JP3580967B2 - Vacuum gauge - Google Patents

Vacuum gauge Download PDF

Info

Publication number
JP3580967B2
JP3580967B2 JP31071796A JP31071796A JP3580967B2 JP 3580967 B2 JP3580967 B2 JP 3580967B2 JP 31071796 A JP31071796 A JP 31071796A JP 31071796 A JP31071796 A JP 31071796A JP 3580967 B2 JP3580967 B2 JP 3580967B2
Authority
JP
Japan
Prior art keywords
anode
vacuum gauge
shield
thermoelectrons
ion collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31071796A
Other languages
Japanese (ja)
Other versions
JPH10153513A (en
Inventor
望 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP31071796A priority Critical patent/JP3580967B2/en
Publication of JPH10153513A publication Critical patent/JPH10153513A/en
Application granted granted Critical
Publication of JP3580967B2 publication Critical patent/JP3580967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱陰極マグネトロン型の真空計に関する。
【0002】
【従来の技術】
従来、この種の真空計として、図1に示すようなラファティー型真空計が知られている。このラファティー型真空計は、一端が電極端子aで塞がれ他端が開放された円筒状の真空計容器bの外周を囲んで磁石cを設け、該真空計容器bの内部に、該電極端子aを内外に挿通したピンhに支持させて円筒状のアノードd、フィラメントe、円板状のイオンコレクターf及び放電空間から電極端子aを遮蔽する円板状のシールドgを設けた構成を有する。該磁石cは、真空計容器bの円筒軸方向に磁化すなわち円筒軸の両端が異極となるように磁化されており、その磁力線の方向は該真空計容器bの軸線方向である。
【0003】
該アノードd、イオンコレクターf及びシールドgの電位は、ラファティーの実施例ではフィラメントeに対して夫々300、45、−10Vであり、磁場の強さは250ガウスである。
【0004】
該真空計により真空圧力を測定する場合、該フィラメントeに通電してこれより熱電子を発生させる。熱電子はアノードdの方向に力を受けて加速されるが、磁石cの軸方向磁場の存在でローレンツ力を受けてアノードd内の空間を螺旋運動に似た運動をする。該磁石cがない場合は熱電子は直ちにアノードdの内壁に到達するが、該磁場の存在で熱電子が螺旋状運動をするためにその軌道が非常に長いものになり、熱電子の飛行中にアノードd内の気体分子を電離する確率が高められる。熱電子や電離された電子は螺旋状運動をして最終的にはアノードdに到達する。気体分子から電離されたイオンはイオンコレクターfに集められる。該イオンコレクターfを流れるイオン電流は空間の気体の量に比例するので、イオン電流を測定することによって真空計容器b内の圧力、ひいては真空計が取り付けられた圧力容器等の真空空間の圧力を測定することができる。このラファティー型真空計の特徴は、磁場によって電子軌道を長くして電子と空間の気体との衝突確率を高めることによってイオン電流を増やす、つまり感度を高めることにある。
【0005】
【発明が解決しようとする課題】
従来のラファティー型真空計は、電子が図1のアノードd内の空間を螺旋状に運動して最終的にはアノードdの内壁に衝突するが、その衝突に際してアノード内壁から軟X線を発生することがある。また、アノード内壁に付着している気体分子が衝突する電子によりイオンとして叩き出されることがある。軟X線の一部はイオンコレクターfを衝撃して光電効果によって該コレクターfから電子を放出させ、その電子はアノードdに流れる。これにより、イオンコレクターfに流れる電流は、空間の気体の電離によるイオン電流と光電子電流の和になる。光電子電流は気体の圧力とは関係のないもので、これは圧力測定を不正確にする要因である。また、アノード内壁から叩き出されたイオンによるイオン電流も、空間の圧力を測定する上でこれを不正確にする要因になっている。これらの要因は、空間の気体分子数が少ない超高真空領域の圧力測定において顕著になり、圧力測定を不正確にしている。
【0006】
本発明は、熱陰極マグネトロン型真空計であるラファティー型真空計の圧力測定精度を向上させることを目的とし、光電子電流を少なくしアノード内壁に付着する気体分子が電子によりイオンとして叩き出されることによる電流を少なくすることを目的とするものである。
【0007】
【課題を解決するための手段】
本発明では、外周に磁石を設けた真空計容器内に、熱電子を放出するフィラメントと、該フィラメントから放出される該熱電子を該磁石の磁力線に沿って誘引するアノードと、該フィラメントよりも負電位で該熱電子を反発する板状のシールドと、該熱電子と該真空計容器内の気体とが衝突して発生したイオンが入射するイオンコレクターとを配置した真空計に於いて、該アノードを殻状に形成して該シールドに対向させて設け、該アノードの該シールドと対向する位置に熱電子導通用開口を形成し、該イオンコレクターを、該熱電子の衝突により該アノードの外面から発生するX線に照射されない位置に配置することにより、上記の目的を達成するようにした。該アノードを、該上記磁力線の方向に延びた円筒体とその両端部を塞ぐ端板を有し、且つ両端板の中央部に開口が形成されるとともに該円筒体をその長さ方向の中間で分断した2分割の容器で構成し、その分断部間にリング状に形成した上記イオンコレクターを設けると共に該アノードの外部の各開口と対向する位置に板状のシールドを夫々設け、その一方の開口とシールド間にフィラメントを設けた構成とすることが好都合であり、該イオンコレクターのリングの断面を円形若しくは矩形とし、或いは該シールドの該開口と対向する位置に突起を形成しておくことで、上記の目的を的確に達成できる。
【0008】
【発明の実施の形態】
その実施の形態を図2及び図3に基づき説明すると、これらの図に於いて符号1は一端が電極端子2で塞がれ他端が開放された円筒状で非磁性金属製の真空計容器、3は該真空計容器1の外周を囲んで設けた永久磁石等の磁石を示す。該電極端子2は、絶縁体2aとこれを挿通した複数本の金属製のピン2bで構成され、該磁石3は、該真空計容器1の円筒軸方向で開放された他端へ向かう磁力線が生じるように磁化されている。該真空計容器1の内部には、熱電子を放出するフィラメント4、該熱電子を該磁力線に沿って引き寄せるアノード5、該フィラメント4より負電位で該熱電子を反発する板状のシールド6、及び該熱電子と該真空計容器1内の気体とが衝突して発生するイオンが入射するイオンコレクター7が該ピン2bに保持して設けられる。
【0009】
以上の構成は従来の真空計も備える構成であるが、本発明のものでは、該アノード5を開口面積の少ない容器型等の殻状に形成し、該イオンコレクター7を該アノード5の外周面から見えず且つシールド6から見にくい位置に配置し、軟X線による光電子電流の発生とアノード5の外壁から叩き出されたイオンによるイオン電流の発生を防ぎ、正確な圧力測定を行えるようにした。
【0010】
これを更に詳述すると、該アノード5は、該磁力線の方向の軸線をもつ円筒形容器等の殻状であってその両端が中央部に熱電子の導通用開口5aを形成した端板5bにて塞がれ、且つその長さ方向の中間部にて分断された2分割型の容器5cにて構成し、その分断部間に該容器5cの平均直径と略同径のリング状のイオンコレクター7を介在させ、該容器5cの外部で各導通用開口5aと対向した位置に円板状のシールド6を設けた。そして、電極端子2側のシールド6とアノード5の間にフィラメント4を配置した。この構成とすることにより、フィラメント4からの熱電子がアノード5を通過して反転した後にアノード5の内壁よりも外壁に衝突する確率が高まり、該イオンコレクター7は、アノード5の分割部間に存在し、しかも該アノード5に端板5bが設けられているから、該アノード5の外周面への電子の衝突で生じる軟X線やイオンが該イオンコレクター7に集まり難くなる。
【0011】
例えば、該フィラメント4の電位に対し+300Vの電位をアノード5に与え、イオンコレクター7には+45V、シールド6には−10Vの電位を与え、磁石3の磁場の強さを250ガウスとして真空圧を測定した場合、該フィラメント4に通電されて発生する熱電子は、該磁石3の磁力線の影響を受けてシールド6で制限された範囲内を螺旋状運動し、非常に長い軌道をたどりアノード5へと向かうが、その間にアノード5の空間内の気体分子と衝突してこれを電離させ、その電離により生じたイオンがイオンコレクター7に集められる。イオンコレクター7のイオン電流は空間の気体の量に比例するから、イオン電流を測定することにより圧力が測定できる。
【0012】
こうした原理的作動は従来のこの種の真空計と変わりがないが、フィラメント4からの熱電子や気体が電離されて生じる電子は螺旋状運動をして磁力線に沿うように運動し、アノード5の上方の端板5bの導通用開口5aを介して上方のシールド6へ向かうが、これらの電子はアノード5の引力とフィラメント4に対して負であるシールド6の斥力の作用により減速、反転し、図4の軌跡Aのようにアノード5内へ再突入する。或いは、軌跡Bのようにアノード5の外壁に衝突する。電子の螺旋状運動の回転半径は、磁場の強さが250ガウス、電子エネルギーが300eVのときは0.005mm程度で図示できない程度である。アノード5内へ再突入した電子は、アノード内壁に衝突したり反対側の端板5bの導通用開口5aを通り抜けて反対側のシールド6まで飛行し、その斥力で減速、反転し、最終的にはアノード内壁又は外壁に衝突して消滅する。アノード5内では、電子は螺旋状運動をしながらも軸方向へ運動しやすいので、アノード5の内壁よりも外壁に衝突する確率が高い。
【0013】
前記したように、電子がアノード5に衝突するときに軟X線を発生することがあり、またアノード5に付着している気体分子をイオンとして叩き出すことがあるが、アノード5は電子の飛行方向には端板5bの導通用開口5aしか開かれておらず、アノード5の分断部間の奥まったシールド6から見にくい場所にイオンコレクター7が設置されているから、電子はアノード5の内壁よりも外壁に多く衝突し、換言すればアノード5の外面で多くの軟X線やイオンの叩き出しが発生し、その発生した軟X線でイオンコレクター7が照射されずしかもその外壁から叩き出されたイオンを奥まったイオンコレクター7には集めにくい。そのため、イオンコレクター7には軟X線やアノード5から叩き出されたイオンを原因とするイオン電流即ち雑音の量が小さくなり、超高真空領域の正確な圧力測定を行える。
【0014】
以上の実施例に於いては、イオンコレクター7を円形断面のリングにて形成したが、図5に示すように矩形断面のリングで形成してもよい。また、電極を遮蔽する2枚のシールド6の少なくとも一方のものの内面に、図5の如く突起6aをアノード5の開口5aと対向させて設ければ、電子の軌道が同図に示すように大きく曲げられ、電子がアノード容器5cの内部へ再突入してその内壁に衝突する確率を減らして超高真空領域の圧力測定を更に正確に測定できる。一方のシールド6の電位をフィラメント4の電位よりも高くして電子を該シールド6に衝突させても、電子がアノード容器5cに再突入してその内壁に衝突する確率を減らせて正確な測定を行える。
【0015】
【発明の効果】
以上のように本発明によるときは、熱陰極マグネトロン型真空計のアノードを開口部の少ない殻状に形成すると共にイオンコレクターを該アノードの外周面から熱電子の衝突により発生するX線に照射されない位置に配置したので、イオンコレクターに於ける軟X線による光電子電流とアノードから叩き出されるイオンによる電流を減少させることができ、超高真空領域に於いて正確な圧力測定を行える等の効果があり、該アノードを、両端部に開口を有する2分割の容器で構成し、その分断部間にリング状のイオンコレクターを設けると共に各開口と対向して板状のシールドを夫々設け、その一方の開口とシールド間にフィラメントを設ける構成とすることにより、更には請求項3、4の構成とすることにより、簡単な構成で前記効果を奏し得られる。
【図面の簡単な説明】
【図1】従来例の切断側面図
【図2】本発明の実施の1例の一部を切除した斜視図
【図3】図2の切断側面図
【図4】作動状態の説明図
【図5】本発明の他の実施例の切断側面図
【符号の説明】
1 真空計容器、3 磁石、4 フィラメント、5 アノード、5a 導通用開口、5b 端板、5c 容器、6 シールド、6a 突起、7 イオンコレクター、
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hot cathode magnetron type vacuum gauge.
[0002]
[Prior art]
Conventionally, as this kind of vacuum gauge, a ruffy type vacuum gauge as shown in FIG. 1 is known. This ruffy-type vacuum gauge is provided with a magnet c surrounding the outer circumference of a cylindrical vacuum gauge container b having one end closed by an electrode terminal a and the other end being open, and the magnet c is provided inside the vacuum gauge container b. A configuration in which a cylindrical anode d, a filament e, a disk-shaped ion collector f, and a disk-shaped shield g for shielding the electrode terminal a from a discharge space are provided by supporting the electrode terminal a on a pin h inserted inside and outside. Having. The magnet c is magnetized in the cylindrical axis direction of the vacuum gauge container b, that is, magnetized so that both ends of the cylindrical axis have opposite polarities. The direction of the magnetic force lines is the axial direction of the vacuum gauge container b.
[0003]
The potentials of the anode d, the ion collector f and the shield g are 300, 45 and -10 V, respectively, for the filament e in the Rafferty embodiment, and the magnetic field strength is 250 Gauss.
[0004]
When the vacuum pressure is measured by the vacuum gauge, the filament e is energized to generate thermoelectrons therefrom. The thermoelectrons are accelerated by receiving a force in the direction of the anode d, but undergo a Lorentz force in the presence of the axial magnetic field of the magnet c to make a motion similar to a spiral motion in the space inside the anode d. In the absence of the magnet c, thermoelectrons immediately reach the inner wall of the anode d, but the orbit becomes very long due to the spiral motion of the thermoelectrons in the presence of the magnetic field, and during the flight of the thermoelectrons, Accordingly, the probability of ionizing gas molecules in the anode d is increased. Thermal electrons and ionized electrons make a spiral motion and finally reach the anode d. The ions ionized from the gas molecules are collected in the ion collector f. Since the ion current flowing through the ion collector f is proportional to the amount of gas in the space, by measuring the ion current, the pressure in the vacuum gauge container b and, consequently, the pressure in the vacuum space such as the pressure container to which the vacuum gauge is attached can be reduced. Can be measured. The characteristic of this Rafferty vacuum gauge is that the ion current is increased, that is, the sensitivity is increased by increasing the electron orbit by the magnetic field and increasing the probability of collision between the electrons and the gas in the space.
[0005]
[Problems to be solved by the invention]
In the conventional Rafferty vacuum gauge, electrons move spirally in the space inside the anode d in FIG. 1 and eventually strike the inner wall of the anode d. At the time of collision, soft X-rays are generated from the inner wall of the anode d Sometimes. Also, gas molecules adhering to the inner wall of the anode may be bombarded as ions by the colliding electrons. Some of the soft X-rays bombard the ion collector f and cause electrons to be emitted from the collector f by the photoelectric effect, and the electrons flow to the anode d. Thus, the current flowing through the ion collector f is the sum of the ion current and the photoelectron current due to the ionization of the gas in the space. Photoelectron current is independent of gas pressure, which is a factor that makes pressure measurements inaccurate. In addition, the ion current caused by the ions struck out of the inner wall of the anode also causes inaccuracy in measuring the pressure in the space. These factors are significant in pressure measurement in an ultra-high vacuum region where the number of gas molecules in the space is small, making the pressure measurement inaccurate.
[0006]
An object of the present invention is to improve pressure measurement accuracy of a hot cathode magnetron type vacuum gauge, which is a ruffy type vacuum gauge, in which gas molecules adhering to an inner wall of an anode are reduced by photoelectron current and are ejected as ions by electrons. The purpose of the present invention is to reduce the current caused by the above.
[0007]
[Means for Solving the Problems]
In the present invention, a filament that emits thermoelectrons, an anode that attracts the thermoelectrons emitted from the filaments along the lines of magnetic force of the magnet, and a filament are disposed in a vacuum gauge container provided with a magnet on the outer periphery. In a vacuum gauge in which a plate-shaped shield that repels the thermoelectrons at a negative potential and an ion collector into which ions generated by collision of the thermoelectrons with a gas in the vacuum gauge container are incident are provided. An anode is formed in a shell shape and provided so as to face the shield, an opening for conducting thermoelectrons is formed at a position of the anode facing the shield, and the ion collector is moved to the outer surface of the anode by the collision of the thermoelectrons. The above-mentioned object is achieved by arranging at a position not irradiated with X-rays generated from. The anode has a cylindrical body extending in the direction of the line of magnetic force and an end plate closing both ends thereof, and an opening is formed in the center of both end plates, and the cylindrical body is positioned at the middle of its length direction. The above-mentioned ion collector formed in a ring shape is provided between the divided portions, and a plate-shaped shield is provided at a position facing each opening outside the anode. It is convenient to adopt a configuration in which a filament is provided between the shield and the shield, the cross section of the ring of the ion collector is circular or rectangular, or by forming a projection at a position facing the opening of the shield, The above object can be achieved accurately.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The embodiment will be described with reference to FIGS. 2 and 3. In these figures, reference numeral 1 denotes a cylindrical non-magnetic metal vacuum gauge container having one end closed by an electrode terminal 2 and the other end opened. Reference numeral 3 denotes a magnet such as a permanent magnet provided around the outer circumference of the vacuum gauge container 1. The electrode terminal 2 is composed of an insulator 2a and a plurality of metal pins 2b inserted therethrough. The magnet 3 has a line of magnetic force directed to the other end of the vacuum gauge container 1 that is opened in the cylindrical axis direction. Magnetized to produce. Inside the vacuum gauge container 1, a filament 4 for emitting thermoelectrons, an anode 5 for attracting the thermoelectrons along the lines of magnetic force, a plate-like shield 6 for repelling the thermoelectrons at a negative potential from the filament 4, Further, an ion collector 7 into which ions generated by collision of the thermoelectrons with the gas in the vacuum gauge container 1 are provided while being held by the pin 2b.
[0009]
The above configuration is also provided with a conventional vacuum gauge, but in the present invention, the anode 5 is formed in a shell shape such as a container type having a small opening area, and the ion collector 7 is formed on the outer peripheral surface of the anode 5. It is arranged at a position that is invisible from the shield 6 and hard to see from the shield 6 to prevent the generation of photoelectron current due to soft X-rays and the generation of ion current due to ions struck out of the outer wall of the anode 5 so that accurate pressure measurement can be performed.
[0010]
More specifically, the anode 5 is provided on an end plate 5b having a shell shape such as a cylindrical container having an axis in the direction of the magnetic field lines and having both ends formed with openings 5a for conducting thermoelectrons in the center. And a ring-shaped ion collector with a diameter substantially equal to the average diameter of the container 5c between the divided portions. 7, a disk-shaped shield 6 is provided outside the container 5c at a position facing each of the conduction openings 5a. Then, the filament 4 was disposed between the shield 6 and the anode 5 on the electrode terminal 2 side. With this configuration, the probability that the thermoelectrons from the filament 4 collide with the outer wall rather than the inner wall of the anode 5 after passing through and reversing the anode 5 is increased, and the ion collector 7 is disposed between the divided portions of the anode 5. The presence of the end plate 5b on the anode 5 makes it difficult for soft X-rays and ions generated by collision of electrons to the outer peripheral surface of the anode 5 to collect on the ion collector 7.
[0011]
For example, a potential of +300 V with respect to the potential of the filament 4 is applied to the anode 5, a potential of +45 V is applied to the ion collector 7, and a potential of −10 V is applied to the shield 6. When measured, the thermoelectrons generated by energizing the filament 4 move spirally within the range limited by the shield 6 under the influence of the magnetic field lines of the magnet 3, and follow a very long orbit to the anode 5. In the meantime, gas molecules in the space of the anode 5 collide with and ionize them, and ions generated by the ionization are collected in the ion collector 7. Since the ion current of the ion collector 7 is proportional to the amount of gas in the space, the pressure can be measured by measuring the ion current.
[0012]
Such a principle operation is the same as that of a conventional vacuum gauge of this type, but thermionic electrons from the filament 4 and the electrons generated by the ionization of the gas move in a spiral motion along the lines of magnetic force, and the anode 5 The electrons are directed to the upper shield 6 through the conduction opening 5a of the upper end plate 5b, and these electrons are decelerated and inverted by the attractive force of the anode 5 and the repulsive force of the shield 6 which is negative with respect to the filament 4, As shown in locus A in FIG. Alternatively, it collides with the outer wall of the anode 5 as shown by a locus B. The radius of gyration of the spiral motion of the electrons is about 0.005 mm when the strength of the magnetic field is 250 Gauss and the electron energy is 300 eV, which is not shown. The electrons that have reentered the anode 5 collide with the inner wall of the anode or fly through the conduction opening 5a of the end plate 5b on the opposite side to the shield 6 on the opposite side, and are decelerated and inverted by the repulsive force. Collides with the inner or outer wall of the anode and disappears. In the anode 5, electrons are likely to move in the axial direction while making a spiral movement, so that the probability of collision with the outer wall of the anode 5 is higher than that of the inner wall.
[0013]
As described above, when an electron collides with the anode 5, soft X-rays may be generated, and gas molecules attached to the anode 5 may be ejected as ions. Only the conduction opening 5a of the end plate 5b is opened in the direction, and the ion collector 7 is installed in a place difficult to see from the shield 6 deep between the divided portions of the anode 5, so that electrons are transmitted from the inner wall of the anode 5 Also collide with the outer wall, in other words, many soft X-rays and ions are ejected on the outer surface of the anode 5, and the generated soft X-rays are not irradiated to the ion collector 7 and are ejected from the outer wall. It is difficult to collect the collected ions in the recessed ion collector 7. Therefore, the amount of ion current, that is, the amount of noise caused by the soft X-rays and the ions struck out of the anode 5 is reduced in the ion collector 7, and accurate pressure measurement in an ultra-high vacuum region can be performed.
[0014]
In the above embodiment, the ion collector 7 is formed by a ring having a circular cross section, but may be formed by a ring having a rectangular cross section as shown in FIG. If at least one of the two shields 6 for shielding the electrode is provided with a projection 6a facing the opening 5a of the anode 5 as shown in FIG. 5, the electron trajectory becomes large as shown in FIG. The pressure measurement in the ultra-high vacuum region can be more accurately measured by reducing the probability that electrons are bent and re-enter the inside of the anode container 5c and collide with the inner wall. Even if the potential of one shield 6 is made higher than the potential of the filament 4 and electrons collide with the shield 6, the probability that the electrons re-enter the anode vessel 5c and collide with the inner wall can be reduced, and accurate measurement can be performed. I can do it.
[0015]
【The invention's effect】
As described above, according to the present invention, the anode of the hot cathode magnetron type vacuum gauge is formed in a shell shape with a small opening, and the ion collector is not irradiated from the outer peripheral surface of the anode with X-rays generated by the collision of thermoelectrons. Since it is located at a position, the photoelectron current due to soft X-rays in the ion collector and the current due to ions struck out of the anode can be reduced, and the effect of accurate pressure measurement in the ultra-high vacuum region can be obtained. The anode is constituted by a two-part container having openings at both ends, a ring-shaped ion collector is provided between the divided parts, and a plate-shaped shield is provided respectively in opposition to each opening. By providing a filament between the opening and the shield, and further by adopting the configuration of claims 3 and 4, the above-mentioned effect can be obtained with a simple configuration. Obtained.
[Brief description of the drawings]
FIG. 1 is a cut-away side view of a conventional example. FIG. 2 is a perspective view in which a part of an embodiment of the present invention is cut away. FIG. 3 is a cut-away side view of FIG. 2 FIG. 5 is a cutaway side view of another embodiment of the present invention.
1 vacuum gauge container, 3 magnets, 4 filaments, 5 anodes, 5a conduction opening, 5b end plate, 5c container, 6 shield, 6a protrusion, 7 ion collector,

Claims (4)

外周に磁石を設けた真空計容器内に、熱電子を放出するフィラメントと、該フィラメントから放出される該熱電子を該磁石の磁力線に沿って誘引するアノードと、該フィラメントよりも負電位で該熱電子を反発する板状のシールドと、該熱電子と該真空計容器内の気体とが衝突して発生したイオンが入射するイオンコレクターとを配置した真空計に於いて、該アノードを殻状に形成して該シールドに対向させて設け、該アノードの該シールドと対向する位置に熱電子導通用開口を形成し、該イオンコレクターを、該熱電子の衝突により該アノードの外面から発生するX線に照射されない位置に配置したことを特徴とする真空計。A filament that emits thermoelectrons, an anode that attracts the thermoelectrons emitted from the filaments along the lines of magnetic force of the magnet, and a negative electrode that is more negative than the filaments are placed in a vacuum gauge container provided with a magnet on the outer periphery. In a vacuum gauge in which a plate-shaped shield that repels thermoelectrons and an ion collector into which ions generated by collision of the thermoelectrons with gas in the vacuum gauge container are incident, the anode is formed in a shell shape. And the anode is provided so as to face the shield. An opening for thermionic conduction is formed at a position of the anode facing the shield, and the ion collector is formed by X generated from the outer surface of the anode by the collision of the thermoelectrons. A vacuum gauge, wherein the vacuum gauge is arranged at a position not irradiated with a line. 上記アノードを、上記磁力線の方向に延びた円筒体とその両端部を塞ぐ端板を有し、且つ両端板の中央部に開口が形成されるとともに該円筒体をその長さ方向の中間で分断した2分割の容器で構成し、その分断部間にリング状に形成した上記イオンコレクターを設けると共に該アノードの外部の各開口と対向する位置に板状のシールドを夫々設け、その一方の開口とシールド間にフィラメントを設けたことを特徴とする請求項1に記載の真空計。The anode has a cylindrical body extending in the direction of the line of magnetic force and an end plate closing both ends thereof, and an opening is formed in the center of both end plates, and the cylindrical body is divided at the middle in the longitudinal direction. And a ring-shaped ion collector is provided between the divided portions, and a plate-shaped shield is provided at a position facing each of the openings outside the anode. The vacuum gauge according to claim 1, wherein a filament is provided between the shields. 上記イオンコレクターのリングの断面は円形若しくは矩形であることを特徴とする請求項2に記載の真空計。The vacuum gauge according to claim 2, wherein a cross section of the ring of the ion collector is circular or rectangular. 上記シールドの上記開口と対向した位置に突起を形成したことを特徴とする請求項1乃至3のいずれか1項に記載の真空計。The vacuum gauge according to any one of claims 1 to 3, wherein a protrusion is formed at a position facing the opening of the shield.
JP31071796A 1996-11-21 1996-11-21 Vacuum gauge Expired - Fee Related JP3580967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31071796A JP3580967B2 (en) 1996-11-21 1996-11-21 Vacuum gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31071796A JP3580967B2 (en) 1996-11-21 1996-11-21 Vacuum gauge

Publications (2)

Publication Number Publication Date
JPH10153513A JPH10153513A (en) 1998-06-09
JP3580967B2 true JP3580967B2 (en) 2004-10-27

Family

ID=18008639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31071796A Expired - Fee Related JP3580967B2 (en) 1996-11-21 1996-11-21 Vacuum gauge

Country Status (1)

Country Link
JP (1) JP3580967B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4493139B2 (en) * 2000-02-02 2010-06-30 キヤノンアネルバ株式会社 Ionization gauge
JP2003017433A (en) 2001-06-28 2003-01-17 Tokyo Electron Ltd Chamber sensor port

Also Published As

Publication number Publication date
JPH10153513A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
EP1519402B1 (en) Ionisation vacuum gauge
US4122347A (en) Ion source
EP0282467B1 (en) Hollow cathode ion sources
KR102078113B1 (en) Cartridge for cold cathode ionization vacuum gauge and cold cathode ionization vacuum gauge
US4542321A (en) Inverted magnetron ion source
JP3580967B2 (en) Vacuum gauge
US10969291B1 (en) Ionization gauge and cartridge
GB2230644A (en) Electron beam excitation ion source
GB1467487A (en) X-ray tubes
JPS6091544A (en) Auger mass spectrometer device
JPH03194841A (en) Electron shower
US3557365A (en) Ion source for a mass spectrometer
JP3147227B2 (en) Cold cathode electron gun
KR102417574B1 (en) Ionizing Vacuum Gauges and Cartridges
JP2003068244A (en) Extraction electrode block for ion implantation system, and the ion implantation system
JPH0562421B2 (en)
US3341727A (en) Ionization gauge having a photocurrent suppressor electrode
JPH095198A (en) Cold cathode gauge
US3857014A (en) Electron beam generator
JP2004171937A (en) Electron gun for electron beam lithography system
JPH0322331A (en) X-ray tubular bulb
US3435334A (en) Method and apparatus for measuring high vacuums
JPS6323876Y2 (en)
JP2550033B2 (en) Charged particle attraction mechanism
JPS6388739A (en) Ion gun

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees