JP3581550B2 - Filtration tower - Google Patents

Filtration tower Download PDF

Info

Publication number
JP3581550B2
JP3581550B2 JP36415897A JP36415897A JP3581550B2 JP 3581550 B2 JP3581550 B2 JP 3581550B2 JP 36415897 A JP36415897 A JP 36415897A JP 36415897 A JP36415897 A JP 36415897A JP 3581550 B2 JP3581550 B2 JP 3581550B2
Authority
JP
Japan
Prior art keywords
steel plate
chamber
hollow fiber
fiber membrane
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36415897A
Other languages
Japanese (ja)
Other versions
JPH11169678A (en
Inventor
一彦 斎木
里志 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP36415897A priority Critical patent/JP3581550B2/en
Publication of JPH11169678A publication Critical patent/JPH11169678A/en
Application granted granted Critical
Publication of JP3581550B2 publication Critical patent/JP3581550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Description

【0001】
【発明の属する技術分野】
本発明は、例えば火力発電所や原子力発電所等の発電プラントにおいて復水の濾過処理に好適に用いられる濾過塔に関し、更に詳しくは一次側室と二次側室とを区画する仕切板の構造に関する。
【0002】
【従来の技術】
従来から原子力発電所や火力発電所等の発電所では、原子力や火力を利用して蒸気を作り、この蒸気で発電タービンを駆動して発電するようにしている。例えば、沸騰水型原子力発電所(BWR)では、図3に示すように、原子炉1で発生した蒸気を高圧タービン2A、低圧タービン2Bの順に送り、各タービン2A、2Bで発電機を回転させて発電している。そして、発電後の蒸気を復水器3で冷却して復水とし、復水を復水濾過装置4、復水脱塩装置5の順に送り、原子炉1等の機器類や配管材料等から発生した酸化鉄微粒子等の金属クラッドを復水濾過装置4を用いて復水中から除去し、次いでFeイオン、Cuイオン等の種々のイオン成分を復水脱塩装置5を用いて復水中から除去した後、その復水を原子炉1へ送るようにしている。また、原子炉1へ復水を供給する前に、高圧タービン2A及び低圧タービン2Bそれぞれの蒸気の一部を低圧ヒータ6A及び高圧ヒータ6Bへ供給し、復水を徐々に加熱している。また、原子炉1の冷却水は濾過脱塩装置7によって浄化するようにしてある。尚、図3において、破線で示す8Aは蒸気配管、実線で示す8Bは復水配管、9A、9B、9C、9D、9Eはいずれもポンプである。
【0003】
ところで、上記復水濾過装置4は例えば図4に示す濾過塔40を複数塔備えて構成されている。この濾過塔40は、同図に示すように、塔本体41内を上室42、中間室43及び下室44に区画する上下の仕切板45、46と、これらの仕切板45、46に上下両端がそれぞれ固定され且つ塔本体41の軸心に沿って中間室43内に配設された複数の両端集水型の中空糸膜モジュール47とを備えている。そして、下方の仕切板46には各中空糸膜モジュール47に対応させた集水管48が立設され、これらの集水管48の上端と各中空糸膜モジュール47の下端が連結されている。また、塔本体41の底部中央には下室44の中心を貫通して中間室43で開口する入口管49が配設されている。入口管49の真上にはバッフルプレート50が配設され、更に、下方の仕切板46と各中空糸膜モジュール47の下端の間には分配機構51が配設され、入口管49から中間室43内に導入された復水をバッフルプレート50及び分配機構51を介して中間室43全体へ分散させるようにしてある。また、塔本体41の頂部中央及びその底部の入口管49近傍には出口管52、53がそれぞれ配設され、中間室43において各中空糸膜モジュール47によって処理された濾過水が上下の出口管52、53から流出するようにしてある。尚、図4において、54は仕切板45に取り付けられた各中空糸膜モジュール47の上端を仕切板45に固定するための押さえ板である。
【0004】
従って、上記濾過塔40を用いて復水を濾過する場合には、図4の矢印Xで示すように復水が入口管49を経由して中間室43内に導入され、バッフルプレート50及び分配機構51を介して中間室43全体に分散する。この復水は各中空糸膜モジュール47の外側から内側へと透過し、濾過水が各中空糸膜モジュール47の上下両端から上室42、下室44へそれぞれ流出して集水される。そして、上室42内の濾過水は図4の矢印Yで示すように出口管52から流出し、下室44内の濾過水は図4の矢印Zで示すように出口管53から流出し、復水配管8Bを介して復水脱塩装置5へ供給される。
【0005】
ところで、上方の仕切板45は、全ての中空糸膜モジュール47を懸垂支持するため相応の機械的強度が要求される。しかも、この仕切板45は濾過水に直接接するため、酸化鉄微粒子等の金属クラッドが発生し難い材料を使用する必要がある。そのため、従来からこの仕切板45は所定の機械的強度を持った厚肉のステンレス鋼板によって形成されている。また、仕切板45によって各中空糸膜モジュール47を懸垂支持するため、仕切板45には中空糸膜モジュール47のフランジ部47Aが係止する段部45Aを有する貫通孔45Bが各中空糸膜モジュール47に対応して形成されている。しかも、この貫通孔45Bは上室42と中間室43間の液密を保持しなくてはならないため、貫通孔45Bを切削加工により高精度に仕上げる必要がある。
【0006】
【発明が解決しようとする課題】
しかしながら、従来の濾過塔40の場合には、中空糸膜モジュール47を懸垂支持する仕切板45は材質的に硬度が高いステンレス鋼板によって形成されているため、貫通孔45Bの切削加工時の切削工具の消耗が激しく、作業工数も多くなり、しかも孔加工に伴って仕切板45が歪むため、仕切板45のプレス加工が必要になる等、仕切板45の製作にあたり、極めてコストが高くなるという欠点を有していた。
【0007】
本発明は、上記課題を解決するためになされたもので、酸化鉄微粒子等の金属クラッドが発生する虞がなく、しかも中空糸膜モジュール等のフィルタエレメントを固定するための孔加工が容易で、加工コストを格段に軽減することができる仕切板を備えた濾過塔を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明の請求項1に記載の濾過塔は、塔本体内を一次側室と二次側室に区画する仕切板と、この仕切板に形成された段部を有する貫通孔で一端のフランジ部が固定され且つ上記塔本体の軸心に沿って上記一次側室内に配設された複数のフィルタエレメントとを備え、上記一次側室内に導入された原水を上記各フィルタエレメントによって濾過し、この濾過水を上記二次側室内で集水する濾過塔において、上記仕切板は不銹鋼板と炭素鋼板を貼り合わせた合板からなり、上記炭素鋼板が上記一次側室に配置されると共に上記不銹鋼板が上記二次側室に配置され、上記段部を有する貫通孔は、上記不銹鋼板に形成された上記フランジ部の外径に略等しい貫通孔と、上記炭素鋼板に形成された上記フランジ部より小径で且つ上記中空糸膜モジュールの直胴部より大径の貫通孔とからなることを特徴とするものである。
【0010】
また、本発明の請求項に記載の濾過塔は、請求項1に記載の発明において、上記不銹鋼板がステンレス鋼板であることを特徴とするものである。
【0011】
【発明の実施の形態】
以下、図1及び図2に示す実施形態に基づいて本発明を説明する。尚、各図中、図1は本発明の濾過塔の一実施形態を示す図で、(a)はその断面図、(b)は図1の○で囲んだ部分を拡大して示す要部断面図、図2の(a)は図1に示す両端集水型の中空糸膜モジュールと下方の仕切板に固定された集水管との連結部を示す断面図、(b)は従来の濾過塔における両端集水型の中空糸膜モジュールと下方の仕切板に固定された集水管との連結部を示す断面図である。
【0012】
本実施形態の濾過塔10は、例えば図1の(a)、(b)に示すように、塔本体11内に上室12(二次側室)、中間室13(一次側室)及び下室14を有し、上室12と中間室13及び中間室13と下室14がそれぞれ仕切板15、16によって区画されている。中間室13内には複数の両端集水型の中空糸膜モジュール17が配置され、各中空糸膜モジュール17の上端は上方の仕切板15に固定され、それぞれの下端は各中空糸膜モジュール17に対応して下方の仕切板16に立設された集水管18に固定されている。そして、下方の仕切板16には下室14を貫通する入口管19の上端が連結され、中間室13内に復水を導入するようにしてある。また、入口管19のやや上方にはバッフルプレート20及び分配機構21がそれぞれ配設され、入口管19から導入された復水をバッフルプレート20及び分配機構21を介して中間室13全体へ分散させ、全ての中空糸膜モジュール17へ復水が行き渡るようにしてある。そして、各中空糸膜モジュール17による濾過水はそれぞれの上下両端から上室12及び下室14内に流入し、それぞれの出口管22、23を介して塔本体11から流出するようにしてある。従って、本実施形態の濾過塔10は、上述した点においては従来の濾過塔40と同様に構成されている。
【0013】
しかしながら、図1の(a)、(b)に示すように本実施形態の濾過塔10の場合には、上方の仕切板15が従来の仕切板45とは構造的に異なっている。即ち、本実施形態の仕切板15は、同図に示すように、2枚の鋼板を貼り合わせ、全体としては従来の仕切板45と略同じ板厚に形成されている。2枚の鋼板のうち、上室12(二次側室)側の鋼板はステンレス鋼板等の不銹鋼板(以下、「ステンレス鋼板」で代表する。)151からなり、中間室13(一次側室)側の鋼板は炭素鋼板152からなっている。そして、同図の(b)に示すように、ステンレス鋼板151は中空糸膜モジュール17のフランジ部17Aの板厚に略等しい板厚に形成され、炭素鋼板152は全ての中空糸膜モジュール17を懸垂支持する機械的強度を保証する板厚に形成されている。
【0014】
そして、上記ステンレス鋼板151には中空糸膜モジュール17のフランジ部17Aの外径と略等しい径を有する小径貫通孔151Aが高精度に形成され、この小径貫通孔151AにOリング等のシール部材25が装着されている。そして、中空糸膜モジュール17のフランジ部17Aの外周面と小径貫通孔151Aとがシール部材25を介して密着し、両者17A、151A間の液密を保持するようにしてある。炭素鋼板152には中空糸膜モジュール17の直胴部17Bの外径より大きな大径貫通孔152Aが形成され、この大径貫通孔152Aには中空糸膜モジュール17の直胴部17Bが遊嵌するようにしてある。従って、両鋼板151、152にはそれぞれの孔151A、152Aを個別に切削加工し、全体として段部を有する貫通孔15Aとして形成されている。しかも、ステンレス鋼板151の小径貫通孔151Aさえ精密に加工してあれば、炭素鋼板152の大径貫通孔152Aはバカ孔として形成してあれば良い。この炭素鋼板152はステンレス鋼板151と比較して硬度が格段に低いため、孔加工時に歪を発生する虞がなく、従来のようにプレス加工を行う必要がない。また、ステンレス鋼板151と炭素鋼板152は、例えばステンレス鋼板151の外周及び小径貫通孔151Aにおける隅肉溶接によって互いに貼り合わせて一体化することができる。
【0015】
そして、図1に示すように上記各中空糸膜モジュール17は仕切板15に対してそれぞれ垂直に連結されている。各中空糸膜モジュール17を塔本体11内に装着する時には、各中空糸膜モジュール17の集水管部17C(図2参照)を集水管18に挿着するようにしている。ところが、図1に示すように下方の仕切板16は緩く湾曲した形状に形成されているため、集水管18が上方の仕切板15に対する垂直状態から僅かに傾斜していると、各中空糸膜モジュール17の集水管部17Cの位置と集水管18の位置とが一致せず、両者の連結が難しくなる。
【0016】
例えば、従来の濾過塔40の場合には図2の(b)に示すように集水管48の内径と集水管部47Cの外径との差が僅かしかないため、集水管48の傾斜許容範囲は同図の○で囲んだ一点鎖線で示すように僅かの傾斜しか認められず、湾曲した下方の仕切板46に対する集水管48の取付作業が難しくなる。そこで、本実施形態の濾過塔10の場合には、集水管18に多少の傾斜があってもこの傾斜を吸収できる工夫が集水管部17Cの下端部に施されている。即ち、集水管部17Cの内径は従来のものと同一寸法に形成されている。しかし、集水管部17Cの外径はシール部材26の装着位置の上下の僅かの範囲のみが従来のものと略同一外径に形成され、この部分の上下に逆向きのテーパ面17D、17Eが形成されている。従って、集水管18が図2の(a)の○で囲んだ一点鎖線で示す範囲まで大きく傾斜していても集水管部17Cは下端のテーパ面17Dを介して集水管18内に案内されて容易に挿入され、両者を確実に連結し、両者間の液密をシール部材26によって保つことができる。
【0017】
また、下方の仕切板16と各中空糸膜モジュール17の下端の間に配設された分配機構21は、各中空糸膜モジュールに対応して孔21Aが形成され、各孔21Aには分配管21Bが取り付けられている。各分配管21Bの周面には小さな孔(図示せず)が形成されている。従って、分配機構21は入口管19から流入した復水を複数の孔21Aを介して中間室13全体に分散させると共に、各孔21Aから各中空糸膜モジュール17の下端に向けて圧縮空気をバブリングさせて各中空糸膜モジュール17を逆洗するようにしてある。この時に圧縮空気は分配管21Bの小さな孔を通り、細かな気泡となって各中空糸膜モジュール17に対してバブリングするようにしてある。尚、圧縮空気は入口管19を介して分配機構21の部分へ導入するようにしてある。
【0018】
次に、動作について説明する。復水を濾過する場合には、塔本体11の上下に配置された入口管19及び出口管22、23のバルブ(図示せず)をそれぞれ開放し、他のバルブを閉止する。この状態で復水を供給すると、図1の矢印Xで示すように復水は入口管19から中間室13内に流入し、バッフルプレート20及び分配機構21を介して中間室13全体に分散し各中空糸膜モジュール17全体に行き渡る。更に、復水は各中空糸膜モジュール17の中空糸膜の外側から内側へ流入し、復水中の酸化鉄微粒子等の金属クラッドが各中空糸膜モジュール17によって捕捉され、濾過水は各中空糸膜フィルタの上下両端から上室12及び下室14内で集水され、それぞれの出口管22、23からY、Z方向に流出して復水配管を経由して復水脱塩装置に達する。
【0019】
この際、上方の仕切板15の中間室(一次側室)13側が炭素鋼板152によって形成されているため、僅かではあるがこの炭素鋼板152で酸化鉄微粒子が発生し、復水中に混入する。しかし、この酸化鉄微粒子は中空糸膜モジュール17によって除去されるため、炭素鋼板152において発生した酸化鉄微粒子が濾過水に混入することはない。また、仕切板15の上室(二次側室)12側は従来と同様にステンレス鋼板151によって形成されているため、ステンレス鋼板151において酸化鉄微粒子は殆ど発生する虞がなく、濾過水の鉄濃度を高める虞はない。また、圧縮空気を用いた中空糸膜モジュール17の逆洗時に、逆洗に先だって上室12内の濾過水を中間室13側へ逆流させて上室12内の水抜きを行うが、この時にも濾過水に酸化鉄微粒子が含まれていないため、中空糸膜フィルタの内面に酸化鉄微粒子が進入する虞はない。
【0020】
以上説明したように本実施形態によれば、上室12と中間室13を区画する仕切板15はステンレス鋼板151と炭素鋼板152を貼り合わせた合板からなるため、ステンレス鋼板151の板厚を薄くすることができ、小径貫通孔151Aを切削加工するだけで段部を設ける必要がなく、仕切板15の製作コストを低減することができる。また、径寸法を異にするステンレス鋼板151の小径貫通孔151Aと炭素鋼板152の大径貫通孔152Aを別々に切削加工するだけで貫通孔に段部を設けることができる。しかもステンレス鋼板151の孔加工のみを高精度に行えば、炭素鋼板152の孔加工は中空糸膜モジュール17の直胴部17Bが通る大きさに加工するだけのラフな加工で済ますことができ、更なるコストダウンを図ることができる。更に、上室12側にステンレス鋼板151を配置したため、上室12内で酸化鉄微粒子が発生する虞がなく、炭素鋼板152を使用したにも拘らず濾過水の鉄濃度を低く押さえることができる。
【0021】
尚、上記実施形態では不銹鋼板としてステンレス鋼板を使用した場合について説明したが、本発明ではクロム鋼板等の他の不銹鋼板を用いても良く、また、炭素鋼板ついても種々のグレードのものを使用することができる。また、フィルタエレメントとして中空糸膜モジュールを用いたものについて説明したが、本発明は中空糸膜モジュール以外のフィルタ、例えばプリコート型フィルタについても適用することができる。また、上記実施形態では塔本体内に上室(二次側室)12、中間室(一次側室)13及び下室14が形成されたものについて説明したが、中間室を省略した上室と下室(一次側室)から塔本体に片端集水型の中空糸膜フィルタを装着したものであっても良い。
【0022】
【発明の効果】
本発明の各請求項に記載の発明によれば、酸化鉄微粒子等の金属クラッドが発生する虞がなく、しかも中空糸膜モジュール等のフィルタエレメントを固定するための孔加工が容易で、加工コストを格段に軽減することができる仕切板を備えた濾過塔を提供することができる。
【図面の簡単な説明】
【図1】本発明の濾過塔の一実施形態を示す図で、(a)はその断面図、(b)は図1の○で囲んだ部分を拡大して示す要部断面図である。
【図2】図2の(a)は図1に示す両端集水型の中空糸膜モジュールと下方の仕切板に固定された集水管との連結部を示す断面図、(b)は従来の濾過塔における両端集水型の中空糸膜モジュールと下方の仕切板に固定された集水管との連結部を示す断面図である。
【図3】沸騰水型原子力発電プラントの概要を示すフロー図である。
【図4】図3に示す沸騰水型原子力発電プラントに用いられた従来の濾過塔を示す断面図である。
【符号の説明】
10 濾過塔
11 塔本体
12 上室(二次側室)
13 中間室(一次側室)
14 下室
15 仕切板
17 中空糸膜モジュール(フィルタエレメント)
151 ステンレス鋼板(不銹鋼板)
151A 小径貫通孔
152 炭素鋼板
152A 大径貫通孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a filtration tower suitably used for a condensate filtration process in a power plant such as a thermal power plant or a nuclear power plant, and more particularly to a structure of a partition plate for dividing a primary side chamber and a secondary side chamber.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a power plant such as a nuclear power plant or a thermal power plant, steam is generated using nuclear power or thermal power, and a power generation turbine is driven by the steam to generate power. For example, in a boiling water nuclear power plant (BWR), as shown in FIG. 3, steam generated in a nuclear reactor 1 is sent to a high-pressure turbine 2A and a low-pressure turbine 2B in this order, and a generator is rotated by each of the turbines 2A and 2B. Is generating electricity. Then, the steam after the power generation is cooled by the condenser 3 to be condensed water, and the condensed water is sent in the order of the condensate filtration device 4 and the condensate desalination device 5, from equipment such as the reactor 1, piping materials and the like. The generated metal clad such as iron oxide fine particles is removed from the condensate water using the condensate filtration device 4, and then various ion components such as Fe ions and Cu ions are removed from the condensate water using the condensate desalination device 5. Then, the condensate is sent to the reactor 1. Before supplying the condensate to the reactor 1, a part of the steam of each of the high-pressure turbine 2A and the low-pressure turbine 2B is supplied to the low-pressure heater 6A and the high-pressure heater 6B, and the condensate is gradually heated. Further, the cooling water of the nuclear reactor 1 is purified by a filtration and desalination unit 7. In FIG. 3, 8A shown by a broken line is a steam pipe, 8B shown by a solid line is a condensate pipe, and 9A, 9B, 9C, 9D, and 9E are all pumps.
[0003]
Meanwhile, the condensate water filtration device 4 is constructed by a plurality tower filtration tower 40 shown in FIG. 4, for example. As shown in the figure, the filtration tower 40 has upper and lower partitioning plates 45 and 46 that partition the inside of the tower main body 41 into an upper chamber 42, an intermediate chamber 43, and a lower chamber 44. A plurality of double-end collecting hollow fiber membrane modules 47 each having both ends fixed and disposed in the intermediate chamber 43 along the axis of the tower main body 41 are provided. Water collecting pipes 48 corresponding to the hollow fiber membrane modules 47 are erected on the lower partition plate 46, and the upper ends of the water collecting pipes 48 and the lower ends of the hollow fiber membrane modules 47 are connected. At the center of the bottom of the tower main body 41, an inlet pipe 49 penetrating through the center of the lower chamber 44 and opening in the intermediate chamber 43 is provided. A baffle plate 50 is disposed directly above the inlet pipe 49, and a distribution mechanism 51 is disposed between the lower partition plate 46 and the lower end of each hollow fiber membrane module 47. The condensed water introduced into the inside 43 is dispersed through the baffle plate 50 and the distribution mechanism 51 to the entire intermediate chamber 43. Outlet pipes 52 and 53 are provided near the inlet pipe 49 at the top center and the bottom of the tower main body 41, respectively. The filtered water treated by each hollow fiber membrane module 47 in the intermediate chamber 43 is supplied to the upper and lower outlet pipes. It flows out from 52 and 53. In FIG. 4, reference numeral 54 denotes a pressing plate for fixing the upper end of each hollow fiber membrane module 47 attached to the partition plate 45 to the partition plate 45.
[0004]
Therefore, when condensed water is filtered using the filtration tower 40, the condensed water is introduced into the intermediate chamber 43 through the inlet pipe 49 as shown by the arrow X in FIG. It is dispersed throughout the intermediate chamber 43 via the mechanism 51. This condensate permeates from the outside to the inside of each hollow fiber membrane module 47, and the filtered water flows out from the upper and lower ends of each hollow fiber membrane module 47 into the upper chamber 42 and the lower chamber 44, respectively, and is collected. Then, the filtered water in the upper chamber 42 flows out of the outlet pipe 52 as shown by the arrow Y in FIG. 4, and the filtered water in the lower chamber 44 flows out of the outlet pipe 53 as shown by the arrow Z in FIG. The condensate is supplied to the condensate desalination device 5 via the condensate pipe 8B.
[0005]
Incidentally, the upper partition plate 45 is required to have appropriate mechanical strength in order to suspend and support all the hollow fiber membrane modules 47. In addition, since the partition plate 45 is in direct contact with the filtered water, it is necessary to use a material such as iron oxide fine particles, which hardly generates metal cladding. Therefore, conventionally, the partition plate 45 is formed of a thick stainless steel plate having a predetermined mechanical strength. Further, in order to suspend and support each hollow fiber membrane module 47 by the partition plate 45, a through hole 45 </ b> B having a step portion 45 </ b> A in which the flange portion 47 </ b> A of the hollow fiber membrane module 47 is locked is provided in the partition plate 45. 47 are formed. Moreover, since the through hole 45B must maintain liquid tightness between the upper chamber 42 and the intermediate chamber 43, it is necessary to finish the through hole 45B with high precision by cutting.
[0006]
[Problems to be solved by the invention]
However, in the case of the conventional filtration tower 40, since the partition plate 45 for suspending and supporting the hollow fiber membrane module 47 is formed of a stainless steel plate having a high material hardness, a cutting tool for cutting the through hole 45B is used. The drawback is that the cost of manufacturing the partition plate 45 is extremely high, such as the need for press working of the partition plate 45 because the partition plate 45 is distorted due to the drilling, and the number of working steps is increased. Had.
[0007]
The present invention has been made in order to solve the above problems, there is no possibility that metal cladding such as iron oxide fine particles will occur, and furthermore, it is easy to drill holes for fixing filter elements such as hollow fiber membrane modules, An object of the present invention is to provide a filtration tower provided with a partition plate that can significantly reduce processing costs.
[0008]
[Means for Solving the Problems]
In the filtration tower according to claim 1 of the present invention, a partition plate that partitions the inside of the tower body into a primary chamber and a secondary chamber, and a flange portion at one end is fixed by a through hole having a step formed in the partition plate. And a plurality of filter elements disposed in the primary chamber along the axis of the tower body, and the raw water introduced into the primary chamber is filtered by the filter elements, and the filtered water is filtered. In the filtration tower that collects water in the secondary chamber, the partition plate is made of a plywood in which a stainless steel sheet and a carbon steel sheet are bonded, and the carbon steel sheet is disposed in the primary chamber and the stainless steel sheet is attached to the secondary chamber. The through hole having the step portion is provided with a through hole substantially equal to an outer diameter of the flange portion formed in the stainless steel plate, and a through hole having a smaller diameter than the flange portion formed in the carbon steel plate and the hollow fiber. Membrane module And it is characterized in that consists from the cylindrical body portion and the large diameter of the through hole.
[0010]
Further, a filtration tower according to a second aspect of the present invention is the filtration tower according to the first aspect, wherein the stainless steel sheet is a stainless steel sheet.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on the embodiment shown in FIGS. In each of the drawings, FIG. 1 is a view showing one embodiment of a filtration tower of the present invention, (a) is a cross-sectional view thereof, and (b) is an enlarged view of a portion surrounded by a circle in FIG. FIG. 2A is a cross-sectional view showing a connecting portion between the hollow fiber membrane module of the double-end collecting type shown in FIG. 1 and a water collecting pipe fixed to a lower partition plate, and FIG. It is sectional drawing which shows the connection part of the hollow fiber membrane module of both ends water collecting type in a tower, and the water collecting pipe fixed to the lower partition plate.
[0012]
The filtration tower 10 of the present embodiment includes an upper chamber 12 (secondary chamber), an intermediate chamber 13 (primary chamber), and a lower chamber 14 in a tower main body 11 as shown in, for example, FIGS. The upper chamber 12 and the intermediate chamber 13 and the intermediate chamber 13 and the lower chamber 14 are partitioned by partition plates 15 and 16, respectively. A plurality of double-end collecting hollow fiber membrane modules 17 are arranged in the intermediate chamber 13, the upper end of each hollow fiber membrane module 17 is fixed to the upper partition plate 15, and the lower end of each hollow fiber membrane module 17 is fixed to the hollow fiber membrane module 17. Is fixed to a water collecting pipe 18 erected on a lower partition plate 16 corresponding to the above. The upper end of an inlet pipe 19 penetrating the lower chamber 14 is connected to the lower partition plate 16 so that condensate is introduced into the intermediate chamber 13. A baffle plate 20 and a distribution mechanism 21 are respectively disposed slightly above the inlet pipe 19, and the condensate introduced from the inlet pipe 19 is dispersed through the baffle plate 20 and the distribution mechanism 21 to the entire intermediate chamber 13. The condensate is distributed to all the hollow fiber membrane modules 17. Then, the filtered water from each hollow fiber membrane module 17 flows into the upper chamber 12 and the lower chamber 14 from both upper and lower ends thereof, and flows out of the tower main body 11 through the respective outlet pipes 22 and 23. Therefore, the filtration tower 10 of the present embodiment is configured similarly to the conventional filtration tower 40 in the above-described points.
[0013]
However, as shown in FIGS. 1A and 1B, in the case of the filtration tower 10 of the present embodiment, the upper partition plate 15 is structurally different from the conventional partition plate 45. That is, as shown in the drawing, the partition plate 15 of the present embodiment is formed by laminating two steel plates, and is formed to have substantially the same thickness as the conventional partition plate 45 as a whole. Of the two steel plates, the steel plate on the upper chamber 12 (secondary side chamber) side is made of a stainless steel plate such as a stainless steel plate (hereinafter, referred to as “stainless steel plate”) 151, and on the intermediate chamber 13 (primary side chamber) side. The steel plate is made of a carbon steel plate 152. Then, as shown in FIG. 3B, the stainless steel plate 151 is formed to have a thickness substantially equal to the thickness of the flange portion 17A of the hollow fiber membrane module 17, and the carbon steel plate 152 is used for all the hollow fiber membrane modules 17. It is formed to a thickness that guarantees the mechanical strength of the suspended support.
[0014]
A small-diameter through-hole 151A having a diameter substantially equal to the outer diameter of the flange portion 17A of the hollow fiber membrane module 17 is formed in the stainless steel plate 151 with high precision. The small-diameter through-hole 151A has a sealing member 25 such as an O-ring. Is installed. The outer peripheral surface of the flange portion 17A of the hollow fiber membrane module 17 and the small-diameter through-hole 151A are in close contact with each other via the seal member 25, so that the liquid-tightness between the two 17A, 151A is maintained. A large-diameter through hole 152A larger than the outer diameter of the straight body portion 17B of the hollow fiber membrane module 17 is formed in the carbon steel plate 152, and the straight body portion 17B of the hollow fiber membrane module 17 is loosely fitted into the large diameter through hole 152A. I have to do it. Therefore, the holes 151A and 152A are individually cut in the steel plates 151 and 152 to form through holes 15A having steps as a whole. Moreover, as long as the small-diameter through-hole 151A of the stainless steel plate 151 is precisely machined, the large-diameter through-hole 152A of the carbon steel plate 152 may be formed as a stupid hole. Since the hardness of the carbon steel plate 152 is much lower than that of the stainless steel plate 151, there is no risk of generating distortion during drilling, and there is no need to perform press work as in the related art. Further, the stainless steel plate 151 and the carbon steel plate 152 can be bonded and integrated with each other by, for example, fillet welding in the outer periphery of the stainless steel plate 151 and the small-diameter through-hole 151A.
[0015]
Each hollow fiber membrane module 17 is vertically connected to the partition plate 15 as shown in FIG. When each hollow fiber membrane module 17 is installed in the tower main body 11, the water collecting pipe part 17C (see FIG. 2) of each hollow fiber membrane module 17 is inserted into the water collecting pipe. However, as shown in FIG. 1, since the lower partition plate 16 is formed in a slightly curved shape, if the water collecting pipe 18 is slightly inclined from the vertical state with respect to the upper partition plate 15, each hollow fiber membrane will The position of the water collecting pipe part 17C of the module 17 and the position of the water collecting pipe 18 do not match, and it is difficult to connect the two.
[0016]
For example, in the case of the conventional filtration tower 40, there is only a small difference between the inner diameter of the water collecting pipe 48 and the outer diameter of the water collecting pipe part 47C as shown in FIG. In the figure, only a slight inclination is recognized as shown by a dashed line surrounded by a circle in the figure, and it becomes difficult to attach the water collecting pipe 48 to the curved lower partition plate 46. Therefore, in the case of the filtration tower 10 of the present embodiment, even if the water collecting pipe 18 has some inclination, a device capable of absorbing the inclination is provided at the lower end of the water collecting pipe part 17C. That is, the inner diameter of the water collecting pipe portion 17C is formed to have the same dimensions as the conventional one. However, the outer diameter of the water collecting pipe portion 17C is formed to have substantially the same outer diameter as that of the conventional one in only a small range above and below the mounting position of the seal member 26, and tapered surfaces 17D and 17E vertically opposite to this portion are formed. Is formed. Therefore, even if the water collecting pipe 18 is greatly inclined to the range shown by the one-dot chain line circled in FIG. 2A, the water collecting pipe part 17C is guided into the water collecting pipe 18 via the tapered surface 17D at the lower end. They can be easily inserted, securely connect the two, and the liquid tightness between the two can be maintained by the seal member 26.
[0017]
The distribution mechanism 21 disposed between the lower partition plate 16 and the lower end of each hollow fiber membrane module 17 has a hole 21A corresponding to each hollow fiber membrane module. 21B is attached. A small hole (not shown) is formed on the peripheral surface of each distribution pipe 21B. Accordingly, the distribution mechanism 21 disperses the condensed water flowing from the inlet pipe 19 through the plurality of holes 21 </ b> A throughout the intermediate chamber 13, and bubbling compressed air from each hole 21 </ b> A toward the lower end of each hollow fiber membrane module 17. Then, each hollow fiber membrane module 17 is backwashed. At this time, the compressed air passes through the small holes of the distribution pipe 21B, and is bubbled as fine bubbles to each hollow fiber membrane module 17. The compressed air is introduced into the distribution mechanism 21 via the inlet pipe 19.
[0018]
Next, the operation will be described. When filtering the condensate, the valves (not shown) of the inlet pipe 19 and the outlet pipes 22 and 23 disposed above and below the tower main body 11 are opened, and the other valves are closed. When condensed water is supplied in this state, the condensed water flows from the inlet pipe 19 into the intermediate chamber 13 as shown by the arrow X in FIG. 1 and is dispersed throughout the intermediate chamber 13 via the baffle plate 20 and the distribution mechanism 21. It spreads over each hollow fiber membrane module 17. Further, the condensate flows from the outside to the inside of the hollow fiber membrane of each hollow fiber membrane module 17, the metal clad such as iron oxide fine particles in the condensate is captured by each hollow fiber membrane module 17, and the filtered water is condensed by each hollow fiber membrane. Water is collected in the upper chamber 12 and the lower chamber 14 from the upper and lower ends of the membrane filter, flows out of the outlet pipes 22 and 23 in the Y and Z directions, and reaches the condensate desalination device via the condensate pipe.
[0019]
At this time, since the intermediate chamber (primary chamber) 13 side of the upper partition plate 15 is formed of the carbon steel plate 152, iron oxide fine particles are generated in the carbon steel plate 152, though slightly, and mixed into the condensate water. However, since the iron oxide fine particles are removed by the hollow fiber membrane module 17, the iron oxide fine particles generated in the carbon steel sheet 152 do not enter the filtered water. In addition, since the upper chamber (secondary chamber) 12 side of the partition plate 15 is formed of the stainless steel plate 151 as in the conventional case, there is almost no possibility that iron oxide fine particles are generated in the stainless steel plate 151, and the iron concentration of the filtered water is reduced. There is no danger of increasing Further, at the time of back washing of the hollow fiber membrane module 17 using the compressed air, prior to the back washing, the filtered water in the upper chamber 12 is caused to flow back to the intermediate chamber 13 to drain the water in the upper chamber 12. Also, since the filtered water does not contain iron oxide fine particles, there is no possibility that the iron oxide fine particles enter the inner surface of the hollow fiber membrane filter.
[0020]
As described above, according to the present embodiment, since the partition plate 15 that partitions the upper chamber 12 and the intermediate chamber 13 is made of a plywood in which a stainless steel plate 151 and a carbon steel plate 152 are bonded, the thickness of the stainless steel plate 151 is reduced. Therefore, there is no need to provide a step just by cutting the small-diameter through-hole 151A, and the manufacturing cost of the partition plate 15 can be reduced. Further, a step can be provided in the through-hole only by separately cutting the small-diameter through-hole 151A of the stainless steel plate 151 and the large-diameter through-hole 152A of the carbon steel plate 152 having different diameters. Moreover, if only the hole drilling of the stainless steel plate 151 is performed with high precision, the hole drilling of the carbon steel plate 152 can be performed by a roughing process only to the size that the straight body portion 17B of the hollow fiber membrane module 17 can pass. Further cost reduction can be achieved. Further, since the stainless steel plate 151 is disposed on the upper chamber 12 side, there is no possibility that iron oxide fine particles are generated in the upper chamber 12, and the iron concentration of the filtered water can be kept low despite the use of the carbon steel plate 152. .
[0021]
In the above embodiment, a case where a stainless steel plate is used as the stainless steel plate has been described. However, in the present invention, other stainless steel plates such as a chromium steel plate may be used, and various grades of carbon steel plates may be used. can do. In addition, although the description has been given of the case where the hollow fiber membrane module is used as the filter element, the present invention can be applied to a filter other than the hollow fiber membrane module, for example, a precoat type filter. In the above embodiment , the upper chamber (secondary chamber) 12, the intermediate chamber (primary chamber) 13, and the lower chamber 14 are formed in the tower main body. However, the upper chamber and the lower chamber in which the intermediate chamber is omitted are described. The (primary side chamber) may be provided with a one-end water collecting hollow fiber membrane filter attached to the tower body.
[0022]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the invention as described in each claim of the present invention, there is no possibility that a metal clad such as iron oxide fine particles is generated, and furthermore, it is easy to form a hole for fixing a filter element such as a hollow fiber membrane module, and the processing cost is reduced. It is possible to provide a filtration tower provided with a partition plate capable of remarkably reducing the above.
[Brief description of the drawings]
FIG. 1 is a view showing one embodiment of a filtration tower of the present invention, wherein (a) is a cross-sectional view thereof, and (b) is a cross-sectional view of an essential part showing an enlarged part surrounded by a circle in FIG.
2 (a) is a cross-sectional view showing a connecting portion between a double-end collecting hollow fiber membrane module shown in FIG. 1 and a water collecting pipe fixed to a lower partition plate, and FIG. It is sectional drawing which shows the connection part of the hollow fiber membrane module of both ends water collection type in a filtration tower, and the water collection pipe fixed to the lower partition plate.
FIG. 3 is a flowchart showing an outline of a boiling water nuclear power plant.
FIG. 4 is a cross-sectional view showing a conventional filtration tower used in the boiling water nuclear power plant shown in FIG.
[Explanation of symbols]
10 Filtration tower 11 Tower body 12 Upper chamber (secondary chamber)
13 Intermediate room (primary room)
14 Lower chamber 15 Partition plate 17 Hollow fiber membrane module (filter element)
151 Stainless steel plate (stainless steel plate)
151A Small diameter through hole 152 Carbon steel plate 152A Large diameter through hole

Claims (2)

塔本体内を一次側室と二次側室に区画する仕切板と、この仕切板に形成された段部を有する貫通孔で一端のフランジ部が固定され且つ上記塔本体の軸心に沿って上記一次側室内に配設された複数のフィルタエレメントとを備え、上記一次側室内に導入された原水を上記各フィルタエレメントによって濾過し、この濾過水を上記二次側室内で集水する濾過塔において、上記仕切板は不銹鋼板と炭素鋼板を貼り合わせた合板からなり、上記炭素鋼板が上記一次側室に配置されると共に上記不銹鋼板が上記二次側室に配置され、上記段部を有する貫通孔は、上記不銹鋼板に形成された上記フランジ部の外径に略等しい貫通孔と、上記炭素鋼板に形成された上記フランジ部より小径で且つ上記中空糸膜モジュールの直胴部より大径の貫通孔とからなることを特徴とする濾過塔。A partition plate that partitions the inside of the tower body into a primary side chamber and a secondary side chamber, and a flange portion at one end is fixed by a through hole having a step formed in the partition plate, and the primary portion is fixed along the axis of the tower body. A plurality of filter elements disposed in the side chamber, the raw water introduced into the primary chamber is filtered by each of the filter elements, in a filtration tower that collects the filtered water in the secondary chamber, The partition plate is made of a plywood in which a stainless steel plate and a carbon steel plate are bonded together, the carbon steel plate is disposed in the primary side chamber, and the stainless steel plate is disposed in the secondary side room, and the through hole having the step portion is A through hole substantially equal to the outer diameter of the flange portion formed in the stainless steel plate; and a through hole having a diameter smaller than the flange portion formed in the carbon steel plate and larger than a straight body portion of the hollow fiber membrane module. consisting of Filtration tower that characterized the door. 上記不銹鋼板がステンレス鋼板であることを特徴とする請求項1に記載の濾過塔。Filtration tower according to claim 1, wherein said stainless steel plate is a stainless steel plate.
JP36415897A 1997-12-17 1997-12-17 Filtration tower Expired - Fee Related JP3581550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36415897A JP3581550B2 (en) 1997-12-17 1997-12-17 Filtration tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36415897A JP3581550B2 (en) 1997-12-17 1997-12-17 Filtration tower

Publications (2)

Publication Number Publication Date
JPH11169678A JPH11169678A (en) 1999-06-29
JP3581550B2 true JP3581550B2 (en) 2004-10-27

Family

ID=18481123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36415897A Expired - Fee Related JP3581550B2 (en) 1997-12-17 1997-12-17 Filtration tower

Country Status (1)

Country Link
JP (1) JP3581550B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5451436B2 (en) * 2010-02-05 2014-03-26 オルガノ株式会社 Filtration desalination equipment
JP5372797B2 (en) * 2010-02-05 2013-12-18 オルガノ株式会社 Filtration desalination equipment
JP5424920B2 (en) * 2010-02-05 2014-02-26 オルガノ株式会社 Filtration desalination equipment
CN109821319A (en) * 2019-01-25 2019-05-31 惠州德赛信息科技有限公司 Tower shunt filtering system

Also Published As

Publication number Publication date
JPH11169678A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
US8658036B2 (en) Composite filtration and demineralization apparatus
JPS624408A (en) Filtration device using hollow yarn membrane
US20100258492A1 (en) Filtering membrane module and filtering apparatus having the same
JP3581550B2 (en) Filtration tower
JP3212816B2 (en) Combined filtration and desalination equipment
CN216631182U (en) Multistage filter for cutting fluid
JPH1028847A (en) Composite type filtering and desalting apparatus
JP2013076379A (en) Pressure exchange apparatus, pressure exchange unit, and inspection method for pressure exchange apparatus
CN211889940U (en) Fixture device for machining and producing mechanical parts
CN114014400A (en) High-enthalpy continuous-discharge wastewater recovery, purification and tempering system and method
JPS61277089A (en) Module ultrafilter for nuclear reactor cooling water
JPS62149304A (en) Filter
JP4523112B2 (en) Condensate filtration device
JPH11169677A (en) Tower filter
JP4544726B2 (en) Filter member and filtration device equipped with the filter member
CN2212767Y (en) Heat exchanger without fixed pipe plate and pipe shell
CN110386701A (en) Sewage-treatment plant is used in a kind of production of metal plate
JPH0563207B2 (en)
CN210631755U (en) Automatic back flush water filter of steam turbine generating set
CN212440503U (en) Oil-water mixed gas filter box
JP2018205017A (en) Reactor containment structure
JPH044011B2 (en)
JP4544727B2 (en) Filtration element core socket and filtration element
JP2002166136A (en) Method and jig for assembling filter members
DE10024750A1 (en) Evaporator has heat exchanger in foils exchanging heat in a first and second pipe by means of streams of hot fluids and fluids to be heated and an atomization unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040723

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees