JP3581264B2 - Resonance frequency adjustment method for non-contact mobile object identification device - Google Patents

Resonance frequency adjustment method for non-contact mobile object identification device Download PDF

Info

Publication number
JP3581264B2
JP3581264B2 JP32650398A JP32650398A JP3581264B2 JP 3581264 B2 JP3581264 B2 JP 3581264B2 JP 32650398 A JP32650398 A JP 32650398A JP 32650398 A JP32650398 A JP 32650398A JP 3581264 B2 JP3581264 B2 JP 3581264B2
Authority
JP
Japan
Prior art keywords
frequency
coil
transmission
receiving
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32650398A
Other languages
Japanese (ja)
Other versions
JP2000151457A (en
Inventor
浩 石田
寛史 藤野
俊司 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Engineering Co Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Engineering Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Engineering Co Ltd, Mitsubishi Electric Corp filed Critical Mitsubishi Electric Engineering Co Ltd
Priority to JP32650398A priority Critical patent/JP3581264B2/en
Publication of JP2000151457A publication Critical patent/JP2000151457A/en
Application granted granted Critical
Publication of JP3581264B2 publication Critical patent/JP3581264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Near-Field Transmission Systems (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、非接触移動体識別装置に関し、詳しくは応答器を構成せしめる受信用共振回路の共振周波数調整方法の改良に関する。
【0002】
【従来の技術】
従来の非接触移動体識別装置を図4によって説明する。図4において、非接触移動体識別装置は、質問器2と識別対象の移動体に固定された応答器3とからなっており、質問器2は上位制御機器1からの送信信号であるコマンド(応答器のメモリの書き換え情報となる指令信号)を、インターフェース回路10を介して変調回路11により変調し、増幅回路12により増幅して送信用コンデンサ13と送信用コイル15との直列共振回路によって第1の周波数で応答器3に伝送する。
【0003】
応答器3は、質問器2からのコマンドを受信用コイル30と受信用コンデンサ31との並列接続された受信用共振回路で受信し、変復調回路33により復調して制御回路(制御部)37内の内蔵メモリへのデータを書き込んだり、読み出したり(メモリの記憶内容の書き換え)、レスポンス(質問器2に送信する応答信号)を変調して質問器2に第3の周波数で、伝送する。その一方、該受信用共振回路から電力を整流回路35から取りだしている。
【0004】
質問器2は、応答器3から第3の周波数で送信されたレスポンスを受信用コイル20と受信用コンデンサ21とで受信し、この出力をフィルタ回路26を介してレポンスを復調回路28で復調してから、インターフェース回路10を介して上位制御機器1に伝送する。
【0005】
応答器3の受信用共振回路は、受信用コイル30の自己インダクタンス、受信用コンデンサ31の静電容量のばらつき、受信用コイル30の取り付け等の誤差により、第2の共振周波数が変化する。該共振周波数の変化により受信電力が減少したり、質問器2からの信号を精度良く受信したりできない。
【0006】
そこで、受信用共振回路の共振周波数を以下の方法によって調整している。第1に、受信用共振回路の両端の端子T1,T2にリード線50a,50bを介して電圧測定器50を接続し、質問器2と応答器3とが所定の距離値において、電圧測定器50の測定電圧が所定の値になるように受信用コンデンサ31の静電容量値を調整している。
【0007】
第2に、応答器3のみを用いて、受信用共振回路の両端の端子T1,T2にリード線50a,50bを介してインピーダンス測定器(図示せず)を接続し、各周波数に対するインピーダンスを測定し、インピーダンスの周波数特性から共振周波数を推測して、予め定められた許容共振周波数の範囲内となるよう受信用コンデンサ31の静電容量値を調整している。
【0008】
【発明が解決しようとする課題】
しかしながら、上記受信用共振回路の調整方法では、受信用共振回路の両端にリード線50a,50bを介して電圧測定器50などを接続しており、応答器3毎にリード線50a,50b脱着しなければならず手間がかかっていた。また、リード線50a,50bの浮遊インピーダンスなどにより受信用共振回路のインピーダンス値又は電圧値を精度良く測定することができず、ひいては、受信用共振回路の共振周波数の測定値が実際の値と異なり精度が充分ではないという問題点があった。
【0009】
応答器3のみで受信用共振回路のインピーダンス又は電圧特性を測定する場合、実際の使用状態における質問器2送信コイル15による相互インダクタンスの影響を受けないため、該測定値は実際の使用状態とは、異なったものを測定する。よって、受信用共振回路の共振周波数の測定値が実際の値と異なり精度が充分ではないという問題点があった。
【0010】
この発明は上記課題を解決するためになされたもので、非接触により簡便に共振周波数の調整ができる非接触移動体識別装置の共振周波数調整方法を提供することを目的とする。
【0011】
【問題を解決するための手段】
第1の発明に係る非接触移動体識別装置調整方法は、送信用コイルと、この送信用コイルを介して送信信号を第1の周波数で送ると共に、応答信号を受信する質問器と、上記送信信号を受信する第1の受信用コンデンサと第1の受信用コイルとを並列接続すると共に、第2の周波数で共振する第1の受信用共振回路と、この第1の受信用共振回路からの出力信号を復調して内蔵メモリへデータを書き込み又は読み出し、生成した上記応答信号を変調すると共に、上記第1の受信用共振回路を介して伝送する制御部とを有する応答器と、を備えた非接触移動体識別装置の共振周波数調整方法において、上記第1の受信用コイルの自己インダクタンスよりも十分に小さい自己インダクタンスを有する測定用コイルを、上記第1の受信用共振回路の前面に近接配置する第1のステップと、上記送信用コイルを介して信号発生手段より一定の送信電圧を予め定められた上記第2の共振周波数を含む周波数で掃引すると共に、上記送信電圧を上記第1の受信用コイルに電磁誘導により送る第2のステップとを備え、測定手段により上記測定用コイルの誘起電圧と周波数との特性を測定すると共に、該測定値が予め定められた範囲で、上記第2の周波数で上記第1の受信用共振回路が共振するように上記第1の受信用コンデンサの静電容量値又は上記第1の受信用コイルの自己インダクタンス値を変更する、ことを特徴とするものである。
【0012】
第2の発明に係る非接触移動体識別装置調整方法は、質問器には、送信信号を送信用コンデンサと送信用コイルとから成る第1の共振周波数で共振させる送信用共振回路と、応答信号を第2の受信用コンデンサと第2の受信用コイルとを並列接続すると共に、第3の周波数で共振する第2の受信用共振回路とを備え、第2のステップは、送信用共振回路を介して信号発生手段より一定の送信電圧を予め定められた第2の共振周波数を含む周波数で掃引すると共に、送信電圧を第1の受信用コイルに電磁誘導により送る、ことを特徴とするものである。
【0013】
第3の発明に係る非接触移動体識別装置調整方法は、請求項1又は2における測定手段により測定用コイルの誘起電圧と周波数との特性を測定する代わりに、測定手段により信号発生手段の送信電圧値と、測定用コイルの誘起電圧値とに基く利得と周波数との特性を測定する、ことを特徴とするものである。
【0014】
【発明の実施の形態】
実施の形態1.
この発明の実施の形態を図1によって説明する。図1はこの発明の一実施の形態を示す非接触移動体識別装置のブロック図である。図1中、従来と同一符号は同一又は相当部分を示し説明を省略する。図1において、質問器2には、変調回路11の出力側から端子a,bが設けられ、増幅回路12の入力側にも端子c,dが設けられており、受信用共振回路の第2の共振周波数を含む一定の信号電圧を発生させると共に、周波数を掃引できる信号生成器150が端子c,dに接続されている。受信用コイル30の前面に測定用コイル201が配置されており、測定用コイル201の端末には電圧対周波数特性を測定する電圧測定器203が接続されている。
【0015】
ここで、測定用コイル201の自己インダクタンスL1と受信用コイル30の自己インダクタンスとはL2>>L1の関係がある。これは、測定用コイル201が受信用コイル30の前面に挿入されたことで、測定用コイル201と受信用コイル30との間で、相互誘導インダクタンスMが形成されて受信用コイル30の自己インダクタンスL2が変化して共振周波数が測定用コイル201の挿入前に比べて変化することを極力抑制するためである。
【0016】
上記L2>>L1の関係を、受信用コイル30から見たインピーダンスZiにより明らかにする。
Zi=jωL2+jωM(I1/I2)・・・・(1)
ここで、I1=測定用コイルに流れる電流I2=第1の受信用コイルに流れる電流上記(1)式で、並列共振回路を成す受信用コイル30が相互インダクタンスMの影響を受けにくくするにはL2>>Mとなる。相互インダクタンスMは、受信用コイル30と測定用コイル201との配置などにも影響されるが、L2>>L1の関係があれば、L2>>Mの関係を満足する。かかる関係を満足するために、受信用コイル30の巻数N2,抵抗R2,測定用コイル201の巻数N1,抵抗R1とすると、N2>>N1,R2>>R1の関係を有するように構成されている。
【0017】
上記のように構成された移動体識別装置の動作を図1及び図2を参照して説明する。まず、質問器2のジャンパー線101,103を端子a〜dから外し、信号発生器150の出力端子c,dを接続し、受信用コイル30(受信用共振回路)の前面に測定用コイル201を配置する。測定用コイル201の両端には電圧測定器203を接続する。
【0018】
かかる状態において、信号発生器150より送信周波数である、並列共振回路の第2の共振周波数frを中心として開始周波数fs、終了周波数fとすると、fs<fr<fで信号電圧を一定値で掃引する。該信号電圧は、増幅回路12を介して送信用コンデンサ13と送信用コイル15とから成る送信用共振回路に印加されて、電磁誘導により応答器3の受信用コンデンサ31と受信用コイル30との受信用並列共振回路に電圧が生じる。同時に、測定用コイル201には磁束が時間的に変化するので、誘起電圧を生じて図2に示す電圧対周波数特性の出力電圧曲線が得られる。
【0019】
同時に、応答器3は受信用共振回路で受信し、変復調回路33により復調して制御回路(制御部)37内の内蔵メモリへのデータを書き込み又は、読み出し(メモリの記憶内容の書き換え)、レスポンス(質問器2に送信する応答信号)を変調して質問器2に第3の周波数で、伝送する。その一方、該受信用共振回路から電力を整流回路35から抽出する。質問器2は、応答器3から第3の周波数で送信されたレスポンスを受信用コイル20と受信用コンデンサ21とで受信する。
【0020】
信号発生器150から第2の共振周波数frを中心に予め定められた周波数Δfの範囲で信号発生器150の周波数を掃引しながら、測定用コイル201から所定以上の電圧が得られるように受信用コンデンサ3の静電容量又は受信用コイル3の自己インダクタンスを調整する。該調整によって図2に示す電圧対周波数特性の出力曲線がA又はCのように変化する。なお、周波数Δfは、質問器2と応答器3との交信距離、通信信頼性を考慮して決められている。
【0021】
なお、上記実施の形態では、信号発生器150の信号電圧を送信用共振回路を介して電磁誘導で、受信用コイル3に誘導させたが、該信号電圧を単に送信用コイル15(他のコイルでも、受信用コイル3と電磁結合があれば良い。)のみで受信用コイル3に誘導させても良い。
【0022】
ここで、測定用コイル201の出力電圧対周波数特性を測定することなく、信号発生器150からの信号電圧の発生周波数を第2の共振周波数に固定しておいて、測定器用コイル201の出力電圧が最大値を示すところを、受信用コンデンサ3の静電容量により調整すると、上記出力電圧対周波数特性を測定していないため、該静電容量値の調整値の増減が定まらず手間がかかる。
【0023】
実施の形態2.
この発明の他の実施の形態を図3によって説明する。図3は非接触移動体識別装置のブロック図である。図3中、図1と同一符号は同一または相当部分を示し、説明を省略する。図3において、上記実施の形態1との相違は、受信用コイル30の前面に測定用コイル201が配置されており、信号発生器150の出力電圧Viと測定用コイルの201の両端電圧V0との利得V0/Vi、すなわち、利得対周波数特性を測定する利得測定器300が接続されており、利得対周波数特性に基いて受信用コンデンサ3の静電容量又は受信用コイル3の自己インダクタンスを調整している点である。
【0024】
【発明の効果】
第1の発明によれば、第1の受信用コイルの自己インダクタンスよりも十分に小さい自己インダクタンスを有する測定用コイルを、第1の受信用共振回路の前面に近接配置する第1のステップと、送信用コイルを介して信号発生手段より一定の送信電圧を予め定められた上記第2の共振周波数を含む周波数で掃引すると共に、上記送信電圧を上記第1の受信用コイルに電磁誘導により送る第2のステップとを備え、測定手段により上記測定用コイルの誘起電圧と周波数との特性を測定すると共に、該測定値が予め定められた範囲で、上記第2の周波数で上記第1の受信用共振回路が共振するように上記第1の受信用コンデンサの静電容量値又は上記第1の受信用コイルの自己インダクタンス値を変更したので、簡易に精度良く受信用共振回路の共振周波数を調整できるという効果がある。
【0025】
第2の発明によれば、第1の発明の効果に加え、質問器には、送信信号を送信用コンデンサと送信用コイルとから成る第1の共振周波数で共振させる送信用共振回路と、応答信号を第2の受信用コンデンサと第2の受信用コイルとを並列接続すると共に、第3の周波数で共振する第2の受信用共振回路とを備え、第2のステップは、送信用共振回路を介して信号発生手段より一定の送信電圧を予め定められた第2の共振周波数を含む周波数で掃引すると共に、上記送信電圧を第1の受信用コイルに電磁誘導により送ったので、質問器と応答器とを実際の使用状態に動作させた上で、受信用共振回路の共振周波数を調整できるから精度良く受信共振回路を調整できるという効果がある。
【0026】
第3の発明によれば、第1又は第2の発明の効果に加え、測定手段により信号発生手段の送信電圧値と、測定用コイルの誘起電圧値とに基く利得と周波数との特性を測定したので、利得の周波数特性を確認しながら受信用共振回路の共振周波数を調整できるという効果がある。
【図面の簡単な説明】
【図1】この発明の一実施の形態を示す非接触移動体識別装置のブロック図である。
【図2】図1に示す測定用コイルの周波数対電圧特性を示す曲線である。
【図3】この発明の他の実施の形態を示す非接触移動体識別装置のブロック図である。
【図4】従来の非接触移動体識別装置のブロック図である。
【符号の説明】
2 質問器、3 応答器、13 送信用コンデンサ、15 送信用コイル、30 受信用コイル、31 受信用コンデンサ、150 信号発生器、201 測定用コイル、203 電圧測定器、300 利得測定器。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-contact mobile object identification device, and more particularly, to an improvement in a method of adjusting a resonance frequency of a reception resonance circuit forming a transponder.
[0002]
[Prior art]
A conventional non-contact moving object identification device will be described with reference to FIG. In FIG. 4, the non-contact mobile unit identification device includes an interrogator 2 and a transponder 3 fixed to the identification target mobile unit. The interrogator 2 is a command (a command (transmission signal) transmitted from the higher-level control device 1). A command signal serving as rewriting information in the memory of the transponder is modulated by a modulation circuit 11 via an interface circuit 10, amplified by an amplification circuit 12, and amplified by a series resonance circuit of a transmission capacitor 13 and a transmission coil 15. The signal is transmitted to the transponder 3 at the frequency of 1.
[0003]
The transponder 3 receives a command from the interrogator 2 by a receiving resonance circuit in which the receiving coil 30 and the receiving capacitor 31 are connected in parallel, demodulates the received signal by the modulation / demodulation circuit 33, and controls the inside of the control circuit (control unit) 37. Write or read data to or from the built-in memory (rewriting the stored contents of the memory), modulate a response (a response signal transmitted to the interrogator 2), and transmit the modulated signal to the interrogator 2 at a third frequency. On the other hand, power is taken from the rectifier circuit 35 from the reception resonance circuit.
[0004]
Interrogator 2 receives a response transmitted from the responder 3 at a third frequency in the receiving coil 20 and the receiving capacitor 21, the demodulation circuit 28 to record scan Pons this output via the filter circuit 26 After demodulation, the signal is transmitted to the host control device 1 via the interface circuit 10.
[0005]
The second resonance frequency of the reception resonance circuit of the transponder 3 changes due to errors in the self-inductance of the reception coil 30, the variation in the capacitance of the reception capacitor 31, the mounting of the reception coil 30, and the like. Due to the change in the resonance frequency, the received power decreases or the signal from the interrogator 2 cannot be received with high accuracy.
[0006]
Therefore, the resonance frequency of the reception resonance circuit is adjusted by the following method. First, the voltage measuring device 50 is connected to the terminals T1 and T2 at both ends of the receiving resonance circuit via the lead wires 50a and 50b, and the interrogator 2 and the transponder 3 are connected at a predetermined distance value. The capacitance value of the receiving capacitor 31 is adjusted so that the measured voltage of 50 becomes a predetermined value.
[0007]
Second, using only the transponder 3, an impedance measuring device (not shown) is connected to the terminals T1 and T2 at both ends of the receiving resonance circuit via the lead wires 50a and 50b, and the impedance for each frequency is measured. Then, the resonance frequency is estimated from the frequency characteristics of the impedance, and the capacitance value of the receiving capacitor 31 is adjusted so as to be within a range of a predetermined allowable resonance frequency.
[0008]
[Problems to be solved by the invention]
However, in the above-described method of adjusting the resonance circuit for reception, the voltage measuring device 50 and the like are connected to both ends of the resonance circuit for reception via the leads 50a and 50b, and the leads 50a and 50b are detached for each transponder 3. I had to do it and it was troublesome. In addition, the impedance value or voltage value of the reception resonance circuit cannot be accurately measured due to the floating impedance of the lead wires 50a and 50b, and the measured value of the resonance frequency of the reception resonance circuit differs from the actual value. There was a problem that the accuracy was not sufficient.
[0009]
When measuring the impedance or voltage characteristic of the receiving resonance circuit only with the transponder 3, the measured value is not affected by the mutual inductance due to the transmission coil 15 of the interrogator 2 in the actual use state. Measures different things. Therefore, there is a problem that the measured value of the resonance frequency of the reception resonance circuit differs from the actual value and the accuracy is not sufficient.
[0010]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has as its object to provide a resonance frequency adjustment method for a non-contact mobile object identification device that can easily adjust a resonance frequency by non-contact.
[0011]
[Means to solve the problem]
According to a first aspect of the present invention, there is provided a non-contact moving object identification device adjusting method, comprising: a transmitting coil; A first receiving capacitor for receiving a signal and a first receiving coil are connected in parallel, a first receiving resonant circuit resonating at a second frequency, and a signal from the first receiving resonant circuit. A response unit that demodulates an output signal to write or read data to / from a built-in memory, modulates the generated response signal, and transmits the response signal via the first reception resonance circuit. In the resonance frequency adjusting method of the non-contact moving object identification device, a measuring coil having a self-inductance sufficiently smaller than a self-inductance of the first receiving coil is connected to the first receiving resonant circuit. A first step of arranging the transmission voltage close to the surface, and sweeping a constant transmission voltage from the signal generating means via the transmission coil at a frequency including the predetermined second resonance frequency; A second step of sending to the first receiving coil by electromagnetic induction, and measuring the characteristics of the induced voltage and the frequency of the measuring coil by the measuring means, and the measured value is within a predetermined range, The capacitance value of the first receiving capacitor or the self-inductance value of the first receiving coil is changed so that the first receiving resonance circuit resonates at the second frequency. It is assumed that.
[0012]
According to a second aspect of the present invention, the interrogator includes a transmission resonance circuit for resonating a transmission signal at a first resonance frequency including a transmission capacitor and a transmission coil; and a response signal. And a second reception resonance circuit that connects a second reception capacitor and a second reception coil in parallel and resonates at a third frequency. A predetermined transmission voltage is swept at a frequency including a predetermined second resonance frequency from the signal generation means via the signal generating means, and the transmission voltage is sent to the first receiving coil by electromagnetic induction. is there.
[0013]
According to a third aspect of the invention, there is provided a method for adjusting a non-contact moving object identification device, comprising: a step of transmitting a signal generation means by a measuring means instead of measuring characteristics of an induced voltage and a frequency of a measuring coil by a measuring means according to claim 1 or 2; The characteristic of gain and frequency based on the voltage value and the induced voltage value of the measuring coil is measured.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a block diagram of a non-contact moving object identification device showing an embodiment of the present invention. 1, the same reference numerals as those in the related art denote the same or corresponding parts, and a description thereof will be omitted. In FIG. 1, the interrogator 2 is provided with terminals a and b from the output side of the modulation circuit 11 and the terminals c and d also on the input side of the amplifier circuit 12. A signal generator 150 capable of generating a constant signal voltage including the resonance frequency and sweeping the frequency is connected to terminals c and d. The front of the receiver coil 30 is arranged a measuring coil 201, the terminal of the measuring coil 2 01 voltmeter 203 measuring the voltage versus frequency characteristic are connected.
[0015]
Here, the self-inductance L1 of the measuring coil 201 and the self-inductance of the receiving coil 30 have a relationship of L2 >> L1. This is because the mutual induction inductance M is formed between the measurement coil 201 and the reception coil 30 because the measurement coil 201 is inserted in front of the reception coil 30, and the self-inductance of the reception coil 30 is reduced. This is to suppress as much as possible that L2 changes and the resonance frequency changes as compared to before the measurement coil 201 is inserted.
[0016]
The relationship of L2 >> L1 will be clarified by the impedance Zi viewed from the receiving coil 30.
Zi = jωL2 + jωM (I1 / I2) (1)
Here, I1 = current flowing in the measuring coil I2 = current flowing in the first receiving coil In the above equation (1), the receiving coil 30 forming the parallel resonance circuit is hardly affected by the mutual inductance M. L2 >> M. The mutual inductance M is affected by the arrangement of the receiving coil 30 and the measuring coil 201, but if the relationship L2 >> L1, the relationship L2 >> M is satisfied. In order to satisfy such a relationship, if the number of turns N2 of the receiving coil 30 and the resistance R2, and the number of turns N1 and the resistance R1 of the measuring coil 201, it is configured to have a relationship of N2 >> N1, R2 >> R1. I have.
[0017]
The operation of the mobile object identification device configured as described above will be described with reference to FIGS. First, remove the jumper lines 101 and 103 of the interrogator 2 from the terminal to d, an output and a terminal c of the signal generator 150, a d connect the measuring coil on the front of the receiver coil 30 (reception resonant circuit) 201 is arranged. A voltage measuring device 203 is connected to both ends of the measuring coil 201.
[0018]
In this state, the transmission frequency from the signal generator 150, a start frequency fs around the second resonance frequency fr of the parallel resonance circuit, when the end frequency f f, fs <fr <constant value signal voltage at f f To sweep. The signal voltage is applied to the transmission resonance circuit including the transmission capacitor 13 and the transmission coil 15 via the amplification circuit 12, and the signal voltage between the reception capacitor 31 and the reception coil 30 of the transponder 3 is induced by electromagnetic induction. A voltage is generated in the parallel resonance circuit for reception. At the same time, since the magnetic flux in the measuring coil 201 changes with time, an induced voltage is generated, and the output voltage curve of the voltage versus frequency characteristic shown in FIG. 2 is obtained.
[0019]
At the same time, the transponder 3 receives the data by the reception resonance circuit, demodulates the data by the modulation / demodulation circuit 33, and writes or reads the data to / from the internal memory in the control circuit (control unit) 37 (rewrites the stored contents of the memory) (The response signal transmitted to the interrogator 2) is modulated and transmitted to the interrogator 2 at the third frequency. On the other hand, power is extracted from the rectifier circuit 35 from the reception resonance circuit. The interrogator 2 receives the response transmitted from the transponder 3 at the third frequency by the receiving coil 20 and the receiving capacitor 21.
[0020]
While the signal generator 150 sweeps the frequency of the signal generator 150 within a range of a predetermined frequency Δf centered on the second resonance frequency fr from the signal generator 150, a signal is received from the measuring coil 201 so that a voltage equal to or higher than a predetermined voltage is obtained. adjusting the self-inductance of the capacitive or receiving coil 3 0 of the capacitor 3 1. By this adjustment, the output curve of the voltage vs. frequency characteristic shown in FIG. The frequency Δf is determined in consideration of the communication distance between the interrogator 2 and the transponder 3 and the communication reliability.
[0021]
In the above embodiment, the signal voltage of the signal generator 150 by electromagnetic induction via the transmission resonant circuit, but was induced in the receiving coil 3 0, simply transmitting coil 15 to the signal voltage (other in coils, the receiving coils 3 0 may be any electromagnetic coupling.) only may be induced in the receiving coil 3 0.
[0022]
Here, without measuring the output voltage versus frequency characteristics of the measuring coil 201, the frequency of the signal voltage generated from the signal generator 150 is fixed at the second resonance frequency, and the output voltage of the measuring coil 201 is fixed. the but it showed that the maximum value, adjusting the capacitance of the receiving capacitor 3 1, because it does not measure the output voltage versus frequency characteristic, it takes time not fixed increase or decrease the adjustment value of the electrostatic capacitance value .
[0023]
Embodiment 2 FIG.
Another embodiment of the present invention will be described with reference to FIG. FIG. 3 is a block diagram of the non-contact moving object identification device. 3, the same reference numerals as those in FIG. 1 denote the same or corresponding parts, and a description thereof will be omitted. In FIG. 3, the difference from the first embodiment is that the measurement coil 201 is arranged on the front surface of the reception coil 30, and the output voltage Vi of the signal generator 150 and the voltage V0 across the measurement coil 201 are different from each other. gain V0 / Vi, i.e., gain versus frequency characteristic and gain measurement 300 is connected to measure the gain vs. capacitance or receiving coil 3 0 of the self-inductance of the receiving capacitor 3 1 based on the frequency characteristic It is the point that is adjusted.
[0024]
【The invention's effect】
According to the first invention, a first step of arranging a measuring coil having a self-inductance sufficiently smaller than a self-inductance of a first receiving coil close to a front surface of the first receiving resonance circuit; A predetermined transmission voltage is swept by the signal generation means via the transmission coil at a frequency including the predetermined second resonance frequency, and the transmission voltage is transmitted to the first reception coil by electromagnetic induction. Measuring the characteristics of the induced voltage and the frequency of the measuring coil by the measuring means, and measuring the first reception signal at the second frequency within a predetermined range. The capacitance value of the first receiving capacitor or the self-inductance value of the first receiving coil is changed so that the resonance circuit resonates. There is an effect that can adjust the resonance frequency.
[0025]
According to the second aspect, in addition to the effects of the first aspect, the interrogator includes a transmission resonance circuit for resonating a transmission signal at a first resonance frequency including a transmission capacitor and a transmission coil, A second receiving resonance circuit for connecting a signal in parallel with a second receiving capacitor and a second receiving coil and resonating at a third frequency; A constant transmission voltage is swept from the signal generation means via a predetermined frequency including the second resonance frequency, and the transmission voltage is transmitted to the first receiving coil by electromagnetic induction. It is possible to adjust the resonance frequency of the reception resonance circuit after operating the transponder and the transponder in an actual use state, so that the reception resonance circuit can be adjusted with high accuracy.
[0026]
According to the third aspect, in addition to the effects of the first or second aspect, the characteristic of the gain and the frequency based on the transmission voltage value of the signal generating means and the induced voltage value of the measuring coil is measured by the measuring means. Therefore, there is an effect that the resonance frequency of the reception resonance circuit can be adjusted while checking the frequency characteristics of the gain.
[Brief description of the drawings]
FIG. 1 is a block diagram of a non-contact moving object identification device showing an embodiment of the present invention.
FIG. 2 is a curve showing frequency versus voltage characteristics of the measurement coil shown in FIG.
FIG. 3 is a block diagram of a non-contact moving object identification device showing another embodiment of the present invention.
FIG. 4 is a block diagram of a conventional non-contact moving object identification device.
[Explanation of symbols]
2 interrogator, 3 responder, 13 transmitting capacitor, 15 transmitting coil, 30 receiving coil , 31 receiving capacitor , 150 signal generator, 201 measuring coil, 203 voltage measuring instrument, 300 gain measuring instrument.

Claims (3)

送信用コイルと、この送信用コイルを介して送信信号を第1の周波数で送ると共に、応答信号を受信する質問器と、上記送信信号を受信する第1の受信用コンデンサと第1の受信用コイルとを並列接続すると共に、第2の周波数で共振する第1の受信用共振回路と、この第1の受信用共振回路からの出力信号を復調して内蔵メモリへデータを書き込み又は読み出し、生成した上記応答信号を変調すると共に、上記第1の受信用共振回路を介して伝送する制御部とを有する応答器と、を備えた非接触移動体識別装置の共振周波数調整方法において、上記第1の受信用コイルの自己インダクタンスよりも十分に小さい自己インダクタンスを有する測定用コイルを、上記第1の受信用共振回路の前面に近接配置する第1のステップと、上記送信用コイルを介して信号発生手段より一定の送信電圧を予め定められた上記第2の共振周波数を含む周波数で掃引すると共に、上記送信電圧を上記第1の受信用コイルに電磁誘導により送る第2のステップとを備え、測定手段により上記測定用コイルの誘起電圧と周波数との特性を測定すると共に、該測定値が予め定められた範囲で、上記第2の周波数で上記第1の受信用共振回路が共振するように上記第1の受信用コンデンサの静電容量値又は上記第1の受信用コイルの自己インダクタンス値を変更する、ことを特徴とする非接触移動体識別装置の共振周波数調整方法。A transmission coil, an interrogator for transmitting a transmission signal at a first frequency via the transmission coil, and receiving a response signal; a first reception capacitor for receiving the transmission signal; and a first reception capacitor. A first receiving resonance circuit that resonates at a second frequency while connecting a coil in parallel, and demodulates an output signal from the first reception resonance circuit to write or read data to or from a built-in memory to generate data A transponder having a control unit for modulating the response signal and transmitting the response signal via the first receiving resonance circuit. A first step of disposing a measuring coil having a self-inductance sufficiently smaller than the self-inductance of the receiving coil in close proximity to the front surface of the first receiving resonance circuit; A second transmission frequency is sent from the signal generating means to the first receiving coil by electromagnetic induction while a constant transmission voltage is swept at a frequency including the predetermined second resonance frequency from the signal generation means via the signal generating means. Measuring the characteristics of the induced voltage and the frequency of the measuring coil by measuring means, and measuring the first reception resonance circuit at the second frequency within a predetermined range. Changing the capacitance value of the first receiving capacitor or the self-inductance value of the first receiving coil so that the resonance of the first receiving capacitor occurs. 上記質問器には、上記送信信号を送信用コンデンサと上記送信用コイルとから成る第1の共振周波数で共振させる送信用共振回路と、上記応答信号を第2の受信用コンデンサと第2の受信用コイルとを並列接続すると共に、第3の周波数で共振する第2の受信用共振回路とを備え、上記第2のステップは、上記送信用共振回路を介して信号発生手段より一定の送信電圧を予め定められた上記第2の共振周波数を含む周波数で掃引すると共に、上記送信電圧を上記第1の受信用コイルに電磁誘導により送ることを特徴とする請求項1に記載の非接触移動体識別装置の共振周波数調整方法。The interrogator includes a transmission resonance circuit that resonates the transmission signal at a first resonance frequency, the transmission resonance circuit including a transmission capacitor and the transmission coil, a second reception capacitor, a second reception capacitor, and a second reception capacitor. And a second reception resonance circuit resonating at a third frequency, wherein the second step includes a step of transmitting a constant transmission voltage from the signal generation means via the transmission resonance circuit. 2. The non-contact moving body according to claim 1, wherein the frequency is swept at a frequency including the predetermined second resonance frequency, and the transmission voltage is sent to the first receiving coil by electromagnetic induction. A method for adjusting the resonance frequency of the identification device. 請求項1又は2における測定手段により上記測定用コイルの誘起電圧と周波数との特性を測定する代わりに、測定手段により上記信号発生手段の送信電圧値と、上記測定用コイルの誘起電圧値とに基く利得と周波数との特性を測定する、ことを特徴とする非接触移動体識別装置の共振周波数調整方法。Instead of measuring the characteristics of the induced voltage and the frequency of the measuring coil by the measuring means according to claim 1 or 2, the measuring means calculates the transmission voltage value of the signal generating means and the induced voltage value of the measuring coil. A resonance frequency adjustment method for a non-contact mobile object identification device, comprising measuring characteristics of a base gain and a frequency.
JP32650398A 1998-11-17 1998-11-17 Resonance frequency adjustment method for non-contact mobile object identification device Expired - Fee Related JP3581264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32650398A JP3581264B2 (en) 1998-11-17 1998-11-17 Resonance frequency adjustment method for non-contact mobile object identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32650398A JP3581264B2 (en) 1998-11-17 1998-11-17 Resonance frequency adjustment method for non-contact mobile object identification device

Publications (2)

Publication Number Publication Date
JP2000151457A JP2000151457A (en) 2000-05-30
JP3581264B2 true JP3581264B2 (en) 2004-10-27

Family

ID=18188567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32650398A Expired - Fee Related JP3581264B2 (en) 1998-11-17 1998-11-17 Resonance frequency adjustment method for non-contact mobile object identification device

Country Status (1)

Country Link
JP (1) JP3581264B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100822240B1 (en) * 2006-08-07 2008-04-17 전자부품연구원 RFID Tag
JP5799751B2 (en) * 2011-01-31 2015-10-28 ソニー株式会社 Voltage generation circuit, resonance circuit, communication device, communication system, wireless charging system, power supply device, and electronic device
JP5718127B2 (en) * 2011-03-31 2015-05-13 フェリカネットワークス株式会社 COMMUNICATION DEVICE, COMMUNICATION METHOD, AND PROGRAM
CN107389995B (en) * 2017-08-15 2023-08-15 华电电力科学研究院有限公司 Circuit for adjusting quality factor of series resonance power supply and testing method thereof

Also Published As

Publication number Publication date
JP2000151457A (en) 2000-05-30

Similar Documents

Publication Publication Date Title
JP5640655B2 (en) Portable communication device, reader / writer device, and resonance frequency adjusting method
CN105389611B (en) Passive RFID sensor tag
US10210445B2 (en) Passive RFID sensor tag and RFID reader
US7173519B2 (en) Circuit arrangement with simplified input circuit for phase modulation in a backscattering transponder
US8130159B2 (en) Electromagnetic field generation antenna for a transponder
US8693956B2 (en) Resistive evaluation of the coupling factor of an electromagnetic transponder
US20070194913A1 (en) Wireless module,wireless temperature sensor,wireless interface device,and wireless sensor system
US20040002835A1 (en) Wireless, battery-less, asset sensor and communication system: apparatus and method
CN109788462A (en) Improved device detection in contactless communication system
JPH02237323A (en) Identifying apparatus
WO2017164228A1 (en) Transmission device, antenna drive device, tuning method, and program for realizing tuning method
KR20010006519A (en) Data communications terminal and method of adjusting a power signal generated therefrom
JP3649374B2 (en) Antenna device and card-like storage medium
US11126805B2 (en) Method for adjusting phase in contactless communication
JP4340234B2 (en) Device for inductively transmitting energy and / or data
JP3581264B2 (en) Resonance frequency adjustment method for non-contact mobile object identification device
JP4827832B2 (en) Tire pressure detection system and tire pressure detection device
US6879246B2 (en) Evaluation of the number of electromagnetic transponders in the field of a reader
JP6476096B2 (en) Receiving apparatus and control method thereof
JP5075623B2 (en) Tire sensor system and body mounted with the same
JP4736306B2 (en) An antenna that generates an electromagnetic field for the transponder
JPH08172378A (en) Noncontact discrimination system
JP3834666B2 (en) Antenna circuit for reader / writer
JP3758961B2 (en) Non-contact IC card and reader / writer
JP4178637B2 (en) Ultrasonic sensor transmission / reception circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040722

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees