
実施例9
次式
【0049】
【化13】
【0050】
に沿って反応を行った。すなわち、実施例8の2−アセチルフランに代えて、3−アセチルチオフェンを用いて実施例8と同様に反応させた。単離収率90%で、3−アセチル−2−(1−フェニル−2−トリメチルシリルエテニル)チオフェンを得た。
このものの物性体は表10に示す通りであった。
【0051】
【表10】
【0052】
実施例10
次式
【0053】
【化14】
【0054】
に沿って、3,4−ジヒドロ−6−ピバロイル−2H−ピラン(2mmol)を、ジフェニルアセチレンおよびトリメチルシリル−フェニルアセチレンの各々(4mmol)と反応させた。
単離収率71%および86%で、各々、3,4−ジヒドロ−5−〔1,2−(ジフェニル)エテニル〕−6−ピバロイル−2H−ピランと、3,4−ジヒドロ−5−〔(1−フェニル−2−トリメチルシリル)エテニル〕−6−ピバロイル−2H−ピランを得た。
【0055】
これらの生成物の物性値は、表11および表12に示した通りであった。
【0056】
【表11】
【0057】
【表12】
【0058】
【発明の効果】
以上詳しく説明した通りこの発明により、簡便な手段で、カルボニル基を有する不飽和結合のC−H結合が、アセチレン類に直接付加することが可能となり、高い生産性と選択性によって、有用物としての不飽和カルボニル化合物が提供される。
[0001]
[Industrial applications]
The present invention relates to a method for producing an unsaturated carbonyl compound. More specifically, the present invention relates to a new method for producing an unsaturated carbonyl compound useful in the fields of various organic industrial products, pharmaceuticals, agricultural chemicals, fragrances, polymer products, and the like, and to a useful compound obtained by this method. .
[0002]
[Prior art and its problems]
Unsaturated carbonyl compounds having a carbon-carbon unsaturated bond that binds a carbonyl group are important as raw materials, intermediate products and various useful products of the chemical industry. Further, it was not so easy to produce a structure having a structure in which a carbon chain was added or an adduct structure in which various functional groups were bonded to the carbon chain.
[0003]
This means that it is extremely difficult to directly add a bond between carbon and hydrogen at an unsaturated bond site of an olefin or an aromatic ring to an unsaturated bond of another olefin or the like. This is because, in the case of a structure having a carbonyl group of an electron-withdrawing group, such a direct addition reaction is considered to be almost impossible. As a reaction method for directly adding a carbon-hydrogen bond at an unsaturated bond site to an unsaturated bond such as an olefin, only very limited examples have been known so far. Although a dimerization reaction of an acrylate ester is known, in this case, the reaction is limited to a specific compound called an acrylate ester and lacks generality as a reaction.
[0004]
Further, as a similar example, a reaction of sequentially adding a carbon-hydrogen bond of a pyridine ring to carbon monoxide and then to 1-octene or the like using ruthenium carbonyl as a catalyst is known (J. Amer. Chem. Soc., 114 , 5888 (1992)), but this reaction does not give products with carbon-hydrogen bonds added directly to the olefin. Further, the carbon of the pyridine ring - reaction to be added to propylene is known hydrogen bonding of thin b cyclopentadienyl zirconium complexes as catalysts (... J. Amer Chem Soc , 111 -778 (1989)). However, these reactions are limited to carbon-hydrogen bonds on the pyridine ring. Under such circumstances, the production of a carbonyl unsaturated compound in which various functional carbon chains or the like are added to an unsaturated bond having a carbonyl group has to be produced by a very troublesome method. For example, a halogen atom is introduced into an unsaturated bond site, an alkyl group or a functional alkyl group is introduced by a substitution reaction of the halogen atom, or an acylation reaction method using a Friedel-Frafts catalyst. Not only are these processes cumbersome, but also the reaction selectivity and efficiency are limited, and they are not practically satisfactory, and the target substances that can be produced are extremely limited. Did not.
[0005]
Thus, the inventor of the present invention has solved the above-mentioned drawbacks of the prior art, and has made it possible to produce a compound which has been difficult to synthesize by a simple means, with high reactivity and selectivity. A new method for producing an unsaturated carbonyl compound has been studied.
As a result, the inventor of the present invention has the following formula:
Embedded image
[0007]
An olefinic carbon-carbon double bond structure is added to the carbonyl-substituted unsaturated bond structure represented by the following formula in the presence of a transition metal catalyst to give the following formula:
Embedded image
[0009]
A process for producing an unsaturated carbonyl compound characterized by the formation of an additional structure represented by the following formula has been developed and has already been proposed (Japanese Patent Application No. 5-232504). This method is a new method in which the carbon-hydrogen bond at the unsaturated bond site having a carbonyl group is directly added to the olefin bond, and it is difficult to synthesize by a complicated and cumbersome process. It has been possible to produce unsaturated carbonyl compounds with high reactivity and selectivity.
[0010]
The produced compounds are extremely useful as various industrial raw materials, pharmaceuticals, agricultural chemicals, fragrances, polymer products and the like.
Since this addition reaction is very interesting and has great expectations for industrial applicability, the inventor of the present invention has further studied the expansion of the application of this reaction technology.
[0011]
In the process, attention was paid to the case where an acetylenic compound was used in place of the olefin, and a new addition reaction was realized. This indicates that compounds having a triple bond as an acetylenically unsaturated compound as compared with olefins have attracted attention as exhibiting different reactivity from olefins, but their studies have not necessarily been sufficiently advanced. It was also based on the perception that it had not.
[0012]
The present invention has been made in view of the above background, and has added a structure of an acetylenic carbon-carbon triple bond to an unsaturated bond structure by simpler means with high reactivity and selectivity. It is an object of the present invention to provide a new addition reaction method which can be carried out. More specifically, the present invention is based on the technical development of the addition reaction of the olefinic carbon-carbon double bond structure already proposed by the inventor. -To provide a new method for performing an addition reaction of a carbon double bond structure.
[0013]
[Means for Solving the Problems]
The present invention solves the above-mentioned problems by providing the following formula ( I )
[0014]
Embedded image
[0015]
(R a and R c are bonded to each other to form an aromatic hydrocarbon group or a heterocyclic substituent, and R b is an alkyl group and may be bonded to R c to form a ring. Good)
In the presence of a ruthenium complex, a carbonyl-substituted unsaturated bond represented by the following formula (II)
[0016]
Embedded image
[0017]
(R d and Re are the same or different and each represents an alkyl group, a phenyl group or a silyl group, and these may be further substituted with an alkyl group or an alkyl-substituted siloxy group )
And an acetylenic carbon-carbon triple bond structure represented by the following formula (III):
Embedded image
(Wherein, R a, R b, R c, R d and R e are all SANYO of the wavy line in the formula represents a cis isomer, a mixture of trans isomers, or cis form and trans form)
A process for producing an unsaturated carbonyl compound, characterized by producing an addition structure represented by the formula: Further, the present invention provides the following formula (III) which can be obtained by the above production method.
[0018]
Embedded image
[0019]
(R a and R c are bonded to each other to form an aromatic hydrocarbon group or a heterocyclic substituent, and R b is an alkyl group and may be bonded to R c to form a ring. R d and R e are the same or different and each represents an alkyl group, a phenyl group or a silyl group, which may be further substituted with an alkyl group or an alkyl-substituted siloxy group. Cis, trans, or a mixture of cis and trans isomers ).
[0020]
These compounds are attracting attention as unsaturated carbonyl compounds useful in the fields of various organic industrial products, pharmaceuticals, agricultural chemicals, fragrances, polymer products and the like.
[0021]
[Action]
In the present invention, the "unsaturated CH compound" represented by the above formula ( I ) having a carbonyl group bonded thereto is reacted with an acetylene compound of the formula ( II ) to form an additional structure represented by the formula ( III ) or the like. Produce compound. This is noted as a direct addition of an "unsaturated CH bond" to the alkyne.
[0022]
In carrying out this addition reaction, the acetylene compound having the structure of the formula ( II ) is reacted intermolecularly or intramolecularly with the compound of the formula ( I ) as a different molecule or as the same molecule.
In the intermolecular reaction, the molar ratio of the acetylene compound of the formula ( II ) to the structural compound of the formula ( I ) is usually about 0.01 to 1000, more preferably 0.1 to 20. A transition metal catalyst is used for the reaction, and these can be appropriately used as a metal or a compound or complex thereof. The metal element is preferably a noble metal, particularly preferably ruthenium, a ruthenium compound or a ruthenium complex. When ruthenium metal is used, it can be used alone or with a carrier such as activated carbon or alumina. As the ruthenium compound, an organometallic compound of ruthenium is suitably used, and various organic complexes are also used as the ruthenium complex.
[0023]
The ruthenium complexes such as H 2 Ru (PPh 3) 4 , H 2 Ru (CO) (PPh 3) 3, Ru n (CO) m (PPh 3) x, Ru (CH 2 = CH 2) (PPh 3 3 ) and the like. These catalysts can be used in combination of two or more kinds, and these catalysts can also be used in combination with other generally known types of ligands. Further, a ruthenium salt can be used in combination with a reducing agent.
[0024]
The amount of these catalysts to be used is generally 0.0001 to 0.1, preferably 0.001 to 0.01 in terms of molar ratio with respect to the unsaturated compound of the formula (1).
The reaction proceeds without solvent, but a solvent can also be used. The solvent used may be any solvent that is inert to the reaction, and is usually a fatty acid hydrocarbon solvent such as n-hexane, n-heptane, cyclohexane, an aromatic hydrocarbon solvent such as benzene or toluene, diethyl ether, THF. And the like.
[0025]
The reaction temperature is usually from room temperature to 200 ° C, preferably about 50 to 160 ° C. The reaction time is generally about 0.5 minute to 200 hours, preferably about 3 minutes to 50 hours.
After completion of the reaction, the desired addition product can be obtained by various separation and purification means, for example, separation by column chromatography, or distillation separation.
[0026]
Unsaturated carbonyl compounds of the invention obtained by direct addition reaction described above, for example, those exemplified by the above formula (III), specific ones of this, the R a and R c bonded to form a ring, for example, it forms a ring this ring is a benzene ring (substituted) acetophenone and (substituted) benzophenones, further by bonding R b and R c, constitute a condensed ring Examples thereof include (substituted) acetylnaphthalenes and those forming a heterocyclic ring via a hetero atom.
[0027]
Furthermore, R a and R c are may form an alicyclic structure combined with. Such a ring further includes a halogen atom, an amino group, a substituted amino group, a nitro group, a cyano group, a carboxyl group, an ester group, a hydroxyl group, an ether group, a thiol group, a thioether group, a carbamoyl group, a thiocarbamoyl group, and a silyl group. It may have a functional group consisting of a group, a metal atom-containing group, a heterocyclic group, and other appropriate atoms and atomic groups.
[0028]
Hereinafter, the present invention will be described in more detail with reference to Examples. Of course, this invention is not limited at all by the following examples.
[0029]
【Example】
Examples 1 to 7
[0030]
Embedded image
[0031]
Α-tetralone represented by the following formula was reacted with various acetylene compounds.
That is, RuH 2 (CO) (PPh 3 ) 3 (0.12 mmol), toluene (3 mL) and α-tetralone (2 mmol) were reacted with an acetylene compound (4 mmol) while vigorously refluxing at 135 ° C. in an oil bath.
[0032]
The product was analyzed by gas chromatography.
Table 1 shows the acetylene compound used in the reaction, the reaction time (hr), the reaction product, and the isolation yield of the reaction product.
However, in Example 2, the amount of the Ru complex used as a catalyst was 0.04 mmol.
[0033]
Table 1 shows that an unsaturated carbonyl compound having an additional structure of an acetylene compound was obtained with excellent selectivity and yield.
[0034]
[Table 1]
[0035]
The physical properties of the products obtained in Examples 1 to 7 were as shown in Tables 2 to 8 below.
[0036]
[Table 2]
[0037]
[Table 3]
[0038]
[Table 4]
[0039]
[Table 5]
[0040]
[Table 6]
[0041]
[Table 7]
[0042]
[Table 8]
[0043]
Example 8
The following equation
Embedded image
[0045]
The reaction was carried out along.
That is, using RuH 2 (CO) (PPh 3 ) 3 (0.12 mmol), 2-acetylfuran (2 mmol) and trimethylsilyl-phenylacetylene (4 mmol) were mixed with toluene (3 ml), and the mixture was heated at a bath temperature of 135 ° C. The reaction was performed for 24 hours.
[0046]
As a result, α-adduct 2-acetyl-3- (1-phenyl-2-trimethylsilylethenyl) furan was obtained at an isolation yield of 83%. The physical properties of this product were as shown in Table 9.
[0047]
[Table 9]
[0048]
Example 9
The following equation
Embedded image
[0050]
The reaction was carried out along. That is, the reaction was carried out in the same manner as in Example 8 using 3-acetylthiophene instead of 2-acetylfuran in Example 8. 3-Acetyl-2- (1-phenyl-2-trimethylsilylethenyl) thiophene was obtained at an isolation yield of 90%.
The physical properties of this product were as shown in Table 10.
[0051]
[Table 10]
[0052]
Example 10
The following equation:
Embedded image
[0054]
Along, 3,4-dihydro-6-pivaloyl-2H-pyran (2 mmol) was reacted with each of diphenylacetylene and trimethylsilyl-phenylacetylene (4 mmol).
In isolation yields of 71% and 86%, respectively, 3,4-dihydro-5- [1,2- (diphenyl) ethenyl] -6-pivaloyl-2H-pyran and 3,4-dihydro-5- [ (1-Phenyl-2-trimethylsilyl) ethenyl] -6-pivaloyl-2H-pyran was obtained.
[0055]
The physical properties of these products were as shown in Tables 11 and 12.
[0056]
[Table 11]
[0057]
[Table 12]
[0058]
【The invention's effect】
As explained in detail above, according to the present invention, a C—H bond of an unsaturated bond having a carbonyl group can be directly added to acetylenes by a simple means. Are provided.

Claims (2)

次式(I)
(RaとRcは、結合して、芳香族炭化水素基または複素環式置換基を形成しており、Rbはアルキル基であり、Rcと結合して環を形成していてもよい)
で表されるカルボニル置換不飽和結合構造に、ルテニウム錯体の存在下に、次式(II)
(RdおよびReは、同一または別異に、アルキル基、フェニル基またはシリル基であり、これらはさらに、アルキル基またはアルキル置換シロキシ基で置換されていてもよい
で表されるアセチレン性炭素−炭素三重結合構造を付加反応させ、次式(III)
(ただし、Ra、Rb、Rc、RdおよびReは前記のものであり、式中の波線は、シス体、トランス体、またはシス体とトランス体の混合物を表す
で表わされる付加構造物を生成させることを特徴とする不飽和カルボニル化合物の製造法。
The following formula (I)
(R a and R c are bonded to each other to form an aromatic hydrocarbon group or a heterocyclic substituent, and R b is an alkyl group and may be bonded to R c to form a ring. Good)
In the presence of a ruthenium complex, a carbonyl-substituted unsaturated bond represented by the following formula (II)
(R d and Re are the same or different and each represents an alkyl group, a phenyl group or a silyl group, and these may be further substituted with an alkyl group or an alkyl-substituted siloxy group )
And an acetylenic carbon-carbon triple bond structure represented by the following formula (III):
(Wherein, R a, R b, R c, R d and R e are all SANYO of the wavy line in the formula represents a cis isomer, a mixture of trans isomers, or cis form and trans form)
A process for producing an unsaturated carbonyl compound, characterized by producing an addition structure represented by the formula:
請求項1の製造法により製造される、次式(III)
(RaとRcは、結合して、芳香族炭化水素基または複素環式置換基を形成しており、Rbアルキル基であり、Rcと結合して環を形成していてもよく、RdおよびReは、同一または別異に、アルキル基、フェニル基またはシリル基であり、これらはさらに、アルキル基またはアルキル置換シロキシ基で置換されていてもよく、式中の波線は、シス体、トランス体、またはシス体とトランス体の混合物を表す
で表わされる不飽和カルボニル化合物
The following formula (III) produced by the production method according to claim 1.
(R a and R c are bonded to each other to form an aromatic hydrocarbon group or a heterocyclic substituent, and R b is an alkyl group and may be bonded to R c to form a ring. R d and R e are the same or different and each represents an alkyl group, a phenyl group or a silyl group, which may be further substituted with an alkyl group or an alkyl-substituted siloxy group. , Cis-form, trans-form, or a mixture of cis-form and trans-form )
An unsaturated carbonyl compound represented by the formula:
JP26656594A 1994-10-31 1994-10-31 Method for producing unsaturated carbonyl compound Expired - Fee Related JP3582867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26656594A JP3582867B2 (en) 1994-10-31 1994-10-31 Method for producing unsaturated carbonyl compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26656594A JP3582867B2 (en) 1994-10-31 1994-10-31 Method for producing unsaturated carbonyl compound

Publications (2)

Publication Number Publication Date
JPH08127551A JPH08127551A (en) 1996-05-21
JP3582867B2 true JP3582867B2 (en) 2004-10-27

Family

ID=17432602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26656594A Expired - Fee Related JP3582867B2 (en) 1994-10-31 1994-10-31 Method for producing unsaturated carbonyl compound

Country Status (1)

Country Link
JP (1) JP3582867B2 (en)

Also Published As

Publication number Publication date
JPH08127551A (en) 1996-05-21

Similar Documents

Publication Publication Date Title
JP5404599B2 (en) 1,4-hydrogenation of dienes using Ru complexes
Xi et al. Construction of carbocycles via zirconacycles and titanacycles
JP3582867B2 (en) Method for producing unsaturated carbonyl compound
Takahashi et al. Metallocenes in regio-and stereoselective synthesis
CN1294119A (en) Improved catalytic process
Itoh et al. Synthesis of novel bis-and oligo-gem-difluorocyclopropanes
JP4917064B2 (en) Method for allylation of sulfonylimidate
Xi et al. Copper (I)-catalyzed tandem inter–intramolecular cyclization reactions of zirconacycles: formation of highly substituted styrenes, vinylcyclohexadienes, and related compounds
JP4131074B2 (en) Method for producing ruthenium compound
JP3582843B2 (en) Method for producing unsaturated carbonyl compound
Hanna Tandem Catalytic Processes Involving Olefins
JP4156857B2 (en) 3-chloro-3-butenoic acid ester derivative and method for producing the same
JP2005529865A (en) Method for producing indene substituted product
JP2008069104A (en) Helicene derivative, triyne derivative and method for producing the helicene derivative
Ramsden et al. Chiral annulated cyclopentadienyl ligands: Synthesis and crystal structure of both exo and endo Rh {η5-Cp′}(cod)}[Cp′=(4S, 7R)-1, 2, 3-triphenyl-4, 8, 8-trimethyl-1H, 4, 5, 6, 7-tetrahydro-4, 7-methanoindenyl]
JP4104402B2 (en) Method for producing allyl compounds
JP3180128B2 (en) 2-boryl-3-silylalkene compound and method for producing the same
JP2690037B2 (en) 5,6-benzo-1,4-disilacyclohexene derivative and method for producing the same
JP2000136152A (en) Diene compound and its production
JPH0285229A (en) Production of alpha-(4-isobutylphenyl) propionic acid
JP2005060238A (en) Method for producing trans-type dimer of terminal acetylene
JP3722215B2 (en) Optically active dimetallocenylphosphine derivative, asymmetric catalyst, and method for producing optically active compound using the optically active dimetallocenylphosphine derivative or the asymmetric catalyst
JP2920534B1 (en) 2-borylmethyl-4-stannyl-1,4-diene compound and method for producing the same
JPH03258789A (en) N,1-bissilylenamine derivative and production thereof
Dennis CYCLOPROPYL ANION AS AN ALLYL ANION SYNTHON

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees