JP3578975B2 - High-speed mirror polishing method for silicon wafer - Google Patents

High-speed mirror polishing method for silicon wafer Download PDF

Info

Publication number
JP3578975B2
JP3578975B2 JP2000176628A JP2000176628A JP3578975B2 JP 3578975 B2 JP3578975 B2 JP 3578975B2 JP 2000176628 A JP2000176628 A JP 2000176628A JP 2000176628 A JP2000176628 A JP 2000176628A JP 3578975 B2 JP3578975 B2 JP 3578975B2
Authority
JP
Japan
Prior art keywords
polishing
silicon wafer
carbonate particles
abrasive
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000176628A
Other languages
Japanese (ja)
Other versions
JP2001358099A (en
Inventor
暢 木下
和人 安藤
良貴 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2000176628A priority Critical patent/JP3578975B2/en
Publication of JP2001358099A publication Critical patent/JP2001358099A/en
Application granted granted Critical
Publication of JP3578975B2 publication Critical patent/JP3578975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、シリコンウエハを高速度で鏡面研磨することが可能なシリコンウエハの高速鏡面研磨方法に関する。
【0002】
【従来の技術】
従来、シリコンウエハの鏡面研磨方法としては、例えば、シリカ粒子とKOH等のアルカリを含むスラリーやコロイダルシリカを研磨材として用い、不織布タイプやスウェードタイプの軟質パッドにより、2〜3段階の多工程で研磨する多段階研磨方法が知られている。
【0003】
〔問題点〕
しかしながら、従来の研磨方法では、研磨速度が著しく低く、また工程数も多く、このため、目的とする鏡面を得るためには長時間を要し、生産性が極めて低いものであった。
即ち、鏡面加工の前工程として、ラッピング加工の後、加工ダメージ層の除去のため、酸或いはアルカリ溶液によるエッチング処理が必要であり、その後、鏡面研磨工程として、少なくとも研磨条件の異なる2〜3段階の多段階研磨を行わなければならず、極めて工程数が多く、スループットの悪い鏡面研磨プロセスであった。
また、シリカはシリコンよりも硬質なため、ウエハにスクラッチ傷等のダメージを与え易く、また、軟質クロスを用いた研磨方法であるため、エッジ部ダレが生じやすく、ウエハの使用可能面積が狭くなり、コスト高となっていた。
更に、研磨材にKOH等のアルカリ水溶液を含むため、廃液処理問題や研磨装置および治具が損傷するという不具合があった。
更にまた、エッチング液も廃液処理問題を有するものであった。
【0004】
【発明が解決しようとする課題】
本発明は、従来の技術が有する上記問題点に鑑みなされたものであって、その解決のため具体的に設定された課題は、鏡面研磨速度が著しく向上し、少ない工程数で短時間に鏡面が得られることによりスループットが向上し、ウエハにスクラッチ傷や加工変質層等のダメージを与えることがなく、しかも廃液処理問題や研磨装置および治具が損傷する不具合も生じることがないシリコンウエハの高速鏡面研磨方法を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を効果的に解決できるよう具体的に構成された手段としての、本発明における請求項1に係るシリコンウエハの高速鏡面研磨方法は、シリコンウエハを表面粗さRaが150nm以下になるまで表面加工し、この加工表面を砥粒が炭酸カルシウム粒子及び/又は炭酸マグネシウム粒子である研磨材を用いて湿式研磨条件の下で鏡面研磨することを特徴とするものである。
【0006】
【発明の実施の形態】
以下、本発明の実施の形態を具体的に説明する。
ただし、この実施の形態は、発明の趣旨をより良く理解させるため具体的に説明するものであり、特に指定のない限り、発明内容を限定するものでない。
【0007】
本実施の形態に係るシリコンウエハの高速鏡面研磨方法は、従来の公知方法により表面粗さRaが150nm以下となるようにシリコンウエハを予め表面加工する行程(以下、加工工程という)と、この表面加工後のシリコンウエハを、砥粒として炭酸カルシウム粒子及び/又は炭酸マグネシウム粒子のみを含む研磨材を用いて湿式研磨条件の下で鏡面研磨する行程(以下、研磨工程という)とを少なくとも有している。
なお、本明細書において、「表面粗さRa」とは、接触指針型表面粗さ計等で測定される研磨体表面における凸部と凹部との段差の平均をいう。
【0008】
以下、各工程毎に詳説する。
「加工工程」
表面粗さRaが 150nm以下となるようシリコンウエハの表面を加工する従来公知の表面加工方法としては、特段制限されるものではなが、例えば、ラッピング法や研削法等を例示することができ、中でも研削法によるのが好ましい。研削法によるのが好ましい理由は、研削加工法によるウエハはダメージ層が薄く、また必ずしも明確ではないが、シリコンウエハと炭酸カルシウム粒子及び/又は炭酸マグネシウム粒子とのメカノケミカル反応が進みやすいからである。
【0009】
「研磨工程」
研磨工程は、表面粗さRaが 150nm以下となるように表面加工された後のシリコンウエハを、砥粒として炭酸カルシウム粒子及び/又は炭酸マグネシウム粒子を含む研磨材により更に湿式研磨して、鏡面を得る研磨工程である。
【0010】
この研磨工程の具体例としては、次の工程を例示することができる。
▲1▼ 砥粒としての炭酸カルシウム粒子及び/又は炭酸マグネシウム粒子を含有する研磨材スラリー又はペーストを、シリコンウエハと研磨パッドとの間に供給しつつ、シリコンウエハ及び/又は研磨パッドを回転させてシリコンウエハを湿式研磨する工程(以下、研磨工程Aという)。
▲2▼ 砥粒としての炭酸カルシウム粒子及び/又は炭酸マグネシウム粒子を砥石に成形し、またはポリウレタン樹脂等の発泡体中に固定させた研磨パッド(以下、これらを研磨体という)をシリコンウエハに接触・回転させて湿式研磨する工程(以下、研磨工程Bという)。
【0011】
また、炭酸カルシウム粒子及び/又は炭酸マグネシウム粒子の粒径は、特段制限されるものではないが、通常、砥粒として用いられている粒径、例えば 0.1〜100 μm程度のものを使用することが好ましい。
【0012】
「研磨工程A」
この研磨工程に用いる研磨材スラリーは、例えば、砥粒としての炭酸カルシウム粒子及び/又は炭酸マグネシウム粒子と水とを含有している。
研磨材スラリー中の炭酸カルシウム粒子及び/又は炭酸マグネシウム粒子の添加量(砥粒量)は、特段制限されるものではないが、添加量が少なすぎると研磨速度が低下しすぎて実用性に欠け、又、砥粒量が多すぎると研磨加工に寄与しない砥粒が多くなり、研磨液コストが上昇して研磨加工コストの上昇を招き、そして、研磨材スラリーの流動性が低下して研磨材スラリーのシリコンウエハ表面への供給に問題が生じるため好ましくない。このようなことから、実用的な砥粒量としては、通常、2 〜 80 重量%が望ましい。
【0013】
なお、前記炭酸カルシウム粒子及び/又は炭酸マグネシウム粒子を加えて分散させた研磨材スラリー(研磨液)とするには、ポリカルボン酸塩等の界面活性剤などを加えると、炭酸カルシウム粒子及び/又は炭酸マグネシウム粒子の分散性が向上するので好ましい。
【0014】
研磨パッドとしては、シリコンウエハの研磨に従来から用いられている研磨パッドを用いることができるが、IC 1000 やMHS 15 A(いずれもロデールニッタ社製)のような発泡ポリウレタン製の研磨パッド等の硬質パッドを用いると、砥粒と真実接触点での圧力が高くなり、研磨速度が向上するので好ましい。
前記研磨パッドとシリコンウエハとを接触させて研磨する際の研磨加工圧は、特段限定されるものではなく通常 9.8〜 39.2 kPa( 100〜400 gf/cm )程度で充分であるが、研磨加工圧は大きいほど砥粒と真実接触点での圧力が高くなり研磨速度が向上するので好ましい。
【0015】
「研磨工程B」
前記研磨体は、砥石または研磨パッドからなる。
砥粒としての前記炭酸カルシウム粒子及び/又は炭酸マグネシウム粒子を砥石状に成形するには、前記炭酸カルシウム及び/又は炭酸マグネシウムにより砥石全体を成形する場合や、砥石のシリコンウエハとの接触部を部分的に形成させる場合とがあり、また砥石にも前記の炭酸カルシウム粒子及び/又は炭酸マグネシウム粒子を、結合材を用いず熱処理等のみで固化させたもの(ボンドレス砥石)と、レジノイドボンド等の結合剤を使用して固化し成形させたもの(レジノイドボンド砥石)があり得る。砥石における砥粒率(砥石中に占める砥粒の容積比率)は、特に限定されるものではなく、例えば 70 〜100 %である。
【0016】
レジノイドボンド砥石の形成に用いるレジノイドボンドは、特に限定されず、熱硬化性樹脂、熱可塑性樹脂、水溶性高分子樹脂などの単体または混合物を用いることができる。
レジノイドボンド砥石またはボンドレス砥石の成形は、一般に用いられる公知の成形技術を用いて形成することができる。
【0017】
炭酸カルシウム粒子及び/又は炭酸マグネシウム粒子を含有する前記研磨パッドとしては、例えば、次のようなものを例示することができる。
▲1▼ 前記炭酸カルシウム粒子及び/又は炭酸マグネシウム粒子を含むポリウレタン溶液にポリエステル等の化学繊維の不織布を含浸して作製した不織布タイプ。
▲2▼ ポリエステル等の化学繊維の不織布上に、前記炭酸カルシウム粒子及び/又は炭酸マグネシウム粒子を含むポリウレタンを発泡剤により発泡させ作製したスウェードタイプ。
▲3▼ 前記炭酸カルシウム粒子及び/又は炭酸マグネシウム粒子を含むポリウレタン溶液を発泡剤により独立発泡させ作製した発泡ポリウレタンタイプ。
【0018】
前記研磨体とシリコンウエハとを接触させて研磨する際の研磨加工圧は、特段限定されるものではなく、通常 9.8〜 39.2 kPa( 100〜400 gf/cm)程度で充分であるが、研磨加工圧は大きいほど砥粒と真実接触点での圧力が高くなり研磨速度が向上するので好ましい。
また、適切に酸やアルカリ成分を含有させた溶液を、前記研磨体とシリコンウエハとの間に滴下しながら研磨する。
【0019】
「作用」
この高速鏡面研磨方法によるシリコンウエハの研磨メカニズムは、必ずしも明確でないが、シリコンウエハを構成するシリコンと炭酸カルシウム粒子及び/又は炭酸マグネシウムとは、湿式下の加圧された状態で効率よくメカノケミカル反応を起こすため、砥粒(炭酸カルシウム及び/又は炭酸マグネシウム)がシリコンより軟質であるにも拘わらず鏡面研磨が可能となるものと推測される。
【0020】
【実施例】
以下、実施例を詳細に説明する。
〔実施例1〕
(研磨材スラリーの調整)
粒径 0.5μm以下の炭酸カルシウム粒子 2000 gと水 8000 gとを混合し攪拌した後、超音波分散機に 10 分間かけ研磨剤スラリーとした。
【0021】
(研磨試験)
予め#800 のダイヤモンド砥石を用いて表面粗さRaが 140nmとなるよう研削したシリコンウエハにつき、機械的回転式研磨装置(回転数: 60 rpm)を用い、研磨パッド(ロデールニッタ社製IC 1000 )、研磨加工圧 29.4 kPa( 300gf/cm)、上記の研磨材スラリーの滴下量 20 ml/分、研磨時間 30 分の研磨条件下にて研磨した。この研磨試験の結果を表1に示した。
【0022】
なお、研磨速度はデジタル式マイクロメータを用いた研磨前後のシリコンウエハ厚みの測定値と研磨時間から算出し、表面粗さ及びエッジ部ダレは接触指針型表面粗さ計を用いてそれぞれ測定し、スクラッチ傷の有無は光学顕微鏡観察により判定した。
また、加工変質層の有無は、研磨後のシリコンウエハをエッチング液に浸漬して斜め方向にエッチングし、4結晶モノクロメータ付きX線回析装置を用いたロッキングカーブ測定法により深さ方向の加工変質層の厚みを測定するか、またはシリコンウエハの断面を透過型電子顕微鏡を用いて変質層の有無を観察することにより確認した。
【0023】
〔実施例2〕
用いられるシリコンウエハを、# 1000 ダイヤモンド砥石を用いた研削法により表面粗さRaが 60 nmとなるよう予め加工されたシリコンウエハに変更した他は、実施例1に準じて研磨試験を実施した。その結果を表1に示した。
【0024】
〔実施例3〕
(研磨材スラリーの調整)
砥粒を炭酸マグネシウムに変更した他は、実施例1に準じて研磨材スラリーを調整した。
(研磨試験)
この研磨材スラリーを用いた他は、実施例1に準じて研磨試験を実施した。その結果を表1に示した。
【0025】
〔実施例4〕
シリコンウエハをラッピング後、エッチング法により表面粗さRaが 140nmとなるよう予め加工されたシリコンウエハに変更した他は実施例1に準じて研磨試験を実施した。その結果を表1に示した。
【0026】
〔実施例5〕
(砥石の作製)
粒径 0.5μm以下の炭酸カルシウム粒子 3600 g、フェノール樹脂(住友デュレズ社製) 400gを混合し、研磨定盤が 15 インチφの砥石を成形した。
(研磨試験)
この砥石を用い、研磨加工圧 29.4 kPa( 300gf/cm)、砥石貼り付け定盤回転数 60 rpm、ワーク回転数 40 rpmの条件下で、シリコンウエハと砥石の間に水を 10 ml/分の滴下量で滴下しながら機械的回転式研磨装置を用いてシリコンウエハを湿式研磨した。シリコンウエハは実施例1で用いたものと同一である。研磨試験の結果を表1に示した。
【0027】
〔比較例1〕
用いられるシリコンウエハを、#600 ダイヤモンド砥石を用いた研削法により表面粗さRaが 170nmとなるよう予め加工されたシリコンウエハに変更した他は、実施例1に準じて研磨試験を実施した。その結果を表1に示した。
【0028】
〔比較例2〕
比較例1で用いたシリコンウエハを使用した他は、実施例5に準じて研磨試験を実施した。その結果を表1に示した。
【0029】
〔比較例3〕
(研磨材スラリーの調整)
砥粒として粒径 0.03 μmのコロイダルシリカ粒子 500gを水 9500 gに加え、KOHでpHを 10 に調整した研磨剤スラリーを作製した。
(研磨試験)
この研磨材スラリーを使用した他は実施例1に準じてシリコンウエハを研磨した。その結果を表1に示した。
【0030】
〔比較例4〕
実施例5の砥石を用い、研磨加工圧 29.4 kPa( 300g/cm)、砥石貼り付け定盤回転数 60 rpm、ワーク回転数 40 rpmの条件下、乾式法により、機械的回転式研磨装置を用いてシリコンウエハを研磨した。シリコンウエハは実施例1で用いたものと同一である。研磨試験の結果を表1に示した。
【0031】
【表1】

Figure 0003578975
【0032】
【発明の効果】
以上説明したように、本発明によるシリコンウエハの高速鏡面研磨方法によれば、シリコンウエハを表面粗さRaが150nm以下になるまで表面加工し、この加工表面を砥粒が炭酸カルシウム粒子及び/又は炭酸マグネシウム粒子である研磨材を用いて湿式研磨条件の下で鏡面研磨したことにより、鏡面研磨中に被研磨加工物表面にスクラッチ傷等の加工ダメージを与えることなく、加工変質層の形成もなく、高速で鏡面研磨することが可能となる。
このため、この研磨方法を実施することにより、ラッピング加工や研削加工後、直ちに表面粗さRaが例えば0.5nm程度の鏡面研磨加工が可能となり、従来のシリカスラリーによる2次鏡面研磨と同等以上の品質を持つシリコンウエハが1行程で得られ、もってスループットが向上し、シリコンウエハを高生産性と低コストとを両立させて鏡面研磨仕上げすることができる。
また、エッチング廃液の処理問題もなく、さらにアルカリ廃液等の処理問題や研磨装置および冶具が損傷する不具合もない。
さらに、硬質の研磨パッドを使用可能であるため、エッジ部ダレの発生が少なく、加工精度も向上する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-speed mirror polishing method for a silicon wafer capable of mirror polishing a silicon wafer at a high speed.
[0002]
[Prior art]
Conventionally, as a mirror polishing method for a silicon wafer, for example, using a slurry containing silica particles and an alkali such as KOH or colloidal silica as an abrasive, and using a nonwoven fabric type or suede type soft pad in two to three steps in multiple steps. A multi-stage polishing method for polishing is known.
[0003]
〔problem〕
However, in the conventional polishing method, the polishing rate is extremely low and the number of steps is large. Therefore, it takes a long time to obtain a target mirror surface, and the productivity is extremely low.
That is, as a pre-process of mirror finishing, after lapping, an etching treatment with an acid or alkali solution is required to remove a processing damage layer, and then, as a mirror polishing process, at least two to three stages under different polishing conditions. Must be performed, the number of steps is extremely large, and the mirror polishing process has a low throughput.
In addition, since silica is harder than silicon, it is easy to damage the wafer such as scratches, and the polishing method using a soft cloth tends to cause edge sagging and reduce the usable area of the wafer. , Cost was high.
Furthermore, since the abrasive contains an aqueous solution of an alkali such as KOH, there is a problem that the waste liquid is treated and the polishing apparatus and the jig are damaged.
Furthermore, the etching solution also has a problem of waste liquid treatment.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems of the related art, and a problem specifically set for solving the problem is that the mirror polishing speed is significantly improved, and the mirror polishing is performed in a short time with a small number of steps. By improving the throughput, the silicon wafer can be processed at high speed without damaging the wafer, such as scratches and damaged layers, and without causing problems such as waste liquid treatment and damage to polishing apparatuses and jigs. An object of the present invention is to provide a mirror polishing method.
[0005]
[Means for Solving the Problems]
As a means specifically configured to effectively solve the above-mentioned problem, the method for polishing a silicon wafer at a high speed according to claim 1 of the present invention is characterized in that the silicon wafer is surface-polished until the surface roughness Ra becomes 150 nm or less. It is characterized in that it is machined, and the machined surface is mirror-polished under wet polishing conditions using an abrasive whose abrasive grains are calcium carbonate particles and / or magnesium carbonate particles.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described.
However, this embodiment is specifically described for better understanding of the spirit of the invention, and does not limit the contents of the invention unless otherwise specified.
[0007]
The high-speed mirror polishing method for a silicon wafer according to the present embodiment includes a step of processing the surface of the silicon wafer in advance so that the surface roughness Ra becomes 150 nm or less by a conventional known method (hereinafter, referred to as a processing step). A step of mirror-polishing the processed silicon wafer under a wet polishing condition using an abrasive containing only calcium carbonate particles and / or magnesium carbonate particles as abrasive grains (hereinafter, referred to as a polishing step). I have.
In this specification, “surface roughness Ra” refers to the average of the steps between the convex portions and the concave portions on the surface of the polishing body measured by a contact indicator type surface roughness meter or the like.
[0008]
Hereinafter, each step will be described in detail.
"Processing process"
Conventionally known surface processing methods for processing the surface of a silicon wafer so that the surface roughness Ra is 150 nm or less are not particularly limited, and examples thereof include a lapping method and a grinding method. Among them, the grinding method is preferred. The reason that the grinding method is preferable is that the wafer formed by the grinding method has a thin damage layer and is not always clear, but the mechanochemical reaction between the silicon wafer and the calcium carbonate particles and / or the magnesium carbonate particles is likely to proceed. .
[0009]
"Polishing process"
In the polishing step, the silicon wafer having been subjected to the surface processing so that the surface roughness Ra becomes 150 nm or less is further wet-polished with an abrasive containing calcium carbonate particles and / or magnesium carbonate particles as abrasive grains, and a mirror surface is obtained. This is a polishing step to obtain.
[0010]
The following steps can be exemplified as specific examples of the polishing step.
{Circle around (1)} While supplying an abrasive slurry or paste containing calcium carbonate particles and / or magnesium carbonate particles as abrasive grains between the silicon wafer and the polishing pad, the silicon wafer and / or the polishing pad are rotated. A step of wet polishing a silicon wafer (hereinafter, referred to as a polishing step A).
{Circle around (2)} A polishing pad (hereinafter, referred to as a polishing body) in which calcium carbonate particles and / or magnesium carbonate particles as abrasive grains are formed into a grindstone or fixed in a foam such as polyurethane resin is brought into contact with a silicon wafer. A step of wet polishing by rotating (hereinafter, referred to as a polishing step B).
[0011]
The particle size of the calcium carbonate particles and / or magnesium carbonate particles is not particularly limited, but the particle size usually used as abrasive grains, for example, about 0.1 to 100 μm is used. Is preferred.
[0012]
"Polishing process A"
The abrasive slurry used in this polishing step contains, for example, calcium carbonate particles and / or magnesium carbonate particles as abrasive grains and water.
The addition amount (amount of abrasive grains) of the calcium carbonate particles and / or magnesium carbonate particles in the abrasive slurry is not particularly limited, but if the addition amount is too small, the polishing rate is too low, and the practicality is lacking. Also, if the amount of the abrasive particles is too large, the amount of the abrasive particles that do not contribute to the polishing process increases, and the polishing liquid cost increases, causing an increase in the polishing processing cost. It is not preferable because a problem occurs in supplying the slurry to the surface of the silicon wafer. For this reason, a practical amount of abrasive grains is generally desirably 2 to 80% by weight.
[0013]
In order to prepare an abrasive slurry (polishing liquid) in which the calcium carbonate particles and / or magnesium carbonate particles are added and dispersed, a surfactant such as a polycarboxylate is added, and the calcium carbonate particles and / or This is preferable because the dispersibility of the magnesium carbonate particles is improved.
[0014]
As the polishing pad, a polishing pad conventionally used for polishing a silicon wafer can be used. However, a hard pad such as a polishing pad made of foamed polyurethane such as IC1000 or MHS15A (both manufactured by Rodel Nitta) can be used. The use of a pad is preferable because the pressure at the point of true contact with the abrasive grains is increased and the polishing rate is improved.
The polishing pressure at the time of polishing by bringing the polishing pad and the silicon wafer into contact with each other is not particularly limited, and is usually about 9.8 to 39.2 kPa (100 to 400 gf / cm 2 ). However, it is preferable that the polishing processing pressure be higher, because the pressure at the true contact point with the abrasive grains is increased and the polishing rate is improved.
[0015]
"Polishing process B"
The polishing body is made of a grindstone or a polishing pad.
In order to form the calcium carbonate particles and / or magnesium carbonate particles as abrasive grains into a grindstone shape, the whole grindstone is formed by the calcium carbonate and / or magnesium carbonate, or the contact portion of the grindstone with the silicon wafer is partially formed. In some cases, the above-mentioned calcium carbonate particles and / or magnesium carbonate particles are also solidified by heat treatment or the like without using a binder (bondless whetstone), and the grindstone is bonded with a resinoid bond or the like. There may be one that is solidified and molded using an agent (resinoid bond grindstone). The abrasive grain ratio (volume ratio of the abrasive grains in the grindstone) in the grindstone is not particularly limited, and is, for example, 70 to 100%.
[0016]
The resinoid bond used for forming the resinoid bond grindstone is not particularly limited, and a simple substance or a mixture of a thermosetting resin, a thermoplastic resin, and a water-soluble polymer resin can be used.
The molding of the resinoid bond grindstone or the bondless grindstone can be performed by using a commonly used known molding technique.
[0017]
Examples of the polishing pad containing calcium carbonate particles and / or magnesium carbonate particles include the following.
{Circle around (1)} Nonwoven fabric type prepared by impregnating a nonwoven fabric of a chemical fiber such as polyester with a polyurethane solution containing the calcium carbonate particles and / or magnesium carbonate particles.
{Circle around (2)} A suede type produced by foaming a polyurethane containing the above-mentioned calcium carbonate particles and / or magnesium carbonate particles on a non-woven fabric of chemical fibers such as polyester with a foaming agent.
(3) A foamed polyurethane type produced by independently foaming a polyurethane solution containing the calcium carbonate particles and / or magnesium carbonate particles with a foaming agent.
[0018]
The polishing pressure when the polishing body and the silicon wafer are brought into contact with each other and polished is not particularly limited, and is usually about 9.8 to 39.2 kPa (100 to 400 gf / cm 2 ). However, it is preferable that the polishing processing pressure be higher, because the pressure at the true contact point with the abrasive grains is increased and the polishing rate is improved.
Polishing is performed while dropping a solution containing an acid or an alkali component appropriately between the polishing body and the silicon wafer.
[0019]
"Action"
Although the mechanism of polishing a silicon wafer by this high-speed mirror polishing method is not always clear, the silicon and calcium carbonate particles and / or magnesium carbonate constituting the silicon wafer are efficiently subjected to a mechanochemical reaction in a wet and pressurized state. It is presumed that mirror polishing is possible even though the abrasive grains (calcium carbonate and / or magnesium carbonate) are softer than silicon.
[0020]
【Example】
Hereinafter, embodiments will be described in detail.
[Example 1]
(Adjustment of abrasive slurry)
After mixing and stirring 2,000 g of calcium carbonate particles having a particle size of 0.5 μm or less and 8000 g of water, the mixture was stirred in an ultrasonic disperser for 10 minutes to obtain an abrasive slurry.
[0021]
(Polishing test)
For a silicon wafer previously ground to a surface roughness Ra of 140 nm using a # 800 diamond grindstone, a polishing pad (Rodel Nitta IC 1000) using a mechanical rotary polishing apparatus (rotational speed: 60 rpm), Polishing was performed under a polishing condition of 29.4 kPa (300 gf / cm 2 ), a drop amount of the abrasive slurry of 20 ml / min, and a polishing time of 30 minutes. Table 1 shows the results of the polishing test.
[0022]
The polishing rate was calculated from the measured value of the silicon wafer thickness before and after polishing using a digital micrometer and the polishing time, and the surface roughness and edge sag were measured using a contact pointer type surface roughness meter, respectively. The presence or absence of scratches was determined by observation with an optical microscope.
The presence or absence of the affected layer is determined by immersing the polished silicon wafer in an etchant, etching it diagonally, and processing it in the depth direction by a rocking curve measurement method using an X-ray diffraction device with a 4-crystal monochromator. The thickness of the altered layer was measured, or the cross section of the silicon wafer was confirmed by observing the presence or absence of the altered layer using a transmission electron microscope.
[0023]
[Example 2]
A polishing test was performed in the same manner as in Example 1 except that the silicon wafer used was changed to a silicon wafer that had been processed in advance to have a surface roughness Ra of 60 nm by a grinding method using a # 1000 diamond grindstone. The results are shown in Table 1.
[0024]
[Example 3]
(Adjustment of abrasive slurry)
An abrasive slurry was prepared according to Example 1, except that the abrasive grains were changed to magnesium carbonate.
(Polishing test)
A polishing test was performed in the same manner as in Example 1 except that this abrasive slurry was used. The results are shown in Table 1.
[0025]
[Example 4]
After lapping the silicon wafer, a polishing test was performed in the same manner as in Example 1 except that the silicon wafer was changed to a silicon wafer that was processed in advance so that the surface roughness Ra became 140 nm by an etching method. The results are shown in Table 1.
[0026]
[Example 5]
(Production of whetstone)
3600 g of calcium carbonate particles having a particle size of 0.5 μm or less and 400 g of a phenol resin (manufactured by Sumitomo Durez) were mixed to form a grindstone having a polishing platen of 15 inches φ.
(Polishing test)
Using this grindstone, 10 ml of water was added between the silicon wafer and the grindstone under the conditions of a polishing pressure of 29.4 kPa (300 gf / cm 2 ), a grindstone-attached platen rotation speed of 60 rpm, and a work rotation speed of 40 rpm. The silicon wafer was wet-polished using a mechanical rotary polishing apparatus while dripping at a drop rate of 1 / min. The silicon wafer is the same as that used in the first embodiment. Table 1 shows the results of the polishing test.
[0027]
[Comparative Example 1]
A polishing test was performed in the same manner as in Example 1 except that the silicon wafer used was changed to a silicon wafer that had been processed in advance so that the surface roughness Ra was 170 nm by a grinding method using a # 600 diamond grindstone. The results are shown in Table 1.
[0028]
[Comparative Example 2]
A polishing test was performed according to Example 5, except that the silicon wafer used in Comparative Example 1 was used. The results are shown in Table 1.
[0029]
[Comparative Example 3]
(Adjustment of abrasive slurry)
500 g of colloidal silica particles having a particle size of 0.03 μm were added to 9500 g of water as abrasive grains, and an abrasive slurry was prepared by adjusting the pH to 10 with KOH.
(Polishing test)
A silicon wafer was polished according to Example 1 except that this abrasive slurry was used. The results are shown in Table 1.
[0030]
[Comparative Example 4]
Using the grindstone of Example 5, mechanical polishing by a dry method under the conditions of a polishing pressure of 29.4 kPa (300 g / cm 2 ), a grindstone-attached platen rotation speed of 60 rpm, and a work rotation speed of 40 rpm. The silicon wafer was polished using the apparatus. The silicon wafer is the same as that used in the first embodiment. Table 1 shows the results of the polishing test.
[0031]
[Table 1]
Figure 0003578975
[0032]
【The invention's effect】
As described above, according to the method for high-speed mirror polishing of a silicon wafer according to the present invention, the silicon wafer is subjected to surface processing until the surface roughness Ra becomes 150 nm or less, and the processed surface is made of calcium carbonate particles and / or By performing mirror polishing under wet polishing conditions using an abrasive that is magnesium carbonate particles, there is no processing damage such as scratches on the surface of the workpiece to be polished during mirror polishing, and no formation of a damaged layer Mirror polishing can be performed at high speed.
Therefore, by performing this polishing method, it becomes possible to perform mirror polishing with a surface roughness Ra of, for example, about 0.5 nm immediately after lapping or grinding, which is equal to or more than that of the conventional secondary mirror polishing using silica slurry. A high quality silicon wafer can be obtained in one process, thereby improving the throughput and mirror polished the silicon wafer while achieving both high productivity and low cost.
In addition, there is no problem of processing the etching waste liquid, and there is no problem of processing the alkaline waste liquid or the like, and there is no problem that the polishing apparatus and the jig are damaged.
Furthermore, since a hard polishing pad can be used, the occurrence of edge sag is small and the processing accuracy is improved.

Claims (1)

シリコンウエハを表面粗さRaが150nm以下になるまで表面加工し、この加工表面を砥粒が炭酸カルシウム粒子及び/又は炭酸マグネシウム粒子である研磨材を用い湿式研磨条件の下で鏡面研磨することを特徴とするシリコンウエハの高速鏡面研磨方法。A silicon wafer is surface-processed until the surface roughness Ra becomes 150 nm or less, and the processed surface is mirror-polished under a wet polishing condition using an abrasive whose abrasive grains are calcium carbonate particles and / or magnesium carbonate particles. A high-speed mirror polishing method for a silicon wafer, characterized in that:
JP2000176628A 2000-06-13 2000-06-13 High-speed mirror polishing method for silicon wafer Expired - Fee Related JP3578975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000176628A JP3578975B2 (en) 2000-06-13 2000-06-13 High-speed mirror polishing method for silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000176628A JP3578975B2 (en) 2000-06-13 2000-06-13 High-speed mirror polishing method for silicon wafer

Publications (2)

Publication Number Publication Date
JP2001358099A JP2001358099A (en) 2001-12-26
JP3578975B2 true JP3578975B2 (en) 2004-10-20

Family

ID=18678335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000176628A Expired - Fee Related JP3578975B2 (en) 2000-06-13 2000-06-13 High-speed mirror polishing method for silicon wafer

Country Status (1)

Country Link
JP (1) JP3578975B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008012668A (en) * 2004-04-06 2008-01-24 Kao Corp Polishing-fluid composition
JP2023072744A (en) * 2021-11-15 2023-05-25 信越半導体株式会社 Method for evaluating silicon wafer and method for removing process-affected layer of silicon wafer

Also Published As

Publication number Publication date
JP2001358099A (en) 2001-12-26

Similar Documents

Publication Publication Date Title
US6451696B1 (en) Method for reclaiming wafer substrate and polishing solution compositions therefor
JP4113282B2 (en) Polishing composition and edge polishing method using the same
KR100909140B1 (en) Semiconductor Wafer Manufacturing Method and Wafer
KR100429940B1 (en) Improved ceria powder
JP3004891B2 (en) Rough polishing method for semiconductor wafers to reduce surface roughness
JP2000049122A (en) Manufacture of semiconductor device
JP2011103460A (en) Method for polishing semiconductor wafer
JP2002532898A (en) Semiconductor wafer processing incorporating post-surface damage.
JP2007512966A (en) Materials and methods for low pressure chemical mechanical planarization
KR20100138737A (en) Method for polishing the edge of a semiconductor wafer
CN101927447A (en) The method of twin polishing semiconductor wafer
TW201140678A (en) Method for the double side polishing of a semiconductor wafer
KR20090021173A (en) Compressible abrasive article
JP3617665B2 (en) Polishing cloth for semiconductor wafer
JP3668647B2 (en) Semiconductor wafer substrate regeneration method and semiconductor wafer substrate regeneration polishing liquid
JP2000080350A (en) Abrasive composition and polishing method using same
JP4573492B2 (en) Synthetic whetstone
JP2001156030A (en) Grinding roller for semiconductor wafer and method for grinding semiconductor wafer using the same
JP3578975B2 (en) High-speed mirror polishing method for silicon wafer
JP2001057349A (en) High-speed mirror surface polishing method of silicon wafer
CN102189471B (en) Method for polishing a semiconductor wafer
JP4366928B2 (en) Manufacturing method for single-sided mirror wafer
JP2003100681A (en) Final polishing pad
JP2001170858A (en) Mirror polishing method for grinding silicon wafer
JP2002292556A (en) Slurry, grindstone, pad and abrasive fluid for mirror polishing of silicon wafer, and mirror polishing method using these materials

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040714

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees