JP3580753B2 - Power storage system - Google Patents

Power storage system Download PDF

Info

Publication number
JP3580753B2
JP3580753B2 JP2000079300A JP2000079300A JP3580753B2 JP 3580753 B2 JP3580753 B2 JP 3580753B2 JP 2000079300 A JP2000079300 A JP 2000079300A JP 2000079300 A JP2000079300 A JP 2000079300A JP 3580753 B2 JP3580753 B2 JP 3580753B2
Authority
JP
Japan
Prior art keywords
phase
voltage
value
positive
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000079300A
Other languages
Japanese (ja)
Other versions
JP2001268798A (en
Inventor
康弘 清藤
孝志 相原
岩男 真鳥
昌司 豊田
康之 杉浦
雅哉 一瀬
基生 二見
茂太 上田
公男 浦野
卓 佐藤
英樹 和久
誠 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2000079300A priority Critical patent/JP3580753B2/en
Publication of JP2001268798A publication Critical patent/JP2001268798A/en
Application granted granted Critical
Publication of JP3580753B2 publication Critical patent/JP3580753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は三相交流系統の有効電力の需給を調整する電力貯蔵システムに関する。
【0002】
【従来の技術】
電力貯蔵システムの交直変換器から三相交流系統に有効、無効電力の授受を行うためには、系統電圧に対して交直変換装置の出力電圧の振幅および位相を相対的に調整する。このため、三相交流系統電圧の振幅および位相を検出することが必要である。従来の一般的な位相検出方法としては、三相交流電圧の極性が変化する時点が周期的に発生することを利用したPLL(Phase Locked Loop)回路が使用されている。
【0003】
系統事故に対する保護制御方法としては、資源エネルギー庁の系統連携要件ガイドライン(解説:電力系統連系技術要件ガイドライン,1998年,電力新報社)に準拠して、たとえば、三相交流電圧の線間電圧信号の実効値を検出し、その実効値のいずれか1つが基準値未満となった場合は、電力貯蔵システムを停止させる。
【0004】
三相交流系統の異常、たとえば、三相のうち二相が地絡してその相電圧が零となる場合、送電線の保護制御回路が地絡相を一旦解列操作し、早ければ1秒以内、遅くても数秒以内に送電線を再閉路する。系統が数秒で正常に戻る場合は電力貯蔵システムを運転継続することが望ましい。一方、1回線三相地絡事故等のように、電力供給が不可能となる系統異常が数秒を超えて続く場合がある。このような場合は、システムの保護や系統側で事故除去が完全に行われたことを確認する期間が必要なため、事故時に速やかに電力システムを保護停止することが必要になる。現状での運用は、ガイドラインの基準に従い、システムから系統に電力供給中に、系統電圧が定格の80%に低下すると保護停止する。
【0005】
【発明が解決しようとする課題】
従来の電力貯蔵システムでは、接続点の線間電圧が80%に低下すると保護停止する仕様になっている。このため、系統側が事故除去確認を必要としない系統異常においても、システムの保護停止が頻繁に行われる。また、システムが停止すると再起動に時間がかかるので、系統が正常に復帰した直後は電力貯蔵システムによる電力供給能力が失われるという問題があった。
【0006】
上記した電力貯蔵システムの運用上の制約は、PLLによる位相検出精度に一因がある。交流系統事故において電力貯蔵システムが過電流等を避けるため、機器側の制約で運転継続できなくなるのは、3線地絡事故の一部であり、機器としては実質的にはほとんどの交流系統事故モードにおける運転継続が可能である。しかし、系統事故時には系統電圧に高調波が含まれるため、PLLの位相検出精度が低下して、交直電力変換装置の安定な制御が困難になる。このため、安全運転のマージンを大きくせざるを得ない現状にある。
【0007】
最近、三相交流電圧の3相各相毎のフーリエ変換成分を用いて、各相のα成分及びβ成分から正相電圧のα軸成分、β軸成分を算出し、この軸成分に基づいて正相電圧位相(△θ)を求め、この△θを系統電圧位相θsと基準位相θiの位相差として、系統電圧位相θsを求める方法が提案されている(特開平10−234135号)。この離散的フーリエ変換(DFT:Discrete Fourier Transfer)方法による位相検出を使用すれば、系統事故時の交直変換器の運転範囲を安全に広げることができる。
【0008】
しかし、DFTによる位相検出を利用する場合は、系統事故時に電力貯蔵システムの安全な運転範囲、言い替えればシステムを保護停止する事故またはタイミングを適切に認識することが、必要不可欠な課題となる。さらに、一般ユーザ向けの小規模な電力貯蔵システムとして、ナトリウム‐硫黄(NaS)電池システムが実用化を迎える現状では、系統からの停止指令に依らずに、電力貯蔵システム自身の判断による保護停止が求められている。
【0009】
本発明の目的は、従来技術の問題点を克服し、系統事故中における運転の継続性を高めるとともに、保護停止が必要な場合は速やかに事故判断して停止できる電力貯蔵システムを提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成する本発明は、高調波を含む異常時にも正確かつ確実に系統電圧位相を検出できるDFT方式を採用して、系統事故中における運転の継続性を高めるとともに、保護停止の必要な事故またはタイミングを適切に判定できる手法を見出して、なし得たものである。
【0011】
本発明は、三相交流系統に接続され、三相交流電力を直流電力に変換または直流電力を三相交流電力に変換する交直電力変換装置と、前記変換装置に接続された二次電池を備えた電力貯蔵システムにおいて、前記交直電力変換装置から出力する交流電力を調整するために、前記交流系統との接続点における接続点電圧位相に基づき、接続点電圧ベクトルに対して前記交直電力変換装置の出力電圧ベクトルを制御する電力変換制御部と、前記接続点における3つの電圧信号を入力して離散フーリエ変換を行い、変換した実軸成分および虚軸成分に基づいて、前記接続点電圧の正相分振幅および正相分位相を検出し、前記正相分位相を前記接続点位相として前記電力変換制御部に出力する正相電圧検出部と、前記正相電圧検出部から入力する前記正相分振幅に基づいて、前記電力貯蔵システムを停止すべき異常が前記三相交流系統に発生しているかを監視し、システム停止の必要な異常が発生していると判定した場合に、システム停止信号を出力する保護停止判定部を備えていることを特徴とする。
【0012】
また、前記保護停止判定部は、前記三相交流系統の全相が正常な場合の前記正相分振幅を単位値として、1/3単位値を下限、2/3単位値を上限とする所定のしきい値が任意に設定されていて、前記正相分振幅が前記所定のしきい値未満となる場合に、前記システム停止の必要な異常が発生しているものと判定することを特徴とする。
【0013】
本発明の別の態様は、前記電力変換制御部と、前記正相電圧検出部と、前記3つの電圧信号を入力し、3つの実効値を求める実効値検出部と、前記正相電圧検出部から入力する前記正相分振幅と前記実効値検出部から入力した前記電圧低下率に基づいて、前記電力貯蔵システムを停止すべき異常が前記三相交流系統に発生しているかを監視し、システム停止の必要な異常が発生していると判定した場合に、システム停止信号を出力する保護停止判定部を備えている。
【0014】
この場合、前記保護停止判定部は、前記正相分振幅の絶対値が第1のしきい値(1/3単位値を上限)未満となる場合と、前記正相分振幅の絶対値が前記第1のしきい値以上で第2のしきい値(1/3単位値を下限)未満となり、かつ、前記3つの実効値の全てが同じ値となる場合に、前記システム停止の必要な異常が発生しているものと判定する。
【0015】
あるいは、前記3つの実効値のうちの最大値に対する各実効値の比率を算出し、その相乗による電圧実効値低下率を求め、前記保護停止判定部は、前記正相分振幅の絶対値が前記第1のしきい値未満となる場合と、前記正相分振幅の絶対値が前記第1のしきい値以上で前記第2のしきい値未満となり、かつ、前記電圧実効値低下率が第3のしきい値(2/3単位値を下限)以上となる場合に、前記システム停止の必要な異常が発生しているものと判定する。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して詳細に説明する。図1は、本発明の電力貯蔵システムの一実施例を示す構成図(機能ブロック図)である。三相交流系統1の接続点8に連系リアクトル(または連系変圧器)を介して交直電力変換装置2(変換装置主回路、以下、変換器と略称)が接続され、変換器2に直流電力貯蔵用の二次電池3が接続されている。接続点8に計器用変圧器PT、接続点8と交直変換器2を結ぶ三相主回路母線に計器用変流器CTがそれぞれ接続され、接続点の各線間電圧による三相交流電圧(V1、V2、V3)と、変換器2の交流出力電流による三相交流電流(I1、I2、I3)が検出される。
【0017】
正相電圧検出部4はDFT方式を採用し、三相交流電圧V1、V2、V3を入力し、接続点電圧の正相分振幅(正相電圧振幅)Vsと正相分位相(正相電圧位相)θsを演算して出力する。保護停止判定部5は正相電圧振幅Vsを入力し、保護停止の必要な事故が発生していると判定した場合に、停止信号を出力する。電力変換装置制御部6は三相交流電圧V1、V2、V3、三相交流電流I1、I2、I3、及び正相電圧位相θsを入力し、それら入力と有効電力指令値および無効電力指令値に基づいた変換器電圧指令Vc*のベクトル(振幅及び位相)を算出し、変換器2の交流電力の出力電圧Vcが指令Vc*に追従するようにゲート信号を作成する。また、保護停止判定部5から停止信号が出力された場合、ゲート信号を遮断して変換器2を保護停止する。
【0018】
図2は、電力変換装置制御部の一実施例を示す構成図である。周知のように、電力変換装置制御部6は上位(系統側)からの要請により設定される有効電力指令値が正の場合は、交直電力変換器2をインバータ動作させて電池3の直流電力を三相交流電力に変換して系統に供給する制御を行う。一方、設定される有効電力指令値が負の場合は、交直電力変換器2をコンバータ動作させて系統からの三相交流電力を直流電力に変換して電池3を充電する。以下では、本発明の課題に対応して、DFT方式で検出した正相電圧(Vs、θs)を用いる構成と、系統側に電力を供給する有効電力制御の動作を主として説明する。
【0019】
電力変換装置制御部6は、接続点8の線間電圧V1、V2、V3、接続点の交流電流I1、I2、I3を入力し、有効電力無効電力検出回路115で有効電力Psfおよび無効電力Qsfを検出する。有効電力制御器113は、有効電力指令値設定部111の有効電力指令値Ps*と有効電力Psfの差分を入力して、有効電流指令値Id*を出力する。無効電力制御器114は、無効電力指令値設定部112の無効電力指令値Qs*と無効電力Qsfの差分を入力して、無効電流指令値Iq*を出力する。
【0020】
3/2相数変換部116は、交流電流I1、I2、I3を直交する2相信号に変換して、α軸電流Iαおよびβ軸電流Iβを出力する。αβ/dq軸変換部117は、電流Iα、Iβおよび接続点電圧正相分位相θsを入力し、固定座標系の電流Iα、Iβを、接続点電圧の正相分位相θsで回転する座標系に変換して、接続点電圧と同一位相の有効電流Idfと、接続点電圧と90°直交した位相の無効電流Iqfに分離して出力する。なお、IdfとIqfは直流動作する。
【0021】
3/2相数変換部118は、接続点線間電圧V1、V2、V3を直交する2相信号に変換して、α軸電圧Vαおよびβ軸電圧Vβを出力する。αβ/dq軸変換部119は、電圧Vα、Vβ及び正相分位相θsを入力し、固定座標系の電圧Vα、Vβを、接続点電圧の正相分位相θsで回転する座標系に変換して、接続点電圧と同一位相の有効電圧Vdと、接続点電圧と90°直交した位相の無効電圧Vqに分離して出力する。なお、VdとVqは直流動作する。
【0022】
有効電流制御器121は、有効電流指令値Id*と有効電流Idfの差分を入力し、接続点電圧と同一位相の有効分電圧指令加算値dVd*を出力する。加算器123は有効分電圧指令加算値dVd*と有効電圧Vdを加算し、有効分電圧指令Vd*を得る。無効電流制御器122は、無効電流指令値Iq*と無効電流Iqfの差分を入力し、接続点電圧と90°直交した位相の無効分電圧指令加算値dVq*を出力する。加算器124は、無効分電圧指令加算値dVq*と無効電圧Vqを加算し、無効分電圧指令Vq*を得る。
【0023】
dq/αβ軸変換部125は、有効分電圧指令Vd*、無効分電圧指令Vq*および接続点電圧の正相電圧位相θsを入力し、接続点電圧の正相分位相θsで回転する座標系の電圧指令Vd*、Vq*を、固定座標系に変換して接続点電圧の正相分位相θsの周波数で交流動作する変換器電圧指令値Vα*およびVβ*を出力する。2/3相数変換部126は、2相信号であるVα*およびVβ*を3相信号の変換器電圧指令値Vu*、Vv*およびVw*に変換して出力する。
【0024】
PWMパルス発生器127は、変換器電圧指令値Vu*、Vv*およびVw*を入力し、自励式半導体装置で構成される変換器2のゲート信号を出力する。また、停止指令が入力すると、PWMパルス発生器127は即時にゲート信号を停止して、有効電力制御器113、無効電力制御器114、有効電流制御器121、無効電流制御器122は出力を即時にゼロに変化させるので、電力貯蔵システムは保護停止状態に遷移する。
【0025】
図3は正相電圧検出部の構成図を示す。正相電圧検出部4は接続点8のUV線間電圧V1、VW線間電圧V2、WU線間電圧V3を入力し、3/2相数変換部211がα軸電圧Vαおよびβ軸電圧Vβに変換する。周波数基準信号発生回路212は、系統定格周波数(50Hzまたは60Hz)の周波数基準信号の位相(基準位相)θ0を発生する。
【0026】
フーリエ変換演算回路(α−R)213は、電圧信号Vαを基準位相θ0で回転する座標系から見たときの実軸への射影成分を求めて、これをθ0一周期分の移動平均値を算出してα実軸成分電圧VαRを出力する。フーリエ変換演算回路(α−M)214は、電圧信号Vαを基準位相θ0で回転する座標系から見たときの虚軸(θ0+固定位相90°の方向)への射影成分を求めて、これをθ0一周期分の移動平均値を算出してα虚軸成分電圧VαMを出力する。フーリエ変換演算回路(β−R)215は、電圧信号Vβを“θ0+固定位相90°”で回転する座標系から見たときの実軸への射影成分を求めて、これをθ0一周期分の移動平均値を算出してβ実軸成分電圧VβRを出力する。フーリエ変換演算回路(β−M)216は、電圧信号Vβを“θ0+固定位相90°”で回転する座標系から見たときの虚軸(θ0+固定位相180°の方向)への射影成分を求めて、これをθ0一周期分の移動平均値を算出してβ虚軸成分VβMを出力する。
【0027】
基本周波数正相電圧実軸成分演算回路217はVαRとVβRを入力して、正相電圧実軸成分VRを出力する。基本周波数正相電圧虚軸成分演算回路218はVαMとVβMを入力して、正相電圧虚軸成分VMを出力する。絶対値演算回路219はVRとVMの二乗和の平方根をとり、接続点電圧の正相電圧振幅Vsを出力する。位相差演算回路220は、VR、VM、Vsを入力して、接続点電圧の正相電圧位相θsと基準位相θ0の位相差△θを、数1の演算から求め、出力する。
【0028】
【数1】
VR/Vs=cos(θs−θ0)
VM/Vs=sin(θs−θ0)
△θ=θs−θ0=tan ̄(VM/Vs)/(VR/Vs)
加算器221は、この位相差△θに基準位相θ0を加算して、接続点電圧の正相電圧位相θsを出力する。このθsは、接続点電圧位相を線間電圧(V1またはV2またはV3)の位相ではなく、正相電圧位相によって表したものである。
【0029】
図4に、変換器電圧指令Vc*のベクトル図を示す。(a)は本実施例で、接続点電圧位相にDFT回路による正相電圧位相θsを用いた場合のベクトルを示している。Vc*は、接続点電圧の正相電圧位相θsで回転する座標系における2相信号であるVd*およびVq*のベクトル和である。この座標系においては、接続点電圧位相θsと同一方向をd軸成分、“θs+固定位相90°”方向をq軸成分と定義している。上述のように、Vd*は、接続点電圧のd軸成分Vdと、有効分電圧指令加算値dVd*との和である。また、Vq*は、接続点電圧のq軸成分Vqと、無効分電圧指令加算値dVq*との和である。接続点電圧位相θsが正確に遅れなく検出されている限り、Vdは1単位値の長さの直流信号であり、Vqはゼロの長さの直流信号となる。
【0030】
このVc*(=Vd*+Vq*)をdq軸/αβ軸変換すると、固定座標系における2相信号Vα*とVβ*となる。これを2相/3相変換すると、3相信号である変換器電圧指令Vu*、Vv*、Vw*となる。これらの信号からPWMパルス発生器127はゲート信号を出力することで、交直変換器2は系統に出力される交流電圧Vcを発生している。
【0031】
図4(b)は、接続点電圧位相に接続点の電圧信号(ここでは、線間電圧V1)の位相θ1を用いた場合のベクトルを示している。定常時はθsとθ1は同じ値となる。しかし、系統が異常になると、V1の位相ずれや振幅変化(減少ないし0)を生じるので、θ1を誤検出することになり、安定な制御が困難になる。例えば、UV相の2線地絡が起こるとV1がゼロとなり、W相が健全でも制御が不可能になる。
【0032】
すなわち、真の接続点電圧(の正相分)の絶対値をVL、その位相をθLと定義すると、系統正常時の電圧V1の位相θ1はθLと一致するが、事故時に位相θ1は誤検出されてθLと偏差を持つようになる。この結果、dq軸を決めている位相であるθ1が真の位相であるθLとずれるため、VdとVqの合成部は真の値と一致するものの、dVd*とdVq*が異なる方向を示すことになる。
【0033】
変換器電圧指令Vc*はVd,Vqの和と、dVd*,dVq*の和の合成ベクトルであるため、dVd*とdVq*の方向がずれることにより、図示実線で示したVc*のベクトルは図示破線で示した理論値とかい離したものとなり、予定していた出力とは異なる出力に制御されてしまう。
【0034】
一方、本実施例による(a)の場合は、正相位相θsは、事故時においても検出遅れにより過渡的にわずかの偏差をもつのみであり、ほぼθLと一致する。この結果、図示実線で示した変換器電圧指令Vc*のベクトルは図示破線で示した理論値とわずかにずれたものになるが、予定していた出力とほぼ同じ出力に制御される。従って、交流系統事故による交流電圧振幅低下が発生しても、正相電圧位相θsによる安定な制御が維持できるので過電流や過電圧を生じることなく、変換器2の運転を継続できる。たとえば、正相電圧振幅が1/3単位値程度となる系統事故でも、位相信号を加工するなどの特別な操作を加えること無く、連系運転を継続することができる。
【0035】
図5は保護停止判定部の判定フローを示す。保護停止判定部5は接続点電圧の正相電圧振幅Vsを入力し、Vsがしきい値:LEVEL1より小さいか判定する(s101)。LEVEL1未満の場合は、3線地絡事故が発生したものと判定されるので(s102)、停止信号を発生する(s103)。一方、VsがLEVEL1以上の場合は、2線地絡事故、1線地絡事故、事故無しなどの系統状態が推定されるが(s104)、何もせずにVsの監視に戻る。
【0036】
ここで、しきい値:LEVEL1は、三相が全て正常な場合の接続点電圧の正相電圧振幅を1単位値(1.0pu)として、1/3単位値を下限、2/3単位値を上限として、任意に設定される。なお、ステップs102,s104の事故種別の推定は必須事項ではない。
【0037】
図6は事故点における正相電圧振幅と事故種別の関係を示す説明図である。以下のように、事故点における正相電圧振幅を観察することで、交流系統で発生した事故レベルないしは事故種別を推定できる。
【0038】
図示(a−1)は、交流電圧が正常な場合で、交流電圧のU相の相電圧(ベクトルU)、V相の相電圧(ベクトルV)、W相の相電圧(ベクトルW)を示す。各ベクトルの長さは定格電圧値(1pu)を示している。図示(a−2)は、(a−1)の相電圧ベクトル(U、V、W)に対して幾何学的に対称座標法を用いて、ベクトルUはそのまま、ベクトルVは+2/3π回転させ、ベクトルWは−2/3π回転させて、3つのベクトルを加算し、この長さを1/3倍して、正相電圧ベクトルの振幅値を求めたものである。図から明らかなように、正相電圧振幅は1単位値となる。すなわち図1の正相電圧検出部4の出力である正相電圧振幅値は1単位値となる。
【0039】
図示(b−1)は、U相が完全地絡した1線地絡事故点における交流電圧の相電圧ベクトルを示す。ベクトルVとWの長さは1単位値を示すが、ベクトルUの長さは最小で0を示す。図示(b−2)は、(b−1)の相電圧ベクトルに対して幾何学的に対称座標法を用いて、正相電圧振幅を求めたものである。相電圧Uが0のとき、正相電圧振幅Vsは2/3単位値と最小値になる。
【0040】
図示(c−1)は、交流系統のV相、W相が完全地絡した2線地絡事故点における交流電圧の相電圧ベクトルを示す。ベクトルUの長さは1単位値を示すが、ベクトルV、Wの長さは最小で0を示す。図示(c−2)は、(c−1)の相電圧ベクトルに対して幾何学的に対称座標法を用いて、正相電圧振幅を求めたものである。相電圧V,Wが0のときは、正相電圧振幅Vsは1/3単位値と最小値になる。
【0041】
図示(d−1)は、交流系統のU相、V相、W相が完全地絡した3線地絡事故における交流電圧の相電圧ベクトルを示す。ベクトルU、V、Wの長さは最小で0を示す。図示(d−2)は、(d−1)の相電圧ベクトルに対して幾何学的に対称座標法を用いて、正相電圧振幅を求めたものである。相電圧U、V、Wが0のとき、正相電圧振幅Vsは0単位値と最小値になる。
【0042】
図7は、事故点からの距離と保護停止判定可能な事故範囲の関係を示す説明図である。系統事故時の正相電圧Vsの残存値が、事故種別と事故点からの距離によって変化する特性を示している。ここで、事故点からの距離とは、系統事故点までの距離に対するシステム接続点の相対距離である。
【0043】
3線地絡が起きると、事故点では3線の相電圧がゼロ付近まで低下する。このとき、短絡インピーダンスにより相電圧はゼロにはならない場合があり、ゼロを下限として若干の正相電圧が残る。一方、交直変換器2を保護停止しない限り、その変換器出力電圧Vcは事故に関係なく定格値(1単位値=1.0pu)を発生している。接続点正相電圧は、事故点から接続点8までの系統側のインピーダンス合計値と、接続点8から出力電圧Vcまでのインピーダンス(連系リアクトルのインピーダンス)値の按分で決まる。このため、接続点8で観測される正相電圧Vsは、事故点から接続点8までの距離が近いほど小さな値(最小値は0単位値)になり、距離が遠いほど大きな値(最大値は1単位値)になる。
【0044】
同様に、2線地絡が起きると、事故点では2線の相電圧がゼロ付近まで低下する。このとき、短絡インピーダンスにより相電圧はゼロにはならない場合があり、事故点では1/3単位値を下限とする正相電圧が残る。接続点8で観測される正相電圧Vsは、事故点からの距離が近いほど小さな値(最小値は1/3単位値)になり、距離が遠いほど大きな値(最大値は1単位値)になる。また、1線地絡が起きると、事故点では1線の相電圧がゼロ付近まで低下する。このとき、短絡インピーダンスにより相電圧はゼロにはならない場合があり、2/3単位値を下限とする正相電圧が残る。接続点で観測される正相電圧は、事故点から接続点までの距離が近いほど小さな値(最小値は2/3単位値)になり、距離が遠いほど大きな値(最大値は1単位値)になる。
【0045】
保護停止判定部5における事故推定は、接続点電圧の正相電圧振幅Vsがどこまで低下するかを観察して行われる。すなわち、Vsが1/3単位値未満まで低下する場合は、事故点と接続点の距離に関わりなく、3線地絡事故が発生したものと判断できる。Vsが1/3単位値以上から2/3単位値未満の範囲まで低下する場合は、近距離で発生した2線地絡事故か、または中距離で発生した3線地絡事故が発生したものと判断できる。
【0046】
本実施例によれば、電力貯蔵システム側では実質的にほとんどの交流系統事故における運転継続が可能で、正相電圧振幅が1/3単位値未満となる3線地絡事故の一部が、機器側の制約により保護停止すべき対象となる。いま、3線地絡事故を保護停止したい場合には、しきい値:LEVEL1を仮に1/3単位値に設定すると、近距離の3線地絡事故を検出でき、2線地絡事故を誤検出することはない。しかし、中距離で発生した3線地絡事故を検出できない場合がある。そこで、しきい値:LEVEL1を1/3単位値を下限、2/3単位値を上限として、設定値を適当に選択すれば、近距離及び中距離における3線地絡事故を検出できる。なお、至近距離の2線地絡事故を保護停止と判定する可能性があることは、許容することにする。
【0047】
次に、本発明の別の実施形態を説明する。図8は第2の実施例による電力貯蔵システムの構成図を示す。図1と同等の構成要素には同一符号を付し、説明を省略する。本実施例と図1との相違は、接続点8の線間電圧V1、V2、V3の実効値から線間電圧実効値低下率Krmsを求める実効値検出部7が設けられ、保護停止判定部5’は正相電圧振幅Vsと、線間電圧実効値低下率Krmsを入力して、事故種別を推定しながら保護停止の要否を判定している点である。
【0048】
実効値検出部7は、線間電圧V1、V2、V3から実効値V1rms、V2rms、V3rmsを求め、それらの最大値:Vrms_maxを求める。さらに、系統事故による電圧低下程度をみる指標として、線間電圧実効値低下率Krmsを求めて、保護停止判定部5’に渡す。線間電圧最大値Vrms_maxと線間電圧実効値低下率Krmsの算出式を数2に示す。
【0049】
【数2】
Vrms_max=max(V1rms,V2rms,V3rms)
Krms=V1rms/Vrms_max・V2rms/Vrms_max・V3rms/Vrms_max
図9は、第2の実施例による保護停止判定部の判定フローを示す。まず、接続点電圧の正相電圧振幅Vsがしきい値:LEVEL1未満であるか判定する(s201)。未満の場合は、3線地絡事故が発生したものと判定し(s202)、停止信号を発生する(s203)。しきい値:LEVEL1は、三相が全て正常な場合の接続点電圧の正相電圧振幅を1単位値として、1/3単位値を上限として任意に設定する。
【0050】
VsがLEVEL1以上の場合、Vsがしきい値:LEVEL2未満であるか判定する(s204)。LEVEL2は、1/3単位値を下限として任意に設定する。LEVEL2の設定上限は、理論上は1.0puとなるが、実用上は現在の保護停止の運用基準である0.8pu程度になる。
【0051】
LEVEL2未満の場合は、線間電圧実効値低下率Krmsがしきい値:LEVEL3以上であるか判定する(s205)。線間電圧実効値低下率KrmsがLEVEL3以上の場合は、3線地絡事故が発生したものと判定し、停止信号を発生し、上記以外の条件では停止信号を発生しない。なお、LEVEL3は、2/3単位値を下限として任意に設定する。
【0052】
図10は第2の実施例における事故点からの距離と保護停止可能な事故範囲の関係を示す説明図である。(a)は事故点までの距離と正相電圧残値の関係、(b)は事故点までの距離と線間電圧実効値低下率の関係を示す。
【0053】
実施例1の場合と同様に、接続点電圧の正相電圧振幅Vsがどこまで低下するかを観測すれば、系統事故状況がかなり推定できる。Vsが1/3単位値未満まで低下する場合は、事故点と接続点の距離に関わりなく、3線地絡事故が発生したものと判断できる。Vsが1/3単位値以上から2/3単位値未満の範囲まで低下する場合は、近距離で発生した2線地絡事故か、中距離で発生した3線地絡事故が発生したものと判断できる。
【0054】
3線地絡事故を保護停止したい場合には、保護しきい値LEVEL1を1/3単位値を上限とする任意の値に設定すると、近距離の3線地絡事故を検出できる。このとき、2線地絡事故を誤検出することはない。
【0055】
さらに、中距離、遠距離の3線地絡事故を保護停止するため、線間電圧実効値の差異に注目して判定する。3線地絡事故においては、事故点において線間電圧実効値は3信号ともほぼ同一値となる。このため、事故点において線間電圧実効値低下率はほぼ1の値で、かつ、事故点からの距離に関わらず電圧実効値低下率はほぼ1の値を示す。
【0056】
このように、線間電圧実効値低下率Krmsが概ね2/3単位値以上の範囲にある場合は、1線地絡と2線地絡の可能性が排除され、3線地絡または事故無しとみなせる。したがって、図9のs204のステップで正相電圧振幅が1/3単位値以上の範囲にあり、3線地絡事故か2線地絡事故か判別できない場合には、さらに、s205のステップで、線間電圧実効値低下率が2/3単位値以上の範囲にあるかどうかを判定すれば、中距離における3線地絡事故を判定できる。
【0057】
あるいは、3線地絡事故においては、事故点において線間電圧実効値は3信号ともほぼ同一値となることを利用してもよい。即ち、s204のステップで正相電圧振幅が1/3単位値以上の範囲にあり、3線地絡事故か2線地絡事故か判別できない場合には、さらに、s205のステップで、3つの線間電圧実効値が全て同じ値かを調べ、同じ場合に3線地絡事故と判定する。
【0058】
第2の実施例によれば、第1の実施例で正相電圧からは確実に判別できなかった中距離における3線地絡事故を、線間電圧実効値低下率を指標とする判定を付加することで正確な判別が可能になった。これにより、系統側の要請である3線地絡事故時のシステム停止を確実に実現でき、停止の必要がない他の事故時には運転を継続することができる。
【0059】
図11に実施例1のシミュレーション結果を示す。(a)は解析に用いたモデル系統図で、275kV、154kV、66kV、6.6kVの4つの電圧階級からなる系統で、NaS電池システムはC変電所6.6kV母線に接続されている。主として、275kV及び154kV送電線における種々の地絡事故について解析を行った。なお、図11において、▲1▼、▲2▼は地絡事故の発生点を示す。
【0060】
(b)は解析結果を示す。各故障におけるNaS電池システム連系点の線間電圧最小値(min)、接続点の正相電圧、変換器電流最大値(max)と、従来と本実施例による運転継続(○)、停止(×)を示す。運転停止基準を従来のとおり線間電圧の定格80%とすると、154kV送電線の2LG及び275kV送電線の2LG、3LGで停止する。運転停止基準を本実施例の正相電圧の45%とした場合、運転継続範囲を154kV送電線の2LG及び275kV送電線の2LGまで広げることができる。また、これらの各ケースにおいて、変換器電流の過電流は規定値以内に抑制されている。
【0061】
【発明の効果】
本発明によれば、交流系統と連系する電力貯蔵システムの交直変換器の制御に正相電圧位相を用いて、系統事故時の安定な運転継続範囲を広げるとともに、保護停止が必要な事故の発生の判定を正相電圧振幅によっているので、事故時の運用性を向上するとともに、系統要請あるいは過電流防止等のために必要なシステムの保護停止を確実に行うことができる効果がある。
【0062】
さらに、保護停止が必要な事故の判定を上記に加えて、接続点の3つの電圧信号の実効値の低下状況によっても判断しているので、真に停止が必要な3相地絡事故に限定した保護停止ができ、不要な停止を回避できる。
【図面の簡単な説明】
【図1】本発明の実施例1による電力貯蔵システムの構成図。
【図2】電力変換装置制御部の構成図。
【図3】正相電圧検出部の構成図。
【図4】変換器電圧指令Vc*のベクトル関係を、本実施例と従来例について示す説明図。
【図5】一実施例による保護停止判定部の判定処理を示すフロー図。
【図6】系統事故における電圧ベクトル図と正相電圧振幅の関係を示す説明図。
【図7】実施例1で、事故点からの距離と保護停止判定可能な事故範囲を示す説明図。
【図8】本発明の実施例2による電力貯蔵システムの構成図。
【図9】実施例2による保護停止判定部の判定処理を示すフロー図。
【図10】実施例2で、事故点からの距離と保護停止判定可能な事故範囲を示す説明図。
【図11】実施例1について実施したシミュレーション結果の説明図。
【符号の説明】
1…交流系統、2…交直電力変換装置(主回路)、3…二次電池、4…正相電圧検出部、5,5’…保護停止判定部、6…電力変換装置制御部、7…実効値検出部、111…有効電力指令値発生部、112…無効電力指令値発生部、113…有効電力制御器、114…無効電力制御器、115…有効電力無効電力検出回路、116…3/2相数変換部、117…αβ/dq軸変換部、118…3/2相数変換部、119…αβ/dq軸変換部、121…有効電流制御器、122…無効電流制御器、123,124…加算器、125…dq/αβ軸変換部、126…2/3相数変換部、127…PWMパルス発生器、211…3/2相数変換部、212…周波数基準信号発生回路、213〜216…フーリェ変換演算回路、217…基本周波数正相電圧実軸成分演算回路、218…基本周波数正相電圧虚軸成分演算回路、219…絶対値演算回路、220…位相差演算回路、221…加算器。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power storage system that adjusts the supply and demand of active power of a three-phase AC system.
[0002]
[Prior art]
In order to transfer active and reactive power from the AC / DC converter of the power storage system to the three-phase AC system, the amplitude and phase of the output voltage of the AC / DC converter are adjusted relative to the system voltage. For this reason, it is necessary to detect the amplitude and phase of the three-phase AC system voltage. As a conventional general phase detection method, a PLL (Phase Locked Loop) circuit utilizing the fact that the point in time when the polarity of the three-phase AC voltage changes periodically occurs is used.
[0003]
As a protection control method against a system accident, for example, the line voltage of a three-phase AC voltage is used in accordance with the guidelines for grid connection requirements of the Agency for Natural Resources and Energy (Explanation: Guideline for Technical Requirements for Power System Interconnection, 1998, Electric Power Shimpo). The effective value of the signal is detected, and if any one of the effective values is less than the reference value, the power storage system is stopped.
[0004]
If the three-phase AC system is abnormal, for example, if two of the three phases are grounded and the phase voltage becomes zero, the protection control circuit of the transmission line will temporarily disconnect the grounded phase, and as early as 1 second Within a few seconds at the latest. If the system returns to normal within a few seconds, it is desirable to continue operating the power storage system. On the other hand, there is a case where a system abnormality in which power cannot be supplied continues for more than several seconds, such as a one-line three-phase ground fault. In such a case, it is necessary to provide a period for confirming that the protection of the system and the elimination of the accident have been completely performed on the system side, and thus it is necessary to immediately stop the protection of the power system in the event of an accident. In the current operation, protection is stopped when the system voltage falls to 80% of the rated value while the system is supplying power to the system according to the guidelines.
[0005]
[Problems to be solved by the invention]
The conventional power storage system is designed to stop the protection when the line voltage at the connection point drops to 80%. For this reason, even in the case of a system abnormality that does not require the system side to confirm the removal of the accident, the protection of the system is frequently stopped. In addition, since restarting takes a long time when the system is stopped, there is a problem that the power supply capability of the power storage system is lost immediately after the system returns to normal.
[0006]
The above-mentioned restriction on the operation of the power storage system is partly due to the phase detection accuracy of the PLL. It is part of the three-line ground fault that the operation of the power storage system cannot be continued due to restrictions on the equipment in order to avoid overcurrent, etc. in an AC system accident. The operation can be continued in the mode. However, in the event of a system failure, since the system voltage contains harmonics, the phase detection accuracy of the PLL is reduced, and stable control of the AC / DC power converter becomes difficult. For this reason, the present situation is that the margin of safe driving must be increased.
[0007]
Recently, the α-axis component and the β-axis component of the positive-phase voltage are calculated from the α component and the β component of each phase using the Fourier transform components of each of the three phases of the three-phase AC voltage, and based on these axis components, A method has been proposed in which a positive-phase voltage phase (△ θ) is obtained, and this △ θ is used as a phase difference between the system voltage phase θs and the reference phase θi to obtain the system voltage phase θs (Japanese Patent Laid-Open No. Hei 10-234135). If the phase detection by the discrete Fourier transfer (DFT) method is used, the operation range of the AC / DC converter at the time of a system fault can be safely extended.
[0008]
However, in the case of using phase detection by DFT, it is indispensable to properly recognize the safe operation range of the power storage system in the event of a system failure, in other words, an accident or timing of protection stop of the system. Furthermore, under the current situation where sodium-sulfur (NaS) battery systems are being put into practical use as small-scale power storage systems for general users, protection stoppage based on the judgment of the power storage system itself is not required, regardless of the stop command from the system. It has been demanded.
[0009]
It is an object of the present invention to provide a power storage system that overcomes the problems of the prior art, enhances the continuity of operation during a system accident, and that can promptly judge and stop when a protection stop is required. is there.
[0010]
[Means for Solving the Problems]
The present invention, which achieves the above object, employs a DFT method capable of accurately and reliably detecting a system voltage phase even in the event of an abnormality including a harmonic, thereby improving the continuity of operation during a system accident and requiring a protection stop. We have found a method that can properly judge an accident or timing, and have achieved it.
[0011]
The present invention includes an AC / DC power converter connected to a three-phase AC system, converting three-phase AC power to DC power or converting DC power to three-phase AC power, and a secondary battery connected to the converter. In the power storage system, in order to adjust AC power output from the AC / DC power converter, the AC / DC power converter with respect to a connection point voltage vector based on a connection point voltage phase at a connection point with the AC system. A power conversion control unit that controls an output voltage vector, performs a discrete Fourier transform by inputting the three voltage signals at the connection point, and performs a positive phase of the connection point voltage based on the converted real axis component and imaginary axis component. A positive-phase voltage detection unit that detects a positive-phase component phase and a positive-phase component phase, and outputs the positive-phase component phase to the power conversion control unit as the connection point phase; Based on the phase amplitude, it is monitored whether an abnormality that should stop the power storage system has occurred in the three-phase AC system, and when it is determined that an abnormality that requires a system stop has occurred, the system is stopped. A protection stop judging unit for outputting a signal is provided.
[0012]
In addition, the protection stop determination unit may be configured such that, when all phases of the three-phase AC system are normal, the amplitude of the positive-phase component is used as a unit value, and a 1/3 unit value is a lower limit and a 2/3 unit value is an upper limit. When the threshold value is arbitrarily set and the positive-sequence component amplitude is less than the predetermined threshold value, it is determined that an abnormality necessary to stop the system has occurred. I do.
[0013]
According to another aspect of the present invention, the power conversion control unit, the positive-phase voltage detection unit, an effective value detection unit that receives the three voltage signals and obtains three effective values, and the positive-phase voltage detection unit Based on the positive phase amplitude input from the and the voltage drop rate input from the effective value detection unit, monitor whether an abnormality to stop the power storage system has occurred in the three-phase AC system, the system A protection stop determination unit that outputs a system stop signal when it is determined that an abnormality that needs to be stopped has occurred.
[0014]
In this case, when the absolute value of the positive phase component amplitude is less than a first threshold value (upper limit of 単 位 unit value), the protection stop determination unit determines that the absolute value of the positive phase component amplitude is When the value is equal to or more than the first threshold value and less than the second threshold value (1/3 unit value is the lower limit), and all of the three effective values have the same value, the system needs to be stopped. Is determined to have occurred.
[0015]
Alternatively, a ratio of each effective value to a maximum value of the three effective values is calculated, and a voltage effective value decrease rate due to a synergistic value thereof is calculated. The protection stop determination unit determines that the absolute value of the positive phase component amplitude is When the absolute value of the positive-sequence amplitude is equal to or more than the first threshold and less than the second threshold, and the rate of decrease in the voltage effective value is equal to or less than the first threshold. If it is equal to or more than the threshold value of 3 (2/3 unit value is the lower limit), it is determined that an abnormality that requires the system stoppage has occurred.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram (functional block diagram) showing an embodiment of the power storage system of the present invention. An AC / DC power converter 2 (converter main circuit, hereinafter abbreviated as a converter) is connected to a connection point 8 of the three-phase AC system 1 via a connection reactor (or a connection transformer). A secondary battery 3 for power storage is connected. An instrument transformer PT is connected to the connection point 8, and a three-phase main circuit bus connecting the connection point 8 and the AC / DC converter 2 is connected to an instrument current transformer CT. The three-phase AC voltage (V1) based on each line voltage at the connection point is connected. , V2, V3) and three-phase AC currents (I1, I2, I3) based on the AC output current of the converter 2.
[0017]
The positive-phase voltage detector 4 adopts the DFT method, receives three-phase AC voltages V1, V2, and V3, and outputs the positive-phase amplitude (positive-phase voltage amplitude) Vs and the positive-phase partial phase (positive-phase voltage) of the connection point voltage. Phase) θs is calculated and output. The protection stop determination unit 5 inputs the positive-phase voltage amplitude Vs, and outputs a stop signal when it is determined that an accident requiring protection stop has occurred. The power converter control unit 6 inputs the three-phase AC voltages V1, V2, V3, the three-phase AC currents I1, I2, I3, and the positive-phase voltage phase θs, and converts these inputs into the active power command value and the reactive power command value. A vector (amplitude and phase) of the converter voltage command Vc * is calculated based on this, and a gate signal is generated so that the output voltage Vc of the AC power of the converter 2 follows the command Vc *. When a stop signal is output from the protection stop determination unit 5, the gate signal is shut off to stop the protection of the converter 2.
[0018]
FIG. 2 is a configuration diagram illustrating an embodiment of the power converter control unit. As is well known, when the active power command value set by a request from a higher-level (system side) is positive, the power converter control unit 6 operates the AC / DC power converter 2 as an inverter to reduce the DC power of the battery 3. Control to convert to three-phase AC power and supply it to the system. On the other hand, if the set active power command value is negative, the AC / DC power converter 2 operates as a converter to convert three-phase AC power from the system into DC power and charge the battery 3. In the following, the configuration using the positive-sequence voltage (Vs, θs) detected by the DFT method and the operation of the active power control for supplying power to the grid side will be mainly described in correspondence with the problem of the present invention.
[0019]
The power converter control unit 6 inputs the line voltages V1, V2, V3 at the connection point 8 and the AC currents I1, I2, I3 at the connection point, and the active power reactive power detection circuit 115 outputs the active power Psf and the reactive power Qsf. Is detected. The active power controller 113 inputs a difference between the active power command value Ps * of the active power command value setting unit 111 and the active power Psf, and outputs an active current command value Id *. The reactive power controller 114 inputs a difference between the reactive power command value Qs * of the reactive power command value setting unit 112 and the reactive power Qsf, and outputs a reactive current command value Iq *.
[0020]
The 3 / 2-phase number conversion unit 116 converts the AC currents I1, I2, and I3 into orthogonal two-phase signals, and outputs an α-axis current Iα and a β-axis current Iβ. The αβ / dq axis converter 117 receives the currents Iα and Iβ and the phase θs of the positive phase of the connection point voltage, and rotates the currents Iα and Iβ of the fixed coordinate system by the positive phase θs of the connection point voltage in the coordinate system. And an active current Idf having the same phase as the node voltage and a reactive current Iqf having a phase orthogonal to the node voltage by 90 ° are output. Note that Idf and Iqf perform DC operation.
[0021]
The 3 / 2-phase number converter 118 converts the connection point line voltages V1, V2, and V3 into orthogonal two-phase signals, and outputs an α-axis voltage Vα and a β-axis voltage Vβ. The αβ / dq axis conversion unit 119 receives the voltages Vα and Vβ and the positive phase phase θs, and converts the voltages Vα and Vβ of the fixed coordinate system into a coordinate system that rotates at the positive phase θs of the connection point voltage. Thus, an effective voltage Vd having the same phase as the connection point voltage and an invalid voltage Vq having a phase orthogonal to the connection point voltage by 90 ° are separated and output. Note that Vd and Vq perform DC operation.
[0022]
The effective current controller 121 receives the difference between the effective current command value Id * and the effective current Idf, and outputs an effective component voltage command addition value dVd * having the same phase as the connection point voltage. The adder 123 adds the effective voltage command addition value dVd * and the effective voltage Vd to obtain an effective voltage command Vd *. The reactive current controller 122 receives the difference between the reactive current command value Iq * and the reactive current Iqf, and outputs a reactive voltage command added value dVq * having a phase orthogonal to the connection point voltage by 90 °. The adder 124 adds the invalid voltage command addition value dVq * and the invalid voltage Vq to obtain an invalid voltage command Vq *.
[0023]
The dq / αβ axis converter 125 receives the effective voltage command Vd *, the ineffective voltage command Vq *, and the positive-phase voltage phase θs of the node voltage, and rotates in the positive-phase phase θs of the node voltage. Are converted into a fixed coordinate system to output converter voltage command values Vα * and Vβ * that operate AC at the frequency of the positive-phase phase θs of the connection point voltage. The 2 / 3-phase number conversion unit 126 converts the two-phase signals Vα * and Vβ * into three-phase signal converter voltage command values Vu *, Vv *, and Vw *, and outputs them.
[0024]
PWM pulse generator 127 receives converter voltage command values Vu *, Vv *, and Vw * and outputs a gate signal of converter 2 formed of a self-excited semiconductor device. When a stop command is input, the PWM pulse generator 127 immediately stops the gate signal, and the active power controller 113, the reactive power controller 114, the active current controller 121, and the reactive current controller 122 output the output immediately. , And the power storage system transitions to the protection stop state.
[0025]
FIG. 3 shows a configuration diagram of the positive-sequence voltage detection unit. The positive-phase voltage detector 4 receives the UV line voltage V1, the VW line voltage V2, and the WU line voltage V3 at the connection point 8, and the 3 / 2-phase number converter 211 outputs the α-axis voltage Vα and the β-axis voltage Vβ. Convert to The frequency reference signal generation circuit 212 generates a phase (reference phase) θ0 of a frequency reference signal having a system rated frequency (50 Hz or 60 Hz).
[0026]
The Fourier transform operation circuit (α-R) 213 obtains a projection component on the real axis when the voltage signal Vα is viewed from a coordinate system rotating at the reference phase θ0, and calculates a moving average value for one cycle of θ0. It calculates and outputs the α real axis component voltage VαR. The Fourier transform operation circuit (α-M) 214 obtains a projection component on the imaginary axis (θ0 + direction of fixed phase 90 °) when the voltage signal Vα is viewed from a coordinate system rotating at the reference phase θ0, and calculates this. A moving average value for one cycle of θ0 is calculated and an α-imaginary axis component voltage VαM is output. The Fourier transform operation circuit (β-R) 215 obtains a projection component onto the real axis when the voltage signal Vβ is viewed from a coordinate system rotating at “θ0 + fixed phase 90 °”, and calculates this for one period of θ0. The moving average value is calculated and the β real axis component voltage VβR is output. The Fourier transform operation circuit (β-M) 216 obtains a projection component on an imaginary axis (θ0 + direction of fixed phase 180 °) when the voltage signal Vβ is viewed from a coordinate system rotating at “θ0 + fixed phase 90 °”. Then, a moving average value for one cycle of θ0 is calculated, and a β imaginary axis component VβM is output.
[0027]
The fundamental frequency positive-phase voltage real axis component calculation circuit 217 receives VαR and VβR and outputs a positive-phase voltage real axis component VR. The fundamental frequency positive-phase voltage imaginary axis component calculation circuit 218 receives VαM and VβM and outputs a positive-phase voltage imaginary axis component VM. The absolute value calculation circuit 219 takes the square root of the sum of squares of VR and VM, and outputs the positive-phase voltage amplitude Vs of the connection point voltage. The phase difference calculation circuit 220 receives VR, VM, and Vs, obtains the phase difference Δθ between the positive-phase voltage phase θs of the connection point voltage and the reference phase θ0 from the calculation of Equation 1, and outputs the phase difference.
[0028]
(Equation 1)
VR / Vs = cos (θs−θ0)
VM / Vs = sin (θs−θ0)
Δθ = θs−θ0 = tan ̄ 1 (VM / Vs) / (VR / Vs)
The adder 221 adds the reference phase θ0 to the phase difference Δθ, and outputs a positive-phase voltage phase θs of the connection point voltage. Θs represents the connection point voltage phase not by the phase of the line voltage (V1, V2, or V3) but by the positive-phase voltage phase.
[0029]
FIG. 4 shows a vector diagram of the converter voltage command Vc *. (A) shows a vector when the positive-phase voltage phase θs by the DFT circuit is used as the connection point voltage phase in the present embodiment. Vc * is a vector sum of Vd * and Vq *, which are two-phase signals in a coordinate system rotating at the positive-phase voltage phase θs of the connection point voltage. In this coordinate system, the same direction as the connection point voltage phase θs is defined as a d-axis component, and the “θs + fixed phase 90 °” direction is defined as a q-axis component. As described above, Vd * is the sum of the d-axis component Vd of the connection point voltage and the effective component voltage command addition value dVd *. Vq * is the sum of the q-axis component Vq of the connection point voltage and the invalid voltage command addition value dVq *. As long as the connection point voltage phase θs is accurately detected without delay, Vd is a DC signal having a length of one unit value, and Vq is a DC signal having a length of zero.
[0030]
When this Vc * (= Vd * + Vq *) is converted into the dq axis / αβ axis, the two-phase signals Vα * and Vβ * in the fixed coordinate system are obtained. When this is converted into two-phase / three-phase, converter voltage commands Vu *, Vv *, and Vw *, which are three-phase signals, are obtained. The PWM pulse generator 127 outputs a gate signal from these signals, so that the AC / DC converter 2 generates an AC voltage Vc output to the system.
[0031]
FIG. 4B shows a vector when the phase θ1 of the voltage signal at the connection point (here, the line voltage V1) is used as the connection point voltage phase. Under normal conditions, θs and θ1 have the same value. However, if the system becomes abnormal, a phase shift or an amplitude change (decrease or 0) of V1 occurs, so that θ1 is erroneously detected and stable control becomes difficult. For example, when a two-phase ground fault of the UV phase occurs, V1 becomes zero, and control becomes impossible even if the W phase is sound.
[0032]
That is, if the absolute value of the true connection point voltage (for the positive phase) is defined as VL and its phase is defined as θL, the phase θ1 of the voltage V1 when the system is normal matches the θL, but the phase θ1 is erroneously detected at the time of an accident. And has a deviation from θL. As a result, the phase that determines the dq axes, θ1, deviates from the true phase, θL, so that the combining unit of Vd and Vq matches the true value, but dVd * and dVq * indicate different directions. become.
[0033]
Since the converter voltage command Vc * is a composite vector of the sum of Vd and Vq and the sum of dVd * and dVq *, the direction of dVd * and dVq * is shifted, so that the vector of Vc * shown by the solid line in the drawing becomes The output is different from the theoretical value shown by the broken line in the figure, and the output is controlled to be different from the expected output.
[0034]
On the other hand, in the case of (a) according to the present embodiment, the normal phase θs has only a slight deviation transiently due to detection delay even at the time of an accident, and substantially coincides with θL. As a result, the vector of the converter voltage command Vc * shown by the solid line in the figure slightly deviates from the theoretical value shown by the broken line in the figure, but is controlled to be almost the same as the expected output. Therefore, even if the AC voltage amplitude decreases due to the AC system fault, stable control based on the positive-phase voltage phase θs can be maintained, and the operation of the converter 2 can be continued without generating overcurrent or overvoltage. For example, even in a system failure where the positive-phase voltage amplitude is about 1/3 unit value, the interconnection operation can be continued without adding a special operation such as processing a phase signal.
[0035]
FIG. 5 shows a determination flow of the protection stop determination unit. The protection stop determination unit 5 receives the positive-phase voltage amplitude Vs of the connection point voltage, and determines whether Vs is smaller than a threshold value: LEVEL1 (s101). If it is less than LEVEL1, it is determined that a three-line ground fault has occurred (s102), and a stop signal is generated (s103). On the other hand, when Vs is equal to or higher than LEVEL1, system states such as a two-line ground fault, a one-line ground fault, and no accident are estimated (s104), but the process returns to the monitoring of Vs without doing anything.
[0036]
Here, the threshold value: LEVEL1 is a unit value (1.0 pu) of the positive-phase voltage amplitude of the connection point voltage when all three phases are normal, and a lower limit of 1/3 unit value and a 2/3 unit value Is arbitrarily set up to the upper limit. Note that the estimation of the accident type in steps s102 and s104 is not essential.
[0037]
FIG. 6 is an explanatory diagram showing the relationship between the positive-phase voltage amplitude at the fault point and the fault type. As described below, by observing the positive-sequence voltage amplitude at the fault point, it is possible to estimate the fault level or fault type occurring in the AC system.
[0038]
The figure (a-1) shows a case where the AC voltage is normal, and shows a U-phase voltage (vector U), a V-phase voltage (vector V), and a W-phase voltage (vector W) of the AC voltage. . The length of each vector indicates the rated voltage value (1 pu). In the illustration (a-2), the phase voltage vector (U, V, W) of (a-1) is geometrically symmetrically coordinated using the vector U as it is, and the vector V is rotated by + 2ππ. Then, the vector W is rotated by − / π, the three vectors are added, and the length is multiplied by 、 to obtain the amplitude value of the positive-phase voltage vector. As is clear from the figure, the positive-phase voltage amplitude is one unit value. That is, the positive-phase voltage amplitude value output from the positive-phase voltage detection unit 4 in FIG. 1 is one unit value.
[0039]
The illustration (b-1) shows the phase voltage vector of the AC voltage at the one-line ground fault point where the U phase is completely grounded. The lengths of the vectors V and W indicate one unit value, but the length of the vector U indicates 0 at a minimum. In the drawing (b-2), the positive-sequence voltage amplitude is obtained by geometrically using the symmetric coordinate method for the phase voltage vector of (b-1). When the phase voltage U is 0, the positive-phase voltage amplitude Vs has a minimum value of 2/3 unit value.
[0040]
The illustration (c-1) shows the phase voltage vector of the AC voltage at the two-line ground fault point where the V phase and the W phase of the AC system are completely grounded. The length of the vector U indicates one unit value, but the length of the vectors V and W indicates 0 at a minimum. In the figure (c-2), the positive-phase voltage amplitude is obtained by geometrically using the symmetrical coordinate method for the phase voltage vector of (c-1). When the phase voltages V and W are 0, the positive-phase voltage amplitude Vs has a minimum value of 1/3 unit value.
[0041]
(D-1) shows a phase voltage vector of an AC voltage in a three-wire ground fault in which the U phase, V phase, and W phase of the AC system are completely grounded. The lengths of the vectors U, V, and W indicate 0 at a minimum. In the drawing (d-2), the positive-phase voltage amplitude is obtained for the phase voltage vector of (d-1) by using the geometrically symmetric coordinate method. When the phase voltages U, V, and W are 0, the positive-phase voltage amplitude Vs has a unit value of 0 and a minimum value.
[0042]
FIG. 7 is an explanatory diagram showing a relationship between a distance from an accident point and an accident range in which protection stop can be determined. The characteristic shows that the residual value of the positive-phase voltage Vs at the time of a system fault changes depending on the fault type and the distance from the fault point. Here, the distance from the fault point is a relative distance of the system connection point to the distance to the system fault point.
[0043]
When a three-wire ground fault occurs, the phase voltage of the three wires drops to near zero at the point of the accident. At this time, the phase voltage may not become zero due to the short-circuit impedance, and a slight positive-phase voltage remains with zero as a lower limit. On the other hand, unless the protection of the AC / DC converter 2 is stopped, the converter output voltage Vc has a rated value (1 unit value = 1.0 pu) regardless of the accident. The connection point positive-phase voltage is determined by the proportional distribution of the total impedance value on the system side from the fault point to the connection point 8 and the impedance (impedance of the interconnection reactor) from the connection point 8 to the output voltage Vc. Therefore, the positive-phase voltage Vs observed at the connection point 8 has a smaller value (minimum value is 0 unit value) as the distance from the fault point to the connection point 8 is shorter, and a larger value (maximum value as the distance is longer). Is one unit value).
[0044]
Similarly, when a two-wire ground fault occurs, the phase voltage of the two wires drops to near zero at the point of the accident. At this time, the phase voltage may not become zero due to the short-circuit impedance, and a positive-phase voltage having a lower limit of 1/3 unit value remains at the fault point. The positive-phase voltage Vs observed at the connection point 8 has a smaller value (minimum value is 1/3 unit value) as the distance from the fault point is shorter, and a larger value (maximum value is 1 unit value) as the distance is longer. become. Also, when a one-line ground fault occurs, the phase voltage of one line drops to near zero at the point of accident. At this time, the phase voltage may not become zero due to the short-circuit impedance, and a positive-phase voltage having a lower limit of 2/3 unit value remains. The positive-phase voltage observed at the connection point has a smaller value (minimum value is 2/3 unit value) as the distance from the fault point to the connection point is shorter, and a larger value (maximum value is 1 unit value) as the distance is longer. )become.
[0045]
The accident estimation in the protection stop determination unit 5 is performed by observing how far the positive-phase voltage amplitude Vs of the connection point voltage decreases. That is, when Vs decreases to less than 1/3 unit value, it can be determined that a three-line ground fault has occurred regardless of the distance between the fault point and the connection point. If Vs falls from a value equal to or more than 1/3 unit value to a value less than 2/3 unit value, a two-wire ground fault occurred at a short distance or a three-wire ground fault occurred at a medium distance. Can be determined.
[0046]
According to the present embodiment, on the power storage system side, it is possible to substantially continue operation in most AC system accidents, and a part of the three-line ground fault in which the positive-phase voltage amplitude is less than 1/3 unit value is It is a target to be protected and stopped due to restrictions on the device side. If it is desired to stop protection of a three-line ground fault, if the threshold value LEVEL1 is temporarily set to 1/3 unit value, a short-range three-line ground fault can be detected, and a two-line ground fault can be erroneously detected. There is no detection. However, there are cases where a three-line ground fault that occurs at a medium distance cannot be detected. Therefore, if the set value is appropriately selected with the threshold value LEVEL1 set to a lower limit of 1/3 unit value and an upper limit of 2/3 unit value, a three-line ground fault at short distance and middle distance can be detected. It is to be noted that there is a possibility that a two-line ground fault at a short distance may be determined to be protection suspension.
[0047]
Next, another embodiment of the present invention will be described. FIG. 8 shows a configuration diagram of a power storage system according to the second embodiment. The same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. The difference between this embodiment and FIG. 1 is that an effective value detecting unit 7 for obtaining a line voltage effective value reduction rate Krms from the effective values of the line voltages V1, V2, and V3 at the connection point 8 is provided, and a protection stop determination unit. Reference numeral 5 'denotes that the input of the positive-phase voltage amplitude Vs and the line voltage effective value reduction rate Krms determines the necessity of protection stop while estimating the type of accident.
[0048]
The effective value detector 7 obtains effective values V1rms, V2rms, and V3rms from the line voltages V1, V2, and V3, and obtains a maximum value thereof: Vrms_max. Further, a line voltage effective value reduction rate Krms is obtained as an index for checking the degree of voltage reduction due to a system fault, and is passed to the protection stop determination unit 5 '. Formula 2 calculates the line voltage maximum value Vrms_max and the line voltage effective value reduction rate Krms.
[0049]
(Equation 2)
Vrms_max = max (V1rms, V2rms, V3rms)
Krms = V1rms / Vrms_max · V2rms / Vrms_max · V3rms / Vrms_max
FIG. 9 illustrates a determination flow of the protection stop determination unit according to the second embodiment. First, it is determined whether the positive-phase voltage amplitude Vs of the connection point voltage is smaller than a threshold value: LEVEL1 (s201). If it is less than 3, it is determined that a three-line ground fault has occurred (s202), and a stop signal is generated (s203). The threshold value: LEVEL1 is set arbitrarily with the positive-phase voltage amplitude of the connection point voltage when all three phases are normal as one unit value and the upper limit of 1 / unit value.
[0050]
If Vs is equal to or higher than LEVEL1, it is determined whether Vs is lower than a threshold value: LEVEL2 (s204). LEVEL2 is arbitrarily set with a 1/3 unit value as a lower limit. The set upper limit of LEVEL2 is 1.0 pu in theory, but is practically about 0.8 pu, which is the current operation standard of protection suspension.
[0051]
If it is less than LEVEL2, it is determined whether or not the line voltage effective value decrease rate Krms is equal to or more than the threshold value: LEVEL3 (s205). If the line voltage effective value reduction rate Krms is LEVEL 3 or more, it is determined that a three-wire ground fault has occurred, a stop signal is generated, and no stop signal is generated under other conditions. LEVEL3 is arbitrarily set with a 2/3 unit value as a lower limit.
[0052]
FIG. 10 is an explanatory diagram showing the relationship between the distance from the accident point and the accident range in which protection can be stopped in the second embodiment. (A) shows the relationship between the distance to the fault point and the residual value of the positive-sequence voltage, and (b) shows the relationship between the distance to the fault point and the rate of decrease in the effective voltage between lines.
[0053]
As in the case of the first embodiment, by observing how far the positive-phase voltage amplitude Vs of the connection point voltage decreases, a system fault situation can be estimated considerably. When Vs decreases to less than 1/3 unit value, it can be determined that a three-line ground fault has occurred regardless of the distance between the fault point and the connection point. When Vs falls from a value equal to or more than the 3 unit value to a value less than the 2 unit value, it is determined that a two-wire ground fault occurred at a short distance or a three-wire ground fault occurred at a medium distance. I can judge.
[0054]
When it is desired to stop the protection of the three-line ground fault, the protection threshold LEVEL1 is set to an arbitrary value having an upper limit of 1/3 unit value, so that the short-range three-line ground fault can be detected. At this time, the two-line ground fault is not erroneously detected.
[0055]
Furthermore, in order to protect and stop the three-line ground faults at medium and long distances, the determination is made by paying attention to the difference between the effective values of the line voltages. In the case of a three-line ground fault, the effective value of the line voltage at the fault point is substantially the same for all three signals. For this reason, the line-to-line voltage effective value reduction rate at the fault point is almost one, and the voltage effective value reduction rate is almost one regardless of the distance from the fault point.
[0056]
As described above, when the line voltage effective value reduction rate Krms is approximately in the range of 2/3 unit value or more, the possibility of the one-line ground fault and the two-line ground fault is eliminated, and the three-line ground fault or the accident is not caused. Can be considered Therefore, if the positive-sequence voltage amplitude is in the range of 1/3 unit value or more in step s204 of FIG. 9 and it cannot be determined whether a three-wire ground fault or a two-wire ground fault has occurred, furthermore, in step s205, If it is determined whether the line voltage effective value reduction rate is in the range of 2/3 unit value or more, it is possible to determine a three-line ground fault at a medium distance.
[0057]
Alternatively, in the case of a three-line ground fault, the fact that the effective value of the line voltage at the fault point is substantially the same for all three signals may be used. That is, if the positive-sequence voltage amplitude is in the range of 1/3 unit value or more in step S204 and it is not possible to determine whether a three-wire ground fault or a two-wire ground fault has occurred, furthermore, in step S205, three lines are detected. It is checked whether the effective values of the inter-voltages are all the same value.
[0058]
According to the second embodiment, a three-line ground fault at a medium distance, which could not be reliably determined from the positive-sequence voltage in the first embodiment, is added with a determination using the line voltage effective value decrease rate as an index. By doing so, accurate discrimination became possible. As a result, the system can be reliably stopped in the event of a three-line ground fault, which is a request from the system, and operation can be continued in other accidents that do not need to be stopped.
[0059]
FIG. 11 shows a simulation result of the first embodiment. (A) is a model system diagram used for the analysis, which is a system composed of four voltage classes of 275 kV, 154 kV, 66 kV, and 6.6 kV. The NaS battery system is connected to a C substation 6.6 kV bus. We mainly analyzed various ground faults on 275 kV and 154 kV transmission lines. In FIG. 11, (1) and (2) indicate the occurrence points of the ground fault.
[0060]
(B) shows the analysis result. In each fault, the minimum value of the line voltage at the interconnection point of the NaS battery system (min), the positive-sequence voltage at the connection point, the maximum value of the converter current (max), the operation continuation (に よ る), and the stop ( ×). Assuming that the operation stop standard is 80% of the line voltage rating as in the past, the operation stops at 2LG of the 154 kV transmission line and at 2LG and 3LG of the 275 kV transmission line. When the operation stop reference is 45% of the positive-sequence voltage of the present embodiment, the operation continuation range can be extended to 2LG of the 154 kV transmission line and 2LG of the 275 kV transmission line. Further, in each of these cases, the overcurrent of the converter current is suppressed within a specified value.
[0061]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, while using a positive-phase voltage phase for the control of the AC / DC converter of the electric power storage system interconnected with an AC system, the stable operation continuation range at the time of a system failure is extended, Since the occurrence is determined based on the positive-sequence voltage amplitude, the operability in the event of an accident is improved, and there is an effect that the protection stop of the system necessary for system request or overcurrent prevention can be reliably performed.
[0062]
Furthermore, in addition to the above, the judgment of an accident that requires protection stop is also made based on the situation where the effective values of the three voltage signals at the connection point have decreased, so it is limited to three-phase ground faults that really need to be stopped. Protection stop can be performed, and unnecessary stop can be avoided.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a power storage system according to a first embodiment of the present invention.
FIG. 2 is a configuration diagram of a power converter control unit.
FIG. 3 is a configuration diagram of a positive-phase voltage detection unit.
FIG. 4 is an explanatory diagram showing a vector relationship of a converter voltage command Vc * for the present embodiment and a conventional example.
FIG. 5 is a flowchart showing a determination process of a protection stop determination unit according to one embodiment.
FIG. 6 is an explanatory diagram showing a relationship between a voltage vector diagram and a positive-phase voltage amplitude in a system fault.
FIG. 7 is an explanatory diagram showing a distance from an accident point and an accident range in which protection stop can be determined in the first embodiment.
FIG. 8 is a configuration diagram of a power storage system according to a second embodiment of the present invention.
FIG. 9 is a flowchart illustrating a determination process of a protection stop determination unit according to the second embodiment.
FIG. 10 is an explanatory diagram showing a distance from an accident point and an accident range in which protection stop can be determined in the second embodiment.
FIG. 11 is an explanatory diagram of a simulation result performed on the first embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... AC system, 2 ... AC / DC power converter (main circuit), 3 ... Secondary battery, 4 ... Positive phase voltage detector, 5, 5 '... Protection stop determination part, 6 ... Power converter controller, 7 ... Effective value detector 111, active power command value generator 112, reactive power command value generator 113, active power controller 114, reactive power controller 115, active power reactive power detector 116, 3 / 2-phase number conversion section, 117: αβ / dq axis conversion section, 118: 3/2 phase number conversion section, 119: αβ / dq axis conversion section, 121: active current controller, 122: reactive current controller, 123, 124: adder, 125: dq / αβ axis converter, 126: 2/3 phase number converter, 127: PWM pulse generator, 211: 3/2 phase number converter, 212: frequency reference signal generation circuit, 213 216: Fourier transform operation circuit, 217: Basic frequency positive phase power Pressure real axis component operation circuit, 218 ... fundamental frequency positive phase voltage imaginary axis component operation circuit, 219 ... absolute value operation circuit, 220 ... phase difference operation circuit, 221 ... adder.

Claims (4)

三相交流系統に接続され、三相交流電力を直流電力に変換または直流電力を三相交流電力に変換する交直電力変換装置と、前記変換装置に接続された二次電池を備えた電力貯蔵システムにおいて、
前記交直電力変換装置から出力する交流電力を調整するために、前記交流系統との接続点における接続点電圧位相に基づき、接続点電圧ベクトルに対して前記交直電力変換装置の出力電圧ベクトルを制御する電力変換制御部と、
前記接続点における3つの電圧信号を入力して離散フーリエ変換を行い、変換した実軸成分および虚軸成分に基づいて、前記接続点電圧の正相分振幅および正相分位相を検出し、前記正相分位相を前記接続点電圧位相として前記電力変換制御部に出力する正相電圧検出部と、
前記正相電圧検出部から入力する前記正相分振幅に基づいて、前記電力貯蔵システムを停止すべき異常が前記三相交流系統に発生しているかを監視し、システム停止の必要な異常が発生していると判定した場合に、システム停止信号を出力する保護停止判定部を備え、
前記保護停止判定部は、前記三相交流系統の全相が正常な場合の前記正相分振幅を単位値として、1/3単位値を下限、2/3単位値を上限とするしきい値が任意に設定されていて、前記正相分振幅が前記しきい値未満となる場合に、前記システム停止の必要な異常が発生しているものと判定することを特徴とする電力貯蔵システム。
An AC / DC power conversion device connected to a three-phase AC system and converting three-phase AC power to DC power or converting DC power to three-phase AC power, and a power storage system including a secondary battery connected to the conversion device At
In order to adjust the AC power output from the AC / DC power converter, an output voltage vector of the AC / DC power converter is controlled with respect to a connection point voltage vector based on a connection point voltage phase at a connection point with the AC system. A power conversion control unit,
The discrete voltage Fourier transform is performed by inputting the three voltage signals at the connection point, and based on the converted real axis component and imaginary axis component, a positive phase component amplitude and a positive phase component phase of the connection point voltage are detected, A positive-phase voltage detection unit that outputs a positive-phase component phase to the power conversion control unit as the connection point voltage phase,
Based on the positive-sequence amplitude input from the positive-phase voltage detection unit, it is monitored whether an abnormality that should stop the power storage system has occurred in the three-phase AC system. A protection stop determination unit that outputs a system stop signal when it is determined that the
The protection stop judging section sets a threshold value having a 1/3 unit value as a lower limit and a 2/3 unit value as an upper limit, with the positive phase amplitude when all phases of the three-phase AC system are normal as a unit value. Is set arbitrarily, and when the amplitude of the positive-sequence component is smaller than the threshold value, it is determined that an abnormality that requires the system stoppage has occurred .
三相交流系統に接続され、三相交流電力を直流電力に変換または直流電力を三相交流電力に変換する交直電力変換装置と、前記変換装置に接続された二次電池を備えた電力貯蔵システムにおいて、
前記交直電力変換装置から出力する交流電力を調整するために、前記交流系統との接続点における接続点電圧位相に基づき、接続点電圧ベクトルに対して前記交直電力変換装置の出力電圧ベクトルを制御する電力変換制御部と、
前記接続点の3つの電圧信号を入力して離散フーリエ変換を行い、変換した実軸成分および虚軸成分に基づいて、前記接続点電圧の正相分振幅および正相分位相を検出し、前記正相分位相を前記接続点電圧位相として前記電力変換制御部に出力する正相電圧検出部と、
前記3つの電圧信号を入力し、3つの実効値を求める実効値検出部と、
前記正相電圧検出部から入力する前記正相分振幅と前記実効値検出部から入力した前記3つの実効値に基づいて、前記電力貯蔵システムを停止すべき異常が前記三相交流系統に発生しているかを監視し、システム停止の必要な異常が発生していると判定した場合に、システム停止信号を出力する保護停止判定部を備えていることを特徴とする電力貯蔵システム。
An AC / DC power conversion device connected to a three-phase AC system and converting three-phase AC power to DC power or converting DC power to three-phase AC power, and a power storage system including a secondary battery connected to the conversion device At
In order to adjust the AC power output from the AC / DC power converter, an output voltage vector of the AC / DC power converter is controlled with respect to a connection point voltage vector based on a connection point voltage phase at a connection point with the AC system. A power conversion control unit,
The discrete voltage Fourier transform is performed by inputting the three voltage signals at the connection point, and based on the converted real axis component and imaginary axis component, a positive phase component amplitude and a positive phase component phase of the connection point voltage are detected, A positive-phase voltage detection unit that outputs a positive-phase component phase to the power conversion control unit as the connection point voltage phase,
An effective value detection unit that receives the three voltage signals and obtains three effective values;
On the basis of the positive phase component amplitude input from the positive phase voltage detection unit and the three effective values input from the effective value detection unit, an abnormality in which the power storage system should be stopped occurs in the three-phase AC system. A protection stop determination unit that outputs a system stop signal when it is determined that an abnormality requiring a system stop has occurred.
請求項2において、
前記保護停止判定部は、前記三相交流系統の全相が正常な場合の前記正相分振幅を単位値として、1/3単位値を上限とする第1のしきい値と、1/3単位値を下限とする第2のしきい値が、それぞれ任意に設定されていて、前記正相分振幅の絶対値が前記第1のしきい値未満となる場合と、前記正相分振幅の絶対値が前記第1のしきい値以上で前記第2のしきい値未満となり、かつ、前記3つの実効値の全てが同じ値となる場合に、前記システム停止の必要な異常が発生しているものと判定することを特徴とする電力貯蔵システム。
In claim 2 ,
The protection stop determination unit includes: a first threshold having an upper limit of 1/3 unit value, with the amplitude of the positive-phase component as a unit value when all phases of the three-phase AC system are normal; A second threshold having a unit value as a lower limit is arbitrarily set, and the absolute value of the positive phase component amplitude is smaller than the first threshold value, If the absolute value is greater than or equal to the first threshold value and less than the second threshold value, and all of the three effective values have the same value, an abnormality that requires the system stoppage occurs. A power storage system characterized in that it is determined that there is a power storage system.
請求項3において、
前記実効値検出部は、前記3つの実効値のうちの最大値に対する各実効値の比率を算出し、その相乗による電圧実効値低下率を求め、
前記保護停止判定部は、前記三相交流系統の全相が正常な場合の前記正相分振幅を単位値として、1/3単位値を上限とする第1のしきい値と、1/3単位値を下限とする第2のしきい値と、2/3単位値を下限とする第3のしきい値が、それぞれ任意に設定されていて、前記正相分振幅の絶対値が前記第1のしきい値未満となる場合と、前記正相分振幅の絶対値が前記第1のしきい値以上で前記第2のしきい値未満となり、かつ、前記電圧実効値低下率が前記第3のしきい値以上となる場合に、前記システム停止の必要な異常が発生しているものと判定することを特徴とする電力貯蔵システム。
In claim 3 ,
The effective value detecting unit calculates a ratio of each effective value to a maximum value of the three effective values, and determines a voltage effective value decrease rate due to a synergistic effect thereof,
The protection stop determination unit includes: a first threshold having an upper limit of 1/3 unit value, with the amplitude of the positive-phase component as a unit value when all phases of the three-phase AC system are normal; A second threshold having a unit value as a lower limit and a third threshold having a 2/3 unit value as a lower limit are arbitrarily set, respectively, and the absolute value of the positive phase component amplitude is equal to the second threshold. When the absolute value of the positive phase component amplitude is equal to or greater than the first threshold and less than the second threshold, and the voltage effective value decrease rate is equal to or less than the first threshold. A power storage system, wherein when the threshold value is equal to or more than 3, it is determined that an abnormality that requires the system stoppage has occurred.
JP2000079300A 2000-03-16 2000-03-16 Power storage system Expired - Fee Related JP3580753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000079300A JP3580753B2 (en) 2000-03-16 2000-03-16 Power storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000079300A JP3580753B2 (en) 2000-03-16 2000-03-16 Power storage system

Publications (2)

Publication Number Publication Date
JP2001268798A JP2001268798A (en) 2001-09-28
JP3580753B2 true JP3580753B2 (en) 2004-10-27

Family

ID=18596568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000079300A Expired - Fee Related JP3580753B2 (en) 2000-03-16 2000-03-16 Power storage system

Country Status (1)

Country Link
JP (1) JP3580753B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4957099B2 (en) * 2006-07-07 2012-06-20 株式会社日立製作所 Power converter and control method thereof
JP5025295B2 (en) * 2007-03-20 2012-09-12 東芝三菱電機産業システム株式会社 Semiconductor power converter
JP2011083077A (en) * 2009-10-05 2011-04-21 Mitsubishi Electric Corp System for separation control of electric power system
DE102012110110B4 (en) * 2012-10-23 2016-12-08 Sma Solar Technology Ag Inverter, method for operating an inverter and power supply system with an inverter
JP6221684B2 (en) * 2013-11-25 2017-11-01 サンケン電気株式会社 Electric power leveling device
KR101643632B1 (en) * 2014-07-08 2016-07-29 국민대학교 산학협력단 Power generation system and apparatus for measuring grid voltage
CN105589012B (en) * 2015-07-27 2018-08-03 中国计量学院 Interconnection type micro-capacitance sensor unbalanced fault regional detection device and diagnostic method
WO2020204010A1 (en) 2019-03-29 2020-10-08 国立大学法人東北大学 Electric power converting device, and electricity generating system

Also Published As

Publication number Publication date
JP2001268798A (en) 2001-09-28

Similar Documents

Publication Publication Date Title
US7138728B2 (en) Anti-islanding techniques for distributed power generation
US7053626B2 (en) Device and method for monitoring the connection of an electrical supply unit
CN112440782B (en) Electric automobile and control method and device of charging system of electric automobile
US11239664B2 (en) Power conversion system
JP6030263B1 (en) Power interconnection device for grid connection and output current control method thereof
JP2008306776A (en) Wind power generation system and control method thereof
JP2006238573A (en) Method and apparatus for measuring insulation resistance of frequency converter
JP3580753B2 (en) Power storage system
US20160041567A1 (en) Gas Turbine Generation System
CN111884171B (en) Single-phase fault line reclosing method and system of alternating current-direct current system
WO2021181629A1 (en) Power conversion device
JP4086178B2 (en) Phase loss detection method for motor control device
JP2002238163A (en) Power converter
JP2004096871A (en) Linkage protection system for distributed power supply equipment
JP3358965B2 (en) Power converter
KR101770987B1 (en) Inverter fault diagnosis apparatus and the method thereof
JP2010081798A (en) Controller for system-interconnected power converting system
US20230155371A1 (en) Controlling an inverter to emulate synchronous generator under fault conditions
CN110244167B (en) Method for detecting short-circuit fault of three-phase inverter
JP2002320331A (en) Control equipment of interconnected power converting system
JP2016032325A (en) Power conversion device for system interconnection
US20230261587A1 (en) Power conversion device
WO2022269929A1 (en) Control device, power conversion device, and malfunction detection method for ac capacitor
JP7383208B1 (en) power converter
Zdiri et al. Open-circuit fault diagnosis in four-switch three-phase inverter fed induction motor drive

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040720

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees