WO2013051023A1 - Adsorption process for purification of spent saturated paraffinic solvent used in polymerization - Google Patents
Adsorption process for purification of spent saturated paraffinic solvent used in polymerization Download PDFInfo
- Publication number
- WO2013051023A1 WO2013051023A1 PCT/IN2012/000511 IN2012000511W WO2013051023A1 WO 2013051023 A1 WO2013051023 A1 WO 2013051023A1 IN 2012000511 W IN2012000511 W IN 2012000511W WO 2013051023 A1 WO2013051023 A1 WO 2013051023A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spent
- polymerization solvent
- solvent
- polymerization
- adsorbent bed
- Prior art date
Links
- 239000002904 solvent Substances 0.000 title claims abstract description 126
- 238000006116 polymerization reaction Methods 0.000 title claims abstract description 90
- 238000000034 method Methods 0.000 title claims abstract description 88
- 230000008569 process Effects 0.000 title claims abstract description 59
- 229920006395 saturated elastomer Polymers 0.000 title claims description 12
- 238000001179 sorption measurement Methods 0.000 title description 21
- 238000000746 purification Methods 0.000 title description 16
- 239000003463 adsorbent Substances 0.000 claims abstract description 47
- 239000012535 impurity Substances 0.000 claims abstract description 39
- 125000003118 aryl group Chemical group 0.000 claims abstract description 29
- 239000000178 monomer Substances 0.000 claims abstract description 7
- 239000002685 polymerization catalyst Substances 0.000 claims abstract description 7
- 239000004927 clay Substances 0.000 claims description 34
- 239000002253 acid Substances 0.000 claims description 26
- 150000001336 alkenes Chemical class 0.000 claims description 20
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 14
- 239000005977 Ethylene Substances 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 13
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 12
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 11
- 229910021536 Zeolite Inorganic materials 0.000 claims description 11
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 11
- 229910052794 bromium Inorganic materials 0.000 claims description 11
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 11
- 239000010457 zeolite Substances 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical class O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 9
- -1 sulfuric acid activated calcium Chemical class 0.000 claims description 8
- 150000001491 aromatic compounds Chemical class 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 7
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 claims description 6
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 239000011148 porous material Substances 0.000 claims description 4
- 239000000741 silica gel Substances 0.000 claims description 4
- 229910002027 silica gel Inorganic materials 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 238000009835 boiling Methods 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 3
- 150000005199 trimethylbenzenes Chemical class 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- 229960000892 attapulgite Drugs 0.000 claims description 2
- 229910000281 calcium bentonite Inorganic materials 0.000 claims description 2
- 150000002790 naphthalenes Chemical class 0.000 claims description 2
- 229910052625 palygorskite Inorganic materials 0.000 claims description 2
- 239000011541 reaction mixture Substances 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 239000011593 sulfur Substances 0.000 claims description 2
- 239000003054 catalyst Substances 0.000 description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 229920000642 polymer Polymers 0.000 description 14
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical class O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 229930195733 hydrocarbon Natural products 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000012188 paraffin wax Substances 0.000 description 8
- 229920001903 high density polyethylene Polymers 0.000 description 7
- 239000004700 high-density polyethylene Substances 0.000 description 7
- 150000002430 hydrocarbons Chemical class 0.000 description 7
- 239000010936 titanium Substances 0.000 description 6
- 230000000274 adsorptive effect Effects 0.000 description 5
- 239000000356 contaminant Substances 0.000 description 5
- 238000004821 distillation Methods 0.000 description 5
- 239000002808 molecular sieve Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 5
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- RVDLHGSZWAELAU-UHFFFAOYSA-N 5-tert-butylthiophene-2-carbonyl chloride Chemical compound CC(C)(C)C1=CC=C(C(Cl)=O)S1 RVDLHGSZWAELAU-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 3
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 238000010908 decantation Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 229910052901 montmorillonite Inorganic materials 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910003074 TiCl4 Inorganic materials 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000102 alkali metal hydride Inorganic materials 0.000 description 1
- 150000008046 alkali metal hydrides Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006583 body weight regulation Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- HHFAWKCIHAUFRX-UHFFFAOYSA-N ethoxide Chemical compound CC[O-] HHFAWKCIHAUFRX-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000012229 microporous material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000002522 swelling effect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
- C08J11/02—Recovery or working-up of waste materials of solvents, plasticisers or unreacted monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G25/00—Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
- C10G25/003—Specific sorbent material, not covered by C10G25/02 or C10G25/03
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G25/00—Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
- C10G25/02—Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G25/00—Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
- C10G25/02—Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
- C10G25/03—Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G50/00—Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
Definitions
- the present invention relates to a method for the purification of spent polymerization solvent using adsorbents.
- the present invention provides a method for removing impurities such as aromatic, olefinic, moisture from the polymerization solvent using a fixed adsorbent bed.
- the present invention further provides a process for removing multiple impurities such as aromatic, olefinic and moisture from the spent polymerization solvent under the same set of process conditions.
- the present invention discloses an adsorbent and adsorptive process for purifying the spent saturated paraffmic solvent through removing impurities like aromatics, olefinic and moisture generated during making of polymers like high density polyethylene (HDPE) and ultrahigh molecular polyethylene (UHWMPE).
- HDPE high density polyethylene
- UHWMPE ultrahigh molecular polyethylene
- U.S. Pat. No. 3,271,372 discloses a process wherein an alcohol solvent is used to disperse the granular particles of the polymer which is separated from the slurry.
- U.S. Pat. No. 3,337,514 requires contacting a solution of an polymer with steam, followed with aqueous mineral acid treatment, then with water wash under turbulent conditions and finally separating the polymer solution from the aqueous phase.
- U.S. Pat. No. 2,950,336 discloses the separation of aromatic compounds and olefins from hydrocarbon mixtures that may also include paraffins, using a zeolitic molecular sieve.
- U.S. Pat. No. 4,725,338 claims a process for purifying an olefin polymerization solvent suitable for use in the presence of a Ziegler-Natta catalyst, through usage of a multi-stage distillation column without usage of adsorbent.
- U.S. Pat. No. 4,433,194 discloses a method of purification of cyclohexane solvent with titanium tetrachloride, followed by adsorbent treatment like silica gel and distillation in the presence of alkali metal hydrides.
- JP2000143718A discloses a process for removing olefins from a
- polymerization solvent by circulating through a fixed column packed with an acid- treated clay (apparently means fixed bed!) at ambient conditions.
- the polymerization solvent includes C 5 -C 12 aliphatic hydrocarbons, C 6 and C 7 alicyclic hydrocarbons and aromatic hydrocarbons such as benzene, toluene and xylene. This document does not disclose removal of moisture or aromatics.
- olefin removal is performed at 120 to 250°C temperature; and aromatics removal is achieved at ambient temperatures provided it is moisture free.
- Olefinic removal by clay is a catalytic action taking place between olefin molecules and active acid sites plus free acid available on clay surface whereas moisture and aromatics adsorption is physical adsorption related to polarity of water and aromatic molecules, surface area and porosity of acid activated clay.
- the present invention relates to a method for the purification of spent polymerization solvent using adsorbents. More specifically, the invention is concerned with a fixed bed adsorptive process for the purification of spent paraffinic solvent whereby undesirable impurities aromatics, olefins, and moisture which cause a detrimental effect in the polymerization of olefins are effectively removed.
- Still another object of the present invention is to remove impurities such as aromatic, olefinic and moisture from spent polymerization solvents under the same set of process conditions.
- Another object of the present invention is to provide an adsorbent based method for the purification of spent paraffinic solvents.
- Another object of the present invention is to provide a simple method for the purification of spent polymerization solvents comprising treating with suitable adsorbents such as silica gel, zeolite molecular sieve, activated alumina and acid activated montmorillonite to remove contaminants therefrom, and recovering the purified saturated paraffinic solvent.
- suitable adsorbents such as silica gel, zeolite molecular sieve, activated alumina and acid activated montmorillonite to remove contaminants therefrom, and recovering the purified saturated paraffinic solvent.
- the present invention which relates to a method for the purification of spent polymerization solvent using adsorbents. More specifically, the invention is concerned with a fixed bed adsorptive process for the purification of spent paraffinic solvent whereby undesirable impurities aromatics, olefins, and moisture which cause detrimental effect in the polymerization of olefins are effectively removed.
- the present invention provides a process for purifying spent polymerization solvent comprising: (a) feeding said spent polymerization solvent to a fixed adsorbent bed wherein the solvent is substantially free of polymerization catalyst and monomers; and (b) subjecting said fixed adsorbent bed to a adsorbent bed temperature of 10 to 120°C; adsorbent bed pressure of 1 to 10 atmospheres; thereby removing aromatic impurities, olefinic impurities and moisture from said spent polymerization solvent to obtain purified spent polymerization solvent.
- the present invention provides a process for purifying spent polymerization solvent wherein the spent polymerization solvent is separated and recovered from a Ziegler-Natta olefin polymerization reaction mixture.
- the present invention provides a process for purifying spent polymerization solvent wherein the spent polymerization solvent recovered comprises aromatic impurities upto 600 ppm, bromine index of upto 60 ppm and moisture content of upto 200 ppm.
- the present invention provides a process for purifying spent polymerization solvent wherein the spent polymerization solvent is any one from C 5 to Ci 6 saturated paraffins or mixture thereof and preferably any one from C9 to Co saturated paraffins or mixture thereof.
- the present invention provides a process for purifying spent polymerization solvent wherein the spent polymerization solvent has a boiling point in the range of 35°C-320°C preferably the boiling point is in the range of-152°C- 302°C.
- the present invention provides a process for purifying spent polymerization solvent wherein the aromatic impurities are aromatic compounds selected from the group comprising benzene, toluene, ethyl benzene, trimethyl benzenes, naphthalenes, Cu to Ci 6 aromatics, unsaturates, oxygenates, water and sulfur containing aromatic compounds and mixtures thereof and wherein the monomer is ethylene.
- aromatic impurities are aromatic compounds selected from the group comprising benzene, toluene, ethyl benzene, trimethyl benzenes, naphthalenes, Cu to Ci 6 aromatics, unsaturates, oxygenates, water and sulfur containing aromatic compounds and mixtures thereof and wherein the monomer is ethylene.
- the present invention provides a process for purifying spent polymerization solvent wherein the adsorbent is selected from the group comprising of zeolite, silica gel, activated alumina, activated bentonite clay and attapulgite clay preferably acid activated bentonite clay most preferably sulfuric acid activated calcium bentonite clay.
- the adsorbent is selected from the group comprising of zeolite, silica gel, activated alumina, activated bentonite clay and attapulgite clay preferably acid activated bentonite clay most preferably sulfuric acid activated calcium bentonite clay.
- the present invention provides a process for purifying spent polymerization solvent wherein the acid activated bentonite clay is substantially in the form of crushed particles and particle size of said crushed particles is in the range of 0.4 mm to 1.0 mm.
- the present invention provides a process for purifying spent polymerization solvent wherein the pore volume of said acid activated clay is in the range of 0.45 to 0.55 cc/gm and Brunauer, Emmett and Teller (BET) surface area is 250 to 350 mVgm.
- BET Brunauer, Emmett and Teller
- the present invention provides a process for purifying spent polymerization solvent wherein the adsorbent bed temperature is preferably 30 to 60°C; adsorbent bed pressure is preferably 2 to 4 atmospheres; and liquid hourly space velocity of said adsorbent bed is from about 0.1 to about 2.0 per hour preferably 0.5 to 1.0 per hour.
- the present invention provides a process for purifying spent polymerization solvent wherein the purified spent polymerization solvent comprises upto 20ppm aromatic impurities; 2ppm bromine index; and upto lOppm of moisture.
- the present invention provides a process for purifying spent polymerization solvent wherein the purified spent polymerization solvent has a purity of at least 99.99wt%.
- the present invention provides a purified spent polymerization solvent prepared by the process as disclosed herein.
- the present invention provides the use of purified spent polymerization solvent prepared by the process as disclosed herein in polymerization reactions.
- Figure-1 Aromatics adsorption kinetics of zeolite 13X at 30°C: Adsorption kinetics of aromatics impurities present in spent solvent is measured on zeolite 13X.
- Figure-2 Aromatics adsorption kinetics of acid activated clay at 30°C: Adsorption kinetics of aromatics impurities present in spent solvent is measured on acid activated montmorillonite clay.
- FIG. 3 Fixed bed adsorption breakthrough of aromatics on acid activated clay: This figure shows the aromatics breakthrough curve of aromatics wherein aromatic content in the feed and treated samples is determined by UV method.
- Figure-4 Fixed bed adsorption breakthrough of aromatics on zeolite 13X and acid activated clay: This figure shows the aromatic content in the feed and treated samples. The aromatic content is determined by UV method.
- the present invention provides an adsorbent and adsorptive process for purifying the spent hydrocarbon solvent involving C 5 to C] 6 paraffin's used for polymerization reactions involving olefinic ethylene monomer and polymerization catalyst of Ziegler-Natta type to produce high density polyethylene (HDPE) and ultrahigh molecular weight polyethylene (UHWMPE).
- Ziegler-Natta catalysts is well described, in “Ziegler-Natta Catalysts and Polymerization” by John Boor, Jr. (Academic Press) as well as Journal of Macromolecular Science— Reviews in Macromolecular Chemistry and Physics, C24(3) 355-385 (1984) and ibid., C25 (1), 57-97 (1985).
- Olefins which can be polymerized by such Ziegler-Natta catalysts are those having preferably 2-4 carbon atoms, such as ethylene, propylene and butene-1. It is well known to those skilled in the art that polymerization reactions of olefinic hydrocarbons, such as the Zieglar-Natta type, are sensitive to various types of impurities present in the solvent which have a significant and deleterious effect regarding the degree of polymerization of the olefinic hydrocarbon as well as the structure of the polymer which is prepared. During catalyst preparation inert paraffmic solvent is used as solvent which is being utilized in large quantities ⁇ recycled and reused.
- magnesium ethoxide and TiCI 4 are used for catalyst preparation in the polymerization unit. Initially, magnesium ethoxide is dissolved in paraffmic solvent and temperature of vessel is maintained to 70-100 ° C. Addition of TiCI 4 is done in 2-5 stages to maintain Mg: Ti ratio of 1 :1 to 1 :3. The solution is kept at 100°C to 140°C for 40-80 hrs. The unreacted TiCLt and other contaminants are removed by washing with pure paraffmic solvent. The mixture is again maintained at 70-100°C for 3-8 hrs. The decanted paraffmic solvent contains inorganic impurities and aromatics as major contaminants.
- Paraffinic solvent is treated with NaOH solution followed by water wash to remove the inorganic impurities and is termed as spent paraffinic solvent.
- the spent paraffinic solvent contains moisture, unsaturates and aromatics as major impurities.
- low boiling-point compounds such as unreacted monomers, e.g., ethylene, propylene, buten-1 and/or the like are removed beforehand.
- adsorbent like zeolite molecular sieves generally adsorb low amount of polymerization-inhibiting components which are present in high concentrations in spent solvent and the polymerization solvent is used in large volumes on an industrial scale.
- Typical acid activated montmorillonite clays are available at 20-30% of the cost of a zeolite molecular sieves normally used in the solvent purification process.
- the purification of the spent solvent system is effected by treating a solvent with low cost acid activated montmorillonite clay,
- Bromine Index is expressed as milligrams of the bromine available to react with 100 gm of the paraffin sample.
- the treatment step is affected at ambient temperatures and atmospheric pressure; although elevated temperatures and pressures may be used without deviating from the scope of the invention.
- Aromatic content in spent paraffinic solvent post catalyst preparation is estimated using UOP method 495-75 (Aromatics in molex n-paraffin products by Ultraviolet spectroscopy" published in UOP Laboratory test methods for petroleum and its products- 1972). This method determines the average amount of weight percent naphthalene and alkyl benzene present in spent solvent by measuring absorbance at 285 and 270 nm.
- Preferred paraffinic solvents are saturated hydrocarbons which include alkanes, cycloalkanes and alkylcycloalkanes or mixtures thereof.
- Typical solvents include hexane, cyclohexane, methyl cyclohexane and other hydrocarbons of these classes. These and other similar hydrocarbons are well known to those skilled in art of polymerization of ethylene.
- the solvent used for polymerization catalyst preparation in the present invention is a mixture of C 5 to Ci 6 paraffin's with C 9 to CH paraffinic hydrocarbons predominantly and comprises 98-99 vol% as given in Table 2 below: Table 2: Mixture composition of fresh paraffinic solvent
- Zeolite 13X is well known for selective adsorption of aromatics molecules, over paraffins which is well described by Denaer et. al, in Microporous and Mesoporous Materials, 96, 149 - 156, 2006.
- An important feature of the present invention is use of acid activated montmorillonite clay which possesses a combination of cation exchange intercalation and swelling properties which makes it unique for adsorption of aromatics molecules which have typical kinetic diameter of 5-7 A.
- the montmorillonite clays have layer lattice structures in which inter lamellar/channel spaces is available for adsorption of aromatic molecules depending on the size and shape and is well explained in "The chemistry of clay organic reactions" by BKG Theng, published by Halsted Press, Johnson Willy & Sons Inc, New York, 1974 and YS Bhat et al in Journal of Porous material, ISSN 1380-2224, 2009.
- Sorption kinetics of aromatics impurities present in spent solvent is measured on acid activated montmorillonite clay and zeolite 13X which are given in Figure- 1 and Figure-2 and diffusion coefficients calculated are given in Table 3. Respective selectivity's of aromatic molecules over C 9 paraffin's are given in Table 4 to know suitability of adsorbent for aromatics removal from paraffin stream.
- Acid activated montmorillonite clay is prepared by extruding (6-8 mm cylindrical size) calcium rich montmorillonite granules with 30-40% of moisture content, and again re-extruded (3-5 mm). Extrudates are subjected to 40% concentrated sulfuric acid activation treatment at 85°C for 6-8 hours. Acid activated extrudates are finally water washed, air dried finally oven-dried and sized to 0.42 to 1 mm granules. Final acid activated clay has total acidity 22 mg KOH/g, with pH of 3.5 and moisture content of 1-2 wt%. The prepared acid activated clay has surface area of 250-350 m 2 /g and pore volume of 0.5 cc/g.
- prepared acid activated clay adsorbent is activated in a muffle furnace at 300 to 400°C under dry nitrogen flow for 2-4 hrs before loading in to the fixed adsorbent bed for purification of spent paraffinic solvent.
- the adsorbent bed is further activated at 250 °C under the flow of UHP nitrogen for 8 hours.
- the Bed is then cooled to ambient (25 to 30°C) temperature.
- the adsorber effluent is cooled to 5-10°C in the condenser.
- Spent solvent is passed through activated clay adsorber to remove aromatics, olefins and moisture.
- the solvent thus purified can be utilized for polymerization reaction in which ethylene is treated at polymerization conditions in the presence of polymerization catalyst.
- Example 1 The following examples are given for purposes of illustrating the process of the present invention in which a spent saturated paraffinic solvent suitable for use as a medium in a polymerization reaction is purified to remove undesirable contaminants there from. However, these are merely representative examples and optimization details and are3 ⁇ 4iot intended to restrict the scope of the present invention in any way.
- Example 1
- 50 gm of activated clay of the size of 1 to 1.5 mm granular sized is activated in furnace at 250°C under nitrogen atmosphere and is charged in a stainless steel tubular column of the dimension of 8 inch length and 1 ⁇ 2 inch internal diameter.
- the adsorbent is further regenerated in column to remove any air and moisture ingress during loading of the adsorbent in flowing nitrogen heated from near ambient temperature to 220°C at the heating rate of 2°C/minute then held at 220°C for another 2 hrs.
- the nitrogen pressure during regeneration was maintained at 2 psig while the nitrogen flow rate is varied between 60 to 120 ml/minute.
- the regenerated activated clay adsorbent is cooled to ambient temperature with dry nitrogen in the tubular column under nitrogen atmosphere.
- Post nitrogen regeneration of adsorbent bed in column spent saturated paraffinic solvent having 600 ppm of aromatic content is fed in the column.
- adsorbent bed temperature is maintained at 30°C, liquid hourly space velocity (LHSV) of 1 hr 1 (v/v hr) and pressure of 8 bar. Samples at the outlet of the column are collected at regular intervals.
- LHSV liquid hourly space velocity
- the aromatic content in the feed and treated samples is determined by * UV method with aromatics breakthrough curve as shown in Figure-3. 20 ppm of aromatics concentration is decided as breakthrough point.
- Adsorbent prepared as disclosed in Example 1 can adsorb 0.65 wt% of the aromatics as estimated from adsorption breakthrough point. Moisture content is reduced to ⁇ 10 ppm and Bromine Index ⁇ 2 PPM.
- Example 1 is repeated except that instead of maintaining 30°C adsorbent bed temperature of 40°C is maintained.
- the aromatic content in the feed and treated samples is determined by UV method with aromatics breakthrough curve as shown in Figure-3. 20 ppm of aromatics concentration is decided as breakthrough point.
- Adsorbent prepared as in Example 1 can adsorb 0.35 wt% of the aromatics as estimated from adsorption breakthrough point. Moisture content is reduced to ⁇ 8 ppm and Bromine Index ⁇ 2 PPM.
- Example 1 The process disclosed in Example 1 is repeated except that instead of maintaining 30°C adsorbent bed temperature, 50°C was maintained.
- the aromatic content in the leed and treated samples is determined by UV method with aromatics breakthrough curve as shown in Figure-3. 20 ppm of aromatics concentration is decided as breakthrough point.
- Adsorbent prepared as in Example 1 can adsorb 0.22 wt% of the aromatics as estimated from adsorption breakthrough point. Moisture content is reduced to ⁇ 5 ppm and Bromine Index ⁇ 2PPM.
- Example 2 In a manner similar to that set forth in Example 1, 50 gm of zeolite 13X molecular sieve of the size of 2 to 3 mm spherical beads previously activated in furnace at 250°C under nitrogen atmosphere is charged in adsorption breakthrough setu (as explained in Example 1 ). During the adsorption-cycle, the spent saturated paraffinic solvent containing 600 ppm of aromatics sent to column at 120°C, liquid hourly space velocity (LHSV) of lhr '1 (v/v/hr) and pressure of 6 bar. Samples at the outlet of the column are collected at regular intervals.
- LHSV liquid hourly space velocity
- the aromatic content in the feed and treated samples is determined by UV method with aromatics breakthrough curve as shown in Figure-4. 20 ppm of aromatics concentration is decided as breakthrough point. Moisture content is reduced to ⁇ 2 ppm and Bromine Index ⁇ 5ppm.
- Adsorbent prepared as in Example 1 can adsorb 0.52 wt% of the aromatics as estimated from adsorption breakthrough point.
- This example illustrates the utility of solvent purified using activated clay in accordance with the method set forth in Example 1 to act as a solvent for a polymerization reaction.
- Purified solvent is tested for polymerization of ethylene is carried out in 1 L Buchi glasuster polyclave reactor which is heated at 75-105°C under N 2 flow for about 3 - 4 hrs to remove oxygen and moisture followed by cooling to ambient temperature.
- a calculated amount of THB black catalyst slurry containing 25% Ti 3+ dispersed in 500 ml of treated cyclohexane solvent containing the requisite quantity of co-catalyst (TIPRA) so as to maintain desired AI/Ti molar ratio's is added to the above conditioned reactor under N 2 atmosphere.
- TIPRA co-catalyst
- the occluded gas in the medium is vented out gently under agitation.
- requisite quantity of hydrogen (minimum possible was 0.1 bar) is transferred to the reactor where molecular weight regulation is required - if not, this step is not performed.
- Ethylene is then introduced into the system at desired pressure unde! agitation (500 rpm). Ethylene pressure is maintained at 1.5 to 3 bars throughout the run (2 hr). Simultaneously the hot water circulation is started and the temperature is maintained at 75° C; thus controlling the exothermic nature of the polymerization. After two hours the residual ethylene is vented out the contents to ambient temperature.
- the polymer formed is in the form of uniform powder.
- the polymer is washed with acidic methanol, maehanol and acetone.
- the polymer is filtered and dried under vacuum at around 60 °C.
- the weight of polymer is recorded to calculate the productivity of the catalyst in terms of g polymer per g of catalyst and g polymer per mmole of Ti.
- the productivity is based on a 2 hrs period.
- the reactor is cleaned, boxed up and then baked under nitrogen for the next reaction.
- Post clay treatment productivity of catalyst is improved to 131 gm from 21 gm without clay treatment at 30°C for UHMWPE at AI/Ti ratio of 4 and maintained pressure of ethylene and hydrogen 2.5 bar and 0.1 bar respectively.
- the present invention provides a simple and economical method of simultaneous removal of olefinic impurities, along with other impurities such as aromatic and moisture from spent polymerization solvent.
- the method disclosed in the present invention uses activated clay as adsorbent to remove impurities without subjecting the spent polymerization solvent to any pre-treatment such as distillation/decantation etc.
- Moisture removal "* in the method disclosed on the present invention is upto ppm level using acid activated clay and without resorting to decantation/distillation.
- the method disclosed in the present invention removes multiple impurities such as aromatic, olefinic and moisture from the spent polymerization solvent under the same set of process conditions.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Analytical Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
The present invention discloses a process for purifying spent polymerization solvent thereby removing aromatic impurities, olefinic impurities and moisture from the spent polymerization solvent. The process comprises feeding the spent polymerization solvent to a fixed adsorbent bed wherein said solvent is substantially free of polymerization catalyst and untreated monomers; and treating at an adsorbent bed temperature of 10 to 120°C; adsorbent bed pressure of about 1 to 10 atmospheres.
Description
ADSORPTION PROCESS FOR PURIFICATION OF SPENT SATURATED PARAFFINIC SOLVENT USED IN POLYMERIZATION
FIELD OF INVENTION
The present invention relates to a method for the purification of spent polymerization solvent using adsorbents. The present invention provides a method for removing impurities such as aromatic, olefinic, moisture from the polymerization solvent using a fixed adsorbent bed. The present invention further provides a process for removing multiple impurities such as aromatic, olefinic and moisture from the spent polymerization solvent under the same set of process conditions. The present invention discloses an adsorbent and adsorptive process for purifying the spent saturated paraffmic solvent through removing impurities like aromatics, olefinic and moisture generated during making of polymers like high density polyethylene (HDPE) and ultrahigh molecular polyethylene (UHWMPE).
BACKGROUND OF THE INVENTION
During polymerization process impurities like spent catalyst residues, aromatic compounds, olefins and moisture are generated. The spent catalyst residues like magnesium ethoxide and TiCl4 and other organic contaminants are removed by treating with pure saturated paraffmic solvent comprised of C5-Ci6 carbon number range followed by alkali washing to remove inorganic impurities. Remaining spent paraffinic solvent contains moisture, unsaturates and aromatics as major impurities. It is extremely important to purify a polymerization solvent prior to its reuse for the polymerization of an olefin in the presence of a Ziegler-Natta catalyst, because the Ziegler-Natta catalyst is deactivated by various poisonous components such as compounds with polar groups contained therein.
Various methods of removing catalysts residues from polymers are known. For example, U.S. Pat. No. 3,271,372 discloses a process wherein an alcohol solvent is used to disperse the granular particles of the polymer which is separated from the slurry. U.S. Pat. No. 3,337,514 requires contacting a solution of an polymer with steam, followed with aqueous mineral acid treatment, then with water wash under turbulent conditions and finally separating the polymer solution from the aqueous phase.
U.S. Pat. No. 2,950,336 discloses the separation of aromatic compounds and olefins from hydrocarbon mixtures that may also include paraffins, using a zeolitic molecular sieve.
U.S. Pat. No. 4,725,338 claims a process for purifying an olefin polymerization solvent suitable for use in the presence of a Ziegler-Natta catalyst, through usage of a multi-stage distillation column without usage of adsorbent.
U.S. Pat. No. 4,433,194 discloses a method of purification of cyclohexane solvent with titanium tetrachloride, followed by adsorbent treatment like silica gel and distillation in the presence of alkali metal hydrides.
JP2000143718A discloses a process for removing olefins from a
"polymerization solvent" by circulating through a fixed column packed with an acid- treated clay (apparently means fixed bed!) at ambient conditions. The polymerization solvent includes C5-C12 aliphatic hydrocarbons, C6 and C7 alicyclic hydrocarbons and aromatic hydrocarbons such as benzene, toluene and xylene. This document does not disclose removal of moisture or aromatics.
In the prior art olefin removal is performed at 120 to 250°C temperature; and aromatics removal is achieved at ambient temperatures provided it is moisture free. Olefinic removal by clay is a catalytic action taking place between olefin molecules and active acid sites plus free acid available on clay surface whereas moisture and aromatics adsorption is physical adsorption related to polarity of water and aromatic molecules, surface area and porosity of acid activated clay.
None of the prior art methods provide a process for simultaneously removing aromatics, olefins, and moisture from spent paraffinic solvent system. There is a need for a simple and efficient process for removing aromatics, olefins, and moisture from spent paraffinic solvent system. The present invention relates to a method for the purification of spent polymerization solvent using adsorbents. More specifically, the invention is concerned with a fixed bed adsorptive process for the purification of spent paraffinic solvent whereby undesirable impurities aromatics, olefins, and moisture which cause a detrimental effect in the polymerization of olefins are effectively removed.
OBJECTS OF THE INVENTION
One of the important objects of the present invention is to provide a simple and efficient method for the purification of solvents which are utilized in ethylene polymerization reactions.
Another object of the present invention is to provide a method for simultaneously removing impurities such as aromatic, olefinic and moisture from spent polymerization solvents.
Still another object of the present invention is to remove impurities such as aromatic, olefinic and moisture from spent polymerization solvents under the same set of process conditions.
Yet, another object of the present invention is to provide an adsorbent based method for the purification of spent paraffinic solvents.
Another object of the present invention is to provide a simple method for the purification of spent polymerization solvents comprising treating with suitable adsorbents such as silica gel, zeolite molecular sieve, activated alumina and acid activated montmorillonite to remove contaminants therefrom, and recovering the purified saturated paraffinic solvent.
SUMMARY OF THE INVENTION
The above and other objects of the invention are achieved by the present invention which relates to a method for the purification of spent polymerization solvent using adsorbents. More specifically, the invention is concerned with a fixed bed adsorptive process for the purification of spent paraffinic solvent whereby undesirable impurities aromatics, olefins, and moisture which cause detrimental effect in the polymerization of olefins are effectively removed.
Accordingly, the present invention provides a process for purifying spent polymerization solvent comprising: (a) feeding said spent polymerization solvent to a fixed adsorbent bed wherein the solvent is substantially free of polymerization catalyst and monomers; and (b) subjecting said fixed adsorbent bed to a adsorbent bed temperature of 10 to 120°C; adsorbent bed pressure of 1 to 10 atmospheres; thereby removing aromatic impurities, olefinic impurities and moisture from said spent polymerization solvent to obtain purified spent polymerization solvent.
In another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the spent polymerization solvent is separated and recovered from a Ziegler-Natta olefin polymerization reaction mixture.
In yet another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the spent polymerization solvent recovered comprises aromatic impurities upto 600 ppm, bromine index of upto 60 ppm and moisture content of upto 200 ppm.
In still another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the spent polymerization solvent is any one from C5 to Ci6 saturated paraffins or mixture thereof and preferably any one from C9 to Co saturated paraffins or mixture thereof.
In another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the spent polymerization solvent has a boiling point in the range of 35°C-320°C preferably the boiling point is in the range of-152°C- 302°C.
In yet another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the aromatic impurities are aromatic compounds selected from the group comprising benzene, toluene, ethyl benzene, trimethyl benzenes, naphthalenes, Cu to Ci6 aromatics, unsaturates, oxygenates, water and sulfur containing aromatic compounds and mixtures thereof and wherein the monomer is ethylene.
In still another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the adsorbent is selected from the group comprising of zeolite, silica gel, activated alumina, activated bentonite clay and attapulgite clay preferably acid activated bentonite clay most preferably sulfuric acid activated calcium bentonite clay.
In another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the acid activated bentonite clay is substantially in the form of crushed particles and particle size of said crushed particles is in the range of 0.4 mm to 1.0 mm.
In yet another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the pore volume of said acid activated clay is in the range of 0.45 to 0.55 cc/gm and Brunauer, Emmett and Teller (BET) surface area is 250 to 350 mVgm.
In still another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the adsorbent bed temperature is preferably 30 to 60°C; adsorbent bed pressure is preferably 2 to 4 atmospheres; and liquid hourly space velocity of said adsorbent bed is from about 0.1 to about 2.0 per hour preferably 0.5 to 1.0 per hour.
In another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the purified spent polymerization solvent
comprises upto 20ppm aromatic impurities; 2ppm bromine index; and upto lOppm of moisture.
In another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the purified spent polymerization solvent has a purity of at least 99.99wt%.
In yet another embodiment the present invention provides a purified spent polymerization solvent prepared by the process as disclosed herein.
In still another embodiment the present invention provides the use of purified spent polymerization solvent prepared by the process as disclosed herein in polymerization reactions.
BRIEF DESCRIPTION OF DRAWINGS
Figure-1: Aromatics adsorption kinetics of zeolite 13X at 30°C: Adsorption kinetics of aromatics impurities present in spent solvent is measured on zeolite 13X. Figure-2: Aromatics adsorption kinetics of acid activated clay at 30°C: Adsorption kinetics of aromatics impurities present in spent solvent is measured on acid activated montmorillonite clay.
Figure-3: Fixed bed adsorption breakthrough of aromatics on acid activated clay: This figure shows the aromatics breakthrough curve of aromatics wherein aromatic content in the feed and treated samples is determined by UV method.
Figure-4: Fixed bed adsorption breakthrough of aromatics on zeolite 13X and acid activated clay: This figure shows the aromatic content in the feed and treated samples. The aromatic content is determined by UV method.
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides an adsorbent and adsorptive process for purifying the spent hydrocarbon solvent involving C5 to C]6 paraffin's used for polymerization reactions involving olefinic ethylene monomer and polymerization catalyst of Ziegler-Natta type to produce high density polyethylene (HDPE) and ultrahigh molecular weight polyethylene (UHWMPE). Ziegler-Natta catalysts is well described, in "Ziegler-Natta Catalysts and Polymerization" by John Boor, Jr. (Academic Press) as well as Journal of Macromolecular Science— Reviews in Macromolecular Chemistry and Physics, C24(3) 355-385 (1984) and ibid., C25 (1), 57-97 (1985). Olefins which can be polymerized by such Ziegler-Natta catalysts are those having preferably 2-4 carbon atoms, such as ethylene, propylene and butene-1.
It is well known to those skilled in the art that polymerization reactions of olefinic hydrocarbons, such as the Zieglar-Natta type, are sensitive to various types of impurities present in the solvent which have a significant and deleterious effect regarding the degree of polymerization of the olefinic hydrocarbon as well as the structure of the polymer which is prepared. During catalyst preparation inert paraffmic solvent is used as solvent which is being utilized in large quantities^ recycled and reused. During the process of polymerization catalyst preparation typical impurities accumulated in the paraffmic solvent post polymerization reactions are aromatic compounds like benzene, toluene, ethyl benzene, trimethyl benzenes, naphthalene's, Cn-Ci6 aromatics, olefinic unsaturates, oxygenates, water and sulfur- containing compounds. Impurities such as aromatics, water, oxygen-and sulfur- containing compounds have a tendency to react with the catalyst which is employed for the polymerization process and therefore these impurities deactivate the catalyst faster thereby reducing the output and efficiency of the catalyst. Molecular characteristic of typical aromatics molecules present in spent polymerization solvents are given below in table 1.
Table 1: Molecular characteristics of aromatic molecules
More specifically during process of ethylene polymerization magnesium ethoxide and TiCI4 are used for catalyst preparation in the polymerization unit. Initially, magnesium ethoxide is dissolved in paraffmic solvent and temperature of vessel is maintained to 70-100°C. Addition of TiCI4 is done in 2-5 stages to maintain Mg: Ti ratio of 1 :1 to 1 :3. The solution is kept at 100°C to 140°C for 40-80 hrs. The unreacted TiCLt and other contaminants are removed by washing with pure paraffmic solvent. The mixture is again maintained at 70-100°C for 3-8 hrs. The decanted paraffmic solvent contains inorganic impurities and aromatics as major contaminants.
Paraffinic solvent is treated with NaOH solution followed by water wash to remove the inorganic impurities and is termed as spent paraffinic solvent. The spent paraffinic solvent contains moisture, unsaturates and aromatics as major impurities. In the case of spent polymerization solvents recovered after polymerization systems, it is more preferable to purify them by the process of this invention after low boiling-point compounds such as unreacted monomers, e.g., ethylene, propylene, buten-1 and/or the like are removed beforehand.
Due to treatment with NaOH treatment and subsequent water wash the moisture content in spent solvent increases. The olefins present in the paraffinic solvent of CI ions (from TiCI4) and O ions present in ethoxide and temperature of 100°C-140°C for 40-80 hrs results in the formation of aromatic molecules. Inorganic impurities like Mg and Ti and excess chloride and oxide ions are removed by NaOH wash.
One method of reducing the aforementioned impurities which may be present in the solvent system is distillation but this method can lead to change in solvent composition and can subsequently affect the catalyst solubility in the solvent. In contradiction to these prior methods of purifying a solvent system, it has now been surprisingly found that the impurities which are present in a solvent system such as paraffinic solvent can be effectively removed by a simple treatment hereinafter with acid activated montmorillonite clay and the solvent system may be successfully employed in a polymerization of specific olefins such as ethylene to make UHWMPE and HDPE using Zeigler-Natta catalyst.
It is ifnportant to use a suitable low cost adsorbent for spent solvent purification because the adsorbent like zeolite molecular sieves generally adsorb low amount of polymerization-inhibiting components which are present in high concentrations in spent solvent and the polymerization solvent is used in large volumes on an industrial scale. Hence it is always desirable to develop a low cost adsorptive purification process for spent polymerization solvent. Typical acid activated montmorillonite clays are available at 20-30% of the cost of a zeolite molecular sieves normally used in the solvent purification process. The purification of the spent solvent system is effected by treating a solvent with low cost acid activated montmorillonite clay,
The presence of unsaturate' s in paraffinic solvents is measured by Bromine Index as per ASTM method D1491 , which signifies the presence of unsaturated
olefins in paraffin's. Bromine Index is expressed as milligrams of the bromine available to react with 100 gm of the paraffin sample.
In the preferred embodiment of the present invention, the treatment step is affected at ambient temperatures and atmospheric pressure; although elevated temperatures and pressures may be used without deviating from the scope of the invention. Aromatic content in spent paraffinic solvent post catalyst preparation is estimated using UOP method 495-75 (Aromatics in molex n-paraffin products by Ultraviolet spectroscopy" published in UOP Laboratory test methods for petroleum and its products- 1972). This method determines the average amount of weight percent naphthalene and alkyl benzene present in spent solvent by measuring absorbance at 285 and 270 nm.
Preferred paraffinic solvents are saturated hydrocarbons which include alkanes, cycloalkanes and alkylcycloalkanes or mixtures thereof. Typical solvents include hexane, cyclohexane, methyl cyclohexane and other hydrocarbons of these classes. These and other similar hydrocarbons are well known to those skilled in art of polymerization of ethylene. The solvent used for polymerization catalyst preparation in the present invention is a mixture of C5 to Ci6 paraffin's with C9 to CH paraffinic hydrocarbons predominantly and comprises 98-99 vol% as given in Table 2 below: Table 2: Mixture composition of fresh paraffinic solvent
Zeolite 13X is well known for selective adsorption of aromatics molecules, over paraffins which is well described by Denaer et. al, in Microporous and
Mesoporous Materials, 96, 149 - 156, 2006. An important feature of the present invention is use of acid activated montmorillonite clay which possesses a combination of cation exchange intercalation and swelling properties which makes it unique for adsorption of aromatics molecules which have typical kinetic diameter of 5-7 A. The montmorillonite clays have layer lattice structures in which inter lamellar/channel spaces is available for adsorption of aromatic molecules depending on the size and shape and is well explained in "The chemistry of clay organic reactions" by BKG Theng, published by Halsted Press, Johnson Willy & Sons Inc, New York, 1974 and YS Bhat et al in Journal of Porous material, ISSN 1380-2224, 2009.
Sorption kinetics of aromatics impurities present in spent solvent is measured on acid activated montmorillonite clay and zeolite 13X which are given in Figure- 1 and Figure-2 and diffusion coefficients calculated are given in Table 3. Respective selectivity's of aromatic molecules over C9 paraffin's are given in Table 4 to know suitability of adsorbent for aromatics removal from paraffin stream.
Table 3: Sorption capacity and diffusion of n-nonane and aromatics on 13X at room temperature
Table 4: Aromatics selectivity over C9 paraffin
Acid activated montmorillonite clay is prepared by extruding (6-8 mm cylindrical size) calcium rich montmorillonite granules with 30-40% of moisture content, and again re-extruded (3-5 mm). Extrudates are subjected to 40% concentrated sulfuric acid activation treatment at 85°C for 6-8 hours. Acid activated extrudates are finally water washed, air dried finally oven-dried and sized to 0.42 to 1 mm granules. Final acid activated clay has total acidity 22 mg KOH/g, with pH of 3.5 and moisture content of 1-2 wt%. The prepared acid activated clay has surface area of 250-350 m2/g and pore volume of 0.5 cc/g. Thus prepared acid activated clay adsorbent is activated in a muffle furnace at 300 to 400°C under dry nitrogen flow for 2-4 hrs before loading in to the fixed adsorbent bed for purification of spent paraffinic solvent. The adsorbent bed is further activated at 250 °C under the flow of UHP nitrogen for 8 hours. The Bed is then cooled to ambient (25 to 30°C) temperature. The adsorber effluent is cooled to 5-10°C in the condenser. Spent solvent is passed through activated clay adsorber to remove aromatics, olefins and moisture.
The solvent thus purified can be utilized for polymerization reaction in which ethylene is treated at polymerization conditions in the presence of polymerization catalyst.
The following examples are given for purposes of illustrating the process of the present invention in which a spent saturated paraffinic solvent suitable for use as a medium in a polymerization reaction is purified to remove undesirable contaminants there from. However, these are merely representative examples and optimization details and are¾iot intended to restrict the scope of the present invention in any way. Example 1
50 gm of activated clay of the size of 1 to 1.5 mm granular sized is activated in furnace at 250°C under nitrogen atmosphere and is charged in a stainless steel tubular column of the dimension of 8 inch length and ½ inch internal diameter. The adsorbent is further regenerated in column to remove any air and moisture ingress during loading of the adsorbent in flowing nitrogen heated from near ambient temperature to 220°C at the heating rate of 2°C/minute then held at 220°C for another 2 hrs. The nitrogen pressure during regeneration was maintained at 2 psig while the nitrogen flow rate is varied between 60 to 120 ml/minute. Finally the regenerated activated clay adsorbent is cooled to ambient temperature with dry nitrogen in the tubular column under nitrogen atmosphere.
Post nitrogen regeneration of adsorbent bed in column spent saturated paraffinic solvent having 600 ppm of aromatic content is fed in the column. During the adsorption cycle, adsorbent bed temperature is maintained at 30°C, liquid hourly space velocity (LHSV) of 1 hr 1 (v/v hr) and pressure of 8 bar. Samples at the outlet of the column are collected at regular intervals.
The aromatic content in the feed and treated samples is determined by*UV method with aromatics breakthrough curve as shown in Figure-3. 20 ppm of aromatics concentration is decided as breakthrough point.
Adsorbent prepared as disclosed in Example 1 can adsorb 0.65 wt% of the aromatics as estimated from adsorption breakthrough point. Moisture content is reduced to <10 ppm and Bromine Index <2 PPM.
Example 2
Example 1 is repeated except that instead of maintaining 30°C adsorbent bed temperature of 40°C is maintained. The aromatic content in the feed and treated samples is determined by UV method with aromatics breakthrough curve as shown in Figure-3. 20 ppm of aromatics concentration is decided as breakthrough point. Adsorbent prepared as in Example 1 can adsorb 0.35 wt% of the aromatics as estimated from adsorption breakthrough point. Moisture content is reduced to <8 ppm and Bromine Index <2 PPM.
Example 3
The process disclosed in Example 1 is repeated except that instead of maintaining 30°C adsorbent bed temperature, 50°C was maintained. The aromatic content in the leed and treated samples is determined by UV method with aromatics breakthrough curve as shown in Figure-3. 20 ppm of aromatics concentration is decided as breakthrough point. Adsorbent prepared as in Example 1 can adsorb 0.22 wt% of the aromatics as estimated from adsorption breakthrough point. Moisture content is reduced to <5 ppm and Bromine Index <2PPM.
Example 4
In a manner similar to that set forth in Example 1, 50 gm of zeolite 13X molecular sieve of the size of 2 to 3 mm spherical beads previously activated in furnace at 250°C under nitrogen atmosphere is charged in adsorption breakthrough setu (as explained in Example 1 ). During the adsorption-cycle, the spent saturated paraffinic solvent containing 600 ppm of aromatics sent to column at 120°C, liquid
hourly space velocity (LHSV) of lhr'1 (v/v/hr) and pressure of 6 bar. Samples at the outlet of the column are collected at regular intervals.
The aromatic content in the feed and treated samples is determined by UV method with aromatics breakthrough curve as shown in Figure-4. 20 ppm of aromatics concentration is decided as breakthrough point. Moisture content is reduced to <2 ppm and Bromine Index <5ppm.
Adsorbent prepared as in Example 1 can adsorb 0.52 wt% of the aromatics as estimated from adsorption breakthrough point.
Example 5
This example illustrates the utility of solvent purified using activated clay in accordance with the method set forth in Example 1 to act as a solvent for a polymerization reaction. Purified solvent is tested for polymerization of ethylene is carried out in 1 L Buchi glasuster polyclave reactor which is heated at 75-105°C under N2 flow for about 3 - 4 hrs to remove oxygen and moisture followed by cooling to ambient temperature. Subsequently a calculated amount of THB black catalyst slurry containing 25% Ti3+ dispersed in 500 ml of treated cyclohexane solvent containing the requisite quantity of co-catalyst (TIPRA) so as to maintain desired AI/Ti molar ratio's is added to the above conditioned reactor under N2 atmosphere. After boxing up the reactor, the occluded gas in the medium is vented out gently under agitation. After stopping the agitator, requisite quantity of hydrogen (minimum possible was 0.1 bar) is transferred to the reactor where molecular weight regulation is required - if not, this step is not performed. Ethylene is then introduced into the system at desired pressure unde! agitation (500 rpm). Ethylene pressure is maintained at 1.5 to 3 bars throughout the run (2 hr). Simultaneously the hot water circulation is started and the temperature is maintained at 75° C; thus controlling the exothermic nature of the polymerization. After two hours the residual ethylene is vented out the contents to ambient temperature. The polymer formed is in the form of uniform powder. The polymer is washed with acidic methanol, maehanol and acetone. The polymer is filtered and dried under vacuum at around 60 °C. The weight of polymer is recorded to calculate the productivity of the catalyst in terms of g polymer per g of catalyst and g polymer per mmole of Ti. The productivity is based on a 2 hrs period. The reactor is cleaned, boxed up and then baked under nitrogen for the next reaction.
Post clay treatment productivity of catalyst is improved to 131 gm from 21 gm without clay treatment at 30°C for UHMWPE at AI/Ti ratio of 4 and maintained
pressure of ethylene and hydrogen 2.5 bar and 0.1 bar respectively. Fresh solvent yields 140g of UHMWPE polymer. Similarly HDPE yield increases to 182 gm at AI/Ti ratio of 11 and maintaining pressure of 2 bar and 0.5 bar for ethylene and hydrogen respectively with clay treated solvent at 30C compared to 29 gm without any treatment. Fresh solvent yields 190g of HDPE polymer.
Advantages of the present invention:
1. The present invention provides a simple and economical method of simultaneous removal of olefinic impurities, along with other impurities such as aromatic and moisture from spent polymerization solvent.
2. The method disclosed in the present invention uses activated clay as adsorbent to remove impurities without subjecting the spent polymerization solvent to any pre-treatment such as distillation/decantation etc.
3. Moisture removal"* in the method disclosed on the present invention is upto ppm level using acid activated clay and without resorting to decantation/distillation.
4. The method disclosed in the present invention removes multiple impurities such as aromatic, olefinic and moisture from the spent polymerization solvent under the same set of process conditions.
Claims
1. A process for purifying spent polymerization solvent comprising: (a) feeding said spent polymerization solvent to a fixed adsorbent bed wherein said solvent is substantially free of polymerization catalyst and monomers; and (b) treating said fixed adsorbent bed to a adsorbent bed temperature of 10 to 120°C; adsorbent bed pressure of 1 to 10 atmospheres; thereby removing aromatic impurities, olefinic impurities and moisture from said spent polymerization solvent to obtain purified spent polymerization solvent.
2. The process as claimed in claim 1 , wherein said spent polymerization solvent is separated and recovered from a Ziegler-Natta olefin polymerization reaction mixture.
3. The process as claimed in claim 2, wherein said spent polymerization solvent recovered comprises aromatic impurities upto 600 ppm, bromine index of upto 60 ppm and moisture content of upto 200 ppm).
4. The process as claimed in any of the preceding claims, wherein said spent polymerization solvent is selected from the group comprising any one from C5 to Ci6 saturated paraffins or mixture thereof; preferably any one from C9 to C]3. saturated paraffins or mixture thereof.
5. The process as claimed in any of the preceding claims, wherein said spent polymerization solvent has a boiling point in the range of 35°C-320°C, preferably in the range of 152°C-302°C.
6. The process as claimed in any of the preceding claims, wherein said aromatic impurities are aromatic compounds selected from the group comprising benzene, toluene, ethyl benzene, trimethyl benzenes, naphthalenes, Cn to Q aromatics, unsaturates, oxygenates, water and sulfur containing aromatic compounds and mixtures thereof.
7. The process as claimed in any of the preceding claims, wherein said monomer is ethylene.
8. The process as claimed in any of the preceding claims, wherein said adsorbent is selected from the group comprising of zeolite, silica gel, activated alumina, activated bentonite clay and attapulgite clay.
9. The process as claimed in claim 8, wherein said activated bentonite clay is acid activated bentonite clay.
10. The process as claimed in claim 9, wherein said acid activated bentonite clay is sulfuric acid activated calcium bentonite clay.
1 1. The process as claimed in any of the claims 9 or 10, wherein said acid activated bentonite clay is substantially in the form of crushed particles.
12. The process as claimed in claim 13, wherein particle size of said crushed particles is in the range of 0.4 mm to 1.0 mm.
13. The process as claimed in any of the preceding claims, wherein pore volume of said acid activated bentonite clay is in the range of 0.45 to 0.55 cc/gm and Brunauer, Emmett and Teller (BET) surface area is 250 to 350 m2/gm.
14. The process as claimed in any of the preceding claims, wherein said adsorbent bed temperature is preferably 30 to 60°C.
15. The process as claimed in any of the preceding claims, wherein said adsorbent bed pressure is preferably 2 to 4 atmospheres.
16. The process as claimed in any of the preceding claims, wherein liquid hourly space velocity of said adsorbent bed is from about 0.1 to about 2.0 per hour preferably 0.5 to 1.0 per hour.
17. The process as claimed in any of the preceding claims, wherein said purified spent polymerization solvent comprises upto 20ppm aromatic impurities.
18. The process as claimed in any of the preceding claims, wherein said purified spent polymerization solvent comprises upto 2ppm bromine index.
19. The process as claimed in any of the preceding claims, wherein said purified spent polymerization solvent comprises upto lOppm of moisture.
20. The process as claimed in any of the preceding claims, wherein said purified spent polymerization solvent has a purity of at least 99.99wt%.
21. Purified spent polymerization solvent prepared by the process as claimed in any of the preceding claims.
22. Use of purified spent polymerization solvent prepared by the process as claimed in any of the preceding claims 1 to 22 in polymerization reactions.
23. The process for purifying spent polymerization solvent substantially as herein described in the specification and accompanying drawings.
24. Purified spent polymerization solvent substantially as herein described in the specification and accompanying drawings.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN2217MU2011 | 2011-08-05 | ||
IN2217/MUM/2011 | 2011-08-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013051023A1 true WO2013051023A1 (en) | 2013-04-11 |
Family
ID=47553309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IN2012/000511 WO2013051023A1 (en) | 2011-08-05 | 2012-07-23 | Adsorption process for purification of spent saturated paraffinic solvent used in polymerization |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013051023A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3335787A1 (en) * | 2016-12-13 | 2018-06-20 | Scg Chemicals Co. Ltd. | Process for removing alkene and/or alkyne from a hydrocarbon feedstock |
US10519082B2 (en) | 2016-12-20 | 2019-12-31 | Uop Llc | Removal of feed treatment units in aromatics complex designs |
WO2023152582A1 (en) * | 2022-02-11 | 2023-08-17 | Koch Technology Solutions, Llc | Process for removing impurities from tetrahydrofuran |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3330778A (en) * | 1964-09-14 | 1967-07-11 | Phillips Petroleum Co | Regeneration of adsorbent beds with water-solvent-gas cycle |
JPS5692990A (en) * | 1979-12-27 | 1981-07-28 | Nisshinbo Ind Inc | Purification of paraffin hydrocarbon |
SU1225830A1 (en) * | 1984-08-09 | 1986-04-23 | Институт коллоидной химии и химии воды им.А.В.Думанского | Method of purifying saturated hydrocarbons |
JPS63314209A (en) * | 1987-06-18 | 1988-12-22 | Idemitsu Petrochem Co Ltd | Method for purification of solvent for use in polymerization of olefin |
JPH0331304A (en) * | 1989-06-27 | 1991-02-12 | Mitsui Petrochem Ind Ltd | Polymerization solvent purification method |
JPH08131707A (en) * | 1994-11-15 | 1996-05-28 | Mitsubishi Chem Corp | Method for removing trace organoaluminum compounds in hydrocarbon media |
JP2000143718A (en) * | 1998-11-12 | 2000-05-26 | Jsr Corp | Recovery of polymerization solvent and/or unreacted olefin and production of polyolefin |
JP2001106730A (en) * | 1999-10-05 | 2001-04-17 | Mitsui Chemicals Inc | Production of cyclic olefin-based copolymer |
-
2012
- 2012-07-23 WO PCT/IN2012/000511 patent/WO2013051023A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3330778A (en) * | 1964-09-14 | 1967-07-11 | Phillips Petroleum Co | Regeneration of adsorbent beds with water-solvent-gas cycle |
JPS5692990A (en) * | 1979-12-27 | 1981-07-28 | Nisshinbo Ind Inc | Purification of paraffin hydrocarbon |
SU1225830A1 (en) * | 1984-08-09 | 1986-04-23 | Институт коллоидной химии и химии воды им.А.В.Думанского | Method of purifying saturated hydrocarbons |
JPS63314209A (en) * | 1987-06-18 | 1988-12-22 | Idemitsu Petrochem Co Ltd | Method for purification of solvent for use in polymerization of olefin |
JPH0331304A (en) * | 1989-06-27 | 1991-02-12 | Mitsui Petrochem Ind Ltd | Polymerization solvent purification method |
JPH08131707A (en) * | 1994-11-15 | 1996-05-28 | Mitsubishi Chem Corp | Method for removing trace organoaluminum compounds in hydrocarbon media |
JP2000143718A (en) * | 1998-11-12 | 2000-05-26 | Jsr Corp | Recovery of polymerization solvent and/or unreacted olefin and production of polyolefin |
JP2001106730A (en) * | 1999-10-05 | 2001-04-17 | Mitsui Chemicals Inc | Production of cyclic olefin-based copolymer |
Non-Patent Citations (1)
Title |
---|
DATABASE WPI Week 198719, Derwent World Patents Index; AN 1987-134001, XP002693929 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3335787A1 (en) * | 2016-12-13 | 2018-06-20 | Scg Chemicals Co. Ltd. | Process for removing alkene and/or alkyne from a hydrocarbon feedstock |
WO2018108461A1 (en) * | 2016-12-13 | 2018-06-21 | Scg Chemicals Co., Ltd. | Process for removing alkene and/or alkyne from a hydrocarbon feedstock comprising an aromatic compound |
US10519082B2 (en) | 2016-12-20 | 2019-12-31 | Uop Llc | Removal of feed treatment units in aromatics complex designs |
WO2023152582A1 (en) * | 2022-02-11 | 2023-08-17 | Koch Technology Solutions, Llc | Process for removing impurities from tetrahydrofuran |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4713413A (en) | Removal of organic halides from hydrocarbon solvents | |
US4820318A (en) | Removal of organic compounds from gas streams using carbon molecular sieves | |
EP3207005B1 (en) | Ethylene separation with pressure swing adsorption | |
CN1277885A (en) | Method for treatment of organic liquid contaminated by iodides | |
US20100234662A1 (en) | Process for Reducing Carbon Monoxide in Olefin-Containing Hydrocarbon Feedstocks | |
US20030105376A1 (en) | Purification of polyolefin feedstocks using multiple adsorbents | |
US20250002796A1 (en) | Process for purifying a pyrolysis oil | |
KR20180042143A (en) | Organic-inorganic porous hybrid material containing intramolecular anhydride groups, adsorbent composition comprising the same and usage thereof for the separation of gaseous hydrocarbon mixtures | |
US9714204B1 (en) | Process for purifying ethylene produced from a methanol-to-olefins facility | |
WO2013051023A1 (en) | Adsorption process for purification of spent saturated paraffinic solvent used in polymerization | |
JPH07188344A (en) | Method for producing alkene polymer | |
US5597545A (en) | Recovery of HF from aqueous streams | |
CN1087305C (en) | Process for the polymerization of olefins | |
CN108431050B (en) | Improved gas phase olefin polymerization process operating in condensed mode | |
JPH08131707A (en) | Method for removing trace organoaluminum compounds in hydrocarbon media | |
US3190936A (en) | Process for regenerating an adsorbent and a catalyst support in a polymerization operation | |
WO2021161170A1 (en) | Separation process to obtain high purity 1-butene | |
CN1073977C (en) | Purification method of phenylethylene monomer | |
JP7434553B2 (en) | Method for purifying alpha olefin and composition for purifying alpha olefin therefor | |
KR101090578B1 (en) | Reduction of the content of compounds containing oxygen and/or nitrogen in material flows containing isobutene | |
JPS62158707A (en) | Recovery of isoprene in butyl rubber manufacturing process | |
US3819510A (en) | Method for producing high quality polymerization reaction media | |
JPH03240741A (en) | Purification method of dicyclopentadiene using solid acid | |
JPS594362B2 (en) | Method for purifying hydrogen chloride containing organic compounds | |
WO2024184508A1 (en) | A method for the production of a pyrolysis oil from end-of-life plastics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12813530 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12813530 Country of ref document: EP Kind code of ref document: A1 |