JP3579099B2 - Method for removing trace amounts of organoaluminum compounds in hydrocarbon media - Google Patents

Method for removing trace amounts of organoaluminum compounds in hydrocarbon media Download PDF

Info

Publication number
JP3579099B2
JP3579099B2 JP28090994A JP28090994A JP3579099B2 JP 3579099 B2 JP3579099 B2 JP 3579099B2 JP 28090994 A JP28090994 A JP 28090994A JP 28090994 A JP28090994 A JP 28090994A JP 3579099 B2 JP3579099 B2 JP 3579099B2
Authority
JP
Japan
Prior art keywords
compound
tower
silicon oxide
normal hexane
hexane solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28090994A
Other languages
Japanese (ja)
Other versions
JPH08131707A (en
Inventor
栄司 田中
英仁 加藤
克治 柴田
昌男 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP28090994A priority Critical patent/JP3579099B2/en
Publication of JPH08131707A publication Critical patent/JPH08131707A/en
Application granted granted Critical
Publication of JP3579099B2 publication Critical patent/JP3579099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、炭化水素媒体中の微量有機アルミニウム化合物を除去する方法に関し、詳しくは有機アルミニウムの吸着除去効率に優れ、有機アルミニウムを吸着した状態でも取扱安全性に優れた酸化ケイ素含有化合物を用いた上記方法に関する。
【0002】
【従来の技術】
従来、ポリオレフィン等のスラリー及びバルク重合等において、製造ポリマーを分離した後の未反応モノマー及び有機アルミニウム化合物を含有した溶媒からの該未反応モノマーの分離は蒸留塔により行っていた。しかしながら、蒸留塔による分離では精製後の未反応モノマー及び溶媒中の有機アルミニウム化合物の残存率は、必ずしも十分に低い値とならない場合があり、再利用する際に制限を受ける場合があった。
【0003】
また、モレキュラーシーブによる除去等も知られているが、十分な除去効果が得られない上に、モレキュラーシーブでの吸着除去では、有機アルミニウム化合物は失活されずにそのまま吸着されるため、モレキュラーシーブ等の吸着除去剤交換時、大気中に有機アルミニウム化合物が暴露され発熱を生じる問題があった。従って、より高い除去性能を有するとともに取扱安全性の面では有機アルミニウム化合物を失活させ、大気中で安定化したアルミニウム化合物として吸着除去方法が望まれていた。
【0004】
【発明が解決しようとする課題】
すなわち、本発明は有機アルミニウム化合物の吸着除去性能に優れ、吸着除去後の有機アルミニウム化合物を大気中で安定化した形で存在する有機アルミニウム化合物にすることができるため吸着除去剤交換時の取扱安全性に優れる炭化水素媒体中の微量有機アルミニウム化合物を除去する方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者等は上述の問題点を解決すべく鋭意検討を行った結果、特定の水分量を有する酸化ケイ素含有化合物が、吸着除去剤として有機アルミニウム化合物の除去性能に優れ、かつ吸着した有機アルミニウム化合物を大気中で安定化した形態にすることができることを見いだし本発明に達した。すなわち、本発明は有機アルミニウム化合物含有量が0.1〜10000wtppmの炭化水素媒体を、含水率0.5〜15wt%かつ平均粒径0.3〜3mmの酸化ケイ素含有化合物を吸着除去剤として用いて接触処理することにより、該炭化水素媒体中から有機アルミニウム化合物を除去することを特徴とする炭化水素媒体中の微量有機アルミニウム化合物を除去する方法である。
【0006】
本発明で使用する酸化ケイ素含有化合物としては、酸化ケイ素を主成分とする含水した多孔質酸化物が好ましく、具体的にはSiO、SiO−MgO、SiO−Al、SiO−Fe、SiO−TiO、SiO−TiO−MgO、SiO−CaO、SiO−NaO等を例示することができる。
【0007】
含水率は0.5〜15wt%好ましくは5〜15wt%のものが用いられる。含水率が0.5wt%未満では有機アルミニウム化合物の吸着除去効率が低下し、また、接触処理した有機アルミニウム化合物を含有する酸化ケイ素含有化合物の大気中での取扱い安全性の効果が低下する。
含水率が0.5〜15wt%の酸化ケイ素含有化合物の調整方法としては、例えばシリカゲルを常温(25℃)、温度40〜65%の雰囲気下で48時間放置する方法等が挙げられる。
【0008】
上述の酸化ケイ素含有化合物の平均粒径は0.3〜3mmのものが用いられる。平均粒径が0.3mm未満では取扱上不便をきたす場合があり、さらに平均粒径が3mmを越えると単位重量当たりの吸着除去効率が低下する。
本発明で使用する酸化ケイ素含有化合物の表面積及び細孔容積については特に制限はないが、通常表面積は50〜1000m/gのものが用いられ、好ましくは100〜1000m/g、特に好ましくは300〜800m/gである。細孔容積は、通常0.2〜3cm/g、好ましくは0.3〜2cm/gのものが用いられる。
【0009】
本発明が好適に適用される炭化水素媒体中の有機アルミニウム化合物濃度はAlとして、0.1〜10000wtppm、好ましくは0.5〜5000wtppmである。含有率が0.1wtppm未満では吸着除去効率が低下する。含有率が10000wtppmを越えると、酸化ケイ素化合物の吸着除去剤としての寿命が低下し実用上支障をきたす。
【0010】
炭化水素媒体中に含まれる有機アルミニウム化合物は、一般式AlR3−m (ただし、Rは炭素数1〜12個のアルキル基、アリール基、Xは水素、ハロゲン、アルコキシ基、mは1≦m≦3を示す)で示されるものであり、例えばトリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソプロピルアルミニウム、トリn−ブチルアルミニウム、トリイソブチルアルミニウム、トリsec−ブチルアルミニウム、トリtert−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウム、ジエチルアルミニウムモノクロライド、ジ−iso−ブチルアルミニウムモノクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、ジエチルアルミニウムモノブロマイド、ジエチルアルミニウムハライド、ジエチルアルミニウムエトキシド等が挙げられる。
【0011】
本発明で適応可能な炭化水素媒体は、飽和または不飽和の脂肪族炭化水素あるいは飽和または不飽和基を有していてもよい芳香族炭化水素である。具体的にはエタン、プロパン、ブタン、iso−ブタン、ペンタン、iso−ペンタン、ヘキサン、iso−ヘキサン、ヘプタン、オクタン、ノナン、デカン、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、ヘプテン、オクテン、ノネン、デセン、ベンゼン、トルエン、o−キシレン、m−キシレン、p−キシレン、スチレン等が挙げられる。
【0012】
炭化水素媒体中の有機アルミニウム化合物と酸化ケイ素化合物の接触は、例えば円筒内に詰めた酸化ケイ素化合物中を、有機アルミニウム化合物含有の炭化水素媒体を流通させることにより行う。流通条件は、塔高、マストランスファーゾーンを各々Z(cm)、MTZ(cm)とすると、Z>MTZを満たす条件下にて行うが、好ましくはZ(cm)がMTZ(cm)に対して十分大きな領域、例えばZ≧1.3MTZ程度以上で行うのがよい。
この時、ZとMTZとの間には、次の河添の式が成り立つ。
【0013】
【数1】
MTZ=4*(Z*LV/KFav 0.5
【0014】
ここで、LVは空塔ベースの線速度(cm/sec)、KFav は総括物質移動係数(1/sec)である。実用に際しては、所定流量の有機アルミニウム化合物含有の炭化水素媒体に対し、現実的な塔寿命を持たせるよう塔設計を行い、Z≧MTZを満たす条件下にて炭化水素媒体を流通させる。
【0015】
接触条件は通常接触温度−20(℃)〜50(℃)、好ましくは0(℃)〜40(℃)である。また、本発明の方法における接触圧力は、減圧下又は加圧下の制限はなく0〜50(kg/cm)の範囲で行われる。
尚、本発明では内容物に悪影響を及ぼさない範囲で帯電防止剤、滑材等を添加してもよい。
以下実施例により更に詳細に説明する。
【0016】
【実施例】
(実施例1)
直径:43mm、高さ:635mmの吸着塔(空塔体積=0.92L)に富士シリシア化学社品シリカゲルRD型(平均粒径=2.3mm、表面積=720m/g、細孔容積=0.4ml/g、細孔径=22Å、含水率=4.6wt%)を753g仕込み、十分に窒素置換を行う。
【0017】
上記吸着塔にジエチルアルミニウムモノクロライドのノルマルヘキサン溶液
(Al含有量=単位重量溶液当り3000wtppmの調製品)を空塔ベースで流量1.67L/hr(LV=0.032(cm/sec))にて流通させた。この時、MTZは河添の式からMTZ=40cm<(塔高)である。ノルマルヘキサン溶液流通開始直後の塔出側でのノルマルヘキサン溶液中のAl含有量は0.4wtppmであった。そして、ノルマルヘキサン溶液流通開始2.95hr後に、塔出側でのノルマルヘキサン溶液中のAl含有量が急激に上昇した。(塔寿命=2.95hr)
また、塔解体時、大気中の酸素と有機アルミニウム除去後の酸化ケイ素化合物との反応による発熱はなく、安全に取り扱うことができた。
【0018】
(実施例2)
実施例1において、ジエチルアルミニウムモノクロライドのノルマルヘキサン溶液中のAl含有量が単位重量溶液当り10wtppmの調製品を使用した以外は、実施例1と同様に行った。この時も、MTZは河添の式からMTZ=40cm(<塔高)である。ノルマルヘキサン溶液流通開始直後の塔出側でのノルマルヘキサン溶液中のAl含有量は0.01wtppmであった。そして、本実施例では14hr流通を行ったが、塔出側でのノルマルヘキサン溶液中のAl含有量の急激な上昇は見られなかった。(計算によると塔寿命=885hrになる)
また、塔解体時、大気中の酸素と有機アルミニウム除去後の酸化ケイ素化合物との反応による発熱はなく、安全に取り扱うことができた。
【0019】
(比較例1)
実施例1において吸着剤としてユニオン昭和社品モリキュラーシーブ13X(平均粒径=1.6mm)を620g仕込んだ以外は、実施例1と同様に行った。(実験よりこの時のKFav は酸化ケイ素化合物系(実施例)とほぼ同等でKFav =0.02(1/sec)であった。)この時も、MTZは河添の式からMTZ=40cm(<塔高)である。
ノルマルヘキサン溶液流通開始直後の塔出側でのノルマルヘキサン溶液中のAl含有量は1640wtppmであった。
また、塔解体時、大気中の酸素と有機アルミニウム除去後の酸化ケイ素化合物との反応による相当な発熱を生じ、取扱安全上不便をきたした。
【0020】
(比較例2)
比較例1において、ジエチルアルミニウムモノクロライドのノルマルヘキサン溶液中のAl含有量が単位重量溶液当り10wtppmの調製品を使用した以外は、比較例1と同様に行った。この時も、MTZは河添の式からMTZ=40cm(<塔高)である。
ノルマルヘキサン溶液流通開始直後の塔出側でのノルマルヘキサン溶液中のAl含有量は4wtppmであった。
また、塔解体時、大気中の酸素と有機アルミニウム除去後の酸化ケイ素化合物との反応による相当な発熱を生じ、取扱安全上不便をきたした。
【0021】
【発明の効果】
本発明によれば、炭化水素媒体中から、高効率かつ安全に微量有機アルミニウム化合物を吸着除去する方法が提供される。従って、例えばポリオレフィン等のスラリーかバルク重合において、重合後の溶媒を精製して再利用する場合などに本発明方法が利用でき、工業的に有用である。
[0001]
[Industrial applications]
The present invention relates to a method for removing a trace amount of an organoaluminum compound in a hydrocarbon medium, and in particular, uses a silicon oxide-containing compound having excellent organoaluminum adsorption / removal efficiency and excellent handling safety even in a state where an organoaluminum is adsorbed. It relates to the above method.
[0002]
[Prior art]
Conventionally, in a slurry of polyolefin or the like, bulk polymerization or the like, separation of the unreacted monomer from the solvent containing the unreacted monomer and the organoaluminum compound after separating the produced polymer has been performed by a distillation column. However, in the separation by the distillation column, the residual ratio of the unreacted monomer and the organoaluminum compound in the solvent after purification may not always be a sufficiently low value, and there is a case where there is a limitation in reusing.
[0003]
In addition, although removal by molecular sieve is also known, a sufficient removal effect cannot be obtained.In addition, in the adsorption removal by molecular sieve, the organoaluminum compound is adsorbed as it is without being deactivated. When exchanging the adsorbent removing agent, there is a problem that the organoaluminum compound is exposed to the air and generates heat. Accordingly, there has been a demand for a method of adsorbing and removing an aluminum compound stabilized in the atmosphere by deactivating the organoaluminum compound in terms of handling safety while having higher removal performance.
[0004]
[Problems to be solved by the invention]
That is, the present invention is excellent in the adsorption and removal performance of the organoaluminum compound, and can convert the organoaluminum compound after adsorption and removal into an organoaluminum compound which is present in a form stabilized in the atmosphere. It is an object of the present invention to provide a method for removing a trace amount of an organoaluminum compound in a hydrocarbon medium having excellent properties.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, a silicon oxide-containing compound having a specific water content is excellent in removing performance of an organic aluminum compound as an adsorption removing agent, and adsorbed organic aluminum. The present inventors have found that the compound can be in a form stabilized in the atmosphere, and reached the present invention. That is, the present invention uses a hydrocarbon medium having an organoaluminum compound content of 0.1 to 10000 wtppm, and a silicon oxide-containing compound having a water content of 0.5 to 15 wt% and an average particle size of 0.3 to 3 mm as an adsorption removing agent. And removing the organoaluminum compound from the hydrocarbon medium by contact treatment with the organic solvent.
[0006]
The silicon oxide-containing compound used in the present invention is preferably a porous oxide containing silicon oxide as a main component and containing water, specifically, SiO 2 , SiO 2 —MgO, SiO 2 —Al 2 O 3 , SiO 2 -Fe 2 O 3, SiO 2 -TiO 2, SiO 2 -TiO 2 -MgO, SiO 2 -CaO, can be exemplified SiO 2 -Na 2 O or the like.
[0007]
The water content is 0.5 to 15 wt%, preferably 5 to 15 wt%. If the water content is less than 0.5 wt%, the efficiency of adsorbing and removing the organoaluminum compound is reduced, and the effect of handling safety of the silicon oxide-containing compound containing the contacted organoaluminum compound in the air is reduced.
As a method for adjusting the silicon oxide-containing compound having a water content of 0.5 to 15 wt%, for example, a method of leaving silica gel at room temperature (25 ° C.) at a temperature of 40 to 65% for 48 hours or the like can be mentioned.
[0008]
The silicon oxide-containing compound having an average particle diameter of 0.3 to 3 mm is used. If the average particle size is less than 0.3 mm, it may cause inconvenience in handling, and if the average particle size exceeds 3 mm, the adsorption removal efficiency per unit weight decreases.
The surface area and pore volume of the silicon oxide-containing compound used in the present invention are not particularly limited, but those having a surface area of usually 50 to 1000 m 2 / g are used, preferably 100 to 1000 m 2 / g, and particularly preferably. 300 to 800 m 2 / g. The pore volume is usually 0.2 to 3 cm 2 / g, preferably 0.3 to 2 cm 2 / g.
[0009]
The concentration of the organoaluminum compound in the hydrocarbon medium to which the present invention is suitably applied is 0.1 to 10000 wtppm as Al, preferably 0.5 to 5000 wtppm. When the content is less than 0.1 wtppm, the adsorption removal efficiency is reduced. If the content exceeds 10,000 wtppm, the life of the silicon oxide compound as an adsorbing and removing agent is reduced, which causes practical problems.
[0010]
The organoaluminum compound contained in the hydrocarbon medium has the general formula AlR m X 3-m (where R is an alkyl group having 1 to 12 carbon atoms, an aryl group, X is hydrogen, a halogen, an alkoxy group, and m is 1 ≦ m ≦ 3), for example, trimethylaluminum, triethylaluminum, tripropylaluminum, triisopropylaluminum, trin-butylaluminum, triisobutylaluminum, trisec-butylaluminum, tritert-butylaluminum , Tripentyl aluminum, trihexyl aluminum, trioctyl aluminum, tridecyl aluminum, diethyl aluminum monochloride, di-iso-butyl aluminum monochloride, ethyl aluminum sesquichloride, ethyl Aluminum sesquichloride, ethylaluminum dichloride, diethylaluminum monobromide, diethylaluminum halide, diethylaluminum ethoxide and the like can be mentioned.
[0011]
Hydrocarbon media applicable in the present invention are saturated or unsaturated aliphatic hydrocarbons or aromatic hydrocarbons which may have saturated or unsaturated groups. Specifically, ethane, propane, butane, iso-butane, pentane, iso-pentane, hexane, iso-hexane, heptane, octane, nonane, decane, ethylene, propylene, butene, pentene, hexene, heptene, octene, nonene, Decene, benzene, toluene, o-xylene, m-xylene, p-xylene, styrene and the like can be mentioned.
[0012]
The contact between the organoaluminum compound and the silicon oxide compound in the hydrocarbon medium is performed, for example, by flowing a hydrocarbon medium containing the organoaluminum compound through the silicon oxide compound packed in a cylinder. The distribution conditions are as follows, assuming that the tower height and the mass transfer zone are Z (cm) and MTZ (cm), respectively, and Z> MTZ is satisfied. Preferably, Z (cm) is relative to MTZ (cm). It is preferable to perform the measurement in a sufficiently large area, for example, Z ≧ 1.3 MTZ or more.
At this time, the following Kawazoe formula holds between Z and MTZ.
[0013]
(Equation 1)
MTZ = 4 * (Z * LV / K Fav ) 0.5
[0014]
Here, LV is the linear velocity (cm / sec) based on the superficial tower, and K Fav is the overall mass transfer coefficient (1 / sec). In practical use, a tower is designed to have a realistic tower life with respect to a hydrocarbon medium containing an organoaluminum compound at a predetermined flow rate, and the hydrocarbon medium is circulated under a condition satisfying Z ≧ MTZ.
[0015]
The contact condition is usually a contact temperature of −20 (° C.) to 50 (° C.), preferably 0 (° C.) to 40 (° C.). Further, the contact pressure in the method of the present invention is not limited under reduced pressure or increased pressure, and the contact pressure is in the range of 0 to 50 (kg / cm 2 ).
In the present invention, an antistatic agent, a lubricant and the like may be added as long as the content is not adversely affected.
Hereinafter, the present invention will be described in more detail with reference to examples.
[0016]
【Example】
(Example 1)
A silica gel RD type manufactured by Fuji Silysia Chemical Ltd. (average particle size = 2.3 mm, surface area = 720 m 2 / g, pore volume = 0) is placed in an adsorption tower (empty tower volume = 0.92 L) having a diameter: 43 mm and a height: 635 mm. (0.43 ml / g, pore diameter = 22 °, water content = 4.6 wt%) are charged, and nitrogen replacement is sufficiently performed.
[0017]
A normal hexane solution of diethylaluminum monochloride (prepared at 3000 wtppm per unit weight solution) of diethylaluminum monochloride was supplied to the adsorption tower at a flow rate of 1.67 L / hr (LV = 0.032 (cm / sec)) on an empty tower basis. And distributed. At this time, MTZ = 40 cm <(tower height) according to Kawazoe's formula. The Al content in the normal hexane solution immediately after the start of the normal hexane solution flow was 0.4 wtppm in the normal hexane solution. Then, 2.95 hours after the start of the normal hexane solution circulation, the Al content in the normal hexane solution at the column outlet side rapidly increased. (Tower life = 2.95 hr)
Further, at the time of dismantling the tower, there was no heat generation due to the reaction between oxygen in the atmosphere and the silicon oxide compound after removal of the organic aluminum, and the tower could be handled safely.
[0018]
(Example 2)
Example 1 was carried out in the same manner as in Example 1, except that a preparation in which the Al content in a normal hexane solution of diethyl aluminum monochloride was 10 wtppm per unit weight solution was used. At this time, MTZ is also 40 cm (<tower height) according to Kawazoe's formula. The Al content in the normal hexane solution immediately after the start of the normal hexane solution flow was 0.01 wtppm in the normal hexane solution. Then, in this example, the circulation was performed for 14 hours, but no rapid increase in the Al content in the normal hexane solution at the outlet side of the column was observed. (According to the calculation, the tower life is 885 hours.)
Further, at the time of dismantling the tower, there was no heat generation due to the reaction between oxygen in the atmosphere and the silicon oxide compound after removal of the organic aluminum, and the tower could be handled safely.
[0019]
(Comparative Example 1)
Example 1 was carried out in the same manner as in Example 1 except that 620 g of a molecular sieve 13X manufactured by Union Showa (average particle size = 1.6 mm) was charged as an adsorbent. (Experiments showed that K Fav at this time was almost the same as that of the silicon oxide compound system (Example) and K Fav = 0.02 (1 / sec).) At this time, MTZ was also 40 cm from Kawazoe's formula. (<Tower height).
The Al content in the normal hexane solution immediately after the start of the normal hexane solution flow was 1640 wtppm in the normal hexane solution.
In addition, when the tower was dismantled, considerable heat was generated due to the reaction between oxygen in the atmosphere and the silicon oxide compound after the removal of the organic aluminum, resulting in inconvenience in handling safety.
[0020]
(Comparative Example 2)
Comparative Example 1 was carried out in the same manner as in Comparative Example 1, except that a preparation in which the Al content in a normal hexane solution of diethyl aluminum monochloride was 10 wtppm per unit weight solution was used. At this time, MTZ is also 40 cm (<tower height) according to Kawazoe's formula.
The Al content in the normal hexane solution immediately after the start of the normal hexane solution flow was 4 wtppm in the normal hexane solution.
In addition, when the tower was dismantled, considerable heat was generated due to the reaction between oxygen in the atmosphere and the silicon oxide compound after the removal of the organic aluminum, resulting in inconvenience in handling safety.
[0021]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the method of highly efficiently and safely adsorbing and removing trace organic aluminum compounds from a hydrocarbon medium is provided. Therefore, for example, in the case of slurry polymerization of polyolefin or the like or bulk polymerization, when the solvent after polymerization is purified and reused, the method of the present invention can be used and is industrially useful.

Claims (1)

有機アルミニウム化合物含有量が0.1〜10000wtppmの炭化水素媒体を、含水率0.5〜15wt%の酸化ケイ素含有化合物を用いて接触処理することにより、該炭化水素媒体中から有機アルミニウム化合物を除去することを特徴とする炭化水素媒体中の微量有機アルミニウム化合物を除去する方法。The organic aluminum compound is removed from the hydrocarbon medium by subjecting a hydrocarbon medium having an organic aluminum compound content of 0.1 to 10000 wtppm to a contact treatment with a silicon oxide-containing compound having a water content of 0.5 to 15 wt%. A method for removing a trace amount of an organoaluminum compound in a hydrocarbon medium.
JP28090994A 1994-11-15 1994-11-15 Method for removing trace amounts of organoaluminum compounds in hydrocarbon media Expired - Fee Related JP3579099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28090994A JP3579099B2 (en) 1994-11-15 1994-11-15 Method for removing trace amounts of organoaluminum compounds in hydrocarbon media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28090994A JP3579099B2 (en) 1994-11-15 1994-11-15 Method for removing trace amounts of organoaluminum compounds in hydrocarbon media

Publications (2)

Publication Number Publication Date
JPH08131707A JPH08131707A (en) 1996-05-28
JP3579099B2 true JP3579099B2 (en) 2004-10-20

Family

ID=17631638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28090994A Expired - Fee Related JP3579099B2 (en) 1994-11-15 1994-11-15 Method for removing trace amounts of organoaluminum compounds in hydrocarbon media

Country Status (1)

Country Link
JP (1) JP3579099B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10435532B2 (en) 2016-12-20 2019-10-08 The Procter & Gamble Company Method for separating and purifying materials from a reclaimed product
US10442912B2 (en) 2016-12-20 2019-10-15 The Procter & Gamble Company Method for purifying reclaimed polyethylene
US10450436B2 (en) 2016-12-20 2019-10-22 The Procter & Gamble Company Method for purifying reclaimed polypropylene
US10465058B2 (en) 2016-12-20 2019-11-05 The Procter & Gamble Company Method for purifying reclaimed polymers
US10941269B2 (en) 2018-06-20 2021-03-09 The Procter & Gamble Company Method for purifying reclaimed polyethylene
US10961366B2 (en) 2018-06-20 2021-03-30 The Procter & Gamble Company Method for purifying reclaimed polymers
US11008433B2 (en) 2018-06-20 2021-05-18 The Procter & Gamble Company Method for separating and purifying polymers from reclaimed product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051023A1 (en) * 2011-08-05 2013-04-11 Reliance Industries Limited Adsorption process for purification of spent saturated paraffinic solvent used in polymerization

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10435532B2 (en) 2016-12-20 2019-10-08 The Procter & Gamble Company Method for separating and purifying materials from a reclaimed product
US10442912B2 (en) 2016-12-20 2019-10-15 The Procter & Gamble Company Method for purifying reclaimed polyethylene
US10450436B2 (en) 2016-12-20 2019-10-22 The Procter & Gamble Company Method for purifying reclaimed polypropylene
US10465058B2 (en) 2016-12-20 2019-11-05 The Procter & Gamble Company Method for purifying reclaimed polymers
US11001693B2 (en) 2016-12-20 2021-05-11 The Procter & Gamble Company Method for separating and purifying polymers from reclaimed product
US10941269B2 (en) 2018-06-20 2021-03-09 The Procter & Gamble Company Method for purifying reclaimed polyethylene
US10961366B2 (en) 2018-06-20 2021-03-30 The Procter & Gamble Company Method for purifying reclaimed polymers
US11008433B2 (en) 2018-06-20 2021-05-18 The Procter & Gamble Company Method for separating and purifying polymers from reclaimed product

Also Published As

Publication number Publication date
JPH08131707A (en) 1996-05-28

Similar Documents

Publication Publication Date Title
JP4993315B2 (en) Process for the preparation of linear alpha olefins with improved heat removal
FI99247C (en) Solid catalyst component for olefin polymerization and olefin polymerization catalyst
JP3579099B2 (en) Method for removing trace amounts of organoaluminum compounds in hydrocarbon media
ES2129323A1 (en) Process for obtaining a catalytic system for the polymerization of alpha-olefins in suspension, in gas phase at low and high temperature or in a mass at high pressure and high or low temperature
EP2160233B1 (en) Process for the polymerisation of olefins
ES2687676T3 (en) Process for recycling solvent used in an ethylene-based polymerization reaction
CN1211326C (en) Methods and compositions for inhibiting polymerization of ethylenically unsaturated hydrocarbons
WO2003048087A1 (en) Purification of polyolefin feedstocks using multiple adsorbents
EP1044990A1 (en) Method of removing and recovering boron trifluoride with metal fluoride and process for polyolefin production using the same
CN101233093A (en) Method for preparing linear alpha-olefins
CA2212785A1 (en) Liquid-filled separator for use in a fluidized-bed polymerization process
US4540758A (en) Polymerization of ethylene with supported π allyl chromium complexes
US2113028A (en) Catalyst regeneration
EP3038977B1 (en) Method for improving the operability of an olefin polymerization reactor
JP4377414B2 (en) Process for producing highly reactive polyisobutene with low halogen content
EP0622348B1 (en) Alkylation catalyst regeneration
US3531449A (en) Glycol drying in a methyl chloride dehydration plant
US2963520A (en) Diluent purification process
WO2013051023A1 (en) Adsorption process for purification of spent saturated paraffinic solvent used in polymerization
US4119677A (en) Titanium tetrachloride as heterogeneous catalyst for transalkylation of alkylaromatic hydrocarbons
US3190936A (en) Process for regenerating an adsorbent and a catalyst support in a polymerization operation
RU2103063C1 (en) Method of regeneration of catalyst for alkylation of isoparaffins by olefins
US3836595A (en) Polymerization of ethylene with supported pi-allyl chromium complexes
CA1183876A (en) Isomerization
US2385187A (en) Synthesis of ethyl benzene

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees