JP3581046B2 - Seamless belt - Google Patents

Seamless belt Download PDF

Info

Publication number
JP3581046B2
JP3581046B2 JP17002199A JP17002199A JP3581046B2 JP 3581046 B2 JP3581046 B2 JP 3581046B2 JP 17002199 A JP17002199 A JP 17002199A JP 17002199 A JP17002199 A JP 17002199A JP 3581046 B2 JP3581046 B2 JP 3581046B2
Authority
JP
Japan
Prior art keywords
seamless belt
mold
resistivity
resin material
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17002199A
Other languages
Japanese (ja)
Other versions
JP2000356912A (en
Inventor
智 小田嶋
利行 川口
登代次 日比
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP17002199A priority Critical patent/JP3581046B2/en
Publication of JP2000356912A publication Critical patent/JP2000356912A/en
Application granted granted Critical
Publication of JP3581046B2 publication Critical patent/JP3581046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真式の複写機やレーザプリンタ等に使用されるシームレスベルトに関し、より詳しくは、感光体基体用、中間転写用、紙搬送用、現像用、あるいは定着用等のシームレスベルトの改良に関するものである。
【0002】
【従来の技術】
近年、フルカラー複写機等の電子写真複写機の実用化に伴い、感光体上に現像されたトナー像を複写紙に転写する際、一旦トナーを中間転写体に写し取った後、複写紙に転写するというプロセスが採用されている。このプロセスでは、感光ドラムの表面にトナー像が現像装置により形成され、このトナー像が感光ドラムの下部の中間転写体であるシームレスベルトに転写された後、このシームレスベルト上のトナー像がシームレスベルトと二次転写ローラとの間に挟まれた複写紙に転写される。このようにシームレスベルトは、中間転写体として使用されるが、それだけではなく、感光体等にも使用が検討されている。
【0003】
従来、シームレスベルトは、成形性が良いこと、軽量であること等の理由から導電あるいは半導電といわれる領域のプラスチック材料で成形されている。このような導電又は半導電製のシームレスベルトは、例えば特開平10−226028号公報に開示されている。いずれの材料のシームレスベルトにおいても、付与される導電性は、表面抵抗率を基準とすると、1〜1×1013Ω/□の範囲とされる。これは、1〜1×1013Ω/□の範囲を超える表面抵抗率とすると、一般に体積抵抗も大きくなり、トナーの搬送、転写という重要、かつ基本的な性能を満たすことができなくなるからである。
【0004】
【発明が解決しようとする課題】
従来のシームレスベルトは、以上のように導電性が表面抵抗率を基準として1〜1×1013Ω/□の範囲とされ、トナーの搬送、転写という重要、かつ基本的な性能が確保されている。しかしながら、このような表面抵抗率ではコピー紙に印刷する場合には特に問題がないものの、OHP用のプラスチックシートに印刷する場合、シートを搬送することができず、満足する性能が到底得られないという大きな問題がある。
【0005】
本発明は、上記問題に鑑みなされたもので、トナーの搬送や転写の性能として十分な導電性が期待でき、しかも、OHP用のシート等を搬送することが可能なシームレスベルトを提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明においては、上記課題を達成するため、樹脂材料にカーボンフィラーを分散させた樹脂材料溶液を金型に注入して回転させ、遠心成形により厚さ0.02〜0.5mmのエンドレスに形成されるものであって、
周面外側の表面抵抗率ρs(Ω/□)と体積抵抗率ρv(Ω・cm)との関係を109≧ρs/ρv≧40とし、表面抵抗率ρs(Ω/□)を2×1013(Ω/□)以上としたことを特徴としている。
【0007】
すなわち、本発明者らはトナーの搬送、転写時には十分な導電性を有し、OHP用のシート等を搬送することが可能なシームレスベルトを得るためには、周面外側の表面においては絶縁領域の抵抗値を有し、全体的には導電ないし半導電領域の抵抗値を有するものとすれば良いことに着眼し、その方法、構成について種々検討を重ねた結果、上記構成により、トナーの搬送、転写の性能を満足し、OHP用のシート等を搬送することが可能なシームレスベルトが得られることを確認して本発明を完成させた。
【0008】
本発明によれば、全体としては導電ないし半導電領域の抵抗値を有し、周面外側の表面においては絶縁領域の抵抗値を有するシームレスベルトとなっているので、トナーの搬送、転写等という性能を満足し、OHP用のシート又はこれと略同様と認められる被印刷基材を搬送することができる。
すなわち、被印刷基材の搬送にはシームレスベルトと被印刷基材との間に生じる静電吸着力を利用しているが、OHP用のシート等を構成するプラスチック材料とシームレスベルトを構成する樹脂材料の帯電列とが近いことから、周面外側の表面が導電ないし半導電領域の抵抗値を示すものであると、十分な静電吸着力が発現しないこととなる。本発明によれば、周面外側の表面が絶縁領域の抵抗値を有するものとすることにより、帯電列が近いもの同士でも、静電気の自然減衰が少なく、十分な静電吸着力が発現する。したがって、プラスチック材料からなるOHP用のシート等の搬送が可能になる。
【0009】
【発明の実施の形態】
以下、図面を参照して本発明の好ましい実施形態を説明するが、本発明は以下の実施形態に何ら限定されるものではない。
本実施形態におけるシームレスベルトは、図1に示すように、樹脂材料にカーボンフィラーを添加分散させた厚さ0.02〜0.5mmのエンドレスに遠心成形され、図示しないOHP用シートに接触する周面外側1aの表面抵抗率ρs(Ω/□)と体積抵抗率ρv(Ω・cm)との関係が109≧ρs/ρv≧40に設定されるとともに、表面抵抗率ρs(Ω/□)が2×1013(Ω/□)以上に設定されている。
【0010】
樹脂材料としては、公知の材料が使用されるが、シームレスベルト1が複数のロールに支持されて使用されるので、十分な機械的強度と可撓性とを有する材料が選択される。このような材料としては、PET、PBT、PEN等のポリエステル系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアミド系樹脂、フッ素樹脂、ポリサルフォン、アラミド樹脂、ポリエーテルエーテルケトン等があげられる。樹脂材料は、熱硬化性、熱可塑性のいずれでも良いが、使用する製法により適当な材料を選択することができる。
【0011】
カーボンフィラーとしては、ケッチェンブラック、アセチレンブラック、オイルファーネスブラック等があげられる。これらカーボンブラックは、その分散状態が必要な特性を得るために重要な役割を果たす。この点を詳説すると、シームレスベルト1は、可撓性を確保するため、厚さが0.02〜0.5mm程度と薄く成形される。この中でカーボンブラックが凝集していると、その凝集粒子は1ではないアスペクト比、1.5以上のアスペクト比を有する状態となり、成形時の樹脂の流れ、遠心力等の力が凝集粒子に加わると、モーメントが発生し、面方向に配向しやすくなる。この結果、面方向の抵抗が厚さ方向の抵抗と比較して低くなり、特にその体積抵抗率が1×10〜1×1013Ω・cm程度では微妙な配向が抵抗の方向性に大きく影響する。
【0012】
そこで本実施形態では、カーボンブラックの二次凝集粒子の割合がカーボンフィラー全量中20重量%以下、好ましくは10重量%以下、さらに好ましくは5重量%以下とされる。これにより、必要な体積抵抗率を得るために表面抵抗率が必要以上に低下するのを抑制することができる。
【0013】
全カーボン粒子中における凝集粒子の割合の測定方法は、カーボン粒子の粒子径を測定する方法による。すなわち、あるカーボン粒子の一次粒子径に対し、凝集粒子の粒子径は、数倍〜数十倍以上のレベルで大きな値を示し、粒度分布において一次粒子径の2倍以上の粒径を示したものが二次凝集している粒子であり、この粒子の全量に対する割合を算出すれば良い。
【0014】
この測定法によれば、市販のカーボンフィラーは、略50%以上が二次凝集しており、この二次凝集を解砕する処理を施すことが必要となる。このような処理方法としては、図2(a)、(b)、(c)、(d)に示すように、流路の最小部の間隙が0.1mm以下で、液剤の分離、衝突が行われるスタティックミキサ2に通す方法があげられる。このスタティックミキサ2は、金属製の上下一対の型から構成され、下型3に溝4が加工されている。スタティックミキサ2は、上型5と下型3とが型締めされることにより、溝4が流路となり、一方より流入したカーボンフィラーを含む材料がもう一方より排出される間に分離、衝突する。図2(a)、(b)、(c)、(d)の例においては、分離、衝突が2回ずつ行われる。
【0015】
カーボンフィラーの一次粒子の大きさは、数〜数百nmと非常に細かいため、通常用いられるボールミルや三本ロール等の方法では間隙が大き過ぎたり、解砕が確率的にしか行われないため、凝集粒子を減少させるには長時間を要する。しかしながら、スタティックミキサ2を使用すれば、このスタティックミキサ2を通過するカーボン粒子は必ず解砕処理を受けるので、きわめて効率的に処理することが可能となる。
【0016】
樹脂材料にカーボンフィラーを分散させる方法としては、適当な溶媒中で上記二次凝集解砕処理した後に樹脂材料と混合する方法、樹脂材料に直接カーボンフィラーを投入し、その後に上記解砕処理を行う方法があげられる。但し、樹脂材料と混合する際に、一旦解砕された粒子が再凝集することがあるので、樹脂材料との混合前に解砕処理を行う場合においても、樹脂材料と混合した後に再度解砕処理することが好ましい。
【0017】
樹脂材料に対するカーボンフィラーの添加量は、必要とされる導電性に応じて適宜決定されるが、具体的には樹脂材料100重量部に対し1〜30重量部の範囲から選択される。本実施形態においては、上記解砕処理を行うことにより、表面抵抗率と体積抵抗率が従来の関係を有しないので、注意が必要である。
【0018】
シームレスベルト1の周面外側1aの表面抵抗率は同一面で測定される抵抗値により算出され、体積抵抗率はシームレスベルト1の表裏面の間で測定される抵抗値より算出される。抵抗値の測定方法により、特に測定電圧により得られる値が変わるが、本発明に係るシームレスベルト1は、JIS K 6911における5.13 抵抗率の試験方法に略準拠した方法により、表面抵抗率及び体積抵抗率が算出される。
【0019】
測定試験の装置としては、図3(a)、(b)の斜線部分の形状に切断した導電性ゴム又は透湿性の導電性ペイント、直流電圧500Vの電源(乾電池又は蓄電池)、図4に示す絶縁抵抗測定装置6、適当に絶縁保護されたスイッチ、JIS B 7502に規定された外側マイクロメータ又はこれと同等以上の精度をもつもの、JIS B 7507に規定された最小読取値0.02mmのノギス又はこれと同等以上の精度をもつもの等が使用される。試験体としては、成形されたシームレスベルト1がそのまま用いられる。この試験体の前処理は、C−90+4 −2h/20±2℃/(65±5)%RHで行われる。
【0020】
測定試験の方法は、先ず、処理した試験体の厚さを外側マイクロメータで0.01mmまで正確に測り、その後、導電性ゴムを配置し、試験体に圧着して電極とする。
なお、図3に示すように、試験体上に透湿性の導電性ペイントで描いて電極とすることができる。この場合、電極を描いた後に試験体を処理し、操作中に透湿性の導電性ペイントが試験体から剥がれないように注意する。
表面電極の内円の外径及び環状電極の内径をノギスで0.02mmまで測り、表面抵抗率を測定する場合には図5(a)のように、体積抵抗率を測定する場合には図5(b)のようにそれぞれ接続する。これをさらに絶縁抵抗測定装置6の回路位置に接続し、1分間充電して表面抵抗率及び体積抵抗を測定する。この場合、試験は、温度20±2℃、相対温度(65±5%)の条件で行う。
【0021】
表面抵抗率と体積抵抗とを測定したら、以下の式により表面抵抗率及び体積抵抗率を算出する。
ρv=πd/4t×R
ρs=π(D+d)/D−d×R
ここに、ρs:表面抵抗率(MΩ)
ρv:体積抵抗率(MΩ・cm)
d:表面電極の内円の外径(cm)
t:試験体の厚さ(cm)
:体積抵抗(MΩ)
D:表面の環状電極の内径(cm)
:表面抵抗(MΩ)
π:円周率=3.14
【0022】
シームレスベルト1の成形方法としては、遠心成形、押出成形、又は射出成形等があげられるが、厚さの精度や表面状態等に優れる遠心成形法を選択することが好ましい。ここで、遠心成形法とは、上記原材料からなる流動状液体を円筒状の金型内に注入して回転させることにより、金型の内周面に流動状液体の層を遠心力により形成し、溶媒の除去あるいは反応硬化型の樹脂を硬化させることにより、金型の内周面に樹脂層を形成して脱型する方法をいう。シームレスベルト1の厚さは、0.02〜0.5mmの範囲とされる。これは、複数のロールにシームレスベルト1が支持されて用いられるので、0.02mm未満では機械的強度が不足するからである。また、0.5mmを超えると、可撓性が十分でないからである。
【0023】
次に、シームレスベルト1の製造方法について説明すると、先ず、樹脂材料溶液を調整する。具体的には、ベースとなる樹脂材料を適当な溶媒で溶液化し、カーボンフィラーを上記方法で分散させる。この際、樹脂材料溶液の粘度が50,000cp以下となるよう調整する。50,000cpを超える粘度では、遠心力による金型8の内周面へのレベリングが困難となるからである。下限は特に限定されないが、10cp以上とすることが樹脂材料溶液の取扱上好ましいといえる。
【0024】
樹脂材料溶液を調整したら、図6に示すように、回転可能な複数のローラ7上に配置された金型8の中に樹脂材料溶液を必要量だけ注入する。この金型8は、金属を用いて円筒形に形成され、内周面が鏡面加工、又はフッ素樹脂やシリコーン樹脂等で処理されており、簡単にシームレスベルト1を脱型することができる。金型8の両端部には注入した樹脂材料溶液が漏れないよう、金属製、樹脂製等の蓋(図示せず)が嵌合されている。この蓋は、その中央に樹脂材料溶液注入のための孔が穿設され、リング形を呈している。樹脂材料溶液は、溶液の濃度、固形分の比重、金型8の内周面寸法、製品の厚さから算出し、所定量を注入すれば良い。本実施形態のシームレスベルト1には、機械的強度と可撓性とが求められるので、厚さの範囲が略0.02〜0.5mm程度とされる。
【0025】
次いで、金型8を当初ゆっくりと回転させ、金型8の内周面に樹脂材料溶液を均一に塗布しつつ徐々に回転数を上げ、シームレスベルト1を遠心成形する。この際、必要に応じて金型8を外部から適当なヒータで加熱すれば、樹脂材料溶液の粘度低減、有機溶媒の蒸発を促進することができる。但し、急激な乾燥は、シームレスベルト1の表面状態に悪影響を与えるため、初めのうちは金型8の加熱を樹脂溶液の沸点より120〜50℃程度低くし、指触乾燥状態が得られた後に温度を上昇させ、乾燥を完了すれば良い。
【0026】
こうしてシームレスベルト1の遠心成形が終了したら、金型8ごと空冷する。すると、金型8とシームレスベルト1を構成するポリアミドイミドとの熱膨張率の差により、シームレスベルト1が金型8の内周面から自然に脱型する。シームレスベルト1と金型8の内周面との密着度が強く、自然に剥離しない場合には、端部から徐々にシームレスベルト1を剥離すれば良い。最後に所定の幅にカットすれば、シームレスベルト1を得ることができる。
【0027】
なお、上記実施形態ではシームレスベルト1の周面外側1aの表面抵抗率ρs(Ω/□)と体積抵抗率ρv(Ω・cm)との関係を109≧ρs/ρv≧40に設定したが、実用上、表面抵抗率ρs(Ω/□)と体積抵抗率ρv(Ω・cm)との関係を109≧ρs/ρv≧50にすると良い。
【0028】
【実施例】
以下、本発明に係るシームレスベルト1の実施例、比較例を説明する。
樹脂材料溶液の調整
トリメリット酸無水物と4,4’−ジアミノジフェニルメタンとの当量をジメチルアセトアミドに溶解し、加熱反応して固形分濃度(実質的全閉環のポリアミドイミド)28重量%の芳香族ポリアミドイミド溶液を得た。さらに、ジメチルアセトアミドを加え、固形分濃度15重量%、固形分の比重1.2のポリアミドイミド溶液とした。
本実施例、比較例においては、全てこのポリアミドイミド溶液を樹脂材料溶液として使用した。
【0029】
実施例1
カーボンフィラーとして、キャボット製「Special Black MONARCH 120」(粒子径75nm)を、ジメチルアセトアミドに15重量%となるよう混合し、これを図2(a)、(b)、(c)、(d)に示すスタティックミキサ(流路幅0.1mm、深さ0.1mm)2に500kgf/cmの圧力を加えて通し、カーボンフィラーの解砕処理を行い、カーボンフィラー混合液を得た。こうしてカーボンフィラー混合液を得たら、ポリアミドイミド溶液100重量部に対し、カーボンブラック混合液20重量部を加え、再度スタティックミキサ2に通してポリアミドイミド−カーボンブラック混合溶液とした。このときの粒度分布をレーザ回折法により測定したところ、150nmを超える粒子径を有する粒子の割合は、2.1wt%であった。
【0030】
次いで、内径200mm、外形220m、長さ400mmの円筒形で、両端部に材料漏れを防止する内径170mm、外形220mmのリング形の蓋を有する金型8を100rpmの速度で回転させるとともに、この金型8内にポリアミドイミド−カーボンブラック混合溶液215gを注入した。この際、雰囲気温度を熱風送風機により80℃に保ち、金型8の回転数を徐々に上げ、1650回転とした。この作業を30分間続けたら、金型8の回転を停止し、金型8毎に180℃に設定したオーブンに投入し、45分後にオーブンより取り出した。そして、そのまま室温に放置して冷却し、ポリアミドイミド製のシームレスベルト1を金型8から脱型し、厚さ約100μmのシームレスベルト1を得た。
【0031】
シームレスベルト1を得たら、JIS K 6911 5.13 抵抗率の項に示される通りの形状、寸法に導電性ゴムを形成し、これを製造したシームレスベルト1に圧着して測定試験用の電極とし、5.13 抵抗率の試験方法に略準拠して周面外側1aの表面抵抗と体積抵抗とをそれぞれ測定し、表面抵抗率及び体積抵抗率を算出した。この結果、表面抵抗率は1.2×1014(Ω/□)、体積抵抗率は1.1×1012(Ω・cm)であった。
このシームレスベルト1をカラーレーザプリンタの中間転写体として組み込み、普通紙及びOHP用シートにそれぞれ印字テストしたところ、いずれも良好な結果を得ることができた。
【0032】
実施例2
実施例1と同様のカーボンブラックをジメチルアセトアミドに15重量%となるよう混合し、これをボールミルで48時間撹拌混合し、カーボンブラック混合液を得た。こうしてカーボンブラック混合液を得たら、ポリアミドイミド溶液100重量部に対しカーボンブラック混合液25重量部を加え、ボールミルで24時間撹拌混合し、ポリアミドイミド−カーボンブラック混合溶液を得た。このときの粒度分布をレーザ回折法により測定したところ、150nmを超える粒子径を有する粒子の割合は、8.6wt%であった。
次いで、実施例1と同様の装置を使用し、同様の方法により厚さ100μmのシームレスベルト1を得た。
【0033】
そして、実施例1と同様の方法でシームレスベルト1の周面外側1aの表面抵抗率、体積抵抗率を算出したところ、それぞれ6.5×1013(Ω/□)、1.6×1012(Ω・cm)であった。
このシームレスベルト1をカラーレーザプリンタの中間転写体としてセットし、普通紙及びOHP用シートにそれぞれ印字テストしたところ、どちらも良好な結果を確認した。
【0034】
比較例
実施例1と同様のカーボンブラックをジメチルアセトアミドに15重量%となるよう混合し、これをボールミルで8時間撹拌混合し、カーボンブラック混合液を得た。こうしてカーボンブラック混合液を得たら、ポリアミドイミド溶液100重量部に対し、カーボンブラック混合液25重量部を加え、ボールミルで3時間撹拌混合し、ポリアミドイミド−カーボンブラック混合溶液を得た。このときの粒度分布をレーザ回折法により測定したところ、150nmを超える粒子径を有する粒子の割合は32.2wt%であった。
次いで、実施例1と同様の装置を使用し、同様の方法により厚さ100μmのシームレスベルト1を製造した。
【0035】
そして、実施例1と同様の方法でシームレスベルト1の周面外側1aの表面抵抗率、体積抵抗率を算出したところ、それぞれ7.6×1012(Ω/□)、2.2×1012(Ω・cm)の値が得られた。
このシームレスベルト1をカラーレーザプリンタの中間転写体として装着し、普通紙及びOHP用シートにそれぞれ印字テストしたところ、普通紙では良好な結果を得ることができた。しかしながら、OHP用シートの場合、OHP用シートの搬送不良が原因と考えられる色ずれ及びこすれが認められた。
【0036】
【発明の効果】
以上のように本発明によれば、トナーの搬送や転写の性能には十分な導電性が期待でき、しかも、通常使用される用紙だけではなく、OHP用のシート等をも搬送することができるという効果がある。したがって、これをプリンタ等に使用すれば、被印刷基材の利用範囲を広げることが可能になる。さらに、遠心成形により形成するので、厚さの精度や表面状態等に優れるシームレスベルトを提供することができる。
【図面の簡単な説明】
【図1】本発明に係るシームレスベルトの実施形態を示す斜視説明図である。
【図2】本発明に係るシームレスベルトの実施形態におけるスタティックミキサを示す説明図で、(a)図は正面図、(b)図は横断面説明図、(c)図は側面説明図、(d)図は型締め状態を示す横断面説明図である。
【図3】本発明に係るシームレスベルトの実施形態における抵抗率試験の電極を示す説明図で、(a)図は表面電極を示す説明図、(b)図は裏面電極を示す説明図である。
【図4】本発明に係るシームレスベルトの実施形態における抵抗率試験の絶縁抵抗測定装置を示す説明図である。
【図5】本発明に係るシームレスベルトの実施形態における抵抗率試験の電極の接続方法を示す説明図で、(a)図は表面抵抗率試験時の電極の接続方法を示す断面説明図、(b)図は体積抵抗率試験時の電極の接続方法を示す断面説明図である。
【図6】本発明に係るシームレスベルトの実施形態における金型を示す説明図で、(a)図は正面図、(b)図は側面図である。
【符号の説明】
1 シームレスベルト
1a 周面外側
2 スタティックミキサ
6 絶縁抵抗測定装置
8 金型
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a seamless belt used for an electrophotographic copying machine, a laser printer, or the like, and more particularly, to a seamless belt for a photoreceptor substrate, for intermediate transfer, for paper conveyance, for development, or for fixing. It is about improvement.
[0002]
[Prior art]
In recent years, with the commercialization of electrophotographic copiers such as full-color copiers, when transferring a toner image developed on a photoreceptor to copying paper, the toner is first transferred to an intermediate transfer body and then transferred to the copying paper. The process is adopted. In this process, a toner image is formed on the surface of the photosensitive drum by a developing device, and the toner image is transferred to a seamless belt, which is an intermediate transfer member below the photosensitive drum, and then the toner image on the seamless belt is transferred to the seamless belt. Is transferred to a copy sheet sandwiched between the sheet and the secondary transfer roller. As described above, the seamless belt is used as an intermediate transfer member, but is not limited to this, and its use is also being considered for a photoreceptor and the like.
[0003]
Conventionally, a seamless belt is formed of a plastic material in a region called conductive or semiconductive for reasons such as good moldability and light weight. Such a conductive or semiconductive seamless belt is disclosed, for example, in Japanese Patent Application Laid-Open No. 10-226028. The conductivity imparted to the seamless belt of any material is in the range of 1 to 1 × 10 13 Ω / □ based on the surface resistivity. This is because, if the surface resistivity exceeds the range of 1 to 1 × 10 13 Ω / □, the volume resistance generally increases, and the important and basic performances of toner conveyance and transfer cannot be satisfied. is there.
[0004]
[Problems to be solved by the invention]
As described above, the conventional seamless belt has the conductivity in the range of 1 to 1 × 10 13 Ω / □ based on the surface resistivity, and secures the important and basic performance of toner conveyance and transfer. I have. However, such a surface resistivity has no particular problem when printing on copy paper, but when printing on a plastic sheet for OHP, the sheet cannot be transported, and satisfactory performance cannot be obtained at all. There is a big problem that.
[0005]
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a seamless belt that can be expected to have sufficient conductivity for toner transport and transfer performance, and that can transport OHP sheets and the like. The purpose is.
[0006]
[Means for Solving the Problems]
In the present invention, in order to achieve the above object, a resin material solution in which a carbon filler is dispersed in a resin material is poured into a mold, rotated, and formed into an endless piece having a thickness of 0.02 to 0.5 mm by centrifugal molding. That is
The relationship between the surface resistivity ρs (Ω / □) and the volume resistivity ρv (Ω · cm) outside the peripheral surface is 109 ≧ ρs / ρv ≧ 40, and the surface resistivity ρs (Ω / □) is 2 × 10 13 (Ω / □) or more.
[0007]
That is, in order to obtain a seamless belt capable of transporting OHP sheets and the like having sufficient conductivity at the time of transporting and transferring the toner, the present inventors require an insulating area on the outer peripheral surface. Focusing on the fact that it is sufficient to have the resistance value of the conductive or semiconductive region as a whole, and as a result of various studies on the method and configuration, the toner The present invention was completed by confirming that a seamless belt capable of transporting an OHP sheet or the like was obtained, which satisfied transfer performance.
[0008]
According to the present invention, since the whole is a seamless belt having a resistance value of a conductive or semiconductive region and a resistance value of an insulating region on the outer surface of the peripheral surface, it is referred to as toner conveyance, transfer and the like. It is possible to convey a sheet for OHP or a substrate to be printed which is recognized to be substantially similar to the sheet, which satisfies performance.
That is, while the substrate to be printed is transported by utilizing the electrostatic attraction force generated between the seamless belt and the substrate to be printed, the plastic material forming the OHP sheet and the like and the resin forming the seamless belt are used. Since the charging sequence of the material is close, if the outer surface of the peripheral surface shows the resistance value of the conductive or semiconductive region, a sufficient electrostatic attraction force will not be developed. According to the present invention, since the outer surface of the peripheral surface has the resistance value of the insulating region, even if the charging lines are close to each other, natural attenuation of static electricity is small and sufficient electrostatic attraction force is exhibited. Therefore, it is possible to convey an OHP sheet or the like made of a plastic material.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiment.
As shown in FIG. 1, the seamless belt according to the present embodiment is endlessly centrifugally molded to a thickness of 0.02 to 0.5 mm obtained by adding and dispersing a carbon filler to a resin material, and is formed into a circumferential shape in contact with an OHP sheet (not shown). The relationship between the surface resistivity ρs (Ω / □) and the volume resistivity ρv (Ω · cm) of the outer surface 1a is set to 109 ≧ ρs / ρv ≧ 40 , and the surface resistivity ρs (Ω / □) is It is set to 2 × 10 13 (Ω / □) or more.
[0010]
As the resin material, a known material is used, but since the seamless belt 1 is used while being supported by a plurality of rolls, a material having sufficient mechanical strength and flexibility is selected. Examples of such materials include polyester resins such as PET, PBT, and PEN, polyimide resins, polyamideimide resins, polyamide resins, fluororesins, polysulfone, aramid resins, and polyetheretherketone. The resin material may be either thermosetting or thermoplastic, but an appropriate material can be selected depending on the manufacturing method used.
[0011]
Examples of the carbon filler include Ketjen black, acetylene black, oil furnace black and the like. These carbon blacks play an important role in obtaining the required properties depending on the state of dispersion. To explain this point in detail, the seamless belt 1 is formed as thin as about 0.02 to 0.5 mm in order to secure flexibility. When carbon black is agglomerated in this, the agglomerated particles are in a state having an aspect ratio other than 1 and an aspect ratio of 1.5 or more. When it is applied, a moment is generated, and it is easy to orient in the plane direction. As a result, the resistance in the plane direction is lower than the resistance in the thickness direction, and particularly when the volume resistivity is about 1 × 10 6 to 1 × 10 13 Ω · cm, the delicate orientation is large in the directionality of the resistance. Affect.
[0012]
Therefore, in the present embodiment, the ratio of the secondary aggregated particles of carbon black is set to 20% by weight or less, preferably 10% by weight or less, more preferably 5% by weight or less based on the total amount of the carbon filler. Thereby, it is possible to suppress the surface resistivity from unnecessarily lowering in order to obtain the required volume resistivity.
[0013]
The method of measuring the ratio of the aggregated particles in all the carbon particles depends on the method of measuring the particle diameter of the carbon particles. That is, with respect to the primary particle diameter of a certain carbon particle, the particle diameter of the aggregated particles showed a large value at a level of several times to several tens times or more, and showed a particle diameter more than twice the primary particle diameter in the particle size distribution. The particles are secondary aggregated particles, and the ratio to the total amount of the particles may be calculated.
[0014]
According to this measuring method, about 50% or more of the commercially available carbon filler is secondary aggregated, and it is necessary to perform a treatment for breaking up the secondary aggregation. As shown in FIGS. 2 (a), 2 (b), 2 (c), and 2 (d), the gap at the minimum portion of the flow path is 0.1 mm or less, and separation and collision of the liquid agent are not performed. A method of passing through the static mixer 2 is performed. The static mixer 2 includes a pair of upper and lower metal molds, and a groove 4 is formed in a lower mold 3. In the static mixer 2, when the upper die 5 and the lower die 3 are clamped, the groove 4 becomes a flow path, and the material containing the carbon filler that has flowed in from one side is separated and collides while the material containing the carbon filler is discharged from the other. . In the examples of FIGS. 2A, 2B, 2C, and 2D, separation and collision are performed twice.
[0015]
Because the size of the primary particles of the carbon filler is very fine, from several to several hundred nm, the gap is too large or the crushing is carried out only stochastically with a commonly used method such as a ball mill or a three roll. It takes a long time to reduce the aggregated particles. However, if the static mixer 2 is used, the carbon particles passing through the static mixer 2 are always subjected to a crushing process, so that the carbon particles can be processed very efficiently.
[0016]
As a method of dispersing the carbon filler in the resin material, a method of mixing with the resin material after the secondary aggregation and disintegration treatment in an appropriate solvent, directly adding the carbon filler to the resin material, and then performing the disintegration treatment There is a way to do it. However, once mixed with the resin material, the particles once crushed may re-aggregate. Therefore, even if the crushing treatment is performed before mixing with the resin material, the particles are crushed again after mixing with the resin material. Processing is preferred.
[0017]
The amount of the carbon filler to be added to the resin material is appropriately determined according to the required conductivity, but is specifically selected from the range of 1 to 30 parts by weight based on 100 parts by weight of the resin material. In the present embodiment, care must be taken because the above-described crushing treatment does not have a conventional relationship between the surface resistivity and the volume resistivity.
[0018]
The surface resistivity of the outer peripheral surface 1a of the seamless belt 1 is calculated by a resistance value measured on the same surface, and the volume resistivity is calculated by a resistance value measured between the front and back surfaces of the seamless belt 1. Although the value obtained particularly by the measurement voltage changes depending on the method of measuring the resistance value, the seamless belt 1 according to the present invention has a surface resistivity and a surface resistivity of approximately 0.13 according to a method substantially conforming to the test method of 5.13 resistivity in JIS K 6911. The volume resistivity is calculated.
[0019]
As an apparatus for the measurement test, conductive rubber or moisture-permeable conductive paint cut in a hatched portion in FIGS. 3A and 3B, a power supply (dry cell or storage battery) with a DC voltage of 500 V, and FIG. Insulation resistance measuring device 6, appropriately insulated switch, outer micrometer specified in JIS B 7502 or equivalent or more accurate, vernier caliper with minimum reading of 0.02 mm specified in JIS B 7507 Alternatively, a device having a precision equal to or higher than this is used. As a test body, the formed seamless belt 1 is used as it is. The pretreatment of this specimen is performed at C-90 + 4-2 h / 20 ± 2 ° C./(65±5)% RH.
[0020]
In the measurement test method, first, the thickness of the treated specimen is accurately measured to 0.01 mm with an outer micrometer, and then conductive rubber is arranged and pressed on the specimen to form an electrode.
In addition, as shown in FIG. 3, an electrode can be formed by drawing a moisture-permeable conductive paint on the test sample. In this case, the specimen is treated after drawing the electrodes, and care is taken that the moisture-permeable conductive paint does not peel off the specimen during the operation.
The outer diameter of the inner circle of the surface electrode and the inner diameter of the ring electrode are measured with a vernier caliper to 0.02 mm, and the surface resistivity is measured as shown in FIG. Each connection is made as shown in FIG. This is further connected to the circuit position of the insulation resistance measuring device 6, charged for one minute, and the surface resistivity and the volume resistance are measured. In this case, the test is performed at a temperature of 20 ± 2 ° C. and a relative temperature (65 ± 5%).
[0021]
After measuring the surface resistivity and the volume resistivity, the surface resistivity and the volume resistivity are calculated by the following equations.
ρv = πd 2 / 4t × R V
ρs = π (D + d) / D−d × R s
Where ρs: surface resistivity (MΩ)
ρv: Volume resistivity (MΩ · cm)
d: Outer diameter of inner circle of surface electrode (cm)
t: thickness of test specimen (cm)
R V : Volume resistance (MΩ)
D: inside diameter of the annular electrode on the surface (cm)
R s : surface resistance (MΩ)
π: Pi = 3.14
[0022]
Examples of the method for forming the seamless belt 1 include centrifugal molding, extrusion molding, and injection molding, and it is preferable to select a centrifugal molding method that is excellent in thickness accuracy, surface condition, and the like. Here, the centrifugal molding method is to form a layer of the fluid liquid on the inner peripheral surface of the mold by centrifugal force by injecting and rotating the fluid liquid composed of the above-described raw materials into a cylindrical mold. A method of removing a solvent or curing a reaction-curable resin to form a resin layer on the inner peripheral surface of a mold and remove the mold. The thickness of the seamless belt 1 is in the range of 0.02 to 0.5 mm. This is because the seamless belt 1 is used while being supported by a plurality of rolls, and if it is less than 0.02 mm, the mechanical strength is insufficient. Further, if it exceeds 0.5 mm, the flexibility is not sufficient.
[0023]
Next, a method of manufacturing the seamless belt 1 will be described. First, a resin material solution is prepared. Specifically, a resin material serving as a base is made into a solution with an appropriate solvent, and the carbon filler is dispersed by the above method. At this time, the viscosity of the resin material solution is adjusted to be 50,000 cp or less. If the viscosity exceeds 50,000 cp, it is difficult to level the inner peripheral surface of the mold 8 by centrifugal force. Although the lower limit is not particularly limited, it can be said that it is preferably 10 cp or more from the viewpoint of handling the resin material solution.
[0024]
After adjusting the resin material solution, as shown in FIG. 6, a required amount of the resin material solution is poured into a mold 8 arranged on a plurality of rotatable rollers 7. The mold 8 is formed in a cylindrical shape using metal, and the inner peripheral surface is mirror-finished or treated with a fluorine resin or a silicone resin, so that the seamless belt 1 can be easily removed from the mold. Metal or resin lids (not shown) are fitted to both ends of the mold 8 so that the injected resin material solution does not leak. This lid has a ring shape in the center of which is formed a hole for injecting a resin material solution. The resin material solution may be calculated from the concentration of the solution, the specific gravity of the solid content, the inner peripheral surface dimension of the mold 8, and the thickness of the product, and a predetermined amount may be injected. Since the seamless belt 1 of the present embodiment is required to have mechanical strength and flexibility, the thickness range is approximately 0.02 to 0.5 mm.
[0025]
Next, the mold 8 is initially slowly rotated, and the rotation speed is gradually increased while uniformly applying the resin material solution to the inner peripheral surface of the mold 8 to centrifugally mold the seamless belt 1. At this time, if the mold 8 is externally heated by a suitable heater as needed, the viscosity of the resin material solution can be reduced and the evaporation of the organic solvent can be promoted. However, since rapid drying adversely affects the surface state of the seamless belt 1, the heating of the mold 8 was initially lowered by about 120 to 50 ° C. below the boiling point of the resin solution, and a touch-dry state was obtained. The temperature may be increased later to complete the drying.
[0026]
When the centrifugal molding of the seamless belt 1 is completed in this way, the entire mold 8 is air-cooled. Then, the seamless belt 1 is naturally released from the inner peripheral surface of the mold 8 due to the difference in thermal expansion coefficient between the mold 8 and the polyamideimide constituting the seamless belt 1. If the seamless belt 1 and the inner peripheral surface of the mold 8 have a high degree of adhesion and do not spontaneously separate, the seamless belt 1 may be gradually separated from the end. Finally, by cutting to a predetermined width, the seamless belt 1 can be obtained.
[0027]
In the above embodiment, the relationship between the surface resistivity ρs (Ω / □) and the volume resistivity ρv (Ω · cm) of the outer peripheral surface 1a of the seamless belt 1 is set to 109 ≧ ρs / ρv ≧ 40 . In practice, it is preferable that the relationship between the surface resistivity ρs (Ω / □) and the volume resistivity ρv (Ω · cm) is set to 109 ≧ ρs / ρv ≧ 50 .
[0028]
【Example】
Hereinafter, Examples and Comparative Examples of the seamless belt 1 according to the present invention will be described.
Preparation of resin material solution Equivalent amount of trimellitic anhydride and 4,4'-diaminodiphenylmethane is dissolved in dimethylacetamide, and the mixture is heated and reacted to obtain a solid content (substantially completely closed polyamideimide) of 28% by weight of aromatic compound. A polyamide imide solution was obtained. Further, dimethylacetamide was added to obtain a polyamideimide solution having a solid content of 15% by weight and a specific gravity of the solid content of 1.2.
In all of the examples and comparative examples, this polyamideimide solution was used as a resin material solution.
[0029]
Example 1
As a carbon filler, "Special Black MONARCH 120" (particle size: 75 nm) manufactured by Cabot was mixed with dimethylacetamide to a concentration of 15% by weight, and this was mixed with Fig. 2 (a), (b), (c), (d). (2) Applying a pressure of 500 kgf / cm 2 to a static mixer (flow path width 0.1 mm, depth 0.1 mm) 2 shown in (1) to pulverize the carbon filler to obtain a carbon filler mixed solution. When the carbon filler mixed solution was thus obtained, 20 parts by weight of the carbon black mixed solution was added to 100 parts by weight of the polyamideimide solution, and the mixture was again passed through the static mixer 2 to obtain a polyamideimide-carbon black mixed solution. When the particle size distribution at this time was measured by a laser diffraction method, the ratio of particles having a particle size exceeding 150 nm was 2.1 wt%.
[0030]
Next, a metal mold 8 having a ring-shaped lid having an inner diameter of 200 mm, an outer diameter of 220 m and a length of 400 mm and having a ring-shaped lid having an inner diameter of 170 mm and an outer diameter of 220 mm at both ends for preventing material leakage is rotated at a speed of 100 rpm. 215 g of a polyamideimide-carbon black mixed solution was injected into the mold 8. At this time, the atmosphere temperature was maintained at 80 ° C. by a hot air blower, and the rotation speed of the mold 8 was gradually increased to 1650 rotations. When this operation was continued for 30 minutes, the rotation of the mold 8 was stopped, and each mold 8 was put into an oven set at 180 ° C., and was taken out of the oven after 45 minutes. The polyamide-imide seamless belt 1 was removed from the mold 8 and cooled at room temperature to obtain a seamless belt 1 having a thickness of about 100 μm.
[0031]
Once the seamless belt 1 is obtained, a conductive rubber is formed in the shape and dimensions shown in JIS K 6911 5.13 section of resistivity, and this is pressed against the manufactured seamless belt 1 to form an electrode for a measurement test. 5.13 The surface resistance and the volume resistivity of the outer peripheral surface 1a were measured substantially in accordance with the resistivity test method, and the surface resistivity and the volume resistivity were calculated. As a result, the surface resistivity was 1.2 × 10 14 (Ω / □), and the volume resistivity was 1.1 × 10 12 (Ω · cm).
The seamless belt 1 was incorporated as an intermediate transfer member of a color laser printer, and a print test was performed on plain paper and an OHP sheet. As a result, good results were obtained in all cases.
[0032]
Example 2
The same carbon black as in Example 1 was mixed with dimethylacetamide to a concentration of 15% by weight, and the mixture was stirred and mixed by a ball mill for 48 hours to obtain a carbon black mixed solution. After the carbon black mixed solution was thus obtained, 25 parts by weight of the carbon black mixed solution was added to 100 parts by weight of the polyamideimide solution, and the mixture was stirred and mixed with a ball mill for 24 hours to obtain a polyamideimide-carbon black mixed solution. When the particle size distribution at this time was measured by a laser diffraction method, the ratio of particles having a particle size exceeding 150 nm was 8.6 wt%.
Next, using the same apparatus as in Example 1, a seamless belt 1 having a thickness of 100 μm was obtained by the same method.
[0033]
Then, the surface resistivity and the volume resistivity of the outer peripheral surface 1a of the seamless belt 1 were calculated in the same manner as in Example 1, and were 6.5 × 10 13 (Ω / □) and 1.6 × 10 12, respectively. (Ω · cm).
The seamless belt 1 was set as an intermediate transfer member of a color laser printer, and a printing test was performed on plain paper and an OHP sheet.
[0034]
Comparative Example The same carbon black as in Example 1 was mixed with dimethylacetamide to a concentration of 15% by weight, and the mixture was stirred and mixed by a ball mill for 8 hours to obtain a carbon black mixed solution. When the carbon black mixed solution was thus obtained, 25 parts by weight of the carbon black mixed solution was added to 100 parts by weight of the polyamideimide solution, and the mixture was stirred and mixed by a ball mill for 3 hours to obtain a polyamideimide-carbon black mixed solution. When the particle size distribution at this time was measured by a laser diffraction method, the ratio of particles having a particle size exceeding 150 nm was 32.2 wt%.
Next, using the same apparatus as in Example 1, a seamless belt 1 having a thickness of 100 μm was manufactured by the same method.
[0035]
Then, the surface resistivity and the volume resistivity of the outer peripheral surface 1a of the seamless belt 1 were calculated in the same manner as in Example 1, and 7.6 × 10 12 (Ω / □) and 2.2 × 10 12 respectively. (Ω · cm) was obtained.
The seamless belt 1 was mounted as an intermediate transfer member of a color laser printer, and a print test was performed on plain paper and an OHP sheet. As a result, good results were obtained with plain paper. However, in the case of the OHP sheet, color misregistration and rubbing, which are considered to be caused by the conveyance failure of the OHP sheet, were observed.
[0036]
【The invention's effect】
As described above, according to the present invention, it is possible to expect sufficient conductivity in the performance of toner conveyance and transfer, and to convey not only normally used paper but also OHP sheets and the like. This has the effect. Therefore, if this is used for a printer or the like, it becomes possible to widen the range of use of the substrate to be printed. Furthermore, since it is formed by centrifugal molding, it is possible to provide a seamless belt excellent in thickness accuracy, surface condition, and the like.
[Brief description of the drawings]
FIG. 1 is a perspective explanatory view showing an embodiment of a seamless belt according to the present invention.
FIG. 2 is an explanatory view showing a static mixer in the embodiment of the seamless belt according to the present invention, wherein FIG. 2 (a) is a front view, FIG. 2 (b) is a transverse sectional view, FIG. Fig. d) is a cross-sectional explanatory view showing a clamped state.
FIGS. 3A and 3B are explanatory diagrams showing electrodes for a resistivity test in the embodiment of the seamless belt according to the present invention, wherein FIG. 3A is an explanatory diagram showing a front electrode, and FIG. .
FIG. 4 is an explanatory diagram showing an insulation resistance measuring device for a resistivity test in the embodiment of the seamless belt according to the present invention.
5A and 5B are explanatory views showing a method of connecting electrodes in a resistivity test in an embodiment of the seamless belt according to the present invention, and FIG. 5A is a sectional explanatory view showing a method of connecting electrodes in a surface resistivity test; b) is a cross-sectional explanatory view showing a method of connecting electrodes during a volume resistivity test.
FIG. 6 is an explanatory view showing a mold in the embodiment of the seamless belt according to the present invention, wherein FIG. 6 (a) is a front view and FIG. 6 (b) is a side view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Seamless belt 1a Outer surface 2 Static mixer 6 Insulation resistance measuring device 8 Mold

Claims (1)

樹脂材料にカーボンフィラーを分散させた樹脂材料溶液を金型に注入して回転させ、遠心成形により厚さ0.02〜0.5mmのエンドレスに形成されるシームレスベルトであって、
周面外側の表面抵抗率ρs(Ω/□)と体積抵抗率ρv(Ω・cm)との関係を109≧ρs/ρv≧40とし、表面抵抗率ρs(Ω/□)を2×1013(Ω/□)以上としたことを特徴とするシームレスベルト。
A resin material solution in which a carbon filler is dispersed in a resin material is poured into a mold and rotated, and a seamless belt formed endlessly with a thickness of 0.02 to 0.5 mm by centrifugal molding,
The relationship between the surface resistivity ρs (Ω / □) and the volume resistivity ρv (Ω · cm) outside the peripheral surface is 109 ≧ ρs / ρv ≧ 40, and the surface resistivity ρs (Ω / □) is 2 × 10 A seamless belt characterized by being 13 (Ω / □) or more.
JP17002199A 1999-06-16 1999-06-16 Seamless belt Expired - Fee Related JP3581046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17002199A JP3581046B2 (en) 1999-06-16 1999-06-16 Seamless belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17002199A JP3581046B2 (en) 1999-06-16 1999-06-16 Seamless belt

Publications (2)

Publication Number Publication Date
JP2000356912A JP2000356912A (en) 2000-12-26
JP3581046B2 true JP3581046B2 (en) 2004-10-27

Family

ID=15897140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17002199A Expired - Fee Related JP3581046B2 (en) 1999-06-16 1999-06-16 Seamless belt

Country Status (1)

Country Link
JP (1) JP3581046B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286947A (en) * 2005-03-31 2006-10-19 Toshiba Corp Method and apparatus for cleaning electronic device
JP4831740B2 (en) * 2005-04-26 2011-12-07 キヤノン株式会社 Electrophotographic belt, electrophotographic apparatus, method of manufacturing electrophotographic belt, and intermediate transfer belt

Also Published As

Publication number Publication date
JP2000356912A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
EP0899626B1 (en) Toner image transfer components of polyimide
US8005410B2 (en) Polyimide intermediate transfer components
US7593676B2 (en) Image-forming apparatus with improved intermediate transfer body
JP4155677B2 (en) Intermediate transfer belt, manufacturing method thereof and image forming apparatus
US10871733B2 (en) Belt, intermediate transfer belt, and image forming apparatus
JP4560257B2 (en) Polyanaline and carbon black filled polyimide intermediate transfer parts
US8971781B2 (en) Roller for image-forming apparatus and process for producing the same
US9323183B2 (en) Electro-conductive belt, fabrication method thereof, and image forming device
JP2000187403A (en) Electrically semiconductive belt
JP3581046B2 (en) Seamless belt
JP4551583B2 (en) Method for producing semiconductive polyimide belt
JP3691944B2 (en) Intermediate transfer belt, manufacturing method thereof, and image forming apparatus
JP4248711B2 (en) Polyimide tubular material and manufacturing method thereof
US8401451B2 (en) Heating fixing roller and process for producing the heating fixing roller
JP2007163639A (en) Endless belt and its manufacturing method, and electrophotographic device equipped with same
JPH08176319A (en) Cylindrical polyimide film and its production
JP3777849B2 (en) Intermediate transfer body and image forming apparatus
JP3697912B2 (en) Image forming apparatus and transfer body manufacturing method
JP2008003459A (en) Endless belt and image forming apparatus
JPH07110632A (en) Belt for fixing
US7142800B2 (en) Intermediate transferring belt and process for producing the same, image forming apparatus, and image forming process
JP4510685B2 (en) Endless electrophotographic image forming intermediate transfer belt, image forming apparatus having the intermediate transfer belt, and image forming method using the intermediate transfer belt
JP2011075714A (en) Transfer belt for image forming apparatus
US20170242373A1 (en) Tubular member, transfer belt, transfer unit, and image forming apparatus
JP2002014543A (en) Semiconductive belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031209

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040109

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees