JP3581801B2 - Ferritic stainless steel sheet excellent in workability and surface properties and method for producing the same - Google Patents

Ferritic stainless steel sheet excellent in workability and surface properties and method for producing the same Download PDF

Info

Publication number
JP3581801B2
JP3581801B2 JP17583199A JP17583199A JP3581801B2 JP 3581801 B2 JP3581801 B2 JP 3581801B2 JP 17583199 A JP17583199 A JP 17583199A JP 17583199 A JP17583199 A JP 17583199A JP 3581801 B2 JP3581801 B2 JP 3581801B2
Authority
JP
Japan
Prior art keywords
workability
stainless steel
ferritic stainless
annealing
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17583199A
Other languages
Japanese (ja)
Other versions
JP2001003143A (en
Inventor
純一 濱田
富美夫 札軒
聡 橋本
豊彦 柿原
圭一 大村
信哉 國岡
義仁 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17583199A priority Critical patent/JP3581801B2/en
Publication of JP2001003143A publication Critical patent/JP2001003143A/en
Application granted granted Critical
Publication of JP3581801B2 publication Critical patent/JP3581801B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、プレス加工などの一般の加工性が良好で、かつ表面光沢に優れ、ローピングやチリメン皺の発生を抑制した表面性状の優れたフェライト系ステンレス鋼板、およびその製造方法に関するものである。
【0002】
【従来の技術】
SUS430で代表されるフェライト系ステンレス鋼板の薄板製品は、スラブを熱間圧延し焼鈍した後、表面の酸化スケールを除去するための脱スケールを行い、ついで冷間圧延と焼鈍および酸洗を行い、調質圧延して製造される。これは2B製品と呼ばれるもので、このほか、冷間圧延後に還元性雰囲気の炉で焼鈍し、調質圧延を行うBA製品もある。
熱間圧延後の焼鈍は、コイル状態で箱型炉に入れて行う場合と、帯板を連続焼鈍炉に通板して行う場合がある。熱延板焼鈍後の脱スケールは、ショットブラスト等の機械的処理と酸洗を組合わせた連続酸洗ラインで行われ、連続焼鈍炉で焼鈍する場合は連続焼鈍酸洗ライン(APライン)で行われる。
【0003】
フェライト系ステンレス鋼板の従来の問題点は、リジングの発生を抑えることおよびプレス加工などの加工性を向上することであり、その成分組成および製造法に関して多くの提案がなされている。
例えば特公平6−94574号公報には、鋼中にAlおよびNを積極的に添加するとともに、Al/N≧2としてAlN析出物を析出させ、熱延板焼鈍で未再結晶組織の状態にして冷間圧延を行い、仕上焼鈍することで、優れた耐リジング性と高い平均r値を得る製造法が提案されている。
【0004】
【発明が解決しようとする課題】
フェライト系ステンレス鋼板には、上記のようなリジングやr値で評価される加工性のほか、製造工程において発生する鋼板の表面性状の問題がある。本発明者らは、市場評価の高い優れた表面性状の製品は、表面光沢を高いレベルに維持するとともに、ローピングおよびチリメン皺の発生を抑制することにより得られるとの認識のもとに研究を行った。
ここでローピングは、冷間圧延において発生するリジングと同様の凹凸模様である。チリメン皺は、調質圧延において、素材の降伏現象に起因して発生する皺状の模様である。
【0005】
本発明が解決しようとする課題は、リジングが発生し難く、プレス加工などの一般の加工性が良好で、かつ表面光沢に優れ、ローピングやチリメン皺の発生を抑制した表面性状の優れたフェライト系ステンレス鋼板を、通常の製造設備を使用して製造することである。
【0006】
【課題を解決するための手段】
上記課題を解決するための本発明鋼板は、質量%にて、
C :0.01〜0.10%、 Si:0.05〜0.50%、
Mn:0.05〜1.00%、 Ni:0.01〜0.50%、
Cr:10〜20%、 Mo:0.005〜0.50%、
Cu:0.01〜0.50%、 V :0.001〜0.50%、
Ti:0.001〜0.50%、 Al:0.01〜0.20%、
Nb:0.001〜0.50%、 N :0.005〜0.050%、
B :0.00010〜0.00500%、
残部がFeおよび不可避的不純物よりなり、下記 (1)式で示されるγpが40%以上で、かつN含有量が下記 (2)式で示されるN* 以下の組成を有することを特徴とする加工性と表面性状に優れたフェライト系ステンレス鋼板である。
【0007】
γp=420C+470N+23Ni+9Cu+7Mn−11.5Cr−11.5Si −12Mo−23V−47Nb−49Ti−52Al+189 … (1)
* =Al(14/27)+V(14/51)+Ti(14/48)
+Nb(14/93)+B(14/11) ………………………… (2)
(1)式および (2)式において、C,N,Cu,Mn,Cr,Si,Mo,V,Nb,Ti,Al,B,は、それぞれの質量%である。
【0008】
また上記課題を解決するための本発明法は、上記発明鋼板の成分組成からなるスラブを、圧延終了温度900℃以下で熱間圧延し、α単相域で焼鈍後、ショットブラスト処理をし、硫酸酸洗を行うことなく、HF:10〜100g/l 、HNO3 :40〜200g/l を含有する硝弗酸液で酸洗を行い、冷間圧延、焼鈍、調質圧延を行うことを特徴とする加工性と表面性状に優れたフェライト系ステンレス鋼板の製造方法である。
【0009】
【発明の実施の形態】
まず本発明鋼板の成分限定理由について説明する。
Cは、0.10%を超えると素材が硬質化し加工性の劣化が生じ、0.01%未満では高純化のために精錬コストが高くなる。したがってCの範囲は0.01〜0.10%とした。さらに経済性と材質特性を考慮すると0.01〜0.08%とするのが望ましい。
【0010】
Siは、脱酸元素として精錬時に添加されるが、鋼中含有量が0.50%を超えると耐食性と加工性が劣化し、0.05%未満では精錬コストの増加につながる。したがってSiの範囲は0.05〜0.50%とした。さらに材質特性を考慮すると0.05〜0.40%とするのが望ましい。
Mnは、1.00%を超えると耐食性と加工性が劣化し、0.05%未満では精錬コストの増加につながる。したがってMnの範囲は0.05〜1.00%とした。さらに材質特性を考慮すると0.10〜0.80%とするのが望ましい。
【0011】
Niは、耐食性を向上させるために0.01%以上添加するが、0.50%を超えると原料コストの増加につながる。したがってNiの範囲は0.01〜0.50%とした。さらに経済性を考慮すると0.01〜0.30%とするのが望ましい。
Crは、耐食性および耐高温酸化性の向上のために10%以上の添加が必要であるが、20%を超える添加により加工性が劣化する。したがってCrの範囲は10〜20%とした。さらに耐食性と加工性の確保という観点では15〜18%が望ましい。
【0012】
Moは、耐食性を向上させるために0.005%以上添加するが、0.50%を超えると加工性の低下につながる。したがってMoの範囲は0.005〜0.50%とした。さらに経済性を考慮すると0.005〜0.10%が望ましい。Cuは、耐食性を向上させるために0.01%以上添加するが、0.50%を超えると加工性の低下につながる。したがってCuの範囲は0.01〜0.50%とした。さらに経済性を考慮すると0.01〜0.30%が望ましい。
【0013】
Vは、TiやNbと同様に固溶C,Nを低減する作用があり、後記Tiの場合と同様の理由でVの範囲は0.001〜0.50%とした。またV析出物起因の表面疵と経済性の観点から0.001〜0.20%が望ましい。
Tiは、凝固時にC,Nと結合し、それぞれTiC,TiNとして析出することで凝固中に等軸晶の形成核となるとともに、固溶C,Nを低減することで製品を軟質化し加工性を向上させる。Tiが0.001%以上でこれらの効果が生じるが、0.50%を超えると固溶Tiの増加による硬質化、Ti系介在物による表面疵が生じる。したがってTiの範囲は0.001〜0.50%とした。さらに経済性、表面性状の観点から0.001〜0.20%が望ましい。
【0014】
Alは、焼鈍時にNと結合しAlNとして析出することで、固溶Nを低減することにより製品を軟質化し加工性を向上させる。Alが0.01%以上でこれらの効果が生じるが、0.20%を超えるとAl系介在物が増加して耐銹性、加工性を劣化する。したがってAlの範囲は0.01〜0.20%とした。
Nbは、Ti同様に固溶C,Nを低減する作用があり、上記Tiの場合と同様の理由でNbの範囲は0.001〜0.50%とした。またNb析出物起因の表面疵と経済性の観点から0.001〜0.20%が望ましい。
【0015】
Nは、0.050%を超えるとTi,Nb,Alなどとの窒化物析出による固溶N量低減効果が不十分となり硬質化する。また0.005%未満では高純化による精錬コストの増加につながる。したがってNの範囲は0.005〜0.050%とした。さらに経済性と材質特性を考慮すると、0.008〜0.030%が望ましい。
【0016】
Bは、Ti,Nb,Vと同様に固溶C,Nを低減する作用があるとともに、凝固時および熱間圧延時に析出するオーステナイト相をフェライト粒内に微細析出させる効果がある。これは、Bがフェライト粒界に偏析して、オーステナイト相の粒界析出エネルギーが低下するため粒内に優先析出する作用と、硼炭化物の形成がオーステナイト析出サイトになる作用が考えられる。
いずれにしても、フェライト粒内にオーステナイト相が析出することで、熱間圧延中に展伸するフェライト相を分断する作用が強くなる。これらの効果はBが0.00010%以上で生じるが、0.00500%を超えると溶接性が劣化することから、Bの範囲は0.00010〜0.00500%とした。さらに製造性と経済性を考慮すると0.00010〜0.00300%が望ましい。
【0017】
また (1)式のγpは、この値が高いほどオーステナイト相が生成しやすいことを示し、γpを40%以上とすることにより、図1に示すように、ローピング高さを0.02μm以下に抑えることができる。ローピングは、前述のように冷間圧延により生じるリジングと同様の凹凸模様であり、ローピング高さが0.02μm以下であれば、焼鈍後の調質圧延により、製品板の表面性状として問題ない程度に押え込むことができる。
【0018】
またN含有量を (2)式で示されるN* 以下とする。すなわちN≦N* とすることにより、図2に示すようにチリメン皺が発生し難くなる。なお図2において、チリメン皺発生の程度をAからDのランク付けしており、Aランクはチリメン皺がほとんど認められないもの、Bランクはわずかに認められるが美観を損ねない程度のもの、Cランクは美観を損ねるもの、Dランクは著しく美観を損ねるものである。外観上、A、Bランクは合格で、C、Dランクは不合格である。
(2)式で示されるN* は、窒化物として析出するに必要なN量に相当し、N≦N* とすることで、AlN、VN、TiN、NbN、BNといった窒化物の生成により、鋼中の固溶窒素が減少し、降伏応力が低下するため、チリメン皺が生じ難くなる。なおNは (1)式での係数が大であり、γpを高めるための有効元素であることから、上記のようにAl、V、Ti、Nb、Bを添加することでN* を高め、上記範囲の量を確保する。
【0019】
このような本発明鋼板は、本発明法によるほか、前述のような従来の製造法により、通常の製造設備を使用して製造することができる。そして、得られた薄板製品はリジングが発生し難く、プレス加工などの一般の加工性が良好で、かつ表面光沢に優れ、ローピングやチリメン皺の発生が抑制され、表面性状の優れたものである。
【0020】
つぎに本発明法は、フェライト系ステンレス鋼のスラブを熱間圧延し、熱延板焼鈍を行い、脱スケールし、冷間圧延、冷延板焼鈍、調質圧延を行って薄板製品とする方法において、鋼の成分を上記本発明鋼板の成分組成とし、熱間圧延条件、熱延板焼鈍条件、および熱延板の脱スケール条件を限定したものである。
【0021】
熱延条件は、仕上圧延の圧延終了温度を900℃以下とする。上記成分のスラブをこの条件で熱間圧延すると、引続きα単相域で焼鈍後、冷間圧延したときのローピング高さが、図1のように0.02μm以下になるとともに、冷延板焼鈍後の平均r値が向上する。前述のように、冷延板のローピング高さが0.02μm以下であれば、焼鈍後の調質圧延により、製品板の表面性状として問題ない程度に押え込むことができる。また、平均r値向上により薄板製品の深絞り加工性が向上する。
【0022】
熱延板焼鈍条件は、Ac1点より低いα単相の温度域で行う。焼鈍炉は箱型炉でもよく、APラインの連続炉でもよい。この熱延板焼鈍によりα単相の再結晶組織とし、また粒界のCr負偏析を減少する。γ相が残存すると薄板製品の加工性劣化の原因となり、粒界にCr負偏析があると引続き行う脱スケール処理において硝弗酸酸洗で粒界腐食が生じ、冷間圧延で光沢が向上し難くなる。
熱延板焼鈍後の脱スケール条件は、ショットブラスト等の機械的処理を行った後、硫酸酸洗を行うことなく硝弗酸酸洗を行う。硝弗酸の濃度は、HF:10〜100g/l 、HNO:40〜200g/l とする。
【0023】
従来のこの脱スケールは、機械的処理後に硫酸酸洗し、ついで硝弗酸酸洗する方法がとられていたが、本発明者らの検討結果、硫酸酸洗では不純物元素、特にPの粒界偏析が非常に敏感に作用して粒界が浸食され、それが原因となって冷間圧延で表面光沢が出難くなることが判明した。
そこで硫酸酸洗を行わずに、硝弗酸酸洗で脱スケールするための条件を検討した。その結果、HFが10g/l 未満ではHNO濃度に拘らず脱スケールできず、HF10g/l 以上では図3に示すように、HF濃度およびHNO濃度は上記範囲が適正であった。図3において、HNO濃度が200g/l を超えると、過酸洗による肌あれが生じ、冷延板光沢が不良であった。図3の結果は液温70℃での結果であるが、液温30〜90℃の範囲で同様の結果が得られた。
【0024】
熱延板を脱スケールした後は、通常の冷間圧延、冷延板焼鈍および調質圧延を行って薄板製品とする。冷延板焼鈍はAPラインあるいはBAラインの連続焼鈍炉で行うことができる。前者の場合は引続きAPラインの酸洗槽により酸洗する。後者の場合は還元性雰囲気で焼鈍されるので酸洗は不要である。
【0025】
【実施例】
(1)表1および表2に示す成分からなるフェライト系ステンレス鋼の連続鋳造スラブから、熱間圧延と冷間圧延を行って薄板製品を製造した。熱延板の板厚は3.5mm、熱間圧延の仕上圧延終了温度は800℃、巻取温度は600℃である。熱延板焼鈍は、箱型炉により830℃で行い、ショットブラストと硝弗酸酸洗により脱スケールした。ついで0.5mmまで冷間圧延し、APラインで焼鈍と酸洗を行い、伸び率1.4%の調質圧延を行った。
【0026】
得られた薄板製品について、チリメン皺およびローピングを評価した結果を表2に示す。チリメン皺の評価は先述した基準で目視評価を行い、ローピングの評価目視観察により評価を行った。チリメン皺、ローピングとも、Aランクはほとんど認められないもの、Bランクはわずかに認められるが美観を損ねない程度もの、Cランクは美観を損ねるもの、Dランクは著しく美観を損ねるものである。チリメン皺、ローピングとも外観上、A、Bランクは合格で、C、Dランクは不合格である。
【0027】
本発明例はいずれも、チリメン皺、ローピングとも、AランクまたはBランクであった。
比較例の No.17, No.18および No.26は、N>Nであるため、チリメン皺がCランクまたはDランクであった。比較例の No.21, No.22, No.23および No.25は、γp<40%であるため、いずれもローピングがDランクであった。比較例の No.19, No.20および No.24は、N>Nでかつγp<40%であるため、いずれもチリメン皺がDランクでかつローピングがCランクまたはDランクであった。
【0028】
(2)表1および表2における本発明例 No.1のスラブを、表3に示す条件で板厚3.5mmに熱間圧延し、600℃で巻取り、箱型炉により830℃で焼鈍し、ショットブラスト処理後、酸洗した。酸洗条件は表3に示すとおりである。その後0.5mmまで冷間圧延し、APラインで焼鈍と酸洗を行い、伸び率1.4%の調質圧延を行って薄板製品とした。製品の表面光沢評価結果および平均r値を表3に示す。
表面光沢は、目視観察および光沢度により評価し光沢ランクで示した。Aランクはスケール残りがなく光沢度850%以上のもの、Bランクはスケール残りがなく光沢度800%以上850%未満のもの、Cランクはスケール残りがなく光沢度750%以上800%未満のもの、Dランクはスケール残りがあるもの、である。なお光沢度は、JIS Z8741 に従い45度鏡面光沢の値による。
【0029】
本発明例はいずれも、表面光沢、平均r値ともに良好である。なお平均r値が1.1以上であれば、通常のプレス加工性が良好である。
比較例の No.11, No.14, No.15および No.16は、熱間圧延の仕上圧延終了温度が900℃を超えているため、平均r値が低くプレス加工には不適であった。比較例の No.11および No.13は、熱延板の酸洗において硫酸酸洗を行ったため粒界が浸食され、製品の肌あれが目立ち光沢がCランクとなった。
比較例の No.9 および No.15は、熱延板の硝弗酸酸洗において弗酸濃度が高過ぎたため、デスケールはされたが肌荒れが生じ、光沢がCランクとなった。比較例の No.10および No.12は、熱延板の硝弗酸酸洗において弗酸濃度が高過ぎたため、デスケール不良で光沢がDランクとなった。
【0030】
【表1】

Figure 0003581801
【0031】
【表2】
Figure 0003581801
【0032】
【表3】
Figure 0003581801
【0033】
【発明の効果】
本発明鋼板は、代表的なフェライト系ステンレス鋼板として、家庭用、業務用、工業用の各種用途に広く採用されているSUS430系について、成分的にきめ細かな限定を行ったものであり、リジングが発生し難く、プレス加工などの一般の加工性が良好で、かつ表面光沢に優れ、ローピングやチリメン皺の発生を抑制した表面性状の優れた薄板製品が得られる。
また本発明法は、本発明鋼板を製造するにあたり、熱延条件、熱延板の焼鈍および酸洗条件を限定したものであり、通常の製造設備により、安定した製造ができる。
【図面の簡単な説明】
【図1】本発明におけるγpの限定理由を説明するためのグラフである。
【図2】本発明におけるN含有量とNの関係を説明するためのグラフである。
【図3】本発明法における硝弗酸酸洗の酸濃度限定理由を説明するためのグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ferritic stainless steel sheet which has good workability such as press working, has excellent surface gloss, and has excellent surface properties in which roping and generation of wrinkles are suppressed, and a method for producing the same.
[0002]
[Prior art]
A sheet product of a ferritic stainless steel sheet represented by SUS430 is subjected to descaling to remove oxide scale on the surface after hot rolling and annealing the slab, and then to cold rolling, annealing and pickling, It is manufactured by temper rolling. This is called a 2B product. In addition, there is also a BA product which is subjected to temper rolling after annealing in a reducing atmosphere furnace after cold rolling.
Annealing after hot rolling may be performed in a coil state in a box furnace, or may be performed by passing a strip through a continuous annealing furnace. The descaling after hot-rolled sheet annealing is performed in a continuous pickling line that combines mechanical treatment such as shot blasting and pickling. In the case of annealing in a continuous annealing furnace, a continuous annealing pickling line (AP line) is used. Done.
[0003]
Conventional problems of ferritic stainless steel sheets are to suppress the occurrence of ridging and to improve workability such as press working, and many proposals have been made regarding the component composition and production method.
For example, Japanese Patent Publication No. Hei 6-94574 discloses that Al and N are positively added to steel, AlN precipitates are made to satisfy Al / N ≧ 2, and an unrecrystallized structure is formed by hot-rolled sheet annealing. A method of producing excellent ridging resistance and a high average r value by cold rolling and finish annealing has been proposed.
[0004]
[Problems to be solved by the invention]
Ferritic stainless steel sheets have problems in the formability evaluated by the ridging and r-value as described above, as well as the surface properties of the steel sheets generated in the manufacturing process. The present inventors conducted research based on the recognition that products with excellent surface properties having a high market reputation can be obtained by maintaining surface gloss at a high level and suppressing roping and occurrence of wrinkles. went.
Here, roping is a concavo-convex pattern similar to ridging generated in cold rolling. Crimson wrinkles are wrinkle-like patterns generated due to the yield phenomenon of the material in temper rolling.
[0005]
The problem to be solved by the present invention is that a ferritic material which hardly generates ridging, has good general workability such as press working, and has excellent surface gloss, and has excellent surface properties which suppresses the occurrence of roping and wrinkles. To produce stainless steel plates using ordinary production equipment.
[0006]
[Means for Solving the Problems]
The steel sheet of the present invention for solving the above-described problems is, in mass %,
C: 0.01 to 0.10%, Si: 0.05 to 0.50%,
Mn: 0.05-1.00%, Ni: 0.01-0.50%,
Cr: 10 to 20%, Mo: 0.005 to 0.50%,
Cu: 0.01 to 0.50%, V: 0.001 to 0.50%,
Ti: 0.001 to 0.50%, Al: 0.01 to 0.20%,
Nb: 0.001 to 0.50%, N: 0.005 to 0.050%,
B: 0.00010 to 0.00500%,
The balance consists of Fe and unavoidable impurities, γp represented by the following formula (1) is 40% or more, and N content is N * or less represented by the following formula (2). A ferritic stainless steel sheet with excellent workability and surface properties.
[0007]
γp = 420C + 470N + 23Ni + 9Cu + 7Mn-11.5Cr-11.5Si-12Mo-23V-47Nb-49Ti-52Al + 189 (1)
N * = Al (14/27) + V (14/51) + Ti (14/48)
+ Nb (14/93) + B (14/11) …………………… (2)
In the formulas (1) and (2), C, N, Cu, Mn, Cr, Si, Mo, V, Nb, Ti, Al, and B are mass % of each.
[0008]
Further, the method of the present invention for solving the above-mentioned problems, a slab comprising the composition of the above-mentioned invention steel sheet, hot-rolled at a rolling end temperature of 900 ° C. or lower, after annealing in the α single phase region, and shot blasting, without performing sulfuric acid cleaning, HF: 10~100g / l, HNO 3: perform pickling in nitric-hydrofluoric acid solution containing 40~200g / l, cold rolling, annealing, to perform temper rolling This is a method for producing a ferritic stainless steel sheet excellent in characteristic workability and surface properties.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the reasons for limiting the components of the steel sheet of the present invention will be described.
If C exceeds 0.10%, the material becomes hard and the workability deteriorates, and if it is less than 0.01%, refining costs increase due to high purification. Therefore, the range of C is set to 0.01 to 0.10%. Further, in consideration of economic efficiency and material properties, the content is desirably 0.01 to 0.08%.
[0010]
Si is added at the time of refining as a deoxidizing element. When the content in steel exceeds 0.50%, corrosion resistance and workability deteriorate, and when it is less than 0.05%, refining cost increases. Therefore, the range of Si is set to 0.05 to 0.50%. Further, in consideration of the material properties, the content is preferably set to 0.05 to 0.40%.
If Mn exceeds 1.00%, corrosion resistance and workability deteriorate, and if it is less than 0.05%, refining costs increase. Therefore, the range of Mn is set to 0.05 to 1.00%. Further, considering the material properties, it is desirable to set the content to 0.10 to 0.80%.
[0011]
Ni is added in an amount of 0.01% or more in order to improve corrosion resistance. However, if it exceeds 0.50%, the cost of raw materials increases. Therefore, the range of Ni is set to 0.01 to 0.50%. Further, in consideration of economy, it is preferable to set the content to 0.01 to 0.30%.
Cr needs to be added in an amount of 10% or more to improve corrosion resistance and high-temperature oxidation resistance. However, if it exceeds 20%, workability is deteriorated. Therefore, the range of Cr is set to 10 to 20%. Further, from the viewpoint of ensuring corrosion resistance and workability, 15 to 18% is desirable.
[0012]
Mo is added in an amount of 0.005% or more to improve corrosion resistance. However, if it exceeds 0.50%, workability is reduced. Therefore, the range of Mo is set to 0.005 to 0.50%. Further, in consideration of economy, 0.005 to 0.10% is desirable. Cu is added in an amount of 0.01% or more to improve corrosion resistance. However, if it exceeds 0.50%, workability is reduced. Therefore, the range of Cu is set to 0.01 to 0.50%. Further, in consideration of economy, 0.01 to 0.30% is desirable.
[0013]
V has an effect of reducing solid solution C and N similarly to Ti and Nb, and the range of V is set to 0.001 to 0.50% for the same reason as in the case of Ti described later. From the viewpoint of surface flaws caused by V precipitates and economy, 0.001 to 0.20% is desirable.
Ti combines with C and N at the time of solidification and precipitates as TiC and TiN, respectively, to form nuclei of equiaxed crystals during solidification. At the same time, it reduces the amount of solute C and N to soften the product, thereby improving workability. Improve. These effects occur when the content of Ti is 0.001% or more, but when the content exceeds 0.50%, hardening due to an increase in solid solution Ti and surface defects due to Ti-based inclusions are caused. Therefore, the range of Ti is set to 0.001 to 0.50%. Furthermore, 0.001 to 0.20% is desirable from the viewpoint of economy and surface properties.
[0014]
Al combines with N during annealing and precipitates as AlN, thereby reducing solid solution N to soften the product and improve workability. These effects occur when Al is 0.01% or more, but when it exceeds 0.20%, Al 2 O 3 -based inclusions increase to deteriorate rust resistance and workability. Therefore, the range of Al is set to 0.01 to 0.20%.
Nb has an effect of reducing solid solution C and N like Ti, and the range of Nb is set to 0.001 to 0.50% for the same reason as in the case of Ti. 0.001 to 0.20% is desirable from the viewpoint of surface flaws caused by Nb precipitates and economy.
[0015]
If N exceeds 0.050%, the effect of reducing the amount of solute N due to the precipitation of nitrides with Ti, Nb, Al, etc. becomes insufficient, so that N becomes hard. On the other hand, if the content is less than 0.005%, refining costs will increase due to high purification. Therefore, the range of N is set to 0.005 to 0.050%. Further, in consideration of economy and material properties, 0.008 to 0.030% is desirable.
[0016]
B has an effect of reducing solid solution C and N like Ti, Nb and V, and has an effect of finely precipitating an austenite phase precipitated during solidification and hot rolling in ferrite grains. This is conceivably because B segregates at the ferrite grain boundaries and the grain boundary precipitation energy of the austenite phase is reduced, so that preferential precipitation occurs in the grains, and that boron carbide forms the austenite precipitation site.
In any case, since the austenite phase precipitates in the ferrite grains, the effect of separating the ferrite phase that expands during hot rolling is enhanced. These effects occur when B is 0.00010% or more. However, when B exceeds 0.00500%, the weldability deteriorates. Therefore, the range of B is set to 0.00010 to 0.00500%. Further, considering productivity and economy, 0.00010 to 0.00300% is desirable.
[0017]
Further, γp in the formula (1) indicates that the higher this value, the easier the austenite phase is formed. By setting γp to 40% or more, as shown in FIG. 1, the roping height is reduced to 0.02 μm or less. Can be suppressed. Roping is an uneven pattern similar to the ridging generated by cold rolling as described above. If the roping height is 0.02 μm or less, the surface properties of the product sheet will not be a problem by temper rolling after annealing. Can be held down.
[0018]
Further, the N content is set to be equal to or less than N * represented by the equation (2). That is, by setting N ≦ N * , as shown in FIG. In FIG. 2, the degree of occurrence of wrinkles is ranked from A to D. A rank shows almost no wrinkles, B rank shows slight wrinkles but does not impair the aesthetic appearance, and C shows The rank impairs the aesthetic appearance, and the D rank remarkably impairs the aesthetic appearance. In appearance, A and B ranks passed, and C and D ranks failed.
N * represented by the formula (2) corresponds to the amount of N required to precipitate as a nitride, and by setting N ≦ N * , the formation of nitrides such as AlN, VN, TiN, NbN, and BN Since the amount of solute nitrogen in the steel decreases and the yield stress decreases, wrinkles hardly occur. Note that N has a large coefficient in the equation (1) and is an effective element for increasing γp, so that N * is increased by adding Al, V, Ti, Nb, and B as described above, Secure the amount in the above range.
[0019]
Such a steel sheet of the present invention can be manufactured by a conventional manufacturing method as described above using ordinary manufacturing equipment in addition to the method of the present invention. And the obtained thin plate product is hard to generate ridging, has good general workability such as press working, and is excellent in surface gloss, in which the occurrence of roping and creaking is suppressed, and the surface properties are excellent. .
[0020]
Next, the method of the present invention is a method of hot-rolling a slab of ferritic stainless steel, performing hot-rolled sheet annealing, descaling, cold rolling, cold-rolled sheet annealing, and temper rolling to form a thin sheet product. In the above, the steel composition is the above-mentioned composition of the steel sheet of the present invention, and the hot rolling conditions, hot rolled sheet annealing conditions, and hot rolled sheet descaling conditions are limited.
[0021]
The hot rolling conditions are such that the finish temperature of the finish rolling is 900 ° C. or less. When the slab of the above component is hot-rolled under these conditions, the roping height when cold-rolled after annealing in the α single phase region becomes 0.02 μm or less as shown in FIG. The subsequent average r value is improved. As described above, when the roping height of the cold-rolled sheet is 0.02 μm or less, the product sheet can be pressed by temper rolling after annealing to such an extent that the surface properties of the product sheet do not cause any problem. In addition, deep drawing workability of a thin sheet product is improved by improving the average r value.
[0022]
The hot rolled sheet annealing condition is performed in a temperature range of α single phase lower than the Ac1 point. The annealing furnace may be a box furnace or a continuous furnace of the AP line. The annealing of the hot-rolled sheet changes the recrystallization structure into an α-single phase and reduces Cr negative segregation at grain boundaries. If the γ phase remains, it causes the deterioration of workability of the sheet product.If there is Cr negative segregation at the grain boundary, intergranular corrosion occurs by nitric hydrofluoric acid pickling in the subsequent descaling process, and the gloss is improved by cold rolling. It becomes difficult.
The descaling conditions after the hot-rolled sheet annealing are such that after performing mechanical treatment such as shot blasting, nitric hydrofluoric acid washing is performed without performing sulfuric acid pickling. The concentration of the nitric-hydrofluoric acid, HF: 10~100g / l, HNO 3: a 40~200g / l.
[0023]
The conventional descaling method employs a method of washing with a sulfuric acid after a mechanical treatment, followed by a washing with a nitric hydrofluoric acid. However, as a result of investigations by the present inventors, the sulfuric acid washes resulted in an impurity element, particularly P particles. It has been found that the grain boundaries are eroded due to the extremely sensitive action of field segregation, which causes the surface gloss to be hardly produced by cold rolling.
Therefore, conditions for descaling by nitric hydrofluoric acid washing without performing sulfuric acid washing were examined. As a result, when the HF was less than 10 g / l, descaling could not be performed irrespective of the HNO 3 concentration. When the HF was 10 g / l or more, as shown in FIG. 3, the HF concentration and the HNO 3 concentration were appropriate in the above ranges. In FIG. 3, when the HNO 3 concentration was more than 200 g / l, the skin became rough due to peracid washing, and the gloss of the cold rolled sheet was poor. The results in FIG. 3 were obtained at a liquid temperature of 70 ° C., but similar results were obtained in a liquid temperature range of 30 to 90 ° C.
[0024]
After descaling the hot-rolled sheet, normal cold rolling, cold-rolled sheet annealing and temper rolling are performed to obtain a thin sheet product. The cold-rolled sheet annealing can be performed in a continuous annealing furnace of the AP line or the BA line. In the former case, pickling is continuously performed in the pickling tank of the AP line. In the case of the latter, pickling is unnecessary because annealing is performed in a reducing atmosphere.
[0025]
【Example】
(1) From a continuous cast slab of ferritic stainless steel composed of the components shown in Tables 1 and 2, hot rolling and cold rolling were performed to produce a thin sheet product. The thickness of the hot rolled sheet is 3.5 mm, the finish rolling end temperature of hot rolling is 800 ° C, and the winding temperature is 600 ° C. The hot-rolled sheet annealing was performed at 830 ° C. in a box furnace, and descaling was performed by shot blasting and nitric hydrofluoric acid washing. Subsequently, it was cold-rolled to 0.5 mm, annealed and pickled with an AP line, and temper-rolled with an elongation of 1.4%.
[0026]
Table 2 shows the results of evaluation of wrinkles and roping on the obtained thin plate product. Chirimen evaluation of wrinkles was visually evaluated on the criteria previously described, it was evaluated by the evaluation of the roping is also visually observed. In both the wrinkles and the roping, rank A is hardly recognized, rank B is slightly recognized but does not impair the appearance, rank C impairs the appearance, and rank D impairs the appearance significantly. The appearance of both the wrinkles and the roping was acceptable for ranks A and B, and failed for ranks C and D.
[0027]
In all of the examples of the present invention, both wrinkles and roping were ranked A or B.
No. of the comparative example. 17, No. 18 and No. In No. 26, since N> N * , the wrinkles were C rank or D rank. No. of the comparative example. 21, no. 22, no. 23 and no. In No. 25, since γp <40%, the roping was D rank. No. of the comparative example. 19, No. 20 and no. In No. 24, since N> N * and γp <40%, the wrinkles were D rank and the roping was C rank or D rank.
[0028]
(2) Examples of the present invention in Tables 1 and 2 The slab No. 1 was hot-rolled to a thickness of 3.5 mm under the conditions shown in Table 3, rolled up at 600 ° C, annealed at 830 ° C in a box furnace, shot blasted, and pickled. The pickling conditions are as shown in Table 3. Thereafter, the sheet was cold-rolled to 0.5 mm, annealed and pickled in an AP line, and temper-rolled to an elongation of 1.4% to obtain a thin sheet product. Table 3 shows the surface gloss evaluation results and the average r values of the products.
The surface gloss was evaluated by visual observation and gloss, and indicated by gloss rank. A rank has no scale residue and gloss of 850% or more, B rank has no scale residue and has a gloss of 800% or more and less than 850%, and C rank has no scale residue and has a gloss of 750% or more and less than 800%. , D rank is the one with scale remaining. The glossiness is based on the value of 45-degree specular gloss according to JIS Z8741.
[0029]
In each of the examples of the present invention, both the surface gloss and the average r value are good. When the average r value is 1.1 or more, normal press workability is good.
No. of the comparative example. 11, No. 14, No. 15 and no. Sample No. 16 had a low average r value and was unsuitable for press working because the finish rolling end temperature of hot rolling exceeded 900 ° C. No. of the comparative example. 11 and No. In No. 13, the grain boundaries were eroded due to sulfuric acid pickling in the pickling of the hot-rolled sheet, and the surface roughness of the product was conspicuous and the gloss became C rank.
No. of the comparative example. 9 and No. 9 In No. 15, since the concentration of hydrofluoric acid was too high in the pickling of nitric acid and hydrofluoric acid on the hot-rolled sheet, the scale was descaled, but the surface was roughened, and the gloss became C rank. No. of the comparative example. 10 and No. In No. 12, gloss was ranked D due to poor descaling because the concentration of hydrofluoric acid was too high in the nitric acid hydrofluoric acid washing of the hot rolled sheet.
[0030]
[Table 1]
Figure 0003581801
[0031]
[Table 2]
Figure 0003581801
[0032]
[Table 3]
Figure 0003581801
[0033]
【The invention's effect】
The steel sheet of the present invention is a typical ferritic stainless steel sheet, which is a SUS430 series widely used in various applications for home use, business use, and industrial use, and is a component in which fine adjustment is made in terms of components. A thin sheet product that is hardly generated, has good workability such as press working, has excellent surface gloss, and has excellent surface properties in which roping and generation of wrinkles is suppressed.
In the method of the present invention, the conditions of hot rolling, annealing of hot rolled sheet and pickling are limited in producing the steel sheet of the present invention, and stable production can be performed by ordinary production equipment.
[Brief description of the drawings]
FIG. 1 is a graph for explaining the reason for limiting γp in the present invention.
FIG. 2 is a graph for explaining the relationship between N content and N * in the present invention.
FIG. 3 is a graph for explaining the reason for limiting the acid concentration of nitric acid hydrofluoric acid in the method of the present invention.

Claims (2)

質量%にて、
C :0.01〜0.10%、 Si:0.05〜0.50%、
Mn:0.05〜1.00%、 Ni:0.01〜0.50%、
Cr:10〜20%、 Mo:0.005〜0.50%、
Cu:0.01〜0.50%、 V :0.001〜0.50%、
Ti:0.001〜0.50%、 Al:0.01〜0.20%、
Nb:0.001〜0.50%、 N :0.005〜0.050%、
B :0.00010〜0.00500%、
残部がFeおよび不可避的不純物よりなり、下記 (1)式で示されるγpが40%以上で、かつN含有量が下記 (2)式で示されるN* 以下の組成を有することを特徴とする加工性と表面性状に優れたフェライト系ステンレス鋼板。
γp=420C+470N+23Ni+9Cu+7Mn−11.5Cr−11.5Si −12Mo−23V−47Nb−49Ti−52Al+189 … (1)
* =Al(14/27)+V(14/51)+Ti(14/48)
+Nb(14/93)+B(14/11) ………………………… (2)
(1)式および (2)式において、C,N,Cu,Mn,Cr,Si,Mo,V,Nb,Ti,Al,B,は、それぞれの質量%である。
In mass %,
C: 0.01 to 0.10%, Si: 0.05 to 0.50%,
Mn: 0.05-1.00%, Ni: 0.01-0.50%,
Cr: 10 to 20%, Mo: 0.005 to 0.50%,
Cu: 0.01 to 0.50%, V: 0.001 to 0.50%,
Ti: 0.001 to 0.50%, Al: 0.01 to 0.20%,
Nb: 0.001 to 0.50%, N: 0.005 to 0.050%,
B: 0.00010 to 0.00500%,
The balance consists of Fe and unavoidable impurities, γp represented by the following formula (1) is 40% or more, and N content is N * or less represented by the following formula (2). Ferritic stainless steel sheet with excellent workability and surface properties.
γp = 420C + 470N + 23Ni + 9Cu + 7Mn-11.5Cr-11.5Si-12Mo-23V-47Nb-49Ti-52Al + 189 (1)
N * = Al (14/27) + V (14/51) + Ti (14/48)
+ Nb (14/93) + B (14/11) …………………… (2)
In the formulas (1) and (2), C, N, Cu, Mn, Cr, Si, Mo, V, Nb, Ti, Al, and B are mass % of each.
質量%にて、
C :0.01〜0.10%、 Si:0.05〜0.50%、
Mn:0.05〜1.00%、 Ni:0.01〜0.50%、
Cr:10〜20%、 Mo:0.005〜0.50%、
Cu:0.01〜0.50%、 V :0.001〜0.50%、
Ti:0.001〜0.50%、 Al:0.01〜0.20%、
Nb:0.001〜0.50%、 N :0.005〜0.050%、
B :0.00010〜0.00500%、
残部がFeおよび不可避的不純物よりなり、下記 (1)式で示されるγpが40%以上で、かつN含有量が下記 (2)式で示されるN* 以下の組成を有するフェライト系ステンレス鋼のスラブを、圧延終了温度900℃以下で熱間圧延し、α単相域で焼鈍後、ショットブラスト処理をし、硫酸酸洗を行うことなく、HF:10〜100g/l 、HNO3 :40〜200g/l を含有する硝弗酸液で酸洗を行い、冷間圧延、焼鈍、調質圧延を行うことを特徴とする加工性と表面性状に優れたフェライト系ステンレス鋼板の製造方法。
γp=420C+470N+23Ni+9Cu+7Mn−11.5Cr−11.5Si −12Mo−23V−47Nb−49Ti−52Al+189 … (1)
* =Al(14/27)+V(14/51)+Ti(14/48)
+Nb(14/93)+B(14/11) ………………………… (2)
(1)式および (2)式において、C,N,Cu,Mn,Cr,Si,Mo,V,Nb,Ti,Al,B,は、それぞれの質量%である。
In mass %,
C: 0.01 to 0.10%, Si: 0.05 to 0.50%,
Mn: 0.05-1.00%, Ni: 0.01-0.50%,
Cr: 10 to 20%, Mo: 0.005 to 0.50%,
Cu: 0.01 to 0.50%, V: 0.001 to 0.50%,
Ti: 0.001 to 0.50%, Al: 0.01 to 0.20%,
Nb: 0.001 to 0.50%, N: 0.005 to 0.050%,
B: 0.00010 to 0.00500%,
The balance is made of a ferritic stainless steel having a composition of Fe and unavoidable impurities, γp represented by the following formula (1) of 40% or more, and N content of N * or less represented by the following formula (2) The slab is hot-rolled at a rolling end temperature of 900 ° C. or lower, annealed in the α single phase region, subjected to shot blasting, without sulfuric acid pickling, HF: 10 to 100 g / l, HNO 3 : 40 to A method for producing a ferritic stainless steel sheet having excellent workability and surface properties, comprising pickling with a nitric hydrofluoric acid solution containing 200 g / l and performing cold rolling, annealing, and temper rolling.
γp = 420C + 470N + 23Ni + 9Cu + 7Mn-11.5Cr-11.5Si-12Mo-23V-47Nb-49Ti-52Al + 189 (1)
N * = Al (14/27) + V (14/51) + Ti (14/48)
+ Nb (14/93) + B (14/11) …………………… (2)
In the formulas (1) and (2), C, N, Cu, Mn, Cr, Si, Mo, V, Nb, Ti, Al, and B are mass % of each.
JP17583199A 1999-06-22 1999-06-22 Ferritic stainless steel sheet excellent in workability and surface properties and method for producing the same Expired - Lifetime JP3581801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17583199A JP3581801B2 (en) 1999-06-22 1999-06-22 Ferritic stainless steel sheet excellent in workability and surface properties and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17583199A JP3581801B2 (en) 1999-06-22 1999-06-22 Ferritic stainless steel sheet excellent in workability and surface properties and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001003143A JP2001003143A (en) 2001-01-09
JP3581801B2 true JP3581801B2 (en) 2004-10-27

Family

ID=16002990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17583199A Expired - Lifetime JP3581801B2 (en) 1999-06-22 1999-06-22 Ferritic stainless steel sheet excellent in workability and surface properties and method for producing the same

Country Status (1)

Country Link
JP (1) JP3581801B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015105045A1 (en) 2014-01-08 2015-07-16 Jfeスチール株式会社 Ferritic stainless steel and method for producing same
WO2015111403A1 (en) 2014-01-24 2015-07-30 Jfeスチール株式会社 Material for cold-rolled stainless steel sheet and method for producing same
KR101621052B1 (en) * 2015-06-01 2016-05-13 주식회사 포스코 Stainless steel based on ferrite and method for manufacturing the same
KR20160105869A (en) 2014-01-08 2016-09-07 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel and method for producing same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5768641B2 (en) * 2010-10-08 2015-08-26 Jfeスチール株式会社 Ferritic stainless steel having excellent corrosion resistance and electrical conductivity, method for producing the same, polymer electrolyte fuel cell separator, and polymer electrolyte fuel cell
KR101809812B1 (en) * 2013-07-29 2017-12-15 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel having excellent corrosion resistance of weld zone
JP6983077B2 (en) * 2018-01-12 2021-12-17 日鉄ステンレス株式会社 Ferritic stainless steel sheet and its manufacturing method
CN111663075B (en) * 2020-04-09 2021-10-01 北京首钢股份有限公司 Pickled steel for stamping and preparation method and application thereof
CN115044826B (en) * 2022-05-07 2023-09-15 广西柳州钢铁集团有限公司 410 ferrite stainless steel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3144228B2 (en) * 1994-08-03 2001-03-12 日本鋼管株式会社 Method for producing high-chromium cold-rolled steel strip excellent in ridging resistance and workability and method for producing hot-rolled steel strip for the material
JP3018913B2 (en) * 1994-08-23 2000-03-13 住友金属工業株式会社 Manufacturing method of ferritic stainless steel sheet with excellent corrosion resistance for automobile exhaust system equipment
JP3484805B2 (en) * 1995-03-14 2004-01-06 Jfeスチール株式会社 Method for producing ferritic stainless steel strip with low in-plane anisotropy and excellent strength-elongation balance
JP3593182B2 (en) * 1995-07-07 2004-11-24 新日本製鐵株式会社 Method for preventing surface flaws on hot-rolled ferritic stainless steel strip
JP3451830B2 (en) * 1996-03-29 2003-09-29 Jfeスチール株式会社 Ferritic stainless steel sheet excellent in ridging resistance and workability and method for producing the same
JP3879164B2 (en) * 1997-03-18 2007-02-07 Jfeスチール株式会社 Method for producing ferritic stainless hot rolled steel strip with excellent cold rolling properties

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015105045A1 (en) 2014-01-08 2015-07-16 Jfeスチール株式会社 Ferritic stainless steel and method for producing same
KR20160105869A (en) 2014-01-08 2016-09-07 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel and method for producing same
KR20160105874A (en) 2014-01-08 2016-09-07 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel and method for producing same
WO2015111403A1 (en) 2014-01-24 2015-07-30 Jfeスチール株式会社 Material for cold-rolled stainless steel sheet and method for producing same
KR20160113179A (en) 2014-01-24 2016-09-28 제이에프이 스틸 가부시키가이샤 Material for cold-rolled stainless steel sheet and method for producing same
KR101621052B1 (en) * 2015-06-01 2016-05-13 주식회사 포스코 Stainless steel based on ferrite and method for manufacturing the same

Also Published As

Publication number Publication date
JP2001003143A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
EP1099773B1 (en) Ferritic stainless steel plate
US6500280B2 (en) Ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
KR101705135B1 (en) Ferritic stainless steel sheet
CN110546293B (en) Ferritic stainless steel sheet and method for producing same
JP3581801B2 (en) Ferritic stainless steel sheet excellent in workability and surface properties and method for producing the same
WO2018198834A1 (en) Ferritic stainless steel sheet, and production method therefor
JP4214671B2 (en) Ferritic Cr-containing cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same
JP4049697B2 (en) Highly workable Mo-containing ferritic stainless steel sheet with excellent manufacturability and method for producing the same
JPH06248339A (en) Production of steel sheet for vessel with high rigidity
JP5045050B2 (en) Ferritic stainless hot rolled steel sheet for cold rolling and method for producing the same
JP2001089815A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP3941363B2 (en) Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance, and method for producing the same
JPS5849628B2 (en) Method for producing composite structure high-strength cold-rolled steel sheet with excellent deep drawability
JP2001098328A (en) Method of producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP3779784B2 (en) Method for producing ferritic stainless steel with excellent surface properties
JP4003821B2 (en) Method for producing ferritic stainless steel sheet with excellent ridging resistance
JP3455047B2 (en) Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same
JP3067892B2 (en) Manufacturing method of ferritic stainless steel sheet with excellent surface properties and deep drawability
JPH10280047A (en) Production of ferritic stainless steel sheet excellent in roping resistance
JP2000256749A (en) Manufacture of high purity ferritic stainless steel sheet excellent in ridging resistance
JP3709709B2 (en) Ferritic stainless steel with excellent formability and manufacturing method thereof
JPH07126758A (en) Manufacture of ferritic stainless steel sheet excellent in bendability
JPS6216251B2 (en)
JP4824857B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JPH10130734A (en) Production of austenitic stainless steel sheet for roll forming

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040726

R150 Certificate of patent or registration of utility model

Ref document number: 3581801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term