JP3578685B2 - Ultrasound diagnostic equipment - Google Patents

Ultrasound diagnostic equipment Download PDF

Info

Publication number
JP3578685B2
JP3578685B2 JP34371999A JP34371999A JP3578685B2 JP 3578685 B2 JP3578685 B2 JP 3578685B2 JP 34371999 A JP34371999 A JP 34371999A JP 34371999 A JP34371999 A JP 34371999A JP 3578685 B2 JP3578685 B2 JP 3578685B2
Authority
JP
Japan
Prior art keywords
ultrasonic
swing
scanning
wall
diagnostic apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34371999A
Other languages
Japanese (ja)
Other versions
JP2001157680A (en
Inventor
渉 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP34371999A priority Critical patent/JP3578685B2/en
Publication of JP2001157680A publication Critical patent/JP2001157680A/en
Application granted granted Critical
Publication of JP3578685B2 publication Critical patent/JP3578685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は超音波診断装置に用いられ、超音波探触子を動かすことなく超音波走査面を傾けることの可能な揺動機構を有する超音波探触子に関するものである。
【0002】
【従来の技術】
超音波探触子を動かすことなく、揺動手段である揺動機構により超音波走査面を傾けて3次元画像を抽出可能な超音波探触子の一般的な構成は、図5に示されるように1個以上の超音波素子501がローター502に固定され、このロータ502は回転軸503および回転支持部材504により回転可能に支持されている。走査モータ505の駆動力は駆動プーリ506、タイミングベルト507、従動プーリ508などの伝達系を経て回転軸503に伝達され、ロータ502を回転または揺動運動させてセクタ状に超音波走査を行う。これらの走査機構は揺動軸509および揺動フレーム510に揺動可能に支持され、揺動モータ511の駆動力は、ピニオンギヤ512、揺動ギヤ513を介して走査手段である走査機構を揺動させる。つまり、走査機構を回転または揺動させることによって超音波走査面を形成し、揺動機構を用いて走査機構を揺動させることによって超音波走査面を傾け、超音波の送受信方向を2次元的に決定する。
【0003】
前記走査機構およびそれを揺動させる揺動機構は音響窓514により封入された音響結合液515の中で動作する。また揺動機構の揺動角度は揺動モータ511に取り付けられたエンコーダ516により得られるパルスデータをもとに図示しない超音波診断装置本体の制御回路が角度制御を行い、3次元画像などを構築する。
【0004】
【発明が解決しようとする課題】
上記従来技術による3次元画像を抽出可能な超音波探触子の構成において、揺動角度を検出するためには揺動モータにエンコーダなどの位置検出機構を設けなければならず、製作する際の材料費の上昇と組立て調整時間の増加により、安価な探触子の提供の妨げとなっていた。
【0005】
また、前記超音波探触子を用いて穿刺検査を行う場合、揺動可能な走査面は穿刺針の反射像を表示させ、検査部位に穿刺針が正確に到達するように穿刺針の動きと同一面に合わせなくてはならない。しかしながら、揺動駆動力伝達系における機械的がたつき、揺動ギヤの歯欠けやピニオンギヤの空回り、エンコーダの故障などの不具合が生じた場合、前記探触子は正確に揺動角度を検出して位置情報を超音波診断装置に送ることができず、走査面が穿刺針の移動する面と一致しない場合が発生し、最悪の場合は被験体に被害を与えることもある。
【0006】
本発明は、上記従来の問題を解決するもので、走査面の揺動角度を検出するエンコーダを不要とした安価な超音波探触子を備える超音波診断装置を提供することを目的とする。また、本発明は、揺動駆動力伝達系の機械的な不安定さによる揺動角度の検出誤差を抑え、エンコーダの不具合による揺動角度の検出不能が発生しない安全性の高い超音波探触子を備える超音波診断装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の超音波診断装置は、超音波素子を回転または揺動可能な走査手段と、前記走査手段を揺動可能な揺動手段と、音響結合液が封入され、前記超音波素子と被験体との間の超音波の伝播が可能な音響窓とを有し、前記音響窓の内壁曲率中心と前記揺動手段の揺動中心とを異なる位置に設定した超音波探触子を備えており、前記超音波素子から放射された超音波が前記音響窓で反射して前記超音波素子に戻るまでの時間を測定して前記走査手段を揺動する前記揺動手段の揺動角度を検出し、画像処理回路で3次元画像を構築できるように前記走査手段を所定の範囲において揺動させる。この超音波探触子は、超音波の送信から音響窓内壁による反射波の受信までの時間を測定することで、エンコーダなどを必要とすることなく揺動手段の揺動角度を検出することができる。
【0008】
また、本発明の超音波診断装置では、穿刺検査を行うための穿刺針案内スリットを前記超音波探触子の外側壁に設けるか、または取付可能にした。この構成により、超音波の走査面を穿刺針の移動面と正確に合わせることができるため、より安全性の高い超音波診断装置を提供することができる。
【0009】
【発明の実施の形態】
図1は、本発明の第1の実施の形態の超音波探触子の構成を示す一部破断正面である。図1に示すように、超音波を送受信する超音波素子1がロータ2に固定され、このロータ2は回転軸3および回転支持部材4により回転可能に支持されている。走査モータ5の駆動力は駆動プーリ6、タイミングベルト7、従動プーリ8などの駆動力伝達系を経て回転軸3に伝達され、ロータ2を回転または揺動させて超音波素子1によりセクタ状に超音波走査を行う。これらの走査機構は揺動軸9および揺動フレーム10により揺動可能に支持され、揺動モータ11の駆動力は、ピニオンギヤ12と揺動ギヤ13を介して揺動軸9を揺動の中心として揺動させる。つまり、走査機構を回転または揺動させることによって超音波走査面を形成し、揺動機構を用いて走査機構を揺動させることによって超音波走査面を傾け、超音波の送受信方向を2次元的に決定する。
【0010】
前記の走査機構およびそれを揺動させる揺動機構は、揺動軸9とは異なる位置に内壁の曲率中心14をもつ音響窓15と、図示しない収納ケースとにより封入された音響結合液16の中で動作する。音響窓15の材料としては内部機構の保護と音響結合液の封入という目的から例えばポリスチレン、ポリプロピレン、ポリメチルペンテンなどの音響インピーダンスが1.5〜2.0[MRayl]程度の樹脂材料を用いる。また、音響結合液16としては流動性に優れた液体が適しており、例えばアルコールや流動パラフィンなどを用い、これらの音響インピーダンスは0.9〜1.2[MRayl]程度で一般的には音響窓16に用いる材料のそれよりも小さい。
【0011】
次に上記実施の形態の動作について説明する。図1の構成において走査モータ5が超音波素子1の固定されたロータ2を回転または揺動させる。図示しない超音波診断装置本体はロータ2を回転または揺動させながら超音波素子1に図示しない信号伝達経路を経由して超音波素子1に電気信号を与え、超音波を放射させる。超音波素子1から放射された超音波は音響結合液16と音響窓15を通過して生体などの被験体内部に放射され、被験体内の組織境界面で反射した超音波は再び音響窓15と音響結合液16を通過し、超音波素子1は受信した超音波を電気信号に変換する。超音波素子1が受信した電気信号をもとに図示しない超音波診断装置が被験体の断層画像を表示する。
【0012】
この走査を行いながら超音波素子1、ロータ2、回転軸3、回転支持部材4、走査モータ5、駆動プーリ6、タイミングベルト7、および従動プーリ8により構成される走査機構を、揺動モータ11の駆動力がピニオンギヤ12と揺動ギヤ13を介して揺動軸9を中心に所定の範囲(例えば−45°から+45°)において揺動させ、図示しない超音波診断装置の画像処理回路が3次元画像を構築する。
【0013】
この3次元画像を構築するためには、超音波診断装置は走査機構の揺動角度を知ることが必要である。以下、その方法について具体例の一つを挙げて説明する。超音波素子1から放射した超音波は縦波音速が1400[m/s]の音響結合液16中を伝播し、音響窓15に入射する。音響結合液16の音響インピーダンスをZc(例えば1.0[MRayl])、音響窓の音響インピーダンスをZw(例えば2.0[MRayl])として音響結合液16から音響窓15に超音波が入射するとき、超音波はR=(Zc−Zw)/(Zc+Zw)の反射率で反射する。
【0014】
走査面の揺動中心である揺動軸9から超音波素子1の音波放射面までの距離を例えば23.5[mm]、音響窓15の内壁曲率半径を30.5[mm]、その曲率中心14を図1における揺動軸9の鉛直方向の10[mm]上の位置におき、超音波素子1の音波放射面から音響窓内壁までの距離をDとすると、超音波の放射から音響窓内壁で反射し、再び超音波素子1に戻ってくるまでに要する時間Tは次式で求められる。
【0015】
T=2×D/v(vは音響結合液16の縦波音速)
走査面の揺動角度0°を図1の鉛直方向上向きとするとき、揺動角度が増すに従って超音波素子1から音響窓内壁までの距離が近くなるため、走査面の揺動角度を0°から45°まで揺動させて、超音波の放射から音響窓内壁で反射し、再び超音波素子1に戻ってくるまでの時間Tは、揺動角が0°、15°、30°、45°の場合、それぞれ
T0=24.3×10−6[s]
T15=23.6×10−6[s]
T30=21.9×10−6[s]
T45=18.9×10−6[s]
となり、揺動角度が増すに従い音響窓内壁からの反射波の到達時間が短くなる。
【0016】
したがって、超音波素子1から放射された超音波の第一番目の反射波である音響窓内壁における反射波の到達時間を図示しない超音波診断装置の画像処理回路で測定することで、超音波診断装置本体は、揺動モータなどに取り付けられたエンコーダなどの位置検出機構による揺動角度の位置情報を必要とせずに、走査面が傾いた揺動角度を検出することができ、この音響窓内壁による第一番目の反射波の到達時間を揺動角度の位置情報として3次元画像の構築が可能となる。
【0017】
このように、本発明の第1の実施の形態によれば、超音波走査面の揺動中心となる揺動軸9に対し、音響窓内壁の曲率中心14を鉛直方向の上方に配置し、超音波の送信から音響窓内壁による反射波の受信までの時間が揺動角度が大きくなるに従って短くなることを利用してその揺動角度を検出することができる。
【0018】
図2は、本発明の第2の実施の形態の超音波探触子の構成を示す図である。この超音波探触子は、走査面の揺動中心となる揺動軸に対し、音響窓内壁の曲率中心を鉛直方向の下の位置に配置した場合の構成例である。
【0019】
図2において、超音波を送受信する超音波素子21がロータ22に固定されている。このロータ22は図1の超音波探触子と同様、回転軸および回転支持部材により回転可能に支持されている。そして、走査モータの駆動力は駆動プーリ、タイミングベルト、従動プーリなどの駆動力伝達系を経て前記回転軸に伝達され、ロータ22を回転または揺動させて超音波素子21によりセクタ状に超音波走査を行う。これらの走査機構は揺動軸23および揺動フレームにより揺動可能に支持され、揺動モータの駆動力は、ピニオンギヤと揺動ギヤを介して揺動軸23を揺動の中心として揺動させる。
【0020】
ここで、本実施の形態では、揺動軸23に対し、音響窓内壁の曲率中心24が鉛直方向の下の位置に配置されている。このため、第1の実施の形態とは逆に、揺動角度が増すに従って超音波素子21から音響窓内壁までの距離が遠くなるため、音響窓内壁による第一番目の反射波の到達時間が長くなる。
【0021】
したがって、超音波素子21から放射された超音波の第一番目の反射波である音響窓内壁における反射波の到達時間を図示しない超音波診断装置の画像処理回路で測定することで、第1の実施の形態と同様、超音波診断装置本体は、揺動モータなどに取り付けられたエンコーダなどの位置検出機構による揺動角度の位置情報を必要とせずに、走査面が傾いた揺動角度を検出することができ、この音響窓内壁による第一番目の反射波の到達時間を揺動角度の位置情報として3次元画像の構築が可能となる。
【0022】
このように、本発明の第2の実施の形態によれば、超音波走査面の揺動中心となる揺動軸23に対し、音響窓内壁の曲率中心24を鉛直方向の下の位置に配置し、超音波の送信から音響窓内壁による反射波の受信までの時間が揺動角度が大きくなるに従って長くなることを利用してその揺動角度を検出することができる。
【0023】
図3は、本発明の第3の実施の形態の超音波探触子の構成を示す図である。本発明の第3の実施の形態の超音波探触子は、第1の実施の形態または第2の実施の形態の超音波探触子に対して、穿刺検査を目的とした穿刺針案内スリットを設けたものである。
【0024】
図3に示す超音波探触子の基本構成は、図1に示した超音波探触子と同一であり、穿刺検査を行うための穿刺針案内スリット32を外側壁に設けたことが相違点である。
【0025】
以上のように構成された超音波探触子において穿刺検査を行う場合、図示しない超音波診断装置に穿刺針31の反射像を表示させ、検査部位に穿刺針31を正確に到達させるために、揺動可能な走査面を穿刺針案内スリット32により定められた穿刺針31の移動面と同一面に合わせる必要がある。そこで、本実施の形態では、超音波走査面の揺動角度に応じて変化する音響窓33の内壁による反射波の到達時間を図示しない超音波診断装置が測定を行うことによって超音波走査面の揺動角度を検出し、穿刺針31の移動面と超音波走査面とが同一面になるよう所定の揺動角度(例えば揺動角度0°)に超音波診断装置が超音波探触子内に設けられた揺動モータ34を制御する。
【0026】
このように、本発明の第3の実施の形態によれば、穿刺針案内スリット32により定められた穿刺針31の移動面と超音波走査面とを正確に合わせることができる。
【0027】
図4は、本発明の第4の実施の形態の超音波探触子の構成を示す図である。本発明の第4の実施の形態の超音波探触子は、第1の実施の形態または第2の実施の形態の超音波探触子に対して、穿刺検査を行うための穿刺針案内スリットを外側壁に取付可能に構成したものである。
【0028】
図4に示す超音波探触子の基本構成は、図1に示した超音波探触子と同一であり、穿刺検査を行うための穿刺針案内スリット42を外側壁に取付可能したことが相違点である。
【0029】
以上のように構成された超音波探触子において穿刺検査を行う場合、図示しない超音波診断装置に穿刺針41の反射像を表示させ、検査部位に穿刺針41を正確に到達させるために、揺動可能な超音波走査面を穿刺針案内スリット42により定められた穿刺針41の移動面と同一面に合わせる必要がある。そこで、本実施の形態では、超音波走査面の揺動角度に応じて変化する音響窓43の内壁による反射波の到達時間を図示しない超音波診断装置が測定を行うことによって超音波走査面の揺動角度を検出し、穿刺針41の移動面と超音波走査面とが同一面になるよう所定の揺動角度(例えば、揺動角度0°)に超音波診断装置が超音波探触子内に設けられた揺動モータ44を制御する。
【0030】
このように、本発明の第4の実施の形態によれば、穿刺針案内スリット42により定められた穿刺針41の移動面と超音波走査面とを正確に合わせることができる。
【0031】
【発明の効果】
以上説明したように本発明によれば、超音波走査面が揺動されるに従って変化する音響窓内壁からの反射波の到達時間を超音波診断装置本体で測定することにより、超音波走査面の揺動角度を検出することができるので、エンコーダなどの位置検出機構を必要としない安価な超音波探触子を備える超音波診断装置を提供することができるという効果が得られる。
【0032】
また、外側壁に穿刺検査用の穿刺針案内スリットを有する、または取付可能な超音波探触子を備える超音波診断装置においては、超音波走査面の揺動角度を穿刺針の移動面と正確に合わせることができるため、より安全性の高い超音波診断装置を提供することができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の超音波探触子を示す一部破断正面図、
【図2】本発明の第2の実施の形態の超音波探触子を示す一部破断正面図、
【図3】本発明の第3の実施の形態の超音波探触子を示す一部破断正面図、
【図4】本発明の第4の実施の形態の超音波探触子を示す一部破断正面図、
【図5】従来の超音波探触子を示す一部破断正面図である。
【符号の説明】
1 超音波素子
2 ロータ
3 回転軸
4 回転支持部材
5 走査モータ
6 駆動プーリ
7 タイミングベルト
8 従動プーリ
9 揺動軸
10 揺動フレーム
11 揺動モータ
12 ピニオンギヤ
13 揺動ギヤ
14 音響窓内壁曲率中心
15 音響窓
16 音響結合液
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrasonic probe having an oscillating mechanism that can be used in an ultrasonic diagnostic apparatus and that can tilt an ultrasonic scanning surface without moving the ultrasonic probe.
[0002]
[Prior art]
FIG. 5 shows a general configuration of an ultrasonic probe capable of extracting a three-dimensional image by tilting an ultrasonic scanning surface by a rocking mechanism as a rocking means without moving the ultrasonic probe. As described above, one or more ultrasonic elements 501 are fixed to the rotor 502, and the rotor 502 is rotatably supported by the rotation shaft 503 and the rotation support member 504. The driving force of the scanning motor 505 is transmitted to the rotating shaft 503 through a transmission system such as a driving pulley 506, a timing belt 507, and a driven pulley 508, and the rotor 502 is rotated or oscillated to perform ultrasonic scanning in a sector shape. These scanning mechanisms are swingably supported by a swing shaft 509 and a swing frame 510, and the driving force of a swing motor 511 swings a scanning mechanism as a scanning unit via a pinion gear 512 and a swing gear 513. Let it. That is, an ultrasonic scanning surface is formed by rotating or oscillating the scanning mechanism, and the ultrasonic scanning surface is tilted by oscillating the scanning mechanism using the oscillating mechanism, so that the transmitting and receiving directions of the ultrasonic waves are two-dimensionally changed. To decide.
[0003]
The scanning mechanism and the swing mechanism for swinging the scanning mechanism operate in the acoustic coupling liquid 515 sealed by the acoustic window 514. The swing angle of the swing mechanism is controlled by an unillustrated control circuit of the ultrasonic diagnostic apparatus main body based on pulse data obtained by an encoder 516 attached to the swing motor 511 to construct a three-dimensional image or the like. I do.
[0004]
[Problems to be solved by the invention]
In the configuration of the ultrasonic probe capable of extracting a three-dimensional image according to the above-described conventional technology, a position detection mechanism such as an encoder must be provided in a swing motor in order to detect a swing angle. Increased material costs and increased assembly and adjustment time have hindered the provision of inexpensive probes.
[0005]
Further, when performing a puncture test using the ultrasonic probe, the swingable scanning surface displays a reflection image of the puncture needle, and the movement of the puncture needle so that the puncture needle accurately reaches the inspection site. Must be on the same side. However, in the case of mechanical rattling in the oscillating driving force transmission system, a lack of teeth of the oscillating gear, idle rotation of the pinion gear, a malfunction of the encoder, etc., the probe accurately detects the oscillating angle. Position information cannot be sent to the ultrasonic diagnostic apparatus, and the scanning plane may not coincide with the plane on which the puncture needle moves. In the worst case, the subject may be damaged.
[0006]
An object of the present invention is to solve the above-mentioned conventional problem, and an object of the present invention is to provide an ultrasonic diagnostic apparatus including an inexpensive ultrasonic probe which does not require an encoder for detecting a swing angle of a scanning surface. In addition, the present invention suppresses a detection error of a swing angle due to mechanical instability of a swing drive force transmission system, and a highly safe ultrasonic probe in which detection of a swing angle due to a malfunction of an encoder does not occur. It is an object of the present invention to provide an ultrasonic diagnostic apparatus having a child.
[0007]
[Means for Solving the Problems]
An ultrasonic diagnostic apparatus according to the present invention includes a scanning unit capable of rotating or swinging an ultrasonic element, a swinging unit capable of swinging the scanning unit, and an acoustic coupling liquid. An acoustic window capable of transmitting ultrasonic waves between the acoustic window and an ultrasonic probe in which the center of curvature of the inner wall of the acoustic window and the swing center of the swing means are set at different positions. , wherein the ultrasonic waves emitted from the ultrasonic element is reflected by the acoustic window by measuring the time to return to the ultrasonic element, detecting a swinging angle of the swinging means for swinging the said scanning means Then , the scanning means is swung in a predetermined range so that a three-dimensional image can be constructed by the image processing circuit. This ultrasonic probe can detect the swing angle of the swing means without requiring an encoder or the like by measuring the time from transmission of the ultrasonic wave to reception of the reflected wave from the inner wall of the acoustic window. it can.
[0008]
Further, in the ultrasonic diagnostic apparatus of the present invention, a puncture needle guide slit for performing a puncture test is provided on the outer wall of the ultrasonic probe or is attachable. With this configuration, the scanning surface of the ultrasonic wave can be accurately matched with the moving surface of the puncture needle, so that a more secure ultrasonic diagnostic apparatus can be provided.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a partially broken front view showing the configuration of the ultrasonic probe according to the first embodiment of the present invention. As shown in FIG. 1, an ultrasonic element 1 for transmitting and receiving ultrasonic waves is fixed to a rotor 2, and the rotor 2 is rotatably supported by a rotation shaft 3 and a rotation support member 4. The driving force of the scanning motor 5 is transmitted to the rotating shaft 3 through a driving force transmission system such as a driving pulley 6, a timing belt 7, a driven pulley 8, and the like. An ultrasonic scan is performed. These scanning mechanisms are swingably supported by a swinging shaft 9 and a swinging frame 10, and the driving force of a swinging motor 11 moves the swinging shaft 9 via a pinion gear 12 and a swinging gear 13 at the center of swinging. To rock. That is, an ultrasonic scanning surface is formed by rotating or oscillating the scanning mechanism, and the ultrasonic scanning surface is tilted by oscillating the scanning mechanism using the oscillating mechanism, so that the transmitting and receiving directions of the ultrasonic waves are two-dimensionally changed. To decide.
[0010]
The above-described scanning mechanism and the swing mechanism for swinging the scanning mechanism include an acoustic window 15 having a center of curvature 14 of an inner wall at a position different from the swing shaft 9 and an acoustic coupling liquid 16 sealed by a storage case (not shown). Work in. As a material of the acoustic window 15, a resin material having an acoustic impedance of about 1.5 to 2.0 [MRayl] such as polystyrene, polypropylene, or polymethylpentene is used for the purpose of protecting the internal mechanism and enclosing the acoustic coupling liquid. As the acoustic coupling liquid 16, a liquid having excellent fluidity is suitable. For example, alcohol or liquid paraffin is used, and their acoustic impedance is about 0.9 to 1.2 [MRayl]. It is smaller than that of the material used for the window 16.
[0011]
Next, the operation of the above embodiment will be described. In the configuration of FIG. 1, the scanning motor 5 rotates or swings the rotor 2 to which the ultrasonic element 1 is fixed. The ultrasonic diagnostic apparatus main body (not shown) applies an electric signal to the ultrasonic element 1 via a signal transmission path (not shown) to the ultrasonic element 1 while rotating or swinging the rotor 2 to emit ultrasonic waves. The ultrasonic wave radiated from the ultrasonic element 1 passes through the acoustic coupling liquid 16 and the acoustic window 15 and is radiated into the inside of a subject such as a living body. After passing through the acoustic coupling liquid 16, the ultrasonic element 1 converts the received ultrasonic wave into an electric signal. An ultrasonic diagnostic apparatus (not shown) displays a tomographic image of the subject based on the electric signal received by the ultrasonic element 1.
[0012]
While performing this scanning, a scanning mechanism constituted by the ultrasonic element 1, the rotor 2, the rotating shaft 3, the rotation supporting member 4, the scanning motor 5, the driving pulley 6, the timing belt 7, and the driven pulley 8 is changed to an oscillating motor 11 Drive force in a predetermined range (for example, from −45 ° to + 45 °) about the swing shaft 9 via the pinion gear 12 and the swing gear 13. Construct a two-dimensional image.
[0013]
In order to construct this three-dimensional image, the ultrasonic diagnostic apparatus needs to know the swing angle of the scanning mechanism. Hereinafter, the method will be described with reference to one of specific examples. Ultrasonic waves emitted from the ultrasonic element 1 propagate through the acoustic coupling liquid 16 having a longitudinal wave velocity of 1400 [m / s], and enter the acoustic window 15. Ultrasonic waves enter the acoustic window 15 from the acoustic coupling liquid 16 with the acoustic impedance of the acoustic coupling liquid 16 being Zc (for example, 1.0 [MRayl]) and the acoustic impedance of the acoustic window being Zw (for example, 2.0 [MRayl]). At this time, the ultrasonic wave is reflected at a reflectance of R = (Zc−Zw) / (Zc + Zw).
[0014]
The distance from the oscillation axis 9 which is the oscillation center of the scanning surface to the sound wave emitting surface of the ultrasonic element 1 is, for example, 23.5 [mm], the radius of curvature of the inner wall of the acoustic window 15 is 30.5 [mm], and the curvature thereof. Assuming that the center 14 is located at a position 10 [mm] in the vertical direction of the swing axis 9 in FIG. 1 and the distance from the sound wave emitting surface of the ultrasonic element 1 to the inner wall of the acoustic window is D, the acoustic wave is emitted from the ultrasonic wave. The time T required until the light is reflected by the inner wall of the window and returns to the ultrasonic element 1 again can be obtained by the following equation.
[0015]
T = 2 × D / v (v is the longitudinal wave velocity of the acoustic coupling liquid 16)
When the swing angle of the scanning plane is set to be upward in the vertical direction in FIG. 1, the distance from the ultrasonic element 1 to the inner wall of the acoustic window becomes shorter as the swing angle increases. From the radiation of the ultrasonic wave to the reflection on the inner wall of the acoustic window and return to the ultrasonic element 1 again when the rocking angle is 0 °, 15 °, 30 °, 45 °. °, T0 = 24.3 × 10 −6 [s]
T15 = 23.6 × 10 −6 [s]
T30 = 21.9 × 10 −6 [s]
T45 = 18.9 × 10 −6 [s]
And the arrival time of the reflected wave from the inner wall of the acoustic window becomes shorter as the swing angle increases.
[0016]
Therefore, the arrival time of the reflected wave on the inner wall of the acoustic window, which is the first reflected wave of the ultrasonic wave radiated from the ultrasonic element 1, is measured by an image processing circuit of an ultrasonic diagnostic apparatus (not shown), so that the ultrasonic diagnostic is performed. The main body of the device can detect the tilt angle of the scanning surface without needing the position information of the tilt angle by a position detecting mechanism such as an encoder attached to the tilt motor. It is possible to construct a three-dimensional image using the arrival time of the first reflected wave due to the position information of the swing angle.
[0017]
As described above, according to the first embodiment of the present invention, the center of curvature 14 of the inner wall of the acoustic window is disposed vertically above the swing axis 9 serving as the swing center of the ultrasonic scanning surface, The swing angle can be detected by utilizing the fact that the time from transmission of the ultrasonic wave to reception of the reflected wave by the inner wall of the acoustic window becomes shorter as the swing angle becomes larger.
[0018]
FIG. 2 is a diagram illustrating a configuration of an ultrasonic probe according to the second embodiment of the present invention. This ultrasonic probe is an example of a configuration in which the center of curvature of the inner wall of the acoustic window is disposed at a position vertically below a swing axis that is a swing center of a scanning surface.
[0019]
In FIG. 2, an ultrasonic element 21 for transmitting and receiving ultrasonic waves is fixed to a rotor 22. The rotor 22 is rotatably supported by a rotation shaft and a rotation support member, similarly to the ultrasonic probe of FIG. The driving force of the scanning motor is transmitted to the rotating shaft through a driving force transmission system such as a driving pulley, a timing belt, and a driven pulley. Perform a scan. These scanning mechanisms are swingably supported by a swing shaft 23 and a swing frame, and the driving force of the swing motor swings the swing shaft 23 about the swing center via a pinion gear and a swing gear. .
[0020]
Here, in the present embodiment, the center of curvature 24 of the inner wall of the acoustic window is disposed at a position below the swing shaft 23 in the vertical direction. Therefore, contrary to the first embodiment, the distance from the ultrasonic element 21 to the inner wall of the acoustic window becomes longer as the swing angle increases, so that the arrival time of the first reflected wave by the inner wall of the acoustic window becomes longer. become longer.
[0021]
Therefore, the arrival time of the reflected wave on the inner wall of the acoustic window, which is the first reflected wave of the ultrasonic wave radiated from the ultrasonic element 21, is measured by an image processing circuit of an ultrasonic diagnostic apparatus (not shown). As in the embodiment, the ultrasonic diagnostic apparatus main body detects the swing angle at which the scanning plane is inclined without requiring the position information of the swing angle by a position detection mechanism such as an encoder attached to the swing motor or the like. It is possible to construct a three-dimensional image by using the arrival time of the first reflected wave by the inner wall of the acoustic window as positional information of the swing angle.
[0022]
As described above, according to the second embodiment of the present invention, the center of curvature 24 of the inner wall of the acoustic window is located at a position vertically below the swing axis 23 which is the center of swing of the ultrasonic scanning surface. The swing angle can be detected by utilizing the fact that the time from transmission of the ultrasonic wave to reception of the reflected wave by the inner wall of the acoustic window becomes longer as the swing angle becomes larger.
[0023]
FIG. 3 is a diagram illustrating a configuration of an ultrasonic probe according to the third embodiment of the present invention. The ultrasonic probe according to the third embodiment of the present invention is different from the ultrasonic probe according to the first embodiment or the second embodiment in that a puncture needle guide slit for puncture inspection is provided. Is provided.
[0024]
The basic configuration of the ultrasonic probe shown in FIG. 3 is the same as that of the ultrasonic probe shown in FIG. 1, except that a puncture needle guide slit 32 for performing a puncture test is provided on the outer wall. It is.
[0025]
When performing a puncture test with the ultrasonic probe configured as described above, a reflected image of the puncture needle 31 is displayed on an ultrasonic diagnostic apparatus (not shown), and the puncture needle 31 accurately reaches the inspection site. The swingable scanning surface must be flush with the moving surface of the puncture needle 31 defined by the puncture needle guide slit 32. Therefore, in the present embodiment, the arrival time of the reflected wave by the inner wall of the acoustic window 33 that changes according to the swing angle of the ultrasonic scanning surface is measured by an ultrasonic diagnostic apparatus (not shown) so that the ultrasonic scanning surface is measured. The swing angle is detected, and the ultrasonic diagnostic apparatus sets the inside of the ultrasound probe at a predetermined swing angle (for example, a swing angle of 0 °) so that the moving surface of the puncture needle 31 and the ultrasonic scanning surface are flush with each other. The oscillating motor 34 provided in the controller is controlled.
[0026]
As described above, according to the third embodiment of the present invention, the moving surface of the puncture needle 31 defined by the puncture needle guide slit 32 and the ultrasonic scanning surface can be accurately matched.
[0027]
FIG. 4 is a diagram illustrating a configuration of an ultrasonic probe according to the fourth embodiment of the present invention. The ultrasonic probe according to the fourth embodiment of the present invention includes a puncture needle guide slit for performing a puncture inspection with respect to the ultrasonic probe according to the first embodiment or the second embodiment. Can be attached to the outer wall.
[0028]
The basic configuration of the ultrasonic probe shown in FIG. 4 is the same as that of the ultrasonic probe shown in FIG. 1, except that a puncture needle guide slit 42 for performing a puncture inspection can be attached to the outer wall. Is a point.
[0029]
When performing a puncture test with the ultrasonic probe configured as described above, a reflected image of the puncture needle 41 is displayed on an ultrasonic diagnostic apparatus (not shown), and the puncture needle 41 accurately reaches the inspection site. The swingable ultrasonic scanning surface needs to be flush with the moving surface of the puncture needle 41 defined by the puncture needle guide slit 42. Therefore, in the present embodiment, the arrival time of the reflected wave by the inner wall of the acoustic window 43 that changes according to the swing angle of the ultrasonic scanning surface is measured by an ultrasonic diagnostic apparatus (not shown) by measuring the arrival time of the ultrasonic scanning surface. The ultrasonic diagnostic apparatus detects the swing angle and sets the ultrasound probe to an ultrasonic probe at a predetermined swing angle (for example, a swing angle of 0 °) so that the moving surface of the puncture needle 41 and the ultrasonic scanning surface are flush with each other. The swing motor 44 provided therein is controlled.
[0030]
As described above, according to the fourth embodiment of the present invention, the moving surface of the puncture needle 41 defined by the puncture needle guide slit 42 and the ultrasonic scanning surface can be accurately matched.
[0031]
【The invention's effect】
As described above, according to the present invention, the ultrasonic diagnostic apparatus main body measures the arrival time of the reflected wave from the inner wall of the acoustic window, which changes as the ultrasonic scanning plane is swung, so that the ultrasonic scanning plane can be measured. Since the swing angle can be detected, it is possible to provide an ultrasonic diagnostic apparatus including an inexpensive ultrasonic probe that does not require a position detection mechanism such as an encoder.
[0032]
Further, in an ultrasonic diagnostic apparatus having a puncture needle guide slit for puncture inspection on the outer wall or having an attachable ultrasonic probe, the swing angle of the ultrasonic scan surface is accurately determined with respect to the moving surface of the puncture needle. Therefore, it is possible to provide an ultrasonic diagnostic apparatus with higher safety.
[Brief description of the drawings]
FIG. 1 is a partially cutaway front view showing an ultrasonic probe according to a first embodiment of the present invention;
FIG. 2 is a partially cutaway front view showing an ultrasonic probe according to a second embodiment of the present invention;
FIG. 3 is a partially cutaway front view showing an ultrasonic probe according to a third embodiment of the present invention;
FIG. 4 is a partially cutaway front view showing an ultrasonic probe according to a fourth embodiment of the present invention;
FIG. 5 is a partially cutaway front view showing a conventional ultrasonic probe.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ultrasonic element 2 Rotor 3 Rotation shaft 4 Rotation support member 5 Scan motor 6 Drive pulley 7 Timing belt 8 Follower pulley 9 Oscillating shaft 10 Oscillating frame 11 Oscillating motor 12 Pinion gear 13 Oscillating gear 14 Acoustic window inner wall curvature center 15 Acoustic window 16 Acoustic coupling liquid

Claims (3)

超音波素子を回転または揺動可能な走査手段と、前記走査手段を揺動可能な揺動手段と、音響結合液が封入され、前記超音波素子と被験体との間の超音波の伝播が可能な音響窓とを有し、前記音響窓の内壁曲率中心と前記揺動手段の揺動中心とを異なる位置に設定した超音波探触子を備え、前記超音波素子から放射された超音波が前記音響窓で反射して前記超音波素子に戻るまでの時間を測定して前記走査手段を揺動する前記揺動手段の揺動角度を検出し、画像処理回路で3次元画像を構築できるように前記走査手段を所定の範囲において揺動させることを特徴とする超音波診断装置。Scanning means capable of rotating or oscillating the ultrasonic element, oscillating means capable of oscillating the scanning means, and an acoustic coupling liquid sealed therein, and the propagation of ultrasonic waves between the ultrasonic element and the subject An ultrasonic probe having a possible acoustic window, wherein the center of curvature of the inner wall of the acoustic window and the swing center of the swing means are set at different positions, and the ultrasonic wave radiated from the ultrasound element construction There by measuring the time to return to the ultrasonic element is reflected by the acoustic window, and detects the swing angle of the swing means for swinging the said scanning means, a three-dimensional image by the image processing circuit An ultrasonic diagnostic apparatus characterized by swinging the scanning means within a predetermined range so as to be able to do so. 穿刺検査を行うための穿刺針案内スリットを前記超音波探触子の外側壁に有することを特徴とする請求項1記載の超音波診断装置。2. The ultrasonic diagnostic apparatus according to claim 1, wherein a puncture needle guide slit for performing a puncture test is provided on an outer wall of the ultrasonic probe. 穿刺検査を行うための穿刺針案内スリットが前記超音波探触子の外側壁に取付可能であることを特徴とする請求項1記載の超音波診断装置。The ultrasonic diagnostic apparatus according to claim 1, wherein a puncture needle guide slit for performing a puncture inspection can be attached to an outer wall of the ultrasonic probe.
JP34371999A 1999-12-02 1999-12-02 Ultrasound diagnostic equipment Expired - Fee Related JP3578685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34371999A JP3578685B2 (en) 1999-12-02 1999-12-02 Ultrasound diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34371999A JP3578685B2 (en) 1999-12-02 1999-12-02 Ultrasound diagnostic equipment

Publications (2)

Publication Number Publication Date
JP2001157680A JP2001157680A (en) 2001-06-12
JP3578685B2 true JP3578685B2 (en) 2004-10-20

Family

ID=18363734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34371999A Expired - Fee Related JP3578685B2 (en) 1999-12-02 1999-12-02 Ultrasound diagnostic equipment

Country Status (1)

Country Link
JP (1) JP3578685B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4611064B2 (en) * 2005-03-11 2011-01-12 パナソニック株式会社 3D ultrasonic probe and 3D ultrasonic diagnostic apparatus
JP2007021037A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Ultrasonic diagnostic apparatus
JP4845443B2 (en) * 2005-07-25 2011-12-28 パナソニック株式会社 Laser treatment ultrasonic probe and laser treatment ultrasonic diagnostic apparatus
JP5888229B2 (en) 2010-09-27 2016-03-16 コニカミノルタ株式会社 Ultrasonic diagnostic adapter, ultrasonic diagnostic apparatus, and ultrasonic measurement method
US9700280B2 (en) * 2011-01-31 2017-07-11 Sunnybrook Health Sciences Centre Ultrasonic probe with ultrasonic transducers addressable on common electrical channel
CN117554488B (en) * 2024-01-11 2024-03-22 成都工业学院 Tank defect intelligent detection trolley with ultrasonic dry coupling function

Also Published As

Publication number Publication date
JP2001157680A (en) 2001-06-12

Similar Documents

Publication Publication Date Title
KR100707237B1 (en) Ultrasonic probe
JPH0638962A (en) Ultrasonic probe for picking up three-dimensional data
US5152294A (en) Three-dimensional ultrasonic scanner
US4541434A (en) Ultrasonic scanning apparatus
JPH0738851B2 (en) Ultrasonic probe for 3D data acquisition
EP0110593B1 (en) Ultrasonic scanning apparatus and techniques
JP3578685B2 (en) Ultrasound diagnostic equipment
JP2009291530A (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP3648133B2 (en) Mechanical scanning ultrasonic probe
JP4611064B2 (en) 3D ultrasonic probe and 3D ultrasonic diagnostic apparatus
KR100961855B1 (en) Ultrasound probe having a plurality of probing sections
JPH07299066A (en) Ultrasonic probe
JP2697384B2 (en) Mechanical scanning ultrasonic probe
JP3447148B2 (en) Ultrasound scanner
JP2000287300A (en) Device for testing characteristic of ultrasonic wave transducer
JP4740647B2 (en) Ultrasonic probe
JP2007006990A (en) Ultrasonic probe
JP5414856B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JPS6346694B2 (en)
JP5270896B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP2007159926A (en) Ultrasonograph
JPH07303645A (en) Catheter-shaped ultrasonic probe
JP2005152056A (en) Driving device of ultrasonic element
JPS6137142A (en) Ultrasonic probe
JP2006296750A (en) Ultrasonic probe

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040713

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070723

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees