JP3582561B2 - Broadband FM modulator - Google Patents

Broadband FM modulator Download PDF

Info

Publication number
JP3582561B2
JP3582561B2 JP20408397A JP20408397A JP3582561B2 JP 3582561 B2 JP3582561 B2 JP 3582561B2 JP 20408397 A JP20408397 A JP 20408397A JP 20408397 A JP20408397 A JP 20408397A JP 3582561 B2 JP3582561 B2 JP 3582561B2
Authority
JP
Japan
Prior art keywords
optical
laser light
light source
wavelength
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20408397A
Other languages
Japanese (ja)
Other versions
JPH1154825A (en
Inventor
義則 須永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP20408397A priority Critical patent/JP3582561B2/en
Publication of JPH1154825A publication Critical patent/JPH1154825A/en
Application granted granted Critical
Publication of JP3582561B2 publication Critical patent/JP3582561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、広帯域FM変調器に関し、特に、歪および雑音を少なくしたFM信号を発生する広帯域FM変調器に関する。
【0002】
【従来の技術】
図4(a)は従来の光映像伝送システムを示し、多チャンネルのAM映像信号61を発生するAM映像信号発生回路60と、多チャンネルのAM映像信号61を一括してFM信号62にする広帯域FM変調器100と、FM信号62に応じた光信号を出射するレーザダイオード20と、レーザダイオード20からの光信号を複数の光ファイバ40に分配する光分配器30と、光ファイバ40から光信号を入力する加入者50によって構成されている。加入者50は光信号を電気信号にするフォトダイオード51と、フォトダイオード51からの電気信号を復調して多チャンネルAM映像信号63を発生するFM復調器52と、多チャンネルAM映像信号63に基づいて映像を表示する受像機53を有する。
【0003】
以上の構成において、多チャンネルAM映像信号61はFM変調器100にてFM信号62に一括変換され、レーザダイオード20を直接変調して光信号を出射させる。光信号は光分配器30で多数に分配され光ファイバ40を通して加入者50に送られる。加入者50では、光信号がフォトダイオード51で電気信号に変換されたあと、FM復調器52で多チャンネルのAM映像信号63に復調され、受像機53に分配される。
【0004】
図4(b)はAM映像信号発生回路60より出力される多チャンネルAM映像信号61を示し、図4(c)はFM変調器100によって変調されたFM信号62を示し、図4(d)はFM復調器52によって復調された多チャンネルAM映像信号63を示す。
【0005】
図5は、図4(a)の光信号映像伝送システムの広帯域FM変調器100を示し、DFB−LD(分布帰還型レーザダイオード)170と、外部共振型のレーザダイオード(LD)である局部発振光光源120と、光合波器130と、フォトダイオード140を有する。DFB−LD170,局部発振光光源120,光合波器130,およびフォトダイオード140は光ファイバ150によって接続されている。DFB−LD170には、バイアス電流に変調信号電流を重畳した電流が印加される。このとき、変調信号の振幅は順方向電流全体に比べて十分小さくする。電流が変動すると、DFB−LD170のチャープにより電流変動に合わせてDFB−LD170の発振波長がわずかに変動し、これが光波長変調信号となる。局部発振光光源120をDFB−LD170の発振波長の近傍波長で発光させて、光合波器130でこの光波長変調信号と合波する。局部発振光光源120として、外部共振型の半導体レーザを用いたのは、スペクトル純度の高い局部発振光が必要なためである。2つの光を合波すると、ビートが発生し、これをフォトダイオード140によって検波すれば、2つの光の光周波数の差に等しいキャリア周波数を持つ広帯域なFM電気信号が得られる。このように光という非常に周波数の高い領域で信号処理を行うため、電気回路では難しい広帯域FM変調器が簡単な構成で実現できる。
【0006】
一般に、FM信号はAM信号に比べて雑音に強いため、光受信機への光入力レベルが小さく、受信信号の信号対雑音比が低くても映像の劣化が少ない。このため、FM信号を用いて伝送を行えば、光分岐数を多くすることができ、1加入者あたりの伝送システムコストを低く抑えることができる。しかし、通常、家庭の受像機はFM復調器ではなく、AM復調器のみを備えているため、家庭にFM映像信号をそのまま配信すると、受像機毎にFM復調器を取り付ける必要がある。図4のように、放送局で多チャンネルAM映像信号61を一括してFM信号62に変換し、光伝送の部分のみをFMで伝送し、加入者50のFM復調器52で一括して復調すれば、加入者50の受像機に入力される信号は従来の地上波放送と同じ多チャンネルのAM映像信号63となる。このため、加入者50は従来のCATVや地上波放送を視聴するのと何ら変わらない方法で選局、視聴することができる。
【0007】
FM変調器100において、数十チャンネルAM映像信号61を確保する必要があるため、変調信号は数百MHzとなる。FM伝送による耐ノイズ性はFM信号の占有帯域幅が広いほど向上し、このシステムに実用上のメリットを得るには、数GHzのFM信号の占有帯域幅を確保する必要がある。変調周波数帯域、FM信号の帯域とも非常に広いため、通常用いられている電気のFM変調回路では対応できない。また、多チャンネルのAM映像信号61を扱うため、この広い帯域幅に渡って歪も小さく抑える必要がある。
【0008】
【発明が解決しようとする課題】
しかし、図5に示した従来の広帯域FM変調器によると、変調用の光源にDFB−LD170を用いているため、出力光の波長がチャープにより容易に変調されるという利点があるが、DFB−LD170は外部共振型のような光源にくらべると出力光の位相ノイズが大きく、波長の線幅も広いため、生成されるFM信号の雑音が増加し、その分、図4のシステムを構成したとき、光分岐数を大きくすることができなくなる。また、DFB−LD170の電流−波長変換の線形性が低いため、変調時に信号歪が生じやすい。波長の変調はDFB−LD170の電流を変動させて行うため、波長の他、出力光の振幅も同時にわずかに変動してしまう。このため、この振幅変動による歪が生じやすいという問題もある。
【0009】
以上のように、DFB−LD170のチャープを利用して光波長変調を行う方法では、広帯域FM変調器が単純な構成で容易に実現できるという反面、低ノイズ、および低歪の実現が困難である問題点がある。このため、光分岐数をあまり大きくできないだけでなく、実用的には歪補償等の回路が必要となり、コストアップにつながる可能性がある。
【0010】
従って、本発明の目的は、低雑音、および低歪を実現し、かつ、適用される光映像伝送システムの低コスト化を実現する広帯域FM変調器を提供することにある。
【0011】
【課題を解決するための手段】
本発明は、上記課題を解決するため、
所定のバイアス電流で駆動される光増幅素子、および前記光増幅素子と光結合し、入力信号電圧で駆動される波長選択性反射器を有する第1のレーザ光源と、
前記第1のレーザ光源より出射される第1のレーザ光と合波される第2のレーザ光を出射する第2のレーザ光源と、
前記第1および第2のレーザ光を合波する光合波器と、前記光合波器で合波された光信号をFM電気信号に変換する光電変換手段を備え、
前記波長選択性反射器は、前記入力信号電圧を印加される電極と、前記入力信号電圧に基づく電界により屈折率が変化する物質によって形成された光導波手段を有し、第1のレーザ光源に入力する信号を位相反転回路にも入力すると共に、位相反転回路の出力を第2のレーザ光源の入力に接続し、第2のレーザ光源は、第1のレーザ光源と同じ光増幅素子、および第1のレーザ光源と同じ波長選択性反射器によって構成されることを特徴とする広帯域FM変調器を提供する。
【0012】
【発明の実施の形態】
以下、本発明の広帯域FM変調器の実施の形態を詳細に説明する。
【0013】
図1は本発明の広帯域FM変調器に適用される波長変調器の実施の形態を示す。この波長変調器110はニオブ酸リチウムからなる波長選択性反射器111と、半導体光増幅器115から成り、半導体光増幅器115は片端が反射面117であり、他端が透過面118であり、所定のバイアス電流Iをかけられる活性層116を有する。透過面118側には波長選択性反射器111が配置されており、全体で特定波長でのみ発振するレーザ共振器が構成される。波長選択性反射器111の反射波長はこの中に形成された光導波路112の中のグレーティングによって決定される。レーザ光は集光レンズ114で集光され、光ファイバ119に出力される。
【0014】
ニオブ酸リチウムは電界により屈折率が変化する。波長選択性反射器111に形成された電極113に多チャンネル映像信号に応じた信号電圧Vをかけると、ニオブ酸リチウムからなる光導波路112に電界がかかり、光導波路112の屈折率が変化し、反射波長が変化する。従って、この外部共振型レーザ光源の出力光の波長は電極113に印加される映像信号に従って変化させることができ、波長変調器として動作する。
【0015】
図2は図1で示した波長変調器110を用いた本発明の広帯域FM変調器の実施の形態を示す。この広帯域FM変調器は、波長変調器110と、局部発振光光源120と、合波器130と、フォトダイオード140を有する。局部発振光は線幅が狭い必要があるため、局部発振光光源120として外部共振型のレーザ光源を用いる。ただし、図1で示したような発振波長を変化させる機構は持たなくてもよい。2つのレーザ光を光合波器130で合波すると、それぞれのレーザ光の発振周波数の差に等しいビートが生じ、それを光ファイバ150を介してフォトダイオード140で検波すると、FM変調された電気信号であるFM信号141が得られる。ここでFM信号141のキャリア周波数が2つのレーザ光の周波数差に等しくなるので、局部発振光の波長を変えれば任意のキャリア周波数を持つFM信号141が得られる。
【0016】
波長変調器110は外部共振型レーザ光源であるため、従来より用いていたDFB−LDに比べて位相ノイズを小さくしやすい。また、ニオブ酸リチウムの電界に対する屈折率の変化は線形性が高いため、歪が小さく抑えられる。さらに、変調信号によってレーザ光の強度は変動しないので、従来より問題とされたレーザ光の強度変化に起因する歪みも生じない。従って、従来より大幅に低雑音、低歪なFM信号が得られるため、光映像伝送システムの低コスト化を効率よく実現できる。
【0017】
図3は、本発明の広帯域FM変調器の他の実施の形態を示し、局部発振光光源として波長変調器110と同じ波長変調器110Aを使用し、これに位相反転回路160で生成した波長変調器110に入力する信号とは逆位相の信号を加える構成である。このような構成では、1つの波長変調器に加える信号振幅が同じ場合、得られるFM信号の周波数遷移は約2倍になり、ダイナミックレンジを拡大できる。
【0018】
図4のシステムでは、FM信号の周波数遷移、即ち、帯域幅を広げるほど雑音に強くなるので、光映像伝送システムの効率を向上させることが可能になる。また、2つの波長変調用レーザ光源の周波数遷移量が同じになるように調整すれば、2次歪をキャンセルすることができる。FM信号の周波数遷移量を同じとした場合、個々の変調用レーザに入力する変調信号レベルを小さくできるので、これも歪を小さく抑える効果となる。
【0019】
【発明の効果】
以上説明した通り、本発明の広帯域FM変調器によれば、低雑音、および低歪を実現し、かつ、適用される光映像伝送システムの低コスト化を実現することができる。
【図面の簡単な説明】
【図1】本発明の広帯域FM変調器に適用される共振型レーザ光源となる波長変調器の実施の形態を示す説明図。
【図2】図1の波長変調器を用いて構成した本発明の広帯域FM変調器の実施の形態を示すブロック図。
【図3】図1の波長変調器を用いて構成した本発明の広帯域FM変調器の他の実施の形態を示すブロック図。
【図4】(a)従来の光映像伝送システムを示す説明図。
(b)従来の光映像伝送システムにおける変調前の多チャンネルAM映像信号を示す説明図。
(c)従来の光映像伝送システムにおいて変調されたFM信号を示す説明図。
(d)従来の光映像伝送システムにおける復調後の多チャンネルAM映像信号を示す説明図。
【図5】従来の光映像伝送システムの広帯域FM変調器を示す説明図。
【符号の説明】
20,レーザダイオード
30,光分配器
40,光ファイバ
50,加入者
51,フォトダイオード
52,FM復調器
53,受像機
6l,多チャンネルAM映像信号
62,FM信号
63,多チャンネルAM映像信号
100,FM変調器
110,110A,波長変調器
111,波長選択型反射器
112,光導波路
113,電極
114,レンズ
115,半導体光増幅器
116,活性層
117,光反射面
118,光透過面
119,光ファイバ
120,局部発振光光源
130,光合波器
140,フォトダイオード
150,光ファイバ
160,位相反転回路
170,変調光源
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wideband FM modulator, and more particularly to a wideband FM modulator that generates an FM signal with reduced distortion and noise.
[0002]
[Prior art]
FIG. 4A shows a conventional optical video transmission system, in which an AM video signal generating circuit 60 for generating a multi-channel AM video signal 61 and a wide band for converting the multi-channel AM video signal 61 into an FM signal 62 collectively. An FM modulator 100, a laser diode 20 for emitting an optical signal corresponding to the FM signal 62, an optical distributor 30 for distributing an optical signal from the laser diode 20 to a plurality of optical fibers 40, and an optical signal from the optical fiber 40 Is entered by the subscriber 50. The subscriber 50 is based on a photodiode 51 that converts an optical signal into an electric signal, an FM demodulator 52 that demodulates an electric signal from the photodiode 51 to generate a multi-channel AM video signal 63, and a multi-channel AM video signal 63. And a receiver 53 for displaying an image.
[0003]
In the above configuration, the multi-channel AM video signal 61 is collectively converted into an FM signal 62 by the FM modulator 100, and directly modulates the laser diode 20 to emit an optical signal. The optical signal is distributed to a large number in the optical distributor 30 and sent to the subscriber 50 through the optical fiber 40. In the subscriber 50, the optical signal is converted into an electric signal by the photodiode 51, then demodulated into a multi-channel AM video signal 63 by the FM demodulator 52, and distributed to the receiver 53.
[0004]
4B shows a multi-channel AM video signal 61 output from the AM video signal generation circuit 60, FIG. 4C shows an FM signal 62 modulated by the FM modulator 100, and FIG. Indicates a multi-channel AM video signal 63 demodulated by the FM demodulator 52.
[0005]
FIG. 5 shows the broadband FM modulator 100 of the optical signal image transmission system of FIG. 4A, which includes a DFB-LD (distributed feedback laser diode) 170 and a local oscillation laser diode (LD) of an external resonance type. It has an optical light source 120, an optical multiplexer 130, and a photodiode 140. The DFB-LD 170, the local oscillation light source 120, the optical multiplexer 130, and the photodiode 140 are connected by an optical fiber 150. A current obtained by superimposing a modulation signal current on a bias current is applied to the DFB-LD 170. At this time, the amplitude of the modulation signal is made sufficiently smaller than the entire forward current. When the current fluctuates, the oscillation wavelength of the DFB-LD 170 slightly fluctuates according to the current fluctuation due to the chirp of the DFB-LD 170, and this becomes an optical wavelength modulation signal. The local oscillation light source 120 emits light at a wavelength near the oscillation wavelength of the DFB-LD 170, and is multiplexed with the optical wavelength modulation signal by the optical multiplexer 130. The reason why the external resonance type semiconductor laser is used as the local oscillation light source 120 is that local oscillation light having high spectral purity is required. When the two lights are combined, a beat is generated. If the beat is detected by the photodiode 140, a broadband FM electrical signal having a carrier frequency equal to the difference between the optical frequencies of the two lights can be obtained. Since signal processing is performed in a very high frequency region, such as light, a wideband FM modulator, which is difficult with an electric circuit, can be realized with a simple configuration.
[0006]
Generally, the FM signal is more resistant to noise than the AM signal, so that the optical input level to the optical receiver is small, and even if the signal-to-noise ratio of the received signal is low, the deterioration of the image is small. Therefore, if transmission is performed using the FM signal, the number of optical branches can be increased, and the transmission system cost per subscriber can be reduced. However, since a home receiver usually has only an AM demodulator and not an FM demodulator, if an FM video signal is directly delivered to a home, it is necessary to attach an FM demodulator to each receiver. As shown in FIG. 4, the broadcasting station collectively converts the multi-channel AM video signal 61 into an FM signal 62, transmits only the optical transmission portion by FM, and demodulates the FM demodulator 52 of the subscriber 50 collectively. Then, the signal input to the receiver of the subscriber 50 becomes the same multi-channel AM video signal 63 as in the conventional terrestrial broadcasting. Therefore, the subscriber 50 can select and view a channel in the same manner as viewing and listening to conventional CATV and terrestrial broadcasting.
[0007]
Since it is necessary for the FM modulator 100 to secure the AM video signal 61 of several tens of channels, the modulation signal has a frequency of several hundred MHz. The noise resistance due to FM transmission improves as the occupied bandwidth of the FM signal increases, and in order to obtain a practical advantage in this system, it is necessary to secure an FM signal occupied bandwidth of several GHz. Since both the modulation frequency band and the FM signal band are very wide, a commonly used electric FM modulation circuit cannot be used. In addition, since the multi-channel AM video signal 61 is handled, it is necessary to suppress distortion over this wide bandwidth.
[0008]
[Problems to be solved by the invention]
However, according to the conventional wideband FM modulator shown in FIG. 5, since the DFB-LD 170 is used as a light source for modulation, there is an advantage that the wavelength of output light is easily modulated by chirp. Since the LD 170 has a larger phase noise of the output light and a wider wavelength line width than a light source such as an external resonance type, the noise of the generated FM signal increases. Therefore, the number of optical branches cannot be increased. Further, since the linearity of the current-wavelength conversion of the DFB-LD 170 is low, signal distortion is likely to occur during modulation. Since the modulation of the wavelength is performed by changing the current of the DFB-LD 170, the amplitude of the output light as well as the wavelength slightly changes at the same time. For this reason, there is also a problem that distortion due to the amplitude fluctuation is likely to occur.
[0009]
As described above, in the method of performing optical wavelength modulation using the chirp of the DFB-LD 170, a wideband FM modulator can be easily realized with a simple configuration, but it is difficult to realize low noise and low distortion. There is a problem. For this reason, not only the number of optical branches cannot be increased so much, but also a circuit for distortion compensation or the like is required practically, which may lead to an increase in cost.
[0010]
Therefore, an object of the present invention is to provide a broadband FM modulator that realizes low noise and low distortion and that realizes low cost of an applied optical video transmission system.
[0011]
[Means for Solving the Problems]
The present invention, in order to solve the above problems,
An optical amplifier driven by a predetermined bias current, and a first laser light source having a wavelength-selective reflector optically coupled to the optical amplifier and driven by an input signal voltage;
A second laser light source that emits a second laser light that is multiplexed with the first laser light emitted from the first laser light source;
An optical multiplexer for multiplexing the first and second laser lights, and a photoelectric conversion unit for converting an optical signal multiplexed by the optical multiplexer into an FM electric signal;
Said wavelength-selective reflector, the electrode is applied to the input signal voltage, have a waveguide means formed by material of which the refractive index is changed by an electric field based on the input signal voltage, to the first laser light source The input signal is also input to the phase inverting circuit, and the output of the phase inverting circuit is connected to the input of the second laser light source. The second laser light source has the same optical amplifying element as the first laser light source, and the second laser light source. A broadband FM modulator comprising the same wavelength-selective reflector as one laser light source .
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the wideband FM modulator according to the present invention will be described in detail.
[0013]
FIG. 1 shows an embodiment of a wavelength modulator applied to a broadband FM modulator according to the present invention. The wavelength modulator 110 includes a wavelength-selective reflector 111 made of lithium niobate and a semiconductor optical amplifier 115. The semiconductor optical amplifier 115 has a reflection surface 117 at one end and a transmission surface 118 at the other end. an active layer 116 that is biased current I 1. A wavelength-selective reflector 111 is arranged on the transmission surface 118 side, and a laser resonator that oscillates only at a specific wavelength as a whole is configured. The reflection wavelength of the wavelength selective reflector 111 is determined by the grating in the optical waveguide 112 formed therein. The laser light is focused by the focusing lens 114 and output to the optical fiber 119.
[0014]
The refractive index of lithium niobate changes depending on the electric field. When the electrode 113 formed on the wavelength-selective reflector 111 applies a signal voltage V 2 corresponding to the multi-channel video signal, an electric field is applied to the light waveguide 112 consisting of lithium niobate, the refractive index of the optical waveguide 112 is changed , The reflection wavelength changes. Therefore, the wavelength of the output light of the external resonance type laser light source can be changed according to the video signal applied to the electrode 113, and operates as a wavelength modulator.
[0015]
FIG. 2 shows an embodiment of the broadband FM modulator of the present invention using the wavelength modulator 110 shown in FIG. This broadband FM modulator includes a wavelength modulator 110, a local oscillation light source 120, a multiplexer 130, and a photodiode 140. Since the local oscillation light needs to have a narrow line width, an external resonance type laser light source is used as the local oscillation light source 120. However, the mechanism for changing the oscillation wavelength as shown in FIG. 1 may not be provided. When the two laser lights are multiplexed by the optical multiplexer 130, a beat equal to the difference between the oscillation frequencies of the respective laser lights is generated. When the beat is detected by the photodiode 140 via the optical fiber 150, an FM-modulated electric signal is obtained. Is obtained. Here, since the carrier frequency of the FM signal 141 becomes equal to the frequency difference between the two laser lights, the FM signal 141 having an arbitrary carrier frequency can be obtained by changing the wavelength of the local oscillation light.
[0016]
Since the wavelength modulator 110 is an external resonance type laser light source, the phase noise can be easily reduced as compared with a conventionally used DFB-LD. Further, since the change in the refractive index of the lithium niobate with respect to the electric field has high linearity, the distortion can be suppressed to a small value. Further, since the intensity of the laser light does not fluctuate due to the modulation signal, the distortion caused by the change in the intensity of the laser light, which has conventionally been a problem, does not occur. Accordingly, a significantly lower noise and lower distortion FM signal can be obtained than in the past, and thus the cost reduction of the optical video transmission system can be efficiently realized.
[0017]
FIG. 3 shows another embodiment of the broadband FM modulator of the present invention, in which the same wavelength modulator 110A as the wavelength modulator 110 is used as the local oscillation light source, and the wavelength modulation generated by the phase inversion circuit 160 is used for this. In this configuration, a signal having a phase opposite to that of the signal input to the device 110 is added. In such a configuration, one wavelength modulator is added signal amplitude same field case, the frequency transition of the FM signal obtained becomes about twice can enlarge the dynamic range.
[0018]
In the system shown in FIG. 4, as the frequency transition of the FM signal, that is, the wider the bandwidth, the stronger the noise, the efficiency of the optical video transmission system can be improved. Also, by adjusting the frequency shift amounts of the two wavelength modulation laser light sources to be the same, the secondary distortion can be canceled. When the frequency transition amount of the FM signal is the same, the level of the modulation signal input to each modulation laser can be reduced, which also has the effect of suppressing distortion.
[0019]
【The invention's effect】
As described above, according to the wideband FM modulator of the present invention, low noise and low distortion can be realized, and the cost of the applied optical video transmission system can be reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an embodiment of a wavelength modulator serving as a resonance type laser light source applied to a broadband FM modulator of the present invention.
FIG. 2 is a block diagram showing an embodiment of a broadband FM modulator according to the present invention configured using the wavelength modulator of FIG. 1;
FIG. 3 is a block diagram showing another embodiment of the broadband FM modulator according to the present invention configured using the wavelength modulator of FIG. 1;
FIG. 4A is an explanatory view showing a conventional optical video transmission system.
(B) Explanatory diagram showing a multi-channel AM video signal before modulation in a conventional optical video transmission system.
(C) Explanatory drawing which shows the FM signal modulated in the conventional optical video transmission system.
(D) Explanatory drawing which shows the demodulated multi-channel AM video signal in the conventional optical video transmission system.
FIG. 5 is an explanatory diagram showing a wideband FM modulator of a conventional optical video transmission system.
[Explanation of symbols]
20, laser diode 30, optical distributor 40, optical fiber 50, subscriber 51, photodiode 52, FM demodulator 53, receiver 61, multi-channel AM video signal 62, FM signal 63, multi-channel AM video signal 100, FM modulators 110 and 110A, wavelength modulator 111, wavelength selective reflector 112, optical waveguide 113, electrode 114, lens 115, semiconductor optical amplifier 116, active layer 117, light reflecting surface 118, light transmitting surface 119, optical fiber 120, local oscillation light source 130, optical multiplexer 140, photodiode 150, optical fiber 160, phase inversion circuit 170, modulation light source

Claims (2)

所定のバイアス電流で駆動される光増幅素子、および前記光増幅素子と光結合し、入力信号電圧で駆動される波長選択性反射器を有する第1のレーザ光源と、前記第1のレーザ光源より出射される第1のレーザ光と合波される第2のレーザ光を出射する第2のレーザ光源と、
前記第1および第2のレーザ光を合波する光合波器と、
前記光合波器で合波された光信号をFM電気信号に変換する光電変換手段を備え、
前記波長選択性反射器は、前記入力信号電圧を印加される電極と、前記入力信号電圧に基づく電界により屈折率が変化する物質によって形成された光導波手段を有し、前記第1のレーザ光源に入力する信号を位相反転回路にも入力すると共に、前記位相反転回路の出力を前記第2のレーザ光源の入力に接続し、前記第2のレーザ光源は、前記第1のレーザ光源と同じ光増幅素子、および前記第1のレーザ光源と同じ波長選択性反射器によって構成されることを特徴とする広帯域FM変調器。
A first laser light source having an optical amplifying element driven by a predetermined bias current, optically coupled to the optical amplifying element, and having a wavelength-selective reflector driven by an input signal voltage; and A second laser light source that emits a second laser light that is combined with the emitted first laser light;
An optical multiplexer for multiplexing the first and second laser lights;
Photoelectric conversion means for converting an optical signal multiplexed by the optical multiplexer into an FM electric signal;
Said wavelength-selective reflector, possess the electrodes applied to the input signal voltage, the optical waveguide means formed by material of which the refractive index is changed by an electric field based on the input signal voltage, the first laser light source And the output of the phase inversion circuit is connected to the input of the second laser light source, and the second laser light source has the same light as the first laser light source. A broadband FM modulator comprising an amplifying element and the same wavelength selective reflector as the first laser light source .
前記光増幅素子は、一端に光反射面を有し、他端に光透過面を有した半導体光増幅素子であり、
前記波長選択性反射器は、前記光透過面を介して前記半導体光増幅素子と光結合し、前記電界によって屈折率が変化するニオブ酸リチウムで形成された光導波手段を有し、この光導波手段上にグレーティングが形成されている構成の請求項1記載の広帯域FM変調器。
The light amplification element is a semiconductor light amplification element having a light reflection surface at one end and a light transmission surface at the other end,
The wavelength-selective reflector optically couples with the semiconductor optical amplifying element via the light transmitting surface, and has optical waveguide means formed of lithium niobate whose refractive index changes by the electric field. 2. The wideband FM modulator according to claim 1 , wherein a grating is formed on the means .
JP20408397A 1997-07-30 1997-07-30 Broadband FM modulator Expired - Fee Related JP3582561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20408397A JP3582561B2 (en) 1997-07-30 1997-07-30 Broadband FM modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20408397A JP3582561B2 (en) 1997-07-30 1997-07-30 Broadband FM modulator

Publications (2)

Publication Number Publication Date
JPH1154825A JPH1154825A (en) 1999-02-26
JP3582561B2 true JP3582561B2 (en) 2004-10-27

Family

ID=16484510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20408397A Expired - Fee Related JP3582561B2 (en) 1997-07-30 1997-07-30 Broadband FM modulator

Country Status (1)

Country Link
JP (1) JP3582561B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323778A (en) * 1999-05-07 2000-11-24 Sumitomo Electric Ind Ltd Light emitting device
JP4564517B2 (en) * 2007-06-27 2010-10-20 Hoya株式会社 FM modulation type optical transmission device

Also Published As

Publication number Publication date
JPH1154825A (en) 1999-02-26

Similar Documents

Publication Publication Date Title
US7302120B2 (en) Optical modulator
JP5112508B2 (en) Method and apparatus for reduced chirp transmitter in optical fiber communications
JP4184474B2 (en) OPTICAL TRANSMISSION SYSTEM AND OPTICAL TRANSMITTING DEVICE AND OPTICAL RECEIVING DEVICE USED FOR THE SAME
US5272556A (en) Optical networks
JPH07193537A (en) Noise level reduction system
US20060228117A1 (en) Optical transmission device and optical transmission system
US8285147B2 (en) Bulk modulation of multiple wavelengths for generation of CATV optical comb
US7433598B2 (en) Uncooled laser generation of narrowcast CATV signal
JP3582561B2 (en) Broadband FM modulator
JP5847771B2 (en) Direct modulation or external modulation laser light transmission system with feedforward noise cancellation
JP2006287410A (en) Optical transmitter, optical receiver, and optical transmission system
CN112993753B (en) Monolithic integrated waveguide device and integrated semiconductor chip thereof
TW200835182A (en) Directly modulated or externally modulated laser optical transmission system with feed forward noise cancellation
CA2341983A1 (en) Wavelength multiplexing system, wavelength adjusting system, and optical transmitter
JP2610667B2 (en) Optical communication system
JP2006287433A (en) Fm modulation method, fm modulation apparatus, and optical transmission system
JPS61242131A (en) Transmission system for optical information on wide band
JPH1013354A (en) Multichannel signal modulating/demodulating device
JPH10126339A (en) Optical transmission system
JP2003107418A (en) Radio wave receiving and optical transmission system
JP3517072B2 (en) Broadband FM modulator
JPH07231300A (en) Optical transmission method
JP3015578U (en) Optical fiber video source distributed network configuration for distributed video signal source
JP2005340893A (en) Fm modulator and optical transmitter
JP2000078090A (en) Optical transmission system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040720

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees