JP3579921B2 - Manufacturing method of optical anisotropic body - Google Patents

Manufacturing method of optical anisotropic body Download PDF

Info

Publication number
JP3579921B2
JP3579921B2 JP15457494A JP15457494A JP3579921B2 JP 3579921 B2 JP3579921 B2 JP 3579921B2 JP 15457494 A JP15457494 A JP 15457494A JP 15457494 A JP15457494 A JP 15457494A JP 3579921 B2 JP3579921 B2 JP 3579921B2
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
crystal composition
polymerizable liquid
monofunctional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15457494A
Other languages
Japanese (ja)
Other versions
JPH0821915A (en
Inventor
浩史 長谷部
晴義 高津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP15457494A priority Critical patent/JP3579921B2/en
Priority to DE69419120T priority patent/DE69419120T2/en
Priority to EP94120614A priority patent/EP0659865B1/en
Publication of JPH0821915A publication Critical patent/JPH0821915A/en
Priority to US08/657,526 priority patent/US5863457A/en
Priority to HK98109469A priority patent/HK1008679A1/en
Application granted granted Critical
Publication of JP3579921B2 publication Critical patent/JP3579921B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、液晶表示素子の視角依存性を解消又は軽減するために有用な光学異方体及びこれを用いた光学異方性を有する基板の製造方法に関する。
【0002】
【従来の技術】
液晶ディスプレイ素子の視角依存性を軽減するために、厚み方向の屈折率が面内の屈折率より大きなフィルム(光学異方体)を補償板として用いる手段が知られている(M.Akatsuka等、Japan Display ’89、336項、1989年)。このような光学異方体として、液晶性高分子を用いたものが特開平5−27235号公報及び特開平5−34678号公報に開示されている。しかしながら、これらの光学異方体は液晶性高分子の垂直配向構造をガラス状態で固定化しており、液晶性高分子のガラス転移点を越える温度では、配向構造が破壊されてしまうため使用温度がガラス転移点によって制限されるという欠点があった。また高分子液晶の粘度は、低分子液晶の粘度と比較して高く、垂直配向状態を得るのに時間がかかり、生産性が落ちるという欠点もあり、これは大面積の補償板等の光学異方体を得ようとするほど、また液晶性高分子のガラス転移点を高く設計するほど、この欠点は顕在化してしまっていた。
【0003】
これらの問題を解決するために本発明者等は、室温において液晶性を有する重合性液晶組成物を、垂直配向処理を施した基板間に担持させて垂直配向させた後に、光重合させて製造される光学異方性を有する基板を先に提案した。
【0004】
しかし、この技術によって均一な垂直配向状態を得るのにかかる時間が短縮されたものの、基板表面に垂直配向処理を施さなければならないという煩わしさがあった。
【0005】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、重合性液晶組成物を基板面に対して垂直配向させる手段として、従来のような垂直配向処理によらず、より容易に得られる製造方法を提供することにあり、これにより内部に垂直配向構造を有する光学異方体の製造効率をより向上させることにある。
【0006】
【課題を解決するための手段】
本発明者等は上記課題を解決する手段について鋭意検討した結果、かかる課題が重合性液晶組成物液晶の垂直配向を電圧を印加することによって解決できることを見いだし、本発明を提供するに到った。
【0007】
即ち、本発明は第1の発明として、(1)導電層を有する第1の透明性基板と、導電性を有する第2の基板の間に重合性液晶組成物を介在させる第1工程、
(2)前記2枚の基板間に電圧を印加しながら、第1の透明性基板の側から光を照射する第2工程、及び
(3)第1の透明性基板及び第2の基板を剥離する第3工程
を有する光学異方体の製造方法を提供する。
【0008】
また、本発明は第2の発明として、(1)導電層を有する第1の透明性基板と、導電性を有する第2の基板の間に重合性液晶組成物を介在させる第1工程、
(2)前記2枚の基板間に電圧を印加しながら、第1の透明性基板の側から光を照射する第2工程、及び
(3)第2の基板を剥離する第3工程
を有する光学異方性を有する基板の製造方法を提供する。
【0009】
更に、本発明は第3の発明として、(1)導電層を有する2枚の透明性基板の間に重合性液晶組成物を介在させる第1工程、及び
(2)前記2枚の基板間に電圧を印加しながら、第1の透明性基板の側から光を照射する第2工程
を有する光学異方性を有する基板の製造方法を提供する。
【0010】
以下、第1の発明、第2の発明及び第3の発明を更に詳細に説明する。
本発明で使用する第1の透明性基板としては、例えば、導電層を有するガラスあるいはプラスチック基板が好ましく、具体的には、ITO付きガラス基板、ITO付きプラスチック基板を挙げることができる。これらの基板は導電性を有していないガラスあるいはプラスチック基板上に、蒸着、メッキ、印刷等の手段を用いることによって容易に得ることができるが、市販のITO付き基板を用いることもできる。
【0011】
本発明で使用する第2の基板としては、それ自体が導電性を有する基板であれば、透明性を有するものであっても、不透明なものであってもよく、また有機材料、無機材料を問わずに使用することができる。具体的には、無機材料としては、例えば、銅、金、銀、錫、鉛、鉄、ニッケル、アルミニウム、ITO(インジウムチンオキサイド)等の金属又は金属酸化物等を挙げることができ、有機材料としては導電性ゴム、導電性プラスチック等を挙げることができる。
【0012】
本発明で使用する重合性液晶組成物としては、液晶状態での光重合の際の意図しない熱重合の誘起を避け、均一な配向状態を固定するために、少なくとも2つの6員環を有する液晶性骨格を部分構造として有する環状アルコール又はフェノール又は芳香族ヒドロキシ化合物のアクリル酸又はメタクリル酸エステルである第1の単官能アクリレート又は第1の単官能メタクリレートを含有し、液晶相を示すことを特徴とする重合性液晶組成物を用いることが好ましい。このような単官能アクリレート又は単官能メタクリレートとしては、例えば、一般式(I)
【0013】
【化5】

Figure 0003579921
【0014】
(式中、Xは水素原子又はメチル基を表わし、6員環A、B及びCはそれぞれ独立的に、
【0015】
【化6】
Figure 0003579921
【0016】
を表わし、nは0又は1の整数を表わし、mは1から4の整数を表わし、Y及びYはそれぞれ独立的に、単結合、−CHCH−、−CHO−、−OCH−、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH−、−CHCHCHO−、−OCHCHCH−、−CH=CHCHCH−又は−CHCHCH=CH−を表わし、Yは水素原子、ハロゲン原子、シアノ基、炭素原子数1〜20のアルキル基、アルコキシ基、アルケニル基又はアルケニルオキシ基を表わす。)で表わされる化合物を挙げることができる。その中でも特に、上記一般式(I)において、6員環A、B及びCはそれぞれ独立的に、
【0017】
【化7】
Figure 0003579921
【0018】
を表わし、mは1又は2の整数を表わし、Y及びYはそれぞれ独立的に、単結合又は−C≡C−を表わし、Yはハロゲン原子、シアノ基、炭素原子数1〜20のアルキル基又はアルコキシ基を表わす化合物が好ましい。
【0019】
このような化合物の代表的なものの例と、その相転移温度を示すが、本発明で使用することができる単官能アクリレート又は単官能メタクリレート化合物は、これらの化合物に限定されるものではない。
【0020】
【化8】
Figure 0003579921
【0021】
【化9】
Figure 0003579921
【0022】
(上記中、シクロヘキサン環はトランスシクロヘキサン環を表わし、また相転移温度スキームのCは結晶相、Nはネマチック相、Sはスメクチック相、Iは等方性液体相を表わし、数字は相転移温度を表わす。)
また、本発明で使用する重合性液晶組成物には、これまでに知られている液晶性骨格を部分構造として有する第2の単官能アクリレート又は、第2の単官能メタクリレート化合物を添加してもよい。このとき、得られる重合性液晶組成物は、室温においてエナンチオトロピックなネマチック液晶相を示すことが望ましい。ここで用いることができる単官能アクリレート又は単官能メタクリレートとしては、例えば一般式(II)
【0023】
【化10】
Figure 0003579921
【0024】
(式中、Rは水素原子又はメチル基を表わし、pは2〜12の整数を表わし、Yは単結合又は−COO−を表わし、Yはシアノ基、炭素原子数1〜6のアルキル基、アルコキシ基又はフェニル基を表わす。)で表わされる化合物を挙げることができ、具体的には以下の化合物を挙げることができる。
【0025】
【化11】
Figure 0003579921
【0026】
(式中、R、R及びRはそれぞれ独立的に、水素原子又はメチル基を表わし、j、k及びlはそれぞれ独立的に、2〜12の整数を表わし、Rは炭素原子数1〜6のアルキル基、アルコキシ基又はフェニル基を表わす。)
このように、本発明で使用する重合性液晶組成物は、第1の単官能(メタ)アクリレートのみを含有しても良く、あるいは第2の単官能(メタ)アクリレートのみを含有しても良く、第1及び第2の単官能(メタ)アクリレートを併用しても良い。
【0027】
重合性液晶組成物として第1及び第2の単官能(メタ)アクリレートを併用する場合は、第2の単官能(メタ)アクリレートの含有量は、第1の単官能(メタ)アクリレートに対して50重量%以下であることが好ましい。これは第2の単官能(メタ)アクリレートの含有量が増えるに従って、得られる光学異方体の機械的強度及び耐熱性が劣る傾向があるからである。
【0028】
また本発明で用いる重合性液晶組成物の誘電率異方性は正であることが必須である。
また本発明で用いる重合性液晶組成物には重合性官能基を有していない液晶化合物を、重合性液晶組成物中の総量が10重量%を超えない範囲で添加してもよい。重合性官能基を有していない液晶化合物としてはネマチック液晶化合物、スメクチック液晶化合物、コレステリック液晶化合物等の通常この技術分野で液晶と認識されるものであれば特に制限なく用いることができる。しかしながらその添加量が増えるに従い、得られる光学異方体の機械的強度が低下する傾向にあるので、添加量を適宜調整する必要がある。
【0029】
また、重合性官能基を有しているが、液晶性を示さない化合物も添加することができる。このような化合物としては、通常この技術分野で高分子形成性モノマーあるいは高分子形成性オリゴマーとして認識されるものであればよいが、アクリレート化合物が特に好ましい。
【0030】
これらの液晶化合物又は重合性化合物は適宜選択して組み合わせて添加してもよいが、少なくとも得られる重合性液晶組成物の液晶性が失われないように、各成分の添加量を調整することが必要である。
【0031】
また、本発明で使用する重合性液晶組成物には、その重合反応性を向上させることを目的として、光重合開始剤や増感剤を添加してもよい。ここで、使用することができる光重合開始剤としては、例えば、公知のベンゾインエーテル類、ベンゾフェノン類、アセトフェノン類、ベンジルケタール類等を挙げることができる。その添加量は、重合性液晶組成物に対して10重量%以下が好ましく、5重量%以下が特に好ましい。
【0032】
更に、本発明で使用する重合性液晶組成物には、その保存安定性を向上させるために、安定剤を添加してもよい。ここで使用することができる安定剤としては公知のヒドロキノン、ヒドロキノンモノアルキルエーテル類、第三ブチルカテコール等を挙げることができる。その安定剤の添加量は0.05重量%以下が好ましい。
【0033】
本発明の光学異方体及び光学異方性を有する基板の製造方法は、上述の導電層を有する第1の透明性基板と、導電性を有する第2の基板を電圧印加可能なように配置し、この2枚の基板間に前述の重合性液晶組成物を介在させる。このとき、2枚の基板間の距離は、製造する光学異方体の用途によって適宜調整されるが、0.1〜100ミクロンの範囲が好ましく、特に0.5〜50ミクロンの範囲が好ましい。
【0034】
次いで、2枚の基板間に電圧を印加しながら、第1の透明性基板の側から光を照射する。基板間に電圧を印加する手段としては、通常の液晶表示素子に使用される駆動手段が使用でき、好ましい印加電圧は重合性液晶組成物の誘電率異方性や基板間の距離によって適宜調整されるが、0.5V以上の交流電圧が好ましい。
【0035】
光重合は紫外線又は電子線等のエネルギー線を、前述の2枚の基板間に担持された重合性液晶組成物に照射することによって行うのが好ましく、従って少なくとも照射面側の基板は、適当な透明性が与えられていなければならない。重合の際の温度は、重合性液晶組成物の液晶状態が保持される温度でなければならないが、意図しない熱重合の誘起を避ける意味から、できるだけ室温に近い温度で重合させることが好ましい。
【0036】
次いで、第1の発明においては、光学異方体を製造するために、第1の透明性基板及び第2の基板を剥離することにより、容易に得ることができる。第2の発明においては、光学異方性を有する基板を製造するために、第2の基板を剥離することにより、容易に得ることができる。第3の発明においては、第1及び第2の基板を共に剥離せずに、光学異方性を有する基板を容易に得ることができる。
【0037】
このとき、基板を容易に剥離するためには、基板に良好な剥離性を付与するために、基板表面に有機材料の薄膜等を形成することが好ましい。このような有機材料として、ポリテトラフルオロエチレン等のフッ素化ポリマーやポリビニルアルコールと1,8−オクタンジオール等のジオール化合物との混合物、及びレシチン等を挙げることができる。また基板と接していない光学異方体の表面を保護する目的で、熱硬化性もしくは光硬化性の樹脂を用いて表面に保護層を形成してもよい。
【0038】
このような製造方法により製造される光学異方体及び光学異方性を有する基板は、重合性液晶組成物の垂直配向を基板の垂直配向処理によらず得ることができ、内部に垂直配向構造を有し、厚み方向の屈折率が面内の屈折率より大きい、フィルム状の光学異方体及び光学異方性を有する基板を効率よく製造することができる。
【0039】
【実施例】
以下、本発明の実施例を示し、本発明を更に具体的に説明する。しかしながら、本発明はこれらの実施例に限定されるものではない。
(実施例1)
式(a)
【0040】
【化12】
Figure 0003579921
【0041】
の化合物47.5重量部及び式(d)
【0042】
【化13】
Figure 0003579921
【0043】
の化合物47.5重量部及び式(g)
【0044】
【化14】
Figure 0003579921
【0045】
の化合物5重量部からなる重合性液晶組成物(A)を調整した。得られた組成物は室温(25℃)でエナンチオトロピックなネマチック相をしめし、ネマチック相から等方性液体相への転移温度は52℃であった。また25℃におけるn(異常光屈折率)は1.67、n(常光屈折率)は1.51、誘電率異方性は+0.7であった。この重合性液晶組成物(A)99重量部及び光重合開始剤「IRG−651」(チバガイギー社製)1重量部からなる重合性液晶組成物(B)を得た。次に2枚のITO透明電極付きガラス基板を、10ミクロンの間隔をもってITO面が内側になるように対向させて、この基板間に重合性液晶組成物(B)を挟持させた。この2枚のITO透明電極付きガラス基板間に挟持された重合性液晶組成物を偏光顕微鏡で観察したところ、配向状態は均一ではなく、ランダム配向状態であった。このランダム配向状態の重合性液晶組成物を挟持している2枚のITO電極間に電圧が50Vrmsの周波数1kHzの正弦波を印加したところ、重合性液晶組成物は垂直配向するのがコノスコープ像の観察により確認できた。電圧印加により重合性液晶組成物が垂直配向した状態のまま、室温において紫外線ランプ(UVP社製、UVGL−25)を用いて160mJ/cmの光量の紫外線を照射して、重合性液晶組成物を光重合し硬化させた。このようにして得られた2枚のITO透明電極付きガラス基板間に挟持された光学異方体をコノスコープ観察したところ、重合前の垂直配向がそのまま固定化されていた。またこの光学異方体を2枚の直交する偏光板の間に置いて観察したところ、均一に暗視野になっており、均一な垂直配向が得られていることを確認した。以上のことから、厚み方向の屈折率が面内の屈折率より大きく且つ均一性に優れた光学異方体が得られたことは明らかである。またこの光学異方体を120℃の温度に保っても、均一な垂直配向は維持されており、耐熱性も何等問題なかった。
(実施例2)
剥離剤として卵黄レシチンの0.1重量%エタノール溶液を塗布した後に乾燥させたITO透明電極付きガラス基板と何も塗布していないITO透明電極付きガラス基板を、10ミクロンの間隔をもってITO面を内側になるように対向させてこの間に実施例1で調製した重合性液晶組成物(B)を挟持させた。この2枚のITO透明電極付きガラス基板間に挟持された重合性液晶組成物を偏光顕微鏡で観察したところ、配向状態は均一ではなく、ランダム配向状態であった。このランダム配向状態の重合性液晶組成物を挟持しているITO電極間に電圧が50Vrmsの周波数1kHzの正弦波を印加したところ、重合性液晶組成物は垂直配向するのがコノスコープ像の観察により確認できた。このように電圧印加により重合性液晶組成物が垂直配向した状態で、室温において紫外線ランプ(UVP社製、UVGL−25)を用いて160mJ/cmの光量の紫外線を照射して、重合性液晶組成物を光重合し硬化させた。次に卵黄レシチンを塗布した基板を剥離して、ITO透明電極付きガラス基板上に担持された、光学異方性を有する基板を得た。このようにして得られた光学異方性を有する基板をコノスコープ観察したところ、重合前の垂直配向がそのまま固定化されていた。またこの光学異方性を有する基板を2枚の直交する偏光板の間に置いて観察したところ、均一に暗視野になっており、均一な垂直配向が得られていることを確認した。以上のことから、厚み方向の屈折率が面内の屈折率より大きく且つ均一性に優れた光学異方性を有する基板が得られたことは明らかである。またこの光学異方性を有する基板を120℃の温度に保っても、均一な垂直配向は維持されており、耐熱性も何等問題なかった。
(実施例3)
実施例2において、ITO透明電極付きガラス基板に代えて、厚さ1mmのアルミニウム板を用いた以外は実施例2と同様にして、重合性液晶組成物を光重合し硬化させた。次にアルミニウム板を剥離して、ITO透明電極付きガラス基板上に担持された、光学異方性を有する基板を得た。このようにして得られた光学異方性を有する基板をコノスコープ観察したところ、重合前の垂直配向がそのまま固定化されていた。またこの光学異方性を有する基板を2枚の直交する偏光板の間に置いて観察したところ、均一に暗視野になっており、均一な垂直配向が得られていることを確認した。以上のことから、厚み方向の屈折率が面内の屈折率より大きく且つ均一性に優れた光学異方性を有する基板が得られたことは明らかである。またこの光学異方体を120℃の温度に保っても、均一な垂直配向は維持されており、耐熱性も何等問題なかった。
(実施例4)
剥離剤として卵黄レシチンの0.1重量%エタノール溶液を塗布した後に乾燥させたITO透明電極付きガラス基板と何も塗布していないITO透明電極付きガラス基板を、20ミクロンの間隔をもってITO面を内側になるように対向させてこの間に実施例1で調製した重合性液晶組成物(B)を挟持させた。この2枚のITO透明電極付きガラス基板間に挟持された重合性液晶組成物を偏光顕微鏡で観察したところ、配向状態は均一ではなく、ランダム配向状態であった。このランダム配向状態の重合性液晶組成物を挟持しているITO電極間に電圧が100Vrmsの周波数1kHzの正弦波を印加したところ、重合性液晶組成物は垂直配向するのがコノスコープ像の観察により確認できた。このように電圧印加により重合性液晶組成物が垂直配向した状態で、室温において紫外線ランプ(UVP社製、UVGL−25)を用いて160mJ/cmの光量の紫外線を照射して、重合性液晶組成物を光重合し硬化させた。次に卵黄レシチンを塗布した基板を剥離して、ITO透明電極付きガラス基板上に担持された、光学異方性を有する基板を得た。更にこの光学異方性を有する基板を蒸留水に30分間浸した後に、更にITO透明電極付きガラス基板を光学異方体から剥離して、独立したフィルム状の光学異方体を得た。このようにして得られた光学異方体をコノスコープ観察したところ、重合前の垂直配向がそのまま固定化されていた。またこの光学異方体を2枚の直交する偏光板の間に置いて観察したところ、均一に暗視野になっており、均一な垂直配向が得られていることを確認した。以上のことから、厚み方向の屈折率が面内の屈折率より大きく且つ均一性に優れた光学異方体が得られたのは明かである。またこの光学異方体を120℃の温度に保っても、均一な垂直配向は維持されており、耐熱性も何等問題なかった。
【0046】
【発明の効果】
本発明の光学異方体及び光学異方性を有する基板の製造方法は、光照射時に電圧を印加することにより、従来のような煩わしい基板の配向処理を施す場合に比べて、重合性液晶組成物を容易に垂直配向させることができる。従って、本発明の製造方法は、厚み方向の屈折率が面内の屈折率より大きなフィルム状の光学異方体及び光学異方性を有する基板の製造方法として、極めて有用である。[0001]
[Industrial applications]
The present invention relates to an optically anisotropic material useful for eliminating or reducing the viewing angle dependence of a liquid crystal display element, and a method for manufacturing a substrate having optical anisotropy using the optically anisotropic material.
[0002]
[Prior art]
In order to reduce the viewing angle dependency of a liquid crystal display element, a means using a film (optically anisotropic body) having a refractive index in a thickness direction larger than an in-plane refractive index as a compensator is known (M. Akatsuka et al. Japan Display '89, 336, 1989). As such an optically anisotropic body, one using a liquid crystalline polymer is disclosed in JP-A-5-27235 and JP-A-5-34678. However, these optically anisotropic materials fix the vertical alignment structure of the liquid crystalline polymer in a glassy state, and if the temperature exceeds the glass transition point of the liquid crystalline polymer, the alignment structure is destroyed. There was the disadvantage that it was limited by the glass transition point. In addition, the viscosity of high-molecular liquid crystals is higher than that of low-molecular liquid crystals, and it takes time to obtain a vertical alignment state, which has the disadvantage of reducing productivity. This drawback has become more apparent as the shape of the liquid crystal polymer is designed to be higher, as the shape of the liquid crystal polymer is increased.
[0003]
In order to solve these problems, the present inventors have prepared a polymerizable liquid crystal composition having liquid crystallinity at room temperature, by supporting the polymerizable liquid crystal composition between substrates subjected to a vertical alignment treatment, and then vertically polymerizing the composition. A substrate having optical anisotropy has been proposed earlier.
[0004]
However, although the time required to obtain a uniform vertical alignment state has been reduced by this technique, there has been the inconvenience that the vertical alignment processing must be performed on the substrate surface.
[0005]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a production method which can be more easily obtained as a means for vertically aligning a polymerizable liquid crystal composition with respect to a substrate surface, without using a conventional vertical alignment treatment. Accordingly, the object is to further improve the production efficiency of an optically anisotropic body having a vertical alignment structure inside.
[0006]
[Means for Solving the Problems]
The present inventors diligently studied means for solving the above problems, and as a result, found that such problems can be solved by applying a voltage to the vertical alignment of the polymerizable liquid crystal composition liquid crystal, and came to provide the present invention. .
[0007]
That is, the present invention provides, as a first invention, (1) a first step of interposing a polymerizable liquid crystal composition between a first transparent substrate having a conductive layer and a second substrate having conductivity;
(2) a second step of irradiating light from the side of the first transparent substrate while applying a voltage between the two substrates, and (3) peeling off the first transparent substrate and the second substrate. And a method for producing an optically anisotropic body having a third step.
[0008]
Further, the present invention provides, as a second invention, (1) a first step of interposing a polymerizable liquid crystal composition between a first transparent substrate having a conductive layer and a second substrate having conductivity;
(2) an optical system including a second step of irradiating light from the side of the first transparent substrate while applying a voltage between the two substrates, and (3) a third step of separating the second substrate. Provided is a method for manufacturing a substrate having anisotropy.
[0009]
Furthermore, the present invention provides, as a third invention, (1) a first step of interposing a polymerizable liquid crystal composition between two transparent substrates having a conductive layer, and (2) a step between the two substrates. Provided is a method for manufacturing a substrate having optical anisotropy, comprising a second step of irradiating light from the side of a first transparent substrate while applying a voltage.
[0010]
Hereinafter, the first invention, the second invention, and the third invention will be described in more detail.
As the first transparent substrate used in the present invention, for example, a glass or plastic substrate having a conductive layer is preferable, and specific examples include a glass substrate with ITO and a plastic substrate with ITO. These substrates can be easily obtained by using means such as vapor deposition, plating, and printing on a non-conductive glass or plastic substrate, but commercially available substrates with ITO can also be used.
[0011]
The second substrate used in the present invention may be a transparent substrate or an opaque substrate as long as the substrate itself has conductivity, and may be an organic material or an inorganic material. It can be used regardless. Specifically, examples of the inorganic material include metals such as copper, gold, silver, tin, lead, iron, nickel, aluminum, and ITO (indium tin oxide), and metal oxides. Examples thereof include conductive rubber and conductive plastic.
[0012]
The polymerizable liquid crystal composition used in the present invention includes a liquid crystal having at least two 6-membered rings in order to avoid unintended thermal polymerization during photopolymerization in a liquid crystal state and to fix a uniform alignment state. A first monofunctional acrylate or a first monofunctional methacrylate, which is an acrylic acid or methacrylic acid ester of a cyclic alcohol or phenol or an aromatic hydroxy compound having a functional skeleton as a partial structure, and exhibits a liquid crystal phase. It is preferable to use a polymerizable liquid crystal composition. Examples of such a monofunctional acrylate or monofunctional methacrylate include, for example, those represented by the general formula (I)
[0013]
Embedded image
Figure 0003579921
[0014]
(Wherein X represents a hydrogen atom or a methyl group, and the 6-membered rings A, B and C each independently represent
[0015]
Embedded image
Figure 0003579921
[0016]
And n represents an integer of 0 or 1, m represents an integer of 1 to 4, Y 1 and Y 2 each independently represent a single bond, —CH 2 CH 2 —, —CH 2 O—, -OCH 2 -, - COO -, - OCO -, - C≡C -, - CH = CH -, - CF = CF -, - (CH 2) 4 -, - CH 2 CH 2 CH 2 O -, - OCH 2 CH 2 CH 2 —, —CH 2 CHCHCH 2 CH 2 — or —CH 2 CH 2 CH = CH—, wherein Y 3 is a hydrogen atom, a halogen atom, a cyano group, or an alkyl having 1 to 20 carbon atoms. Represents a group, an alkoxy group, an alkenyl group or an alkenyloxy group. )). Among them, particularly, in the above general formula (I), the 6-membered rings A, B and C are each independently
[0017]
Embedded image
Figure 0003579921
[0018]
And m represents an integer of 1 or 2, Y 1 and Y 2 each independently represent a single bond or —C≡C—, and Y 3 represents a halogen atom, a cyano group, or a carbon atom having 1 to 20 carbon atoms. The compound which represents an alkyl group or an alkoxy group is preferred.
[0019]
Representative examples of such compounds and their phase transition temperatures are shown, but the monofunctional acrylate or methacrylate compounds that can be used in the present invention are not limited to these compounds.
[0020]
Embedded image
Figure 0003579921
[0021]
Embedded image
Figure 0003579921
[0022]
(In the above, the cyclohexane ring represents a transcyclohexane ring, and in the phase transition temperature scheme, C represents a crystal phase, N represents a nematic phase, S represents a smectic phase, and I represents an isotropic liquid phase, and a number represents a phase transition temperature. Show.)
Further, to the polymerizable liquid crystal composition used in the present invention, a second monofunctional acrylate or a second monofunctional methacrylate compound having a liquid crystal skeleton known as a partial structure as a partial structure may be added. Good. At this time, the resulting polymerizable liquid crystal composition desirably exhibits an enantiomeric nematic liquid crystal phase at room temperature. Examples of the monofunctional acrylate or monofunctional methacrylate that can be used here include, for example, those represented by the general formula (II)
[0023]
Embedded image
Figure 0003579921
[0024]
(Wherein, R represents a hydrogen atom or a methyl group, p represents an integer of 2 to 12, Y 4 represents a single bond or —COO—, Y 5 represents a cyano group, or an alkyl having 1 to 6 carbon atoms. Group, an alkoxy group or a phenyl group). Specific examples thereof include the following compounds.
[0025]
Embedded image
Figure 0003579921
[0026]
(Wherein, R 1 , R 2 and R 3 each independently represent a hydrogen atom or a methyl group, j, k and l each independently represent an integer of 2 to 12, and R 4 represents a carbon atom Represents an alkyl group, an alkoxy group or a phenyl group represented by Formulas 1 to 6.)
Thus, the polymerizable liquid crystal composition used in the present invention may contain only the first monofunctional (meth) acrylate, or may contain only the second monofunctional (meth) acrylate. , First and second monofunctional (meth) acrylates may be used in combination.
[0027]
When the first and second monofunctional (meth) acrylates are used together as the polymerizable liquid crystal composition, the content of the second monofunctional (meth) acrylate is based on the first monofunctional (meth) acrylate. It is preferably at most 50% by weight. This is because as the content of the second monofunctional (meth) acrylate increases, the mechanical strength and heat resistance of the obtained optically anisotropic material tend to be inferior.
[0028]
Further, it is essential that the polymerizable liquid crystal composition used in the present invention has a positive dielectric anisotropy.
Further, a liquid crystal compound having no polymerizable functional group may be added to the polymerizable liquid crystal composition used in the present invention in a range where the total amount in the polymerizable liquid crystal composition does not exceed 10% by weight. As the liquid crystal compound having no polymerizable functional group, a nematic liquid crystal compound, a smectic liquid crystal compound, a cholesteric liquid crystal compound and the like can be used without particular limitation as long as they are generally recognized as liquid crystals in this technical field. However, as the addition amount increases, the mechanical strength of the obtained optically anisotropic body tends to decrease. Therefore, it is necessary to appropriately adjust the addition amount.
[0029]
In addition, a compound having a polymerizable functional group but not exhibiting liquid crystallinity can be added. As such a compound, any compound which is generally recognized as a polymer-forming monomer or a polymer-forming oligomer in this technical field may be used, and an acrylate compound is particularly preferable.
[0030]
These liquid crystal compounds or polymerizable compounds may be appropriately selected and added in combination.However, at least the amount of each component added may be adjusted so that the liquid crystallinity of the obtained polymerizable liquid crystal composition is not lost. is necessary.
[0031]
Further, a photopolymerization initiator or a sensitizer may be added to the polymerizable liquid crystal composition used in the present invention for the purpose of improving the polymerization reactivity. Here, examples of the photopolymerization initiator that can be used include known benzoin ethers, benzophenones, acetophenones, and benzyl ketals. The addition amount is preferably 10% by weight or less, particularly preferably 5% by weight or less, based on the polymerizable liquid crystal composition.
[0032]
Further, a stabilizer may be added to the polymerizable liquid crystal composition used in the present invention in order to improve the storage stability. Examples of the stabilizer that can be used here include known hydroquinone, hydroquinone monoalkyl ethers, and tert-butylcatechol. The amount of the stabilizer is preferably 0.05% by weight or less.
[0033]
In the method for manufacturing a substrate having an optical anisotropic body and an optical anisotropy according to the present invention, a first transparent substrate having the above-described conductive layer and a second substrate having conductivity are arranged so that a voltage can be applied. Then, the aforementioned polymerizable liquid crystal composition is interposed between the two substrates. At this time, the distance between the two substrates is appropriately adjusted depending on the use of the optically anisotropic body to be manufactured, but is preferably in the range of 0.1 to 100 microns, and particularly preferably in the range of 0.5 to 50 microns.
[0034]
Next, light is irradiated from the side of the first transparent substrate while a voltage is applied between the two substrates. As a means for applying a voltage between the substrates, a driving means used for a normal liquid crystal display element can be used, and a preferable applied voltage is appropriately adjusted depending on the dielectric anisotropy of the polymerizable liquid crystal composition and the distance between the substrates. However, an AC voltage of 0.5 V or more is preferable.
[0035]
The photopolymerization is preferably performed by irradiating an energy ray such as an ultraviolet ray or an electron beam to the polymerizable liquid crystal composition supported between the two substrates described above. Transparency must be provided. The temperature at the time of the polymerization must be a temperature at which the liquid crystal state of the polymerizable liquid crystal composition is maintained, but it is preferable to perform the polymerization at a temperature as close to room temperature as possible from the viewpoint of avoiding unintended thermal polymerization.
[0036]
Next, in the first invention, in order to manufacture an optically anisotropic body, the optically anisotropic body can be easily obtained by peeling the first transparent substrate and the second substrate. In the second invention, in order to manufacture a substrate having optical anisotropy, it can be easily obtained by peeling the second substrate. In the third invention, a substrate having optical anisotropy can be easily obtained without peeling off the first and second substrates together.
[0037]
At this time, in order to easily peel the substrate, it is preferable to form a thin film of an organic material or the like on the surface of the substrate in order to impart good peelability to the substrate. Examples of such an organic material include a fluorinated polymer such as polytetrafluoroethylene, a mixture of polyvinyl alcohol and a diol compound such as 1,8-octanediol, and lecithin. In order to protect the surface of the optically anisotropic body not in contact with the substrate, a protective layer may be formed on the surface using a thermosetting or photocurable resin.
[0038]
The substrate having an optical anisotropic material and optical anisotropy manufactured by such a manufacturing method can obtain the vertical alignment of the polymerizable liquid crystal composition without depending on the vertical alignment processing of the substrate, and has a vertical alignment structure inside. And a film-like optically anisotropic body and a substrate having optical anisotropy, in which the refractive index in the thickness direction is larger than the in-plane refractive index, can be efficiently produced.
[0039]
【Example】
Hereinafter, examples of the present invention will be shown, and the present invention will be described more specifically. However, the invention is not limited to these examples.
(Example 1)
Equation (a)
[0040]
Embedded image
Figure 0003579921
[0041]
47.5 parts by weight of the compound of formula (d)
[0042]
Embedded image
Figure 0003579921
[0043]
47.5 parts by weight of a compound of the formula (g)
[0044]
Embedded image
Figure 0003579921
[0045]
A polymerizable liquid crystal composition (A) consisting of 5 parts by weight of the compound (A) was prepared. The obtained composition showed an enantiomeric nematic phase at room temperature (25 ° C.), and the transition temperature from the nematic phase to the isotropic liquid phase was 52 ° C. The n e (extraordinary refractive index) at 25 ° C. is 1.67, n o (ordinary refractive index) is 1.51, the dielectric anisotropy was +0.7. A polymerizable liquid crystal composition (B) comprising 99 parts by weight of the polymerizable liquid crystal composition (A) and 1 part by weight of a photopolymerization initiator "IRG-651" (manufactured by Ciba Geigy) was obtained. Next, two glass substrates with ITO transparent electrodes were opposed to each other with an interval of 10 μm such that the ITO surface was on the inside, and the polymerizable liquid crystal composition (B) was sandwiched between the substrates. When the polymerizable liquid crystal composition sandwiched between the two glass substrates with ITO transparent electrodes was observed with a polarizing microscope, the alignment state was not uniform but a random alignment state. When a sine wave having a voltage of 50 Vrms and a frequency of 1 kHz was applied between two ITO electrodes sandwiching the polymerizable liquid crystal composition in a random alignment state, the polymerizable liquid crystal composition was vertically aligned. Was confirmed by observation. The polymerizable liquid crystal composition was irradiated with 160 mJ / cm 2 of ultraviolet light using an ultraviolet lamp (manufactured by UVP, UVGL-25) at room temperature while the polymerizable liquid crystal composition was vertically aligned by voltage application. Was photopolymerized and cured. When an optically anisotropic material sandwiched between the two glass substrates with ITO transparent electrodes obtained in this way was observed with a conoscope, the vertical alignment before polymerization was fixed as it was. Further, when this optically anisotropic body was placed between two orthogonal polarizing plates and observed, it was confirmed that a dark field was uniformly obtained and uniform vertical alignment was obtained. From the above, it is apparent that an optically anisotropic body having a higher refractive index in the thickness direction than the in-plane refractive index and excellent in uniformity was obtained. Even when the optically anisotropic body was kept at a temperature of 120 ° C., uniform vertical alignment was maintained, and there was no problem with heat resistance.
(Example 2)
A 0.1% by weight ethanol solution of egg yolk lecithin was applied as a peeling agent and then dried. The glass substrate with ITO transparent electrode and the glass substrate with no ITO transparent electrode were coated with the ITO surface inside at intervals of 10 microns. And the polymerizable liquid crystal composition (B) prepared in Example 1 was interposed between them. When the polymerizable liquid crystal composition sandwiched between the two glass substrates with ITO transparent electrodes was observed with a polarizing microscope, the alignment state was not uniform but a random alignment state. When a sine wave having a frequency of 1 kHz and a voltage of 50 Vrms was applied between the ITO electrodes sandwiching the polymerizable liquid crystal composition in the random alignment state, the polymerizable liquid crystal composition was vertically aligned by observing a conoscopic image. It could be confirmed. In the state where the polymerizable liquid crystal composition is vertically aligned by the application of the voltage as described above, the polymerizable liquid crystal is irradiated with ultraviolet light of 160 mJ / cm 2 at room temperature using an ultraviolet lamp (manufactured by UVP, UVGL-25). The composition was photopolymerized and cured. Next, the substrate coated with egg yolk lecithin was peeled off to obtain a substrate having optical anisotropy supported on a glass substrate with an ITO transparent electrode. When the thus obtained substrate having optical anisotropy was observed with a conoscope, the vertical alignment before polymerization was fixed as it was. Further, when the substrate having the optical anisotropy was placed between two orthogonal polarizing plates and observed, it was confirmed that the dark field was uniform and a uniform vertical alignment was obtained. From the above, it is apparent that a substrate having a refractive index in the thickness direction larger than the in-plane refractive index and having optical anisotropy excellent in uniformity was obtained. Even when the substrate having this optical anisotropy was maintained at a temperature of 120 ° C., uniform vertical alignment was maintained, and there was no problem with heat resistance.
(Example 3)
A polymerizable liquid crystal composition was photopolymerized and cured in the same manner as in Example 2 except that an aluminum plate having a thickness of 1 mm was used instead of the glass substrate provided with the ITO transparent electrode. Next, the aluminum plate was peeled off to obtain a substrate having optical anisotropy supported on a glass substrate with an ITO transparent electrode. When the thus obtained substrate having optical anisotropy was observed with a conoscope, the vertical alignment before polymerization was fixed as it was. Further, when the substrate having the optical anisotropy was placed between two orthogonal polarizing plates and observed, it was confirmed that the dark field was uniform and a uniform vertical alignment was obtained. From the above, it is apparent that a substrate having a refractive index in the thickness direction larger than the in-plane refractive index and having optical anisotropy excellent in uniformity was obtained. Even when the optically anisotropic body was kept at a temperature of 120 ° C., uniform vertical alignment was maintained, and there was no problem with heat resistance.
(Example 4)
A 0.1% by weight ethanol solution of egg yolk lecithin was applied as a peeling agent and then dried. The glass substrate with ITO transparent electrode and the glass substrate with no ITO transparent electrode were coated with the ITO surface inside at a spacing of 20 microns. And the polymerizable liquid crystal composition (B) prepared in Example 1 was interposed between them. When the polymerizable liquid crystal composition sandwiched between the two glass substrates with ITO transparent electrodes was observed with a polarizing microscope, the alignment state was not uniform but a random alignment state. When a sine wave having a voltage of 100 Vrms and a frequency of 1 kHz was applied between the ITO electrodes sandwiching the polymerizable liquid crystal composition in the random alignment state, the polymerizable liquid crystal composition was vertically aligned. It could be confirmed. In the state where the polymerizable liquid crystal composition is vertically aligned by the application of the voltage as described above, the polymerizable liquid crystal is irradiated with ultraviolet light of 160 mJ / cm 2 at room temperature using an ultraviolet lamp (manufactured by UVP, UVGL-25). The composition was photopolymerized and cured. Next, the substrate coated with egg yolk lecithin was peeled off to obtain a substrate having optical anisotropy supported on a glass substrate with an ITO transparent electrode. After the substrate having the optical anisotropy was immersed in distilled water for 30 minutes, the glass substrate with the ITO transparent electrode was further peeled off from the optically anisotropic body to obtain an independent film-shaped optically anisotropic body. When the optically anisotropic body thus obtained was observed with a conoscope, the vertical alignment before polymerization was fixed as it was. Further, when this optically anisotropic body was placed between two orthogonal polarizing plates and observed, it was confirmed that a dark field was uniformly obtained and uniform vertical alignment was obtained. From the above, it is apparent that an optically anisotropic body having a larger refractive index in the thickness direction than the in-plane refractive index and having excellent uniformity was obtained. Even when the optically anisotropic body was kept at a temperature of 120 ° C., uniform vertical alignment was maintained, and there was no problem with heat resistance.
[0046]
【The invention's effect】
The method for producing a substrate having an optical anisotropic body and an optical anisotropy of the present invention, by applying a voltage at the time of light irradiation, compared with a conventional case of performing a cumbersome substrate alignment treatment, the polymerizable liquid crystal composition The object can be easily vertically aligned. Therefore, the production method of the present invention is extremely useful as a method for producing a film-shaped optically anisotropic body and a substrate having optical anisotropy in which the refractive index in the thickness direction is larger than the in-plane refractive index.

Claims (10)

(1)導電層を有する第1の透明性基板と、導電性を有する第2の基板の間に、少なくとも2つの6員環を有する液晶性骨格を部分構造として有する環状アルコール又はフェノールのアクリル酸又はメタクリル酸エステルである第1の単官能アクリレート又は第1の単官能メタクリレートを含有し、室温で液晶相を示す重合性液晶組成物を介在させる第1工程、
(2)前記2枚の基板間に室温で電圧を印加しながら、第1の透明性基板の側から光を照射する第2工程、及び
(3)第1の透明性基板及び第2の基板を剥離する第3工程
を有する光学異方体の製造方法。
(1) Acrylic acid of cyclic alcohol or phenol having a liquid crystal skeleton having at least two 6-membered rings as a partial structure between a first transparent substrate having a conductive layer and a second substrate having conductivity. A first step of containing a first monofunctional acrylate or a first monofunctional methacrylate that is a methacrylate, and interposing a polymerizable liquid crystal composition exhibiting a liquid crystal phase at room temperature.
(2) a second step of irradiating light from the side of the first transparent substrate while applying a voltage between the two substrates at room temperature , and (3) a first transparent substrate and a second substrate A method for producing an optically anisotropic body having a third step of peeling off.
(1)導電層を有する第1の透明性基板と、導電性を有する第2の基板の間に、少なくとも2つの6員環を有する液晶性骨格を部分構造として有する環状アルコール又はフェノールのアクリル酸又はメタクリル酸エステルである第1の単官能アクリレート又は第1の単官能メタクリレートを含有し、室温で液晶相を示す重合性液晶組成物を介在させる第1工程、
(2)前記2枚の基板間に室温で電圧を印加しながら、第1の透明性基板の側から光を照射する第2工程、及び
(3)第2の基板を剥離する第3工程
を有する光学異方性を有する基板の製造方法。
(1) Acrylic acid of cyclic alcohol or phenol having a liquid crystal skeleton having at least two 6-membered rings as a partial structure between a first transparent substrate having a conductive layer and a second substrate having conductivity. A first step of containing a first monofunctional acrylate or a first monofunctional methacrylate that is a methacrylate, and interposing a polymerizable liquid crystal composition exhibiting a liquid crystal phase at room temperature.
(2) a second step of irradiating light from the first transparent substrate side while applying a voltage between the two substrates at room temperature , and (3) a third step of peeling the second substrate. A method for producing a substrate having optical anisotropy.
(1)導電層を有する2枚の透明性基板の間に、少なくとも2つの6員環を有する液晶性骨格を部分構造として有する環状アルコール又はフェノールのアクリル酸又はメタクリル酸エステルである第1の単官能アクリレート又は第1の単官能メタクリレートを含有し、室温で液晶相を示す重合性液晶組成物を介在させる第1工程、及び
(2)前記2枚の基板間に室温で電圧を印加しながら、第1の透明性基板の側から光を照射する第2工程
を有する光学異方性を有する基板の製造方法。
(1) A first unit which is an acrylic or methacrylic acid ester of a cyclic alcohol or phenol having a liquid crystal skeleton having at least two 6-membered rings as a partial structure between two transparent substrates having a conductive layer. A first step of interposing a polymerizable liquid crystal composition containing a functional acrylate or a first monofunctional methacrylate and exhibiting a liquid crystal phase at room temperature, and (2) applying a voltage between the two substrates at room temperature , A method for producing a substrate having optical anisotropy, comprising a second step of irradiating light from the side of the first transparent substrate.
第1の単官能アクリレート又は第1の単官能メタクリレートが、一般式(I)
Figure 0003579921
(式中、Xは水素原子又はメチル基を表わし、6員環A、B及びCはそれぞれ独立的に、
Figure 0003579921
を表わし、nは0又は1の整数を表わし、mは1から4の整数を表わし、Y及びYはそれぞれ独立的に、単結合、−CHCH−、−CHO−、−OCH−、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH−、−CHCHCHO−、−OCHCHCH−、−CH=CHCHCH−又は−CHCHCH=CH−を表わし、Yは水素原子、ハロゲン原子、シアノ基、炭素原子数1〜20のアルキル基、アルコキシ基、アルケニル基又はアルケニルオキシ基を表わす。)で表わされる化合物であることを特徴とする請求項1、2又は3記載の製造方法。
The first monofunctional acrylate or the first monofunctional methacrylate has the general formula (I)
Figure 0003579921
(Wherein X represents a hydrogen atom or a methyl group, and the 6-membered rings A, B and C each independently represent
Figure 0003579921
And n represents an integer of 0 or 1, m represents an integer of 1 to 4, Y 1 and Y 2 each independently represent a single bond, —CH 2 CH 2 —, —CH 2 O—, -OCH 2 -, - COO -, - OCO -, - C≡C -, - CH = CH -, - CF = CF -, - (CH 2) 4 -, - CH 2 CH 2 CH 2 O -, - OCH 2 CH 2 CH 2 —, —CH 2 CHCHCH 2 CH 2 — or —CH 2 CH 2 CH = CH—, wherein Y 3 is a hydrogen atom, a halogen atom, a cyano group, or an alkyl having 1 to 20 carbon atoms. Represents a group, an alkoxy group, an alkenyl group or an alkenyloxy group. 4. The method according to claim 1, wherein the compound is represented by the formula:
一般式(I)において、6員環A、B及びCはそれぞれ独立的に、
Figure 0003579921
を表わし、mは1又は2の整数を表わし、Y及びYはそれぞれ独立的に、単結合又は−C≡C−を表わし、Yはハロゲン原子、シアノ基、炭素原子数1〜20のアルキル基又はアルコキシ基を表わすことを特徴とする請求項4記載の製造方法。
In the general formula (I), the 6-membered rings A, B and C are each independently
Figure 0003579921
And m represents an integer of 1 or 2, Y 1 and Y 2 each independently represent a single bond or —C≡C—, and Y 3 represents a halogen atom, a cyano group, or a carbon atom having 1 to 20 carbon atoms. The method according to claim 4, wherein the alkyl group or the alkoxy group is represented by the formula:
重合性液晶組成物が、液晶性骨格を部分構造として有する第2の単官能アクリレート又は第2の単官能メタクリレートを含有することを特徴とする請求項4又は5記載の製造方法。The method according to claim 4, wherein the polymerizable liquid crystal composition contains a second monofunctional acrylate or a second monofunctional methacrylate having a liquid crystal skeleton as a partial structure. 第2の単官能アクリレート又は第2の単官能メタクリレートが、一般式(II)
Figure 0003579921
(式中、Rは水素原子又はメチル基を表わし、pは2〜12の整数を表わし、Yは単結合又は−COO−を表わし、Yはシアノ基、炭素原子数1〜6のアルキル基、アルコキシ基又はフェニル基を表わす。)で表わされる化合物であることを特徴とする請求項記載の製造方法。
The second monofunctional acrylate or the second monofunctional methacrylate has the general formula (II)
Figure 0003579921
(Wherein, R represents a hydrogen atom or a methyl group, p represents an integer of 2 to 12, Y 4 represents a single bond or —COO—, Y 5 represents a cyano group, or an alkyl having 1 to 6 carbon atoms. 7. The method according to claim 6 , wherein the compound is a compound represented by the following formula:
重合性液晶組成物が、室温においてエナンチオトロピックなネマチック液晶相を示すことを特徴とする請求項7記載の製造方法。The method according to claim 7, wherein the polymerizable liquid crystal composition exhibits an enantiomeric nematic liquid crystal phase at room temperature. 重合性液晶組成物の誘電率異方性が正であることを特徴とする請求項5又は8記載の製造方法。9. The method according to claim 5, wherein the polymerizable liquid crystal composition has a positive dielectric anisotropy. 第1の透明性基板が、ITO電極層を有する基板であることを特徴とする請求項9記載の製造方法。The method according to claim 9, wherein the first transparent substrate is a substrate having an ITO electrode layer.
JP15457494A 1993-12-24 1994-07-06 Manufacturing method of optical anisotropic body Expired - Lifetime JP3579921B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15457494A JP3579921B2 (en) 1994-07-06 1994-07-06 Manufacturing method of optical anisotropic body
DE69419120T DE69419120T2 (en) 1993-12-24 1994-12-23 Polymerizable liquid crystal composition and optically anisotropic film containing such a composition
EP94120614A EP0659865B1 (en) 1993-12-24 1994-12-23 Polymerizable liquid crystal composition and optically anisotropic film comprising the same
US08/657,526 US5863457A (en) 1993-12-24 1996-06-04 Polymerizable liquid crystal composition and optically anisotropic film comprising the same
HK98109469A HK1008679A1 (en) 1993-12-24 1998-07-28 Polymerizable liquid crystal composition and optically anisotropic film comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15457494A JP3579921B2 (en) 1994-07-06 1994-07-06 Manufacturing method of optical anisotropic body

Publications (2)

Publication Number Publication Date
JPH0821915A JPH0821915A (en) 1996-01-23
JP3579921B2 true JP3579921B2 (en) 2004-10-20

Family

ID=15587208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15457494A Expired - Lifetime JP3579921B2 (en) 1993-12-24 1994-07-06 Manufacturing method of optical anisotropic body

Country Status (1)

Country Link
JP (1) JP3579921B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773178A (en) * 1996-09-13 1998-06-30 Japan Synthetic Rubber Co, Ltd. Process for producing a patterned anisotropic polymeric film
DE60312276T2 (en) 2002-10-01 2007-11-15 Nippon Oil Corp. (Meth) acrylic compound having an oxetanyl group and liquid crystal film prepared therewith
JP4453814B2 (en) * 2003-11-12 2010-04-21 Jsr株式会社 Polymerizable compound and mixture, and method for producing liquid crystal display device
JP4440817B2 (en) 2005-03-31 2010-03-24 富士フイルム株式会社 An optically anisotropic film, a brightness enhancement film, a laminated optical film, and an image display device using them.

Also Published As

Publication number Publication date
JPH0821915A (en) 1996-01-23

Similar Documents

Publication Publication Date Title
EP0659865B1 (en) Polymerizable liquid crystal composition and optically anisotropic film comprising the same
JP3579914B2 (en) Substrate with optical anisotropy
TWI778255B (en) Liquid crystal device including insulating film, light control window and production method
TW201222078A (en) Method of producing liquid crystal display device
JPH08231958A (en) Polymerizable liquid crystal composition and production of optically anisotropic material
JP4207233B2 (en) Liquid crystal composition and optical anisotropic body using the same
JP5178922B2 (en) Liquid crystal / polymer composite, liquid crystal display using the same, and method for producing liquid crystal / polymer composite.
JP3579922B2 (en) Optical anisotropic film and liquid crystal display device using the same
JP2005196221A (en) Polymeric liquid crystal composition and method for producing optically anisotropic body
WO2008105218A1 (en) Elliptical polarizing plate for vertically aligned liquid crystal display and vertically aligned liquid crystal display using the same
JP4334028B2 (en) Manufacturing method of liquid crystal display element
JP2012042923A (en) Method for manufacturing liquid crystal display device
JPWO2016093141A1 (en) Liquid crystal display element and manufacturing method thereof
JP3734044B2 (en) Polymerizable liquid crystal composition and method for producing optical anisotropic body
CN111198452B (en) Liquid crystal display device having a plurality of pixel electrodes
JP3579921B2 (en) Manufacturing method of optical anisotropic body
JP3617653B2 (en) Method for producing substrate having optical anisotropy
JP3677817B2 (en) POLYMER LENS AND METHOD FOR PRODUCING POLYMER LENS
US5378391A (en) Liquid crystal film
CN110964539B (en) Liquid crystal composition, high molecular liquid crystal alignment polymer, liquid crystal display element and liquid crystal display
JPH09211462A (en) Liquid crystal display device
JP2725283B2 (en) Liquid crystal device and method of manufacturing the same
JP4505708B2 (en) Polymerizable liquid crystal composition
CN111198459B (en) Liquid crystal display device having a plurality of pixel electrodes
JPH0841461A (en) Polymerizable liquid crystal composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040629

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080730

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100730

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110730

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110730

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120730

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120730

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120730

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term