WO2013051023A1 - Adsorption process for purification of spent saturated paraffinic solvent used in polymerization - Google Patents

Adsorption process for purification of spent saturated paraffinic solvent used in polymerization Download PDF

Info

Publication number
WO2013051023A1
WO2013051023A1 PCT/IN2012/000511 IN2012000511W WO2013051023A1 WO 2013051023 A1 WO2013051023 A1 WO 2013051023A1 IN 2012000511 W IN2012000511 W IN 2012000511W WO 2013051023 A1 WO2013051023 A1 WO 2013051023A1
Authority
WO
WIPO (PCT)
Prior art keywords
spent
polymerization solvent
solvent
polymerization
adsorbent bed
Prior art date
Application number
PCT/IN2012/000511
Other languages
French (fr)
Inventor
Vijayalakshmi Ravi Puranik
Prakash Kumar
Rakshvir JASRA
Original Assignee
Reliance Industries Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reliance Industries Limited filed Critical Reliance Industries Limited
Publication of WO2013051023A1 publication Critical patent/WO2013051023A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/02Recovery or working-up of waste materials of solvents, plasticisers or unreacted monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • C10G25/03Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation

Definitions

  • the present invention relates to a method for the purification of spent polymerization solvent using adsorbents.
  • the present invention provides a method for removing impurities such as aromatic, olefinic, moisture from the polymerization solvent using a fixed adsorbent bed.
  • the present invention further provides a process for removing multiple impurities such as aromatic, olefinic and moisture from the spent polymerization solvent under the same set of process conditions.
  • the present invention discloses an adsorbent and adsorptive process for purifying the spent saturated paraffmic solvent through removing impurities like aromatics, olefinic and moisture generated during making of polymers like high density polyethylene (HDPE) and ultrahigh molecular polyethylene (UHWMPE).
  • HDPE high density polyethylene
  • UHWMPE ultrahigh molecular polyethylene
  • U.S. Pat. No. 3,271,372 discloses a process wherein an alcohol solvent is used to disperse the granular particles of the polymer which is separated from the slurry.
  • U.S. Pat. No. 3,337,514 requires contacting a solution of an polymer with steam, followed with aqueous mineral acid treatment, then with water wash under turbulent conditions and finally separating the polymer solution from the aqueous phase.
  • U.S. Pat. No. 2,950,336 discloses the separation of aromatic compounds and olefins from hydrocarbon mixtures that may also include paraffins, using a zeolitic molecular sieve.
  • U.S. Pat. No. 4,725,338 claims a process for purifying an olefin polymerization solvent suitable for use in the presence of a Ziegler-Natta catalyst, through usage of a multi-stage distillation column without usage of adsorbent.
  • U.S. Pat. No. 4,433,194 discloses a method of purification of cyclohexane solvent with titanium tetrachloride, followed by adsorbent treatment like silica gel and distillation in the presence of alkali metal hydrides.
  • JP2000143718A discloses a process for removing olefins from a
  • polymerization solvent by circulating through a fixed column packed with an acid- treated clay (apparently means fixed bed!) at ambient conditions.
  • the polymerization solvent includes C 5 -C 12 aliphatic hydrocarbons, C 6 and C 7 alicyclic hydrocarbons and aromatic hydrocarbons such as benzene, toluene and xylene. This document does not disclose removal of moisture or aromatics.
  • olefin removal is performed at 120 to 250°C temperature; and aromatics removal is achieved at ambient temperatures provided it is moisture free.
  • Olefinic removal by clay is a catalytic action taking place between olefin molecules and active acid sites plus free acid available on clay surface whereas moisture and aromatics adsorption is physical adsorption related to polarity of water and aromatic molecules, surface area and porosity of acid activated clay.
  • the present invention relates to a method for the purification of spent polymerization solvent using adsorbents. More specifically, the invention is concerned with a fixed bed adsorptive process for the purification of spent paraffinic solvent whereby undesirable impurities aromatics, olefins, and moisture which cause a detrimental effect in the polymerization of olefins are effectively removed.
  • Still another object of the present invention is to remove impurities such as aromatic, olefinic and moisture from spent polymerization solvents under the same set of process conditions.
  • Another object of the present invention is to provide an adsorbent based method for the purification of spent paraffinic solvents.
  • Another object of the present invention is to provide a simple method for the purification of spent polymerization solvents comprising treating with suitable adsorbents such as silica gel, zeolite molecular sieve, activated alumina and acid activated montmorillonite to remove contaminants therefrom, and recovering the purified saturated paraffinic solvent.
  • suitable adsorbents such as silica gel, zeolite molecular sieve, activated alumina and acid activated montmorillonite to remove contaminants therefrom, and recovering the purified saturated paraffinic solvent.
  • the present invention which relates to a method for the purification of spent polymerization solvent using adsorbents. More specifically, the invention is concerned with a fixed bed adsorptive process for the purification of spent paraffinic solvent whereby undesirable impurities aromatics, olefins, and moisture which cause detrimental effect in the polymerization of olefins are effectively removed.
  • the present invention provides a process for purifying spent polymerization solvent comprising: (a) feeding said spent polymerization solvent to a fixed adsorbent bed wherein the solvent is substantially free of polymerization catalyst and monomers; and (b) subjecting said fixed adsorbent bed to a adsorbent bed temperature of 10 to 120°C; adsorbent bed pressure of 1 to 10 atmospheres; thereby removing aromatic impurities, olefinic impurities and moisture from said spent polymerization solvent to obtain purified spent polymerization solvent.
  • the present invention provides a process for purifying spent polymerization solvent wherein the spent polymerization solvent is separated and recovered from a Ziegler-Natta olefin polymerization reaction mixture.
  • the present invention provides a process for purifying spent polymerization solvent wherein the spent polymerization solvent recovered comprises aromatic impurities upto 600 ppm, bromine index of upto 60 ppm and moisture content of upto 200 ppm.
  • the present invention provides a process for purifying spent polymerization solvent wherein the spent polymerization solvent is any one from C 5 to Ci 6 saturated paraffins or mixture thereof and preferably any one from C9 to Co saturated paraffins or mixture thereof.
  • the present invention provides a process for purifying spent polymerization solvent wherein the spent polymerization solvent has a boiling point in the range of 35°C-320°C preferably the boiling point is in the range of-152°C- 302°C.
  • the present invention provides a process for purifying spent polymerization solvent wherein the aromatic impurities are aromatic compounds selected from the group comprising benzene, toluene, ethyl benzene, trimethyl benzenes, naphthalenes, Cu to Ci 6 aromatics, unsaturates, oxygenates, water and sulfur containing aromatic compounds and mixtures thereof and wherein the monomer is ethylene.
  • aromatic impurities are aromatic compounds selected from the group comprising benzene, toluene, ethyl benzene, trimethyl benzenes, naphthalenes, Cu to Ci 6 aromatics, unsaturates, oxygenates, water and sulfur containing aromatic compounds and mixtures thereof and wherein the monomer is ethylene.
  • the present invention provides a process for purifying spent polymerization solvent wherein the adsorbent is selected from the group comprising of zeolite, silica gel, activated alumina, activated bentonite clay and attapulgite clay preferably acid activated bentonite clay most preferably sulfuric acid activated calcium bentonite clay.
  • the adsorbent is selected from the group comprising of zeolite, silica gel, activated alumina, activated bentonite clay and attapulgite clay preferably acid activated bentonite clay most preferably sulfuric acid activated calcium bentonite clay.
  • the present invention provides a process for purifying spent polymerization solvent wherein the acid activated bentonite clay is substantially in the form of crushed particles and particle size of said crushed particles is in the range of 0.4 mm to 1.0 mm.
  • the present invention provides a process for purifying spent polymerization solvent wherein the pore volume of said acid activated clay is in the range of 0.45 to 0.55 cc/gm and Brunauer, Emmett and Teller (BET) surface area is 250 to 350 mVgm.
  • BET Brunauer, Emmett and Teller
  • the present invention provides a process for purifying spent polymerization solvent wherein the adsorbent bed temperature is preferably 30 to 60°C; adsorbent bed pressure is preferably 2 to 4 atmospheres; and liquid hourly space velocity of said adsorbent bed is from about 0.1 to about 2.0 per hour preferably 0.5 to 1.0 per hour.
  • the present invention provides a process for purifying spent polymerization solvent wherein the purified spent polymerization solvent comprises upto 20ppm aromatic impurities; 2ppm bromine index; and upto lOppm of moisture.
  • the present invention provides a process for purifying spent polymerization solvent wherein the purified spent polymerization solvent has a purity of at least 99.99wt%.
  • the present invention provides a purified spent polymerization solvent prepared by the process as disclosed herein.
  • the present invention provides the use of purified spent polymerization solvent prepared by the process as disclosed herein in polymerization reactions.
  • Figure-1 Aromatics adsorption kinetics of zeolite 13X at 30°C: Adsorption kinetics of aromatics impurities present in spent solvent is measured on zeolite 13X.
  • Figure-2 Aromatics adsorption kinetics of acid activated clay at 30°C: Adsorption kinetics of aromatics impurities present in spent solvent is measured on acid activated montmorillonite clay.
  • FIG. 3 Fixed bed adsorption breakthrough of aromatics on acid activated clay: This figure shows the aromatics breakthrough curve of aromatics wherein aromatic content in the feed and treated samples is determined by UV method.
  • Figure-4 Fixed bed adsorption breakthrough of aromatics on zeolite 13X and acid activated clay: This figure shows the aromatic content in the feed and treated samples. The aromatic content is determined by UV method.
  • the present invention provides an adsorbent and adsorptive process for purifying the spent hydrocarbon solvent involving C 5 to C] 6 paraffin's used for polymerization reactions involving olefinic ethylene monomer and polymerization catalyst of Ziegler-Natta type to produce high density polyethylene (HDPE) and ultrahigh molecular weight polyethylene (UHWMPE).
  • Ziegler-Natta catalysts is well described, in “Ziegler-Natta Catalysts and Polymerization” by John Boor, Jr. (Academic Press) as well as Journal of Macromolecular Science— Reviews in Macromolecular Chemistry and Physics, C24(3) 355-385 (1984) and ibid., C25 (1), 57-97 (1985).
  • Olefins which can be polymerized by such Ziegler-Natta catalysts are those having preferably 2-4 carbon atoms, such as ethylene, propylene and butene-1. It is well known to those skilled in the art that polymerization reactions of olefinic hydrocarbons, such as the Zieglar-Natta type, are sensitive to various types of impurities present in the solvent which have a significant and deleterious effect regarding the degree of polymerization of the olefinic hydrocarbon as well as the structure of the polymer which is prepared. During catalyst preparation inert paraffmic solvent is used as solvent which is being utilized in large quantities ⁇ recycled and reused.
  • magnesium ethoxide and TiCI 4 are used for catalyst preparation in the polymerization unit. Initially, magnesium ethoxide is dissolved in paraffmic solvent and temperature of vessel is maintained to 70-100 ° C. Addition of TiCI 4 is done in 2-5 stages to maintain Mg: Ti ratio of 1 :1 to 1 :3. The solution is kept at 100°C to 140°C for 40-80 hrs. The unreacted TiCLt and other contaminants are removed by washing with pure paraffmic solvent. The mixture is again maintained at 70-100°C for 3-8 hrs. The decanted paraffmic solvent contains inorganic impurities and aromatics as major contaminants.
  • Paraffinic solvent is treated with NaOH solution followed by water wash to remove the inorganic impurities and is termed as spent paraffinic solvent.
  • the spent paraffinic solvent contains moisture, unsaturates and aromatics as major impurities.
  • low boiling-point compounds such as unreacted monomers, e.g., ethylene, propylene, buten-1 and/or the like are removed beforehand.
  • adsorbent like zeolite molecular sieves generally adsorb low amount of polymerization-inhibiting components which are present in high concentrations in spent solvent and the polymerization solvent is used in large volumes on an industrial scale.
  • Typical acid activated montmorillonite clays are available at 20-30% of the cost of a zeolite molecular sieves normally used in the solvent purification process.
  • the purification of the spent solvent system is effected by treating a solvent with low cost acid activated montmorillonite clay,
  • Bromine Index is expressed as milligrams of the bromine available to react with 100 gm of the paraffin sample.
  • the treatment step is affected at ambient temperatures and atmospheric pressure; although elevated temperatures and pressures may be used without deviating from the scope of the invention.
  • Aromatic content in spent paraffinic solvent post catalyst preparation is estimated using UOP method 495-75 (Aromatics in molex n-paraffin products by Ultraviolet spectroscopy" published in UOP Laboratory test methods for petroleum and its products- 1972). This method determines the average amount of weight percent naphthalene and alkyl benzene present in spent solvent by measuring absorbance at 285 and 270 nm.
  • Preferred paraffinic solvents are saturated hydrocarbons which include alkanes, cycloalkanes and alkylcycloalkanes or mixtures thereof.
  • Typical solvents include hexane, cyclohexane, methyl cyclohexane and other hydrocarbons of these classes. These and other similar hydrocarbons are well known to those skilled in art of polymerization of ethylene.
  • the solvent used for polymerization catalyst preparation in the present invention is a mixture of C 5 to Ci 6 paraffin's with C 9 to CH paraffinic hydrocarbons predominantly and comprises 98-99 vol% as given in Table 2 below: Table 2: Mixture composition of fresh paraffinic solvent
  • Zeolite 13X is well known for selective adsorption of aromatics molecules, over paraffins which is well described by Denaer et. al, in Microporous and Mesoporous Materials, 96, 149 - 156, 2006.
  • An important feature of the present invention is use of acid activated montmorillonite clay which possesses a combination of cation exchange intercalation and swelling properties which makes it unique for adsorption of aromatics molecules which have typical kinetic diameter of 5-7 A.
  • the montmorillonite clays have layer lattice structures in which inter lamellar/channel spaces is available for adsorption of aromatic molecules depending on the size and shape and is well explained in "The chemistry of clay organic reactions" by BKG Theng, published by Halsted Press, Johnson Willy & Sons Inc, New York, 1974 and YS Bhat et al in Journal of Porous material, ISSN 1380-2224, 2009.
  • Sorption kinetics of aromatics impurities present in spent solvent is measured on acid activated montmorillonite clay and zeolite 13X which are given in Figure- 1 and Figure-2 and diffusion coefficients calculated are given in Table 3. Respective selectivity's of aromatic molecules over C 9 paraffin's are given in Table 4 to know suitability of adsorbent for aromatics removal from paraffin stream.
  • Acid activated montmorillonite clay is prepared by extruding (6-8 mm cylindrical size) calcium rich montmorillonite granules with 30-40% of moisture content, and again re-extruded (3-5 mm). Extrudates are subjected to 40% concentrated sulfuric acid activation treatment at 85°C for 6-8 hours. Acid activated extrudates are finally water washed, air dried finally oven-dried and sized to 0.42 to 1 mm granules. Final acid activated clay has total acidity 22 mg KOH/g, with pH of 3.5 and moisture content of 1-2 wt%. The prepared acid activated clay has surface area of 250-350 m 2 /g and pore volume of 0.5 cc/g.
  • prepared acid activated clay adsorbent is activated in a muffle furnace at 300 to 400°C under dry nitrogen flow for 2-4 hrs before loading in to the fixed adsorbent bed for purification of spent paraffinic solvent.
  • the adsorbent bed is further activated at 250 °C under the flow of UHP nitrogen for 8 hours.
  • the Bed is then cooled to ambient (25 to 30°C) temperature.
  • the adsorber effluent is cooled to 5-10°C in the condenser.
  • Spent solvent is passed through activated clay adsorber to remove aromatics, olefins and moisture.
  • the solvent thus purified can be utilized for polymerization reaction in which ethylene is treated at polymerization conditions in the presence of polymerization catalyst.
  • Example 1 The following examples are given for purposes of illustrating the process of the present invention in which a spent saturated paraffinic solvent suitable for use as a medium in a polymerization reaction is purified to remove undesirable contaminants there from. However, these are merely representative examples and optimization details and are3 ⁇ 4iot intended to restrict the scope of the present invention in any way.
  • Example 1
  • 50 gm of activated clay of the size of 1 to 1.5 mm granular sized is activated in furnace at 250°C under nitrogen atmosphere and is charged in a stainless steel tubular column of the dimension of 8 inch length and 1 ⁇ 2 inch internal diameter.
  • the adsorbent is further regenerated in column to remove any air and moisture ingress during loading of the adsorbent in flowing nitrogen heated from near ambient temperature to 220°C at the heating rate of 2°C/minute then held at 220°C for another 2 hrs.
  • the nitrogen pressure during regeneration was maintained at 2 psig while the nitrogen flow rate is varied between 60 to 120 ml/minute.
  • the regenerated activated clay adsorbent is cooled to ambient temperature with dry nitrogen in the tubular column under nitrogen atmosphere.
  • Post nitrogen regeneration of adsorbent bed in column spent saturated paraffinic solvent having 600 ppm of aromatic content is fed in the column.
  • adsorbent bed temperature is maintained at 30°C, liquid hourly space velocity (LHSV) of 1 hr 1 (v/v hr) and pressure of 8 bar. Samples at the outlet of the column are collected at regular intervals.
  • LHSV liquid hourly space velocity
  • the aromatic content in the feed and treated samples is determined by * UV method with aromatics breakthrough curve as shown in Figure-3. 20 ppm of aromatics concentration is decided as breakthrough point.
  • Adsorbent prepared as disclosed in Example 1 can adsorb 0.65 wt% of the aromatics as estimated from adsorption breakthrough point. Moisture content is reduced to ⁇ 10 ppm and Bromine Index ⁇ 2 PPM.
  • Example 1 is repeated except that instead of maintaining 30°C adsorbent bed temperature of 40°C is maintained.
  • the aromatic content in the feed and treated samples is determined by UV method with aromatics breakthrough curve as shown in Figure-3. 20 ppm of aromatics concentration is decided as breakthrough point.
  • Adsorbent prepared as in Example 1 can adsorb 0.35 wt% of the aromatics as estimated from adsorption breakthrough point. Moisture content is reduced to ⁇ 8 ppm and Bromine Index ⁇ 2 PPM.
  • Example 1 The process disclosed in Example 1 is repeated except that instead of maintaining 30°C adsorbent bed temperature, 50°C was maintained.
  • the aromatic content in the leed and treated samples is determined by UV method with aromatics breakthrough curve as shown in Figure-3. 20 ppm of aromatics concentration is decided as breakthrough point.
  • Adsorbent prepared as in Example 1 can adsorb 0.22 wt% of the aromatics as estimated from adsorption breakthrough point. Moisture content is reduced to ⁇ 5 ppm and Bromine Index ⁇ 2PPM.
  • Example 2 In a manner similar to that set forth in Example 1, 50 gm of zeolite 13X molecular sieve of the size of 2 to 3 mm spherical beads previously activated in furnace at 250°C under nitrogen atmosphere is charged in adsorption breakthrough setu (as explained in Example 1 ). During the adsorption-cycle, the spent saturated paraffinic solvent containing 600 ppm of aromatics sent to column at 120°C, liquid hourly space velocity (LHSV) of lhr '1 (v/v/hr) and pressure of 6 bar. Samples at the outlet of the column are collected at regular intervals.
  • LHSV liquid hourly space velocity
  • the aromatic content in the feed and treated samples is determined by UV method with aromatics breakthrough curve as shown in Figure-4. 20 ppm of aromatics concentration is decided as breakthrough point. Moisture content is reduced to ⁇ 2 ppm and Bromine Index ⁇ 5ppm.
  • Adsorbent prepared as in Example 1 can adsorb 0.52 wt% of the aromatics as estimated from adsorption breakthrough point.
  • This example illustrates the utility of solvent purified using activated clay in accordance with the method set forth in Example 1 to act as a solvent for a polymerization reaction.
  • Purified solvent is tested for polymerization of ethylene is carried out in 1 L Buchi glasuster polyclave reactor which is heated at 75-105°C under N 2 flow for about 3 - 4 hrs to remove oxygen and moisture followed by cooling to ambient temperature.
  • a calculated amount of THB black catalyst slurry containing 25% Ti 3+ dispersed in 500 ml of treated cyclohexane solvent containing the requisite quantity of co-catalyst (TIPRA) so as to maintain desired AI/Ti molar ratio's is added to the above conditioned reactor under N 2 atmosphere.
  • TIPRA co-catalyst
  • the occluded gas in the medium is vented out gently under agitation.
  • requisite quantity of hydrogen (minimum possible was 0.1 bar) is transferred to the reactor where molecular weight regulation is required - if not, this step is not performed.
  • Ethylene is then introduced into the system at desired pressure unde! agitation (500 rpm). Ethylene pressure is maintained at 1.5 to 3 bars throughout the run (2 hr). Simultaneously the hot water circulation is started and the temperature is maintained at 75° C; thus controlling the exothermic nature of the polymerization. After two hours the residual ethylene is vented out the contents to ambient temperature.
  • the polymer formed is in the form of uniform powder.
  • the polymer is washed with acidic methanol, maehanol and acetone.
  • the polymer is filtered and dried under vacuum at around 60 °C.
  • the weight of polymer is recorded to calculate the productivity of the catalyst in terms of g polymer per g of catalyst and g polymer per mmole of Ti.
  • the productivity is based on a 2 hrs period.
  • the reactor is cleaned, boxed up and then baked under nitrogen for the next reaction.
  • Post clay treatment productivity of catalyst is improved to 131 gm from 21 gm without clay treatment at 30°C for UHMWPE at AI/Ti ratio of 4 and maintained pressure of ethylene and hydrogen 2.5 bar and 0.1 bar respectively.
  • the present invention provides a simple and economical method of simultaneous removal of olefinic impurities, along with other impurities such as aromatic and moisture from spent polymerization solvent.
  • the method disclosed in the present invention uses activated clay as adsorbent to remove impurities without subjecting the spent polymerization solvent to any pre-treatment such as distillation/decantation etc.
  • Moisture removal "* in the method disclosed on the present invention is upto ppm level using acid activated clay and without resorting to decantation/distillation.
  • the method disclosed in the present invention removes multiple impurities such as aromatic, olefinic and moisture from the spent polymerization solvent under the same set of process conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention discloses a process for purifying spent polymerization solvent thereby removing aromatic impurities, olefinic impurities and moisture from the spent polymerization solvent. The process comprises feeding the spent polymerization solvent to a fixed adsorbent bed wherein said solvent is substantially free of polymerization catalyst and untreated monomers; and treating at an adsorbent bed temperature of 10 to 120°C; adsorbent bed pressure of about 1 to 10 atmospheres.

Description

ADSORPTION PROCESS FOR PURIFICATION OF SPENT SATURATED PARAFFINIC SOLVENT USED IN POLYMERIZATION
FIELD OF INVENTION
The present invention relates to a method for the purification of spent polymerization solvent using adsorbents. The present invention provides a method for removing impurities such as aromatic, olefinic, moisture from the polymerization solvent using a fixed adsorbent bed. The present invention further provides a process for removing multiple impurities such as aromatic, olefinic and moisture from the spent polymerization solvent under the same set of process conditions. The present invention discloses an adsorbent and adsorptive process for purifying the spent saturated paraffmic solvent through removing impurities like aromatics, olefinic and moisture generated during making of polymers like high density polyethylene (HDPE) and ultrahigh molecular polyethylene (UHWMPE).
BACKGROUND OF THE INVENTION
During polymerization process impurities like spent catalyst residues, aromatic compounds, olefins and moisture are generated. The spent catalyst residues like magnesium ethoxide and TiCl4 and other organic contaminants are removed by treating with pure saturated paraffmic solvent comprised of C5-Ci6 carbon number range followed by alkali washing to remove inorganic impurities. Remaining spent paraffinic solvent contains moisture, unsaturates and aromatics as major impurities. It is extremely important to purify a polymerization solvent prior to its reuse for the polymerization of an olefin in the presence of a Ziegler-Natta catalyst, because the Ziegler-Natta catalyst is deactivated by various poisonous components such as compounds with polar groups contained therein.
Various methods of removing catalysts residues from polymers are known. For example, U.S. Pat. No. 3,271,372 discloses a process wherein an alcohol solvent is used to disperse the granular particles of the polymer which is separated from the slurry. U.S. Pat. No. 3,337,514 requires contacting a solution of an polymer with steam, followed with aqueous mineral acid treatment, then with water wash under turbulent conditions and finally separating the polymer solution from the aqueous phase. U.S. Pat. No. 2,950,336 discloses the separation of aromatic compounds and olefins from hydrocarbon mixtures that may also include paraffins, using a zeolitic molecular sieve.
U.S. Pat. No. 4,725,338 claims a process for purifying an olefin polymerization solvent suitable for use in the presence of a Ziegler-Natta catalyst, through usage of a multi-stage distillation column without usage of adsorbent.
U.S. Pat. No. 4,433,194 discloses a method of purification of cyclohexane solvent with titanium tetrachloride, followed by adsorbent treatment like silica gel and distillation in the presence of alkali metal hydrides.
JP2000143718A discloses a process for removing olefins from a
"polymerization solvent" by circulating through a fixed column packed with an acid- treated clay (apparently means fixed bed!) at ambient conditions. The polymerization solvent includes C5-C12 aliphatic hydrocarbons, C6 and C7 alicyclic hydrocarbons and aromatic hydrocarbons such as benzene, toluene and xylene. This document does not disclose removal of moisture or aromatics.
In the prior art olefin removal is performed at 120 to 250°C temperature; and aromatics removal is achieved at ambient temperatures provided it is moisture free. Olefinic removal by clay is a catalytic action taking place between olefin molecules and active acid sites plus free acid available on clay surface whereas moisture and aromatics adsorption is physical adsorption related to polarity of water and aromatic molecules, surface area and porosity of acid activated clay.
None of the prior art methods provide a process for simultaneously removing aromatics, olefins, and moisture from spent paraffinic solvent system. There is a need for a simple and efficient process for removing aromatics, olefins, and moisture from spent paraffinic solvent system. The present invention relates to a method for the purification of spent polymerization solvent using adsorbents. More specifically, the invention is concerned with a fixed bed adsorptive process for the purification of spent paraffinic solvent whereby undesirable impurities aromatics, olefins, and moisture which cause a detrimental effect in the polymerization of olefins are effectively removed.
OBJECTS OF THE INVENTION
One of the important objects of the present invention is to provide a simple and efficient method for the purification of solvents which are utilized in ethylene polymerization reactions. Another object of the present invention is to provide a method for simultaneously removing impurities such as aromatic, olefinic and moisture from spent polymerization solvents.
Still another object of the present invention is to remove impurities such as aromatic, olefinic and moisture from spent polymerization solvents under the same set of process conditions.
Yet, another object of the present invention is to provide an adsorbent based method for the purification of spent paraffinic solvents.
Another object of the present invention is to provide a simple method for the purification of spent polymerization solvents comprising treating with suitable adsorbents such as silica gel, zeolite molecular sieve, activated alumina and acid activated montmorillonite to remove contaminants therefrom, and recovering the purified saturated paraffinic solvent.
SUMMARY OF THE INVENTION
The above and other objects of the invention are achieved by the present invention which relates to a method for the purification of spent polymerization solvent using adsorbents. More specifically, the invention is concerned with a fixed bed adsorptive process for the purification of spent paraffinic solvent whereby undesirable impurities aromatics, olefins, and moisture which cause detrimental effect in the polymerization of olefins are effectively removed.
Accordingly, the present invention provides a process for purifying spent polymerization solvent comprising: (a) feeding said spent polymerization solvent to a fixed adsorbent bed wherein the solvent is substantially free of polymerization catalyst and monomers; and (b) subjecting said fixed adsorbent bed to a adsorbent bed temperature of 10 to 120°C; adsorbent bed pressure of 1 to 10 atmospheres; thereby removing aromatic impurities, olefinic impurities and moisture from said spent polymerization solvent to obtain purified spent polymerization solvent.
In another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the spent polymerization solvent is separated and recovered from a Ziegler-Natta olefin polymerization reaction mixture.
In yet another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the spent polymerization solvent recovered comprises aromatic impurities upto 600 ppm, bromine index of upto 60 ppm and moisture content of upto 200 ppm. In still another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the spent polymerization solvent is any one from C5 to Ci6 saturated paraffins or mixture thereof and preferably any one from C9 to Co saturated paraffins or mixture thereof.
In another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the spent polymerization solvent has a boiling point in the range of 35°C-320°C preferably the boiling point is in the range of-152°C- 302°C.
In yet another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the aromatic impurities are aromatic compounds selected from the group comprising benzene, toluene, ethyl benzene, trimethyl benzenes, naphthalenes, Cu to Ci6 aromatics, unsaturates, oxygenates, water and sulfur containing aromatic compounds and mixtures thereof and wherein the monomer is ethylene.
In still another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the adsorbent is selected from the group comprising of zeolite, silica gel, activated alumina, activated bentonite clay and attapulgite clay preferably acid activated bentonite clay most preferably sulfuric acid activated calcium bentonite clay.
In another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the acid activated bentonite clay is substantially in the form of crushed particles and particle size of said crushed particles is in the range of 0.4 mm to 1.0 mm.
In yet another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the pore volume of said acid activated clay is in the range of 0.45 to 0.55 cc/gm and Brunauer, Emmett and Teller (BET) surface area is 250 to 350 mVgm.
In still another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the adsorbent bed temperature is preferably 30 to 60°C; adsorbent bed pressure is preferably 2 to 4 atmospheres; and liquid hourly space velocity of said adsorbent bed is from about 0.1 to about 2.0 per hour preferably 0.5 to 1.0 per hour.
In another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the purified spent polymerization solvent comprises upto 20ppm aromatic impurities; 2ppm bromine index; and upto lOppm of moisture.
In another embodiment the present invention provides a process for purifying spent polymerization solvent wherein the purified spent polymerization solvent has a purity of at least 99.99wt%.
In yet another embodiment the present invention provides a purified spent polymerization solvent prepared by the process as disclosed herein.
In still another embodiment the present invention provides the use of purified spent polymerization solvent prepared by the process as disclosed herein in polymerization reactions.
BRIEF DESCRIPTION OF DRAWINGS
Figure-1: Aromatics adsorption kinetics of zeolite 13X at 30°C: Adsorption kinetics of aromatics impurities present in spent solvent is measured on zeolite 13X. Figure-2: Aromatics adsorption kinetics of acid activated clay at 30°C: Adsorption kinetics of aromatics impurities present in spent solvent is measured on acid activated montmorillonite clay.
Figure-3: Fixed bed adsorption breakthrough of aromatics on acid activated clay: This figure shows the aromatics breakthrough curve of aromatics wherein aromatic content in the feed and treated samples is determined by UV method.
Figure-4: Fixed bed adsorption breakthrough of aromatics on zeolite 13X and acid activated clay: This figure shows the aromatic content in the feed and treated samples. The aromatic content is determined by UV method.
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides an adsorbent and adsorptive process for purifying the spent hydrocarbon solvent involving C5 to C]6 paraffin's used for polymerization reactions involving olefinic ethylene monomer and polymerization catalyst of Ziegler-Natta type to produce high density polyethylene (HDPE) and ultrahigh molecular weight polyethylene (UHWMPE). Ziegler-Natta catalysts is well described, in "Ziegler-Natta Catalysts and Polymerization" by John Boor, Jr. (Academic Press) as well as Journal of Macromolecular Science— Reviews in Macromolecular Chemistry and Physics, C24(3) 355-385 (1984) and ibid., C25 (1), 57-97 (1985). Olefins which can be polymerized by such Ziegler-Natta catalysts are those having preferably 2-4 carbon atoms, such as ethylene, propylene and butene-1. It is well known to those skilled in the art that polymerization reactions of olefinic hydrocarbons, such as the Zieglar-Natta type, are sensitive to various types of impurities present in the solvent which have a significant and deleterious effect regarding the degree of polymerization of the olefinic hydrocarbon as well as the structure of the polymer which is prepared. During catalyst preparation inert paraffmic solvent is used as solvent which is being utilized in large quantities^ recycled and reused. During the process of polymerization catalyst preparation typical impurities accumulated in the paraffmic solvent post polymerization reactions are aromatic compounds like benzene, toluene, ethyl benzene, trimethyl benzenes, naphthalene's, Cn-Ci6 aromatics, olefinic unsaturates, oxygenates, water and sulfur- containing compounds. Impurities such as aromatics, water, oxygen-and sulfur- containing compounds have a tendency to react with the catalyst which is employed for the polymerization process and therefore these impurities deactivate the catalyst faster thereby reducing the output and efficiency of the catalyst. Molecular characteristic of typical aromatics molecules present in spent polymerization solvents are given below in table 1.
Table 1: Molecular characteristics of aromatic molecules
Figure imgf000007_0001
More specifically during process of ethylene polymerization magnesium ethoxide and TiCI4 are used for catalyst preparation in the polymerization unit. Initially, magnesium ethoxide is dissolved in paraffmic solvent and temperature of vessel is maintained to 70-100°C. Addition of TiCI4 is done in 2-5 stages to maintain Mg: Ti ratio of 1 :1 to 1 :3. The solution is kept at 100°C to 140°C for 40-80 hrs. The unreacted TiCLt and other contaminants are removed by washing with pure paraffmic solvent. The mixture is again maintained at 70-100°C for 3-8 hrs. The decanted paraffmic solvent contains inorganic impurities and aromatics as major contaminants. Paraffinic solvent is treated with NaOH solution followed by water wash to remove the inorganic impurities and is termed as spent paraffinic solvent. The spent paraffinic solvent contains moisture, unsaturates and aromatics as major impurities. In the case of spent polymerization solvents recovered after polymerization systems, it is more preferable to purify them by the process of this invention after low boiling-point compounds such as unreacted monomers, e.g., ethylene, propylene, buten-1 and/or the like are removed beforehand.
Due to treatment with NaOH treatment and subsequent water wash the moisture content in spent solvent increases. The olefins present in the paraffinic solvent of CI ions (from TiCI4) and O ions present in ethoxide and temperature of 100°C-140°C for 40-80 hrs results in the formation of aromatic molecules. Inorganic impurities like Mg and Ti and excess chloride and oxide ions are removed by NaOH wash.
One method of reducing the aforementioned impurities which may be present in the solvent system is distillation but this method can lead to change in solvent composition and can subsequently affect the catalyst solubility in the solvent. In contradiction to these prior methods of purifying a solvent system, it has now been surprisingly found that the impurities which are present in a solvent system such as paraffinic solvent can be effectively removed by a simple treatment hereinafter with acid activated montmorillonite clay and the solvent system may be successfully employed in a polymerization of specific olefins such as ethylene to make UHWMPE and HDPE using Zeigler-Natta catalyst.
It is ifnportant to use a suitable low cost adsorbent for spent solvent purification because the adsorbent like zeolite molecular sieves generally adsorb low amount of polymerization-inhibiting components which are present in high concentrations in spent solvent and the polymerization solvent is used in large volumes on an industrial scale. Hence it is always desirable to develop a low cost adsorptive purification process for spent polymerization solvent. Typical acid activated montmorillonite clays are available at 20-30% of the cost of a zeolite molecular sieves normally used in the solvent purification process. The purification of the spent solvent system is effected by treating a solvent with low cost acid activated montmorillonite clay,
The presence of unsaturate' s in paraffinic solvents is measured by Bromine Index as per ASTM method D1491 , which signifies the presence of unsaturated olefins in paraffin's. Bromine Index is expressed as milligrams of the bromine available to react with 100 gm of the paraffin sample.
In the preferred embodiment of the present invention, the treatment step is affected at ambient temperatures and atmospheric pressure; although elevated temperatures and pressures may be used without deviating from the scope of the invention. Aromatic content in spent paraffinic solvent post catalyst preparation is estimated using UOP method 495-75 (Aromatics in molex n-paraffin products by Ultraviolet spectroscopy" published in UOP Laboratory test methods for petroleum and its products- 1972). This method determines the average amount of weight percent naphthalene and alkyl benzene present in spent solvent by measuring absorbance at 285 and 270 nm.
Preferred paraffinic solvents are saturated hydrocarbons which include alkanes, cycloalkanes and alkylcycloalkanes or mixtures thereof. Typical solvents include hexane, cyclohexane, methyl cyclohexane and other hydrocarbons of these classes. These and other similar hydrocarbons are well known to those skilled in art of polymerization of ethylene. The solvent used for polymerization catalyst preparation in the present invention is a mixture of C5 to Ci6 paraffin's with C9 to CH paraffinic hydrocarbons predominantly and comprises 98-99 vol% as given in Table 2 below: Table 2: Mixture composition of fresh paraffinic solvent
Figure imgf000009_0001
Zeolite 13X is well known for selective adsorption of aromatics molecules, over paraffins which is well described by Denaer et. al, in Microporous and Mesoporous Materials, 96, 149 - 156, 2006. An important feature of the present invention is use of acid activated montmorillonite clay which possesses a combination of cation exchange intercalation and swelling properties which makes it unique for adsorption of aromatics molecules which have typical kinetic diameter of 5-7 A. The montmorillonite clays have layer lattice structures in which inter lamellar/channel spaces is available for adsorption of aromatic molecules depending on the size and shape and is well explained in "The chemistry of clay organic reactions" by BKG Theng, published by Halsted Press, Johnson Willy & Sons Inc, New York, 1974 and YS Bhat et al in Journal of Porous material, ISSN 1380-2224, 2009.
Sorption kinetics of aromatics impurities present in spent solvent is measured on acid activated montmorillonite clay and zeolite 13X which are given in Figure- 1 and Figure-2 and diffusion coefficients calculated are given in Table 3. Respective selectivity's of aromatic molecules over C9 paraffin's are given in Table 4 to know suitability of adsorbent for aromatics removal from paraffin stream.
Table 3: Sorption capacity and diffusion of n-nonane and aromatics on 13X at room temperature
Figure imgf000010_0001
Table 4: Aromatics selectivity over C9 paraffin
Figure imgf000010_0002
Acid activated montmorillonite clay is prepared by extruding (6-8 mm cylindrical size) calcium rich montmorillonite granules with 30-40% of moisture content, and again re-extruded (3-5 mm). Extrudates are subjected to 40% concentrated sulfuric acid activation treatment at 85°C for 6-8 hours. Acid activated extrudates are finally water washed, air dried finally oven-dried and sized to 0.42 to 1 mm granules. Final acid activated clay has total acidity 22 mg KOH/g, with pH of 3.5 and moisture content of 1-2 wt%. The prepared acid activated clay has surface area of 250-350 m2/g and pore volume of 0.5 cc/g. Thus prepared acid activated clay adsorbent is activated in a muffle furnace at 300 to 400°C under dry nitrogen flow for 2-4 hrs before loading in to the fixed adsorbent bed for purification of spent paraffinic solvent. The adsorbent bed is further activated at 250 °C under the flow of UHP nitrogen for 8 hours. The Bed is then cooled to ambient (25 to 30°C) temperature. The adsorber effluent is cooled to 5-10°C in the condenser. Spent solvent is passed through activated clay adsorber to remove aromatics, olefins and moisture.
The solvent thus purified can be utilized for polymerization reaction in which ethylene is treated at polymerization conditions in the presence of polymerization catalyst.
The following examples are given for purposes of illustrating the process of the present invention in which a spent saturated paraffinic solvent suitable for use as a medium in a polymerization reaction is purified to remove undesirable contaminants there from. However, these are merely representative examples and optimization details and are¾iot intended to restrict the scope of the present invention in any way. Example 1
50 gm of activated clay of the size of 1 to 1.5 mm granular sized is activated in furnace at 250°C under nitrogen atmosphere and is charged in a stainless steel tubular column of the dimension of 8 inch length and ½ inch internal diameter. The adsorbent is further regenerated in column to remove any air and moisture ingress during loading of the adsorbent in flowing nitrogen heated from near ambient temperature to 220°C at the heating rate of 2°C/minute then held at 220°C for another 2 hrs. The nitrogen pressure during regeneration was maintained at 2 psig while the nitrogen flow rate is varied between 60 to 120 ml/minute. Finally the regenerated activated clay adsorbent is cooled to ambient temperature with dry nitrogen in the tubular column under nitrogen atmosphere. Post nitrogen regeneration of adsorbent bed in column spent saturated paraffinic solvent having 600 ppm of aromatic content is fed in the column. During the adsorption cycle, adsorbent bed temperature is maintained at 30°C, liquid hourly space velocity (LHSV) of 1 hr 1 (v/v hr) and pressure of 8 bar. Samples at the outlet of the column are collected at regular intervals.
The aromatic content in the feed and treated samples is determined by*UV method with aromatics breakthrough curve as shown in Figure-3. 20 ppm of aromatics concentration is decided as breakthrough point.
Adsorbent prepared as disclosed in Example 1 can adsorb 0.65 wt% of the aromatics as estimated from adsorption breakthrough point. Moisture content is reduced to <10 ppm and Bromine Index <2 PPM.
Example 2
Example 1 is repeated except that instead of maintaining 30°C adsorbent bed temperature of 40°C is maintained. The aromatic content in the feed and treated samples is determined by UV method with aromatics breakthrough curve as shown in Figure-3. 20 ppm of aromatics concentration is decided as breakthrough point. Adsorbent prepared as in Example 1 can adsorb 0.35 wt% of the aromatics as estimated from adsorption breakthrough point. Moisture content is reduced to <8 ppm and Bromine Index <2 PPM.
Example 3
The process disclosed in Example 1 is repeated except that instead of maintaining 30°C adsorbent bed temperature, 50°C was maintained. The aromatic content in the leed and treated samples is determined by UV method with aromatics breakthrough curve as shown in Figure-3. 20 ppm of aromatics concentration is decided as breakthrough point. Adsorbent prepared as in Example 1 can adsorb 0.22 wt% of the aromatics as estimated from adsorption breakthrough point. Moisture content is reduced to <5 ppm and Bromine Index <2PPM.
Example 4
In a manner similar to that set forth in Example 1, 50 gm of zeolite 13X molecular sieve of the size of 2 to 3 mm spherical beads previously activated in furnace at 250°C under nitrogen atmosphere is charged in adsorption breakthrough setu (as explained in Example 1 ). During the adsorption-cycle, the spent saturated paraffinic solvent containing 600 ppm of aromatics sent to column at 120°C, liquid hourly space velocity (LHSV) of lhr'1 (v/v/hr) and pressure of 6 bar. Samples at the outlet of the column are collected at regular intervals.
The aromatic content in the feed and treated samples is determined by UV method with aromatics breakthrough curve as shown in Figure-4. 20 ppm of aromatics concentration is decided as breakthrough point. Moisture content is reduced to <2 ppm and Bromine Index <5ppm.
Adsorbent prepared as in Example 1 can adsorb 0.52 wt% of the aromatics as estimated from adsorption breakthrough point.
Example 5
This example illustrates the utility of solvent purified using activated clay in accordance with the method set forth in Example 1 to act as a solvent for a polymerization reaction. Purified solvent is tested for polymerization of ethylene is carried out in 1 L Buchi glasuster polyclave reactor which is heated at 75-105°C under N2 flow for about 3 - 4 hrs to remove oxygen and moisture followed by cooling to ambient temperature. Subsequently a calculated amount of THB black catalyst slurry containing 25% Ti3+ dispersed in 500 ml of treated cyclohexane solvent containing the requisite quantity of co-catalyst (TIPRA) so as to maintain desired AI/Ti molar ratio's is added to the above conditioned reactor under N2 atmosphere. After boxing up the reactor, the occluded gas in the medium is vented out gently under agitation. After stopping the agitator, requisite quantity of hydrogen (minimum possible was 0.1 bar) is transferred to the reactor where molecular weight regulation is required - if not, this step is not performed. Ethylene is then introduced into the system at desired pressure unde! agitation (500 rpm). Ethylene pressure is maintained at 1.5 to 3 bars throughout the run (2 hr). Simultaneously the hot water circulation is started and the temperature is maintained at 75° C; thus controlling the exothermic nature of the polymerization. After two hours the residual ethylene is vented out the contents to ambient temperature. The polymer formed is in the form of uniform powder. The polymer is washed with acidic methanol, maehanol and acetone. The polymer is filtered and dried under vacuum at around 60 °C. The weight of polymer is recorded to calculate the productivity of the catalyst in terms of g polymer per g of catalyst and g polymer per mmole of Ti. The productivity is based on a 2 hrs period. The reactor is cleaned, boxed up and then baked under nitrogen for the next reaction.
Post clay treatment productivity of catalyst is improved to 131 gm from 21 gm without clay treatment at 30°C for UHMWPE at AI/Ti ratio of 4 and maintained pressure of ethylene and hydrogen 2.5 bar and 0.1 bar respectively. Fresh solvent yields 140g of UHMWPE polymer. Similarly HDPE yield increases to 182 gm at AI/Ti ratio of 11 and maintaining pressure of 2 bar and 0.5 bar for ethylene and hydrogen respectively with clay treated solvent at 30C compared to 29 gm without any treatment. Fresh solvent yields 190g of HDPE polymer.
Advantages of the present invention:
1. The present invention provides a simple and economical method of simultaneous removal of olefinic impurities, along with other impurities such as aromatic and moisture from spent polymerization solvent.
2. The method disclosed in the present invention uses activated clay as adsorbent to remove impurities without subjecting the spent polymerization solvent to any pre-treatment such as distillation/decantation etc.
3. Moisture removal"* in the method disclosed on the present invention is upto ppm level using acid activated clay and without resorting to decantation/distillation.
4. The method disclosed in the present invention removes multiple impurities such as aromatic, olefinic and moisture from the spent polymerization solvent under the same set of process conditions.

Claims

We claim:
1. A process for purifying spent polymerization solvent comprising: (a) feeding said spent polymerization solvent to a fixed adsorbent bed wherein said solvent is substantially free of polymerization catalyst and monomers; and (b) treating said fixed adsorbent bed to a adsorbent bed temperature of 10 to 120°C; adsorbent bed pressure of 1 to 10 atmospheres; thereby removing aromatic impurities, olefinic impurities and moisture from said spent polymerization solvent to obtain purified spent polymerization solvent.
2. The process as claimed in claim 1 , wherein said spent polymerization solvent is separated and recovered from a Ziegler-Natta olefin polymerization reaction mixture.
3. The process as claimed in claim 2, wherein said spent polymerization solvent recovered comprises aromatic impurities upto 600 ppm, bromine index of upto 60 ppm and moisture content of upto 200 ppm).
4. The process as claimed in any of the preceding claims, wherein said spent polymerization solvent is selected from the group comprising any one from C5 to Ci6 saturated paraffins or mixture thereof; preferably any one from C9 to C]3. saturated paraffins or mixture thereof.
5. The process as claimed in any of the preceding claims, wherein said spent polymerization solvent has a boiling point in the range of 35°C-320°C, preferably in the range of 152°C-302°C.
6. The process as claimed in any of the preceding claims, wherein said aromatic impurities are aromatic compounds selected from the group comprising benzene, toluene, ethyl benzene, trimethyl benzenes, naphthalenes, Cn to Q aromatics, unsaturates, oxygenates, water and sulfur containing aromatic compounds and mixtures thereof.
7. The process as claimed in any of the preceding claims, wherein said monomer is ethylene.
8. The process as claimed in any of the preceding claims, wherein said adsorbent is selected from the group comprising of zeolite, silica gel, activated alumina, activated bentonite clay and attapulgite clay.
9. The process as claimed in claim 8, wherein said activated bentonite clay is acid activated bentonite clay.
10. The process as claimed in claim 9, wherein said acid activated bentonite clay is sulfuric acid activated calcium bentonite clay.
1 1. The process as claimed in any of the claims 9 or 10, wherein said acid activated bentonite clay is substantially in the form of crushed particles.
12. The process as claimed in claim 13, wherein particle size of said crushed particles is in the range of 0.4 mm to 1.0 mm.
13. The process as claimed in any of the preceding claims, wherein pore volume of said acid activated bentonite clay is in the range of 0.45 to 0.55 cc/gm and Brunauer, Emmett and Teller (BET) surface area is 250 to 350 m2/gm.
14. The process as claimed in any of the preceding claims, wherein said adsorbent bed temperature is preferably 30 to 60°C.
15. The process as claimed in any of the preceding claims, wherein said adsorbent bed pressure is preferably 2 to 4 atmospheres.
16. The process as claimed in any of the preceding claims, wherein liquid hourly space velocity of said adsorbent bed is from about 0.1 to about 2.0 per hour preferably 0.5 to 1.0 per hour.
17. The process as claimed in any of the preceding claims, wherein said purified spent polymerization solvent comprises upto 20ppm aromatic impurities.
18. The process as claimed in any of the preceding claims, wherein said purified spent polymerization solvent comprises upto 2ppm bromine index.
19. The process as claimed in any of the preceding claims, wherein said purified spent polymerization solvent comprises upto lOppm of moisture.
20. The process as claimed in any of the preceding claims, wherein said purified spent polymerization solvent has a purity of at least 99.99wt%.
21. Purified spent polymerization solvent prepared by the process as claimed in any of the preceding claims.
22. Use of purified spent polymerization solvent prepared by the process as claimed in any of the preceding claims 1 to 22 in polymerization reactions.
23. The process for purifying spent polymerization solvent substantially as herein described in the specification and accompanying drawings.
24. Purified spent polymerization solvent substantially as herein described in the specification and accompanying drawings.
PCT/IN2012/000511 2011-08-05 2012-07-23 Adsorption process for purification of spent saturated paraffinic solvent used in polymerization WO2013051023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN2217/MUM/2011 2011-08-05
IN2217MU2011 2011-08-05

Publications (1)

Publication Number Publication Date
WO2013051023A1 true WO2013051023A1 (en) 2013-04-11

Family

ID=47553309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IN2012/000511 WO2013051023A1 (en) 2011-08-05 2012-07-23 Adsorption process for purification of spent saturated paraffinic solvent used in polymerization

Country Status (1)

Country Link
WO (1) WO2013051023A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3335787A1 (en) * 2016-12-13 2018-06-20 Scg Chemicals Co. Ltd. Process for removing alkene and/or alkyne from a hydrocarbon feedstock
US10519082B2 (en) 2016-12-20 2019-12-31 Uop Llc Removal of feed treatment units in aromatics complex designs
WO2023152582A1 (en) * 2022-02-11 2023-08-17 Koch Technology Solutions, Llc Process for removing impurities from tetrahydrofuran

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330778A (en) * 1964-09-14 1967-07-11 Phillips Petroleum Co Regeneration of adsorbent beds with water-solvent-gas cycle
JPS5692990A (en) * 1979-12-27 1981-07-28 Nisshinbo Ind Inc Purification of paraffin hydrocarbon
SU1225830A1 (en) * 1984-08-09 1986-04-23 Институт коллоидной химии и химии воды им.А.В.Думанского Method of purifying saturated hydrocarbons
JPS63314209A (en) * 1987-06-18 1988-12-22 Idemitsu Petrochem Co Ltd Method for purification of solvent for use in polymerization of olefin
JPH0331304A (en) * 1989-06-27 1991-02-12 Mitsui Petrochem Ind Ltd Method for purifying polymerization solvent
JPH08131707A (en) * 1994-11-15 1996-05-28 Mitsubishi Chem Corp Method for removing trace amount of organic aluminum compound in hydrocarbon medium
JP2000143718A (en) * 1998-11-12 2000-05-26 Jsr Corp Recovery of polymerization solvent and/or unreacted olefin and production of polyolefin
JP2001106730A (en) * 1999-10-05 2001-04-17 Mitsui Chemicals Inc Production of cyclic olefin-based copolymer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330778A (en) * 1964-09-14 1967-07-11 Phillips Petroleum Co Regeneration of adsorbent beds with water-solvent-gas cycle
JPS5692990A (en) * 1979-12-27 1981-07-28 Nisshinbo Ind Inc Purification of paraffin hydrocarbon
SU1225830A1 (en) * 1984-08-09 1986-04-23 Институт коллоидной химии и химии воды им.А.В.Думанского Method of purifying saturated hydrocarbons
JPS63314209A (en) * 1987-06-18 1988-12-22 Idemitsu Petrochem Co Ltd Method for purification of solvent for use in polymerization of olefin
JPH0331304A (en) * 1989-06-27 1991-02-12 Mitsui Petrochem Ind Ltd Method for purifying polymerization solvent
JPH08131707A (en) * 1994-11-15 1996-05-28 Mitsubishi Chem Corp Method for removing trace amount of organic aluminum compound in hydrocarbon medium
JP2000143718A (en) * 1998-11-12 2000-05-26 Jsr Corp Recovery of polymerization solvent and/or unreacted olefin and production of polyolefin
JP2001106730A (en) * 1999-10-05 2001-04-17 Mitsui Chemicals Inc Production of cyclic olefin-based copolymer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 198719, Derwent World Patents Index; AN 1987-134001, XP002693929 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3335787A1 (en) * 2016-12-13 2018-06-20 Scg Chemicals Co. Ltd. Process for removing alkene and/or alkyne from a hydrocarbon feedstock
WO2018108461A1 (en) * 2016-12-13 2018-06-21 Scg Chemicals Co., Ltd. Process for removing alkene and/or alkyne from a hydrocarbon feedstock comprising an aromatic compound
US10519082B2 (en) 2016-12-20 2019-12-31 Uop Llc Removal of feed treatment units in aromatics complex designs
WO2023152582A1 (en) * 2022-02-11 2023-08-17 Koch Technology Solutions, Llc Process for removing impurities from tetrahydrofuran

Similar Documents

Publication Publication Date Title
US4820318A (en) Removal of organic compounds from gas streams using carbon molecular sieves
US4713413A (en) Removal of organic halides from hydrocarbon solvents
EP3207005B1 (en) Ethylene separation with pressure swing adsorption
CN1277885A (en) Method for treatment of organic liquid contaminated by iodides
US20100234662A1 (en) Process for Reducing Carbon Monoxide in Olefin-Containing Hydrocarbon Feedstocks
US20030105376A1 (en) Purification of polyolefin feedstocks using multiple adsorbents
US9714204B1 (en) Process for purifying ethylene produced from a methanol-to-olefins facility
KR20180042143A (en) Organic-inorganic porous hybrid material containing intramolecular anhydride groups, adsorbent composition comprising the same and usage thereof for the separation of gaseous hydrocarbon mixtures
WO2013051023A1 (en) Adsorption process for purification of spent saturated paraffinic solvent used in polymerization
JPH07188344A (en) Preparation of alkene polymer
US3283025A (en) Hydrocarbon purification
US3190936A (en) Process for regenerating an adsorbent and a catalyst support in a polymerization operation
JPH07149827A (en) Polymerization of olefin
JPH11246447A (en) Purification of tetrafluoroethylene
CN108431050B (en) Improved gas phase olefin polymerization process operating in condensed mode
JP4953819B2 (en) Method for purifying ethyl chloride and method for producing fluoroethane using the same
JP7434553B2 (en) Method for purifying alpha olefin and composition for purifying alpha olefin therefor
JPS62158707A (en) Recovery of isoprene in butyl rubber manufacturing process
JPH03240741A (en) Purification of dicyclopentadiene using solid acid
KR101090578B1 (en) Reduction of the content of compounds containing oxygen and/or nitrogen in material flows containing isobutene
US3819510A (en) Method for producing high quality polymerization reaction media
JPS594362B2 (en) Method for purifying hydrogen chloride containing organic compounds
CA3236513A1 (en) Process for purifying a pyrolysis oil
WO2021161170A1 (en) Separation process to obtain high purity 1-butene
CN116216645A (en) Method for recycling byproduct HCl in isocyanate production process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12813530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12813530

Country of ref document: EP

Kind code of ref document: A1