JP3578307B2 - Solid electrolyte composite membrane - Google Patents

Solid electrolyte composite membrane Download PDF

Info

Publication number
JP3578307B2
JP3578307B2 JP16521097A JP16521097A JP3578307B2 JP 3578307 B2 JP3578307 B2 JP 3578307B2 JP 16521097 A JP16521097 A JP 16521097A JP 16521097 A JP16521097 A JP 16521097A JP 3578307 B2 JP3578307 B2 JP 3578307B2
Authority
JP
Japan
Prior art keywords
electrolyte
solid electrolyte
polymer
membrane
composite membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16521097A
Other languages
Japanese (ja)
Other versions
JPH10340732A (en
Inventor
恭子 浜村
賢彦 朝岡
和生 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP16521097A priority Critical patent/JP3578307B2/en
Publication of JPH10340732A publication Critical patent/JPH10340732A/en
Application granted granted Critical
Publication of JP3578307B2 publication Critical patent/JP3578307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子型燃料電池の電解質材料等に用いて好適な固体電解質複合膜に関するものである。
【0002】
【従来の技術】
固体高分子型燃料電池は、作動温度が低いこと、出力密度が高いこと、起動時間が短いこと、静粛性が高いこと等の利点を有していることから、従来、宇宙開発用や軍事用といった特殊用途に用いられ、また近年では自動車用の電源等としての用途も期待されている。
【0003】
そこでこの種の固体高分子型燃料電池の電解質材料としては、固体高分子電解質膜が用いられているが、その発電メカニズムは図6に示したように、セルのアノード側に水素(燃料)を供給し、カソード側に酸素(酸化剤)を供給することにより、アノード側で生成した水素イオン(H )が、固体高分子電解質膜中のイオン交換基を介してカソード側へ移動し、カソード側の酸素と反応して水(HO )が生成されるもので、この時に電気エネルギーが外部に取り出される。
【0004】
ところでこの電解質膜材料は一般に、イオン交換基としてスルホン酸基を持つイオン交換膜(樹脂)、例えばフェノールスルホン酸膜、ポリスチレンスルホン酸膜、ポリトリフルオロスチレンスルホン酸膜等が用いられ、現在は主にパーフルオロカーボンスルホン酸(PFSA)膜が用いられている。その構造を化1に示す。
【0005】
【化1】

Figure 0003578307
【0006】
化1に示したようにこのポリマー(イオン交換膜)は、疎水性のパーフルオロアルキル基を主鎖に、親水性のイオン交換基を側鎖の末端に有する構造をしている。さらにこのポリマーの高次構造は、図1に示したように、イオン交換基がフルオロカーボンマトリックス中で会合し、クラスター構造を形成していると考えられている。そしてこのポリマーの形状は、パーフルオロアルキル基によって保持されているが、非架橋のため、そのファンデルワールス力のみによって強度が決まっている。
【0007】
このような固体電解質膜材料(イオン交換膜)としてデュポン社製の商品名「ナフィオン」(登録商標)等が知られている。その物理的特性は、この電解質膜の膜厚が50〜200μm程度とした時の単位面積当りの電気抵抗が0.05〜0.4Ω程度となり、その単位面積当りのイオン導電率が25℃で5×10−2〜1×10−1S・cm−1程度となっている。この「ナフィオン」は、化1に示した構造を持つ電解質膜材料においてm≧1、n=2とした組成を有している。
【0008】
このナフィオンに代表されるパーフルオロカーボンスルホン酸ポリマーが、固体高分子型燃料電池の電解質として高い導電性を示すには、適切な含水状態である必要がある。
【0009】
これは、水が不足すると電解質の抵抗が増大し、逆に水が過剰になると電極でフラッディング状態になって反応ガスの供給が阻害され、いずれの場合においても安定した電圧が得られなくなるからである。
【0010】
電解質膜を適切な含水状態に保つには、加湿器等の補機による方法と電解質の薄膜化による方法が挙げられる。まず補機による場合には電解質の乾燥に対してはバブラー等の加湿器で反応ガスを加湿し、逆に水過剰に対してはブロア等により空気流量を増加させ排水を促進し、水分管理がなされている。
【0011】
一方、薄膜化については、「ナフィオン」系材料に補強材を入れた各種の複合電解質膜も既に提案されており、例えば、特公平4−58822号公報には含フッ素系イオン交換膜に多孔性繊維による補強材を施しこの補強材中に含フッ素系モノマーが重合されて形成された電解質膜材料が開示され、さらに特開平6−231780号公報にはスルホン酸基を含有するパーフルオロカーボン重合体をパーフルオロカーボン重合体織布で補強した電解質膜材料が開示されている。
【0012】
そしてこれらの公報に示されたものはいずれも繊維強化複合材であるが、これ以外に例えば、特開平6−196016号公報には、ポリエーテルの三次元網目構造中に有機酸、多酸等が導入されたものが開示され、また特開平6−76838号公報にはパーフルオロスルホン酸を用いたものではないが、ポリビニルアルコール等のエーテル結合をした高分子アルコール架橋鎖の三次元網目構造にポリスチレンスルホン酸等の有機高分子電解質を保持したものが開示されている。
【0013】
【発明が解決しようとする課題】
しかしながら、電解質の水管理のため、前述のバブラー、ブロア等を用いると補機動力の増大により小型化して車に搭載するには不利となる。電解質を薄膜化すると、水の逆拡散が促され、電解質中の含水状態を均一化することはできるが、電解質膜の機械的強度の低下やケミカルショート(アノードの水素とカソードの酸素が膜を透過して反応する)の発生等が引き起こされることがあり、燃料電池の運転上の信頼性に問題がある。
【0014】
一方、ポリテトラフルオロエチレン(PTFE)等の多孔性繊維や織布で補強した電解質膜(上記した特公平4−58822号公報、特開平6−231780号公報等)は、例えば、その湿潤、乾燥のサイクルでの電解質の膨潤と収縮により、補強材と電解質との間で界面剥離が発生し、ケミカルショートを起こす可能性がある。実際に気体透過係数を測定してみると表1に示したように、多孔性PTFEを補強材とした電解質膜は、「ナフィオン」に比べてその値が大きくなっており、十分な信頼性があるとはいえない。
【0015】
【表1】
Figure 0003578307
【0016】
また特公平4−58822号公報、特開平6−231780号公報に開示された電解質膜材料も、分子レベルにまで材料特性の改善を要求したものではなく、補強材の孔内への電解質の充填というマクロ的な手法によって機械的強度を高めるようにしたものであり、分子レベルにおける材料特性の本質的な改善が図られていない。すなわち、電解質膜材料の本質的な改善を図るためには、さらにミクロな状態(分子レベル)での三次元網目構造による補強機能を有する高分子材料を導入することが必要であると考えられる。
【0017】
さらに上記した特開平6−196016号公報、特開平6−76838号公報に開示された電解質膜材料は、いずれも架橋がエーテル結合によるものである他、三次元網目構造を形成する場合における架橋反応に時間がかかりすぎるという問題点がある。ちなみに特開平6−196016号公報に開示された電解質膜の場合には架橋反応に15時間(温度100℃)掛かり、特開平6−76838号公報に開示された電解質膜の場合には架橋反応に24時間(温度120℃)掛かる。
【0018】
本発明の解決しようとする課題は、電気抵抗が低く、イオン導電性に優れたパーフルオロカーボンスルホン酸系ポリマーの固体電解質膜を薄膜化することによって水管理を容易にすることをねらい、機械的強度に優れたミクロな分子レベルでの強化複合材としての固体電解質複合膜を提供することにある。
【0019】
【課題を解決するための手段】
この課題を解決するために本発明の固体電解質複合膜は、架橋ポリマーからなる三次元の骨格と、該三次元の骨格によって強化されたフッ化カーボン系の電解質からなることを要旨とするものである。
【0020】
この場合にパーフルオロカーボンスルホン酸系ポリマーの有機高分子電解質としては、デュポン社製の商品名「ナフィオン」(登録商標)が挙げられる。この「ナフィオン」の特徴その他については、上述したのでその説明を省略する。またこの他の好適な有機高分子電解質の例として高分子骨格がその全てあるいは一部がフッ素化されたフッ化炭素系あるいは炭化水素系であって、イオン交換基が陽イオン交換型にあってはスルホン酸、カルボン酸、ホスホン酸、亜ホスホン酸あるいはフェノール等、陰イオン交換型にあっては1,2,3,4級アミン等であるものが挙げられる。
特に、骨格が非架橋のため、架橋による構造上の強化ができないものを用いると、本発明の効果が大きく、好ましい。
【0021】
架橋型ポリマーとしては、熱硬化性のフェノール樹脂が適用され、例えば群栄化学工業社性のレゾール型液状フェノール樹脂「レヂトップPL2243」、同じくレゾール型液状フェノール樹脂「レヂトップPL4523」が好適なものとして挙げられる。その他にも、ジアリルフタレート樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、メラミン樹脂、シリコーン樹脂等が挙げられ、上記の高分子電解質との相溶性があるものが望ましい。
【0022】
そして有機高分子電解質と架橋型ポリマーとの比率は、高分子電解質99〜1重量%に対して架橋型ポリマー1〜99%の広範囲な混合組成をとることができる。
【0023】
本発明に係る固体電解質複合膜は、次のようにして作製される。すなわち、まず、フッ化カーボン系の電解質と架橋型のポリマーとを液体状態で混合する。そして溶媒除去後に該架橋型のポリマーを硬化し、該フッ化カーボン系の電解質を架橋型ポリマーの三次元骨格によって強化する。これにより、本発明に係る固体電解質複合膜が得られる。
【0024】
上記構成を有する固体電解質膜型複合膜によれば、架橋型ポリマーの架橋反応による三次元網目構造をパーフルオロカーボンスルホン酸系ポリマーの有機高分子電解質中に形成するものであるから、その架橋鎖網目状構造により固体電解質複合膜の機械的強度が高くなり、その分固体電解質膜の膜厚を薄くすることができる。この薄膜化により、電解質膜中の含水状態を均一にすることができ、その水管理が容易になる。適切な含水状態となることによって、膜の抵抗の低減と、フラッディングの防止ができ、補機動力が軽減される。さらに、膜厚を薄くすることによる膜抵抗の低減もできる。
【0025】
【発明の実施の形態】
以下、本発明の実施例を詳細に説明する。
本実施例として固体電解質複合膜をいくつかの条件により作製した。以下に各実施例及び比較例について説明する。
【0026】
まず初めに有機高分子電解質と架橋型ポリマーとを適当な混合比で超音波を当てながらブレンドする。次いでブレンドした混合物を放置しておき溶媒を蒸発除去する。その後、所定の温度(140〜170℃)及び圧力(50kg/cm)の環境下で数分〜数十分間程度、ホットプレス機を用いて加熱による架橋反応の促進により固体電解質複合膜が得られる。さらに一般的には、高分子電解質と架橋型ポリマーの前駆体(架橋前の状態のモノマー、オリゴマー等)を混合し(攪拌、超音波振動、混練等)、溶媒を除去した(蒸発、加熱、減圧等)後、架橋反応させて(加熱、照射、架橋剤等)、複合膜を得る。
【0027】
(実施例1)
架橋型ポリマーとして群栄化学工業社製のレゾール型液状フェノール樹脂「レヂトップPL2243」と、有機高分子電解質としてデュポン社製のパーフルオロカーボンスルホン酸系樹脂「ナフィオン」の5%溶液とを、重量比PL2243:ナフィオン=1:80(フェノール樹脂量1.2wt%)で超音波をかけながら10分間ブレンドした。その後、テフロン基板上で25℃下でそのまま二晩放置して溶媒を蒸発除去した。そしてホットプレス機を用いて温度140℃、圧力50kg/cm の条件下で13分間(昇温3分・保持10分)、加熱硬化処理を行い膜厚約30μmの固体電解質複合膜を「本発明品1」として得た。
【0028】
(実施例2)
「レヂトップPL2243」と「ナフィオン」との重量比をPL2243:ナフィオン=1:40(フェノール樹脂量2.4wt%)、ホットプレス機を用いることなく温度140℃の条件下で13分間(昇温3分、保持10分)、加熱硬化処理を行った以外は、実施例1と同様にして処理を行い膜厚約30μmの固体電解質複合膜を「本発明品2」として得た。
【0029】
(実施例3)
架橋型ポリマーとして群栄化学工業社製のレゾール型液状フェノール樹脂「レヂトップPL4523」と、有機高分子電解質としてデュポン社製のパーフルオロカーボンスルホン酸系樹脂「ナフィオン」の5%溶液とを、重量比PL4523:ナフィオン=1:80(フェノール樹脂量1.2wt%)で超音波をかけながら10分間ブレンドした。その後、テフロン基板上で25℃下でそのまま二晩放置して溶媒を蒸発除去した。そしてホットプレス機を用いて温度170℃、圧力50kg/cm の条件下で13分間(昇温3分・保持10分)、加熱硬化処理を行い膜厚約30μmの固体電解質複合膜を「本発明品3」として得た。
【0030】
(実施例4)
「レヂトップPL4523」と「ナフィオン」との重量比をPL4523:ナフィオン=1:40(フェノール樹脂量2.4wt%)とした以外は、実施例3と同様にして処理を行い固体電解質複合膜を「本発明品4」として得た。
【0031】
(実施例5)
ホットプレス機を用いることなく温度170℃の条件下で13分間(昇温3分・保持10分)、加熱硬化処理を行った以外は実施例4と同様にして処理を行い固体電解質複合膜を「本発明品5」として得た。
【0032】
(比較例1)
デュポン社製「ナフィオン」の5%溶液を、テフロン基板上で25℃下でそのまま二晩放置することにより溶媒を蒸発除去した。そしてホットプレス機を用いて温度140℃、圧力50kg/cm の条件下で13分間(昇温3分・保持10分)、加熱処理を行い膜厚約30μmの固体電解質膜を「比較品1」として得た。
(比較例2)
温度条件を170℃とした以外は、比較例1と同様にしてホットプレス機を用いて加熱処理を行い膜厚約30μmの固体電解質膜を「比較品2」として得た。
【0033】
次いで本発明の反応生成物である固体電解質複合膜について、引張破壊強さの測定を行った。この引張破壊強さの測定は、本発明品1、4及び比較品1,2についてなされたものであり、図2は比較品1に対する本発明品1の引張破壊強さの相対値を示したものであり、これによって、本発明品1の機械的強度が高くなったことが示される。
【0034】
図3は比較品2に対する本発明品4の引張破壊強さの相対値を示したものであり、これによっても本発明品4の機械的強度が高くなったことが示される。これにより上述と同様に、高分子電解質としての「ナフィオン」にブレンドされた架橋型ポリマーとしての「レヂトップPL4523」が架橋反応し、この架橋反応によって三次元網目構造が「ナフィオン」中に形成されたことにより機械的強度が高くなったことが判明した。
【0035】
高分子電解質(ナフィオン)に架橋型ポリマー(レヂトップPL2243あるいはレヂトップPL4523)をブレンドすることによって、高分子電解質中に架橋型ポリマーの三次元網目構造が形成され、これが膜を補強して固体電解質型複合膜の機械的強度が高くなることが判明した。これにより従来と同じ膜厚で固体電解質膜を形成しても機械的強度が優れたものが得られることが判明した。
【0036】
次いで架橋型ポリマーとして「レヂトップPL2243、PL4523」を用いて作製した「ナフィオン」との複合膜である本発明品1,4及び「ナフィオン」のみの単独膜である比較品1,2について気体透過係数を測定した。これについて図4及び図5を参照して説明する。図4は架橋型ポリマーとして「レヂトップPL2243」を用いた場合であり、図5は架橋型ポリマーとして「レヂトップPL4523」を用いた場合である。これらの図には横軸に複合膜中のフェノール樹脂の配合量(重量%)が示され、縦軸に気体透過係数が示されている。図中「○あるいは□」が酸素の透過係数を、「●あるいは■」が水素の透過係数を示している。
【0037】
図4及び表1によれば本発明品1の水素透過係数が約1.8、酸素透過係数が約1.0、比較品1の水素透過係数が約1.9、酸素透過係数が約1.0であることが示されている。また図5によれば本発明品4の水素透過係数が約1.7、酸素透過係数が約0.9、比較品2の水素透過係数が約1.8、酸素透過係数が約1.0であることが示されている。
【0038】
これらの図に示したように「ナフィオン」に架橋型ポリマーをブレンドして電解質膜を複合化しても気体透過係数が上がらないことが判明した。しかも本発明品1,4のいずれの気体透過係数も比較品1,2それぞれの気体透過係数よりも若干減少している。これにより固体高分子型燃料電池の電解質として用いた場合、水素ガス、酸素ガスを分けるセパレータとしての機能が向上していることが判明する。本発明品によれば従来の多孔性PTFEを補強材とした電解質膜のようなマクロな補強材を入れたものに較べればその気体透過係数が飛躍的に小さいためケミカルショートの発生の恐れが回避されることになる。
【0039】
以上説明した本実施例によれば、パーフルオロカーボンスルホン酸系ポリマーにフェノール樹脂等の架橋型ポリマーがブレンドされることによりパーフルオロカーボンスルホン酸系ポリマー単独の膜よりも機械的強度の高い複合膜が得られる。これにより固体高分子型燃料電池において固体高分子電解質の薄膜化が可能になり、電解質の水分管理も容易になる。したがって膜中水分と膜厚とに制限を受けるイオン交換膜の抵抗の低減と、フラッディングの防止ができ、補機動力が軽減される。さらにポリマーのブレンドによる補強のため界面剥離等の問題が引き起こされることがない。
【0040】
本発明は、上記した実施例に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の改変が可能である。例えば上記した実施例においては、配合量(重量%)を1.2wt%と2.4wt%に限って電解質膜を作製したがこれに限られることなく他の配合量(重量%)によって作製するものであってもよい。また架橋反応時の温度条件や加圧条件を変えたり、あるいはこれらの条件の組合せを変えることによってさらに機械的強度に優れた固体電解質複合膜を得ることも勿論本発明の範囲内に含まれるものである。
【0041】
【発明の効果】
本発明の固体電解質複合膜によれば、パーフルオロカーボンスルホン酸系ポリマーの有機高分子電解質中に架橋型ポリマーの架橋反応による三次元網目構造を形成し、これが膜を補強するので機械的強度が向上し、薄膜化が可能となる。これにより、電解質の水管理が容易になり、また電気抵抗値を低く抑えることもできるということで高密度電気出力の固体高分子型燃料電池が得られることになる。
【図面の簡単な説明】
【図1】パーフルオロカーボンスルホン酸の高次構造を示した図である。
【図2】固体電解質複合膜中の架橋型ポリマー材料であるフェノール樹脂の有無による引張破壊強さの相対比較(ホットプレス温度140℃)を示した図である。
【図3】固体電解質複合膜中の架橋型ポリマー材料であるフェノール樹脂の有無による引張破壊強さの相対比較(ホットプレス温度170℃)を示した図である。
【図4】固体電解質複合膜中の架橋型ポリマー材料であるフェノール樹脂の有無と気体透過係数(ホットプレス温度140℃)との関係を示した図である。
【図5】固体電解質複合膜中の架橋型ポリマー材料であるフェノール樹脂の有無と固体電解質複合膜の気体透過係数との関係(ホットプレス温度170℃)を示した図である。
【図6】固体高分子型燃料電池の発電メカニズムを示した図である。
【表2】
Figure 0003578307
【表3】
Figure 0003578307
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid electrolyte composite membrane suitable for use as an electrolyte material of a polymer electrolyte fuel cell.
[0002]
[Prior art]
Solid polymer fuel cells have advantages such as low operating temperature, high power density, short start-up time, and high quietness. It is also expected to be used as a power source for automobiles in recent years.
[0003]
Therefore, a solid polymer electrolyte membrane is used as the electrolyte material of this type of polymer electrolyte fuel cell, and its power generation mechanism is such that hydrogen (fuel) is supplied to the anode side of the cell as shown in FIG. By supplying oxygen (oxidizing agent) to the cathode side, hydrogen ions (H + ) generated on the anode side move to the cathode side via ion exchange groups in the solid polymer electrolyte membrane, and This reacts with oxygen on the side to generate water (H 2 O), and at this time, electric energy is extracted to the outside.
[0004]
Incidentally, as the electrolyte membrane material, an ion exchange membrane (resin) having a sulfonic acid group as an ion exchange group, for example, a phenolsulfonic acid membrane, a polystyrenesulfonic acid membrane, a polytrifluorostyrenesulfonic acid membrane and the like are generally used. Uses a perfluorocarbon sulfonic acid (PFSA) membrane. The structure is shown in Chemical Formula 1.
[0005]
Embedded image
Figure 0003578307
[0006]
As shown in Chemical formula 1, this polymer (ion exchange membrane) has a structure having a hydrophobic perfluoroalkyl group in a main chain and a hydrophilic ion exchange group at a terminal of a side chain. Further, as shown in FIG. 1, the higher-order structure of this polymer is considered to be such that ion-exchange groups are associated in a fluorocarbon matrix to form a cluster structure. The shape of this polymer is held by a perfluoroalkyl group, but because of non-crosslinking, the strength is determined only by the van der Waals force.
[0007]
As such a solid electrolyte membrane material (ion exchange membrane), "Nafion" (registered trademark) manufactured by DuPont is known. Its physical characteristics are as follows. When the thickness of the electrolyte membrane is about 50 to 200 μm, the electrical resistance per unit area is about 0.05 to 0.4 Ω, and the ionic conductivity per unit area is 25 ° C. It is about 5 × 10 −2 to 1 × 10 −1 S · cm −1 . This “Nafion” has a composition in which m ≧ 1 and n = 2 in the electrolyte membrane material having the structure shown in Chemical Formula 1.
[0008]
In order for a perfluorocarbon sulfonic acid polymer represented by Nafion to exhibit high conductivity as an electrolyte of a polymer electrolyte fuel cell, it must be in an appropriate water-containing state.
[0009]
This is because if the water is insufficient, the resistance of the electrolyte increases, and if the water is excessive, on the other hand, the electrode becomes flooded and the supply of the reaction gas is hindered, and in any case, a stable voltage cannot be obtained. is there.
[0010]
In order to keep the electrolyte membrane in an appropriate water-containing state, there are a method using auxiliary equipment such as a humidifier and a method using a thin electrolyte. First, in the case of using auxiliary equipment, the reaction gas is humidified by a humidifier such as a bubbler for drying the electrolyte, and the air flow is increased by a blower etc. for excess water to promote the drainage. Has been done.
[0011]
On the other hand, for thinning, various composite electrolyte membranes in which a reinforcing material is added to a “Nafion” -based material have already been proposed. For example, Japanese Patent Publication No. 4-58822 discloses a porous ion-exchange membrane with a porous material. An electrolyte membrane material formed by applying a reinforcing material with fibers and polymerizing a fluorine-containing monomer in the reinforcing material is disclosed. Further, JP-A-6-231780 discloses a perfluorocarbon polymer containing a sulfonic acid group. An electrolyte membrane material reinforced with a woven perfluorocarbon polymer fabric is disclosed.
[0012]
All of the materials disclosed in these publications are fiber-reinforced composite materials. In addition, for example, Japanese Patent Application Laid-Open No. 6-196016 discloses that a three-dimensional network structure of polyether contains organic acids, polyacids, etc. And JP-A-6-76838, which does not use perfluorosulfonic acid, has a three-dimensional network structure of a crosslinked polymer alcohol chain having an ether bond such as polyvinyl alcohol. One holding an organic polymer electrolyte such as polystyrene sulfonic acid is disclosed.
[0013]
[Problems to be solved by the invention]
However, if the above-mentioned bubbler, blower, or the like is used for water management of the electrolyte, it is disadvantageous to use the above-described bubbler, blower, or the like to reduce the size of the battery and mount it on a vehicle due to an increase in auxiliary power. When the electrolyte is made thinner, the back diffusion of water is promoted and the water content in the electrolyte can be made uniform. However, the mechanical strength of the electrolyte membrane decreases and the chemical short (hydrogen of the anode and oxygen of the cathode cause In some cases), which may cause a problem in the operational reliability of the fuel cell.
[0014]
On the other hand, an electrolyte membrane reinforced with a porous fiber such as polytetrafluoroethylene (PTFE) or a woven fabric (the above-mentioned Japanese Patent Publication No. 4-58822, the Japanese Patent Application Laid-Open No. 6-231780, etc.) is, for example, wet and dry. Due to the swelling and shrinking of the electrolyte in the above cycle, interfacial separation occurs between the reinforcing material and the electrolyte, which may cause a chemical short. When the gas permeability coefficient was actually measured, as shown in Table 1, the value of the electrolyte membrane using porous PTFE as a reinforcing material was larger than that of “Nafion”, and sufficient reliability was obtained. Not really.
[0015]
[Table 1]
Figure 0003578307
[0016]
Also, the electrolyte membrane materials disclosed in Japanese Patent Publication No. Hei 4-58822 and Japanese Patent Laid-Open No. Hei 6-231780 do not require improvement of material properties up to the molecular level, and fill electrolyte into pores of the reinforcing material. The mechanical strength is increased by such a macroscopic method, and no substantial improvement in material properties at the molecular level has been achieved. That is, in order to substantially improve the electrolyte membrane material, it is considered necessary to introduce a polymer material having a reinforcing function by a three-dimensional network structure in a more microscopic state (molecular level).
[0017]
Further, the electrolyte membrane materials disclosed in the above-mentioned JP-A-6-196016 and JP-A-6-76838 each have a structure in which crosslinking is caused by an ether bond, and a crosslinking reaction in the case of forming a three-dimensional network structure. It takes too much time. Incidentally, in the case of the electrolyte membrane disclosed in JP-A-6-196016, the crosslinking reaction takes 15 hours (at a temperature of 100 ° C.), and in the case of the electrolyte membrane disclosed in JP-A-6-76838, the crosslinking reaction takes place. It takes 24 hours (temperature 120 ° C).
[0018]
The problem to be solved by the present invention is to reduce water resistance by thinning a solid electrolyte membrane of a perfluorocarbon sulfonic acid-based polymer having a low electric resistance and excellent ionic conductivity, thereby facilitating water management. An object of the present invention is to provide a solid electrolyte composite membrane as a reinforced composite material at the microscopic molecular level which is excellent in the above.
[0019]
[Means for Solving the Problems]
In order to solve this problem, the solid electrolyte composite membrane of the present invention has a three-dimensional skeleton composed of a crosslinked polymer and a carbon fluoride-based electrolyte reinforced by the three-dimensional skeleton. is there.
[0020]
In this case, as the organic polymer electrolyte of the perfluorocarbon sulfonic acid-based polymer, trade name “Nafion” (registered trademark) manufactured by DuPont is exemplified. The features and other features of this "Nafion" have been described above, and therefore description thereof will be omitted. Examples of other suitable organic polymer electrolytes include a polymer skeleton in which all or a part thereof is a fluorinated carbon or hydrocarbon, and an ion exchange group is a cation exchange type. Examples thereof include sulfonic acid, carboxylic acid, phosphonic acid, phosphonous acid and phenol, and in the case of anion exchange type, 1,2,3, quaternary amine and the like.
In particular, it is preferable to use a material whose structure cannot be strengthened by crosslinking because the skeleton is non-crosslinked, because the effect of the present invention is large.
[0021]
As the cross-linkable polymer, a thermosetting phenol resin is applied. For example, a resole type liquid phenol resin “Retop PL2243” and a resole type liquid phenol resin “Retop PL4523” by Gunei Chemical Industry Co., Ltd. are preferred. Can be Other examples include diallyl phthalate resin, unsaturated polyester resin, polyimide resin, melamine resin, silicone resin and the like, and those having compatibility with the above-mentioned polymer electrolyte are desirable.
[0022]
The ratio between the organic polymer electrolyte and the crosslinked polymer can be a wide range of a mixed composition of 1 to 99% of the crosslinked polymer with respect to 99 to 1% by weight of the polymer electrolyte.
[0023]
The solid electrolyte composite membrane according to the present invention is manufactured as follows. That is, first, a carbon fluoride-based electrolyte and a crosslinked polymer are mixed in a liquid state. After removing the solvent, the crosslinked polymer is cured, and the carbon fluoride-based electrolyte is strengthened by the three-dimensional skeleton of the crosslinked polymer. Thereby, the solid electrolyte composite membrane according to the present invention is obtained.
[0024]
According to the solid electrolyte membrane type composite membrane having the above configuration, a three-dimensional network structure is formed in the organic polymer electrolyte of the perfluorocarbon sulfonic acid-based polymer by a cross-linking reaction of the cross-linked polymer. The mechanical structure of the solid electrolyte composite membrane increases due to the shape of the solid electrolyte, and the thickness of the solid electrolyte membrane can be reduced accordingly. By this thinning, the water content in the electrolyte membrane can be made uniform, and the water management becomes easy. By providing an appropriate water-containing state, the resistance of the membrane can be reduced, flooding can be prevented, and the power for auxiliary equipment can be reduced. Further, the film resistance can be reduced by reducing the film thickness.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
In this example, a solid electrolyte composite membrane was manufactured under several conditions. Hereinafter, Examples and Comparative Examples will be described.
[0026]
First, the organic polymer electrolyte and the crosslinked polymer are blended at an appropriate mixing ratio while applying ultrasonic waves. The blended mixture is then left to evaporate off the solvent. Thereafter, under a predetermined temperature (140 to 170 ° C.) and pressure (50 kg / cm 2 ), the solid electrolyte composite membrane is heated for several minutes to several tens of minutes by using a hot press machine to promote a crosslinking reaction by heating. can get. More generally, a polyelectrolyte and a precursor of a crosslinked polymer (such as a monomer or oligomer before crosslinking) are mixed (stirring, ultrasonic vibration, kneading, etc.), and the solvent is removed (evaporation, heating, After reducing the pressure, a cross-linking reaction is performed (heating, irradiation, cross-linking agent, etc.) to obtain a composite film.
[0027]
(Example 1)
A resol type liquid phenol resin "Retop PL2243" manufactured by Gunei Chemical Industry Co., Ltd. as a cross-linked polymer and a 5% solution of a perfluorocarbon sulfonic acid resin "Nafion" manufactured by DuPont as an organic polymer electrolyte were mixed in a weight ratio PL2243. : Nafion = 1:80 (phenol resin content: 1.2 wt%) and blended for 10 minutes while applying ultrasonic waves. Then, the solvent was evaporated and removed by leaving it on a Teflon substrate at 25 ° C. for two nights. Then, using a hot press machine, a heating and curing treatment was performed for 13 minutes (temperature rise: 3 minutes, holding: 10 minutes) at a temperature of 140 ° C. and a pressure of 50 kg / cm 2 , and a solid electrolyte composite membrane having a film thickness of about 30 μm was obtained. Inventive product 1 ".
[0028]
(Example 2)
The weight ratio of “Laytop PL2243” to “Nafion” was PL2243: Nafion = 1: 40 (phenol resin content: 2.4 wt%), and the temperature was 140 ° C. for 13 minutes without using a hot press (temperature rise 3). Min., Holding 10 min.), And heat-curing treatment was carried out in the same manner as in Example 1 to obtain a solid electrolyte composite membrane having a film thickness of about 30 μm as “Product 2 of the present invention”.
[0029]
(Example 3)
A resol-type liquid phenol resin “Retop PL4523” manufactured by Gunei Chemical Industry Co., Ltd. as a crosslinked polymer and a 5% solution of a perfluorocarbon sulfonic acid resin “Nafion” manufactured by DuPont as an organic polymer electrolyte were mixed at a weight ratio PL4523. : Nafion = 1:80 (phenol resin content: 1.2 wt%) and blended for 10 minutes while applying ultrasonic waves. Then, the solvent was evaporated and removed by leaving it on a Teflon substrate at 25 ° C. for two nights. Then, using a hot press machine, a heating and curing treatment was performed for 13 minutes (temperature rise: 3 minutes, holding: 10 minutes) under the conditions of a temperature of 170 ° C. and a pressure of 50 kg / cm 2 , and a solid electrolyte composite film having a film thickness of about 30 μm was obtained. Inventive product 3 ".
[0030]
(Example 4)
Except that the weight ratio of “Laytop PL4523” to “Nafion” was PL4523: Nafion = 1: 40 (phenol resin amount 2.4 wt%), the solid electrolyte composite membrane was treated in the same manner as in Example 3 to “ Invention product 4 "was obtained.
[0031]
(Example 5)
The process was performed in the same manner as in Example 4 except that the heat-curing treatment was performed for 13 minutes at a temperature of 170 ° C. without using a hot press machine (temperature rise: 3 minutes / holding: 10 minutes) to obtain a solid electrolyte composite membrane. Obtained as "Invention product 5".
[0032]
(Comparative Example 1)
The solvent was evaporated off by leaving a 5% solution of “Nafion” manufactured by DuPont on a Teflon substrate at 25 ° C. for 2 nights. Then, using a hot press machine, the solid electrolyte membrane having a film thickness of about 30 μm was subjected to a heat treatment under the conditions of a temperature of 140 ° C. and a pressure of 50 kg / cm 2 for 13 minutes (temperature rise: 3 minutes, holding: 10 minutes). ".
(Comparative Example 2)
A heat treatment was performed using a hot press in the same manner as in Comparative Example 1 except that the temperature condition was 170 ° C., and a solid electrolyte membrane having a thickness of about 30 μm was obtained as “Comparative Product 2”.
[0033]
Next, the tensile fracture strength of the solid electrolyte composite membrane as the reaction product of the present invention was measured. The measurement of the tensile fracture strength was performed on the inventive products 1 and 4 and the comparative products 1 and 2, and FIG. 2 shows the relative value of the tensile fracture strength of the inventive product 1 with respect to the comparative product 1. This indicates that the mechanical strength of the product 1 of the present invention was increased.
[0034]
FIG. 3 shows the relative value of the tensile breaking strength of the product 4 of the present invention with respect to the comparative product 2, which also indicates that the mechanical strength of the product 4 of the present invention was increased. As a result, similarly to the above, “Retop PL 4523” as a crosslinked polymer blended with “Nafion” as a polymer electrolyte undergoes a cross-linking reaction, and a three-dimensional network structure was formed in “Nafion” by the cross-linking reaction. This proved that the mechanical strength was increased.
[0035]
By blending a cross-linked polymer (Latop PL 2243 or Latop PL 4523) with a polymer electrolyte (Nafion), a three-dimensional network structure of the cross-linked polymer is formed in the polyelectrolyte. It was found that the mechanical strength of the film was increased. As a result, it was found that even if a solid electrolyte membrane was formed with the same thickness as the conventional one, one having excellent mechanical strength could be obtained.
[0036]
Next, the gas permeation coefficients of the inventive products 1, 4 which are composite membranes with "Nafion" produced using "Latop PL2243, PL4523" as a crosslinked polymer and the comparative products 1 and 2 which are single membranes of only "Nafion" Was measured. This will be described with reference to FIGS. FIG. 4 shows a case where “Latop PL2243” is used as a crosslinked polymer, and FIG. 5 shows a case where “Latop PL4523” is used as a crosslinked polymer. In these figures, the abscissa indicates the amount (% by weight) of the phenol resin in the composite membrane, and the ordinate indicates the gas permeability coefficient. In the figure, “○ or □” indicates the permeability coefficient of oxygen, and “● or Δ” indicates the permeability coefficient of hydrogen.
[0037]
According to FIG. 4 and Table 1, the hydrogen permeability coefficient of the product 1 of the present invention is about 1.8, the oxygen permeability coefficient is about 1.0, the hydrogen permeability coefficient of the comparative product 1 is about 1.9, and the oxygen permeability coefficient is about 1 .0 is shown. According to FIG. 5, the hydrogen permeability coefficient of the product 4 of the present invention is about 1.7, the oxygen permeability coefficient is about 0.9, and the hydrogen permeability coefficient of the comparative product 2 is about 1.8 and the oxygen permeability coefficient is about 1.0. It is shown that
[0038]
As shown in these figures, it was found that the gas permeability coefficient did not increase even if the electrolyte membrane was composited by blending the crosslinked polymer with “Nafion”. Moreover, the gas permeability coefficients of the products 1 and 4 of the present invention are slightly lower than the gas permeability coefficients of the comparative products 1 and 2 respectively. This shows that when used as an electrolyte in a polymer electrolyte fuel cell, the function as a separator for separating hydrogen gas and oxygen gas is improved. According to the product of the present invention, the gas permeability coefficient is drastically smaller than that of a conventional one in which a macroporous reinforcing material such as an electrolyte membrane using porous PTFE as a reinforcing material is inserted, thereby avoiding the risk of chemical short-circuiting. Will be done.
[0039]
According to the present embodiment described above, a composite film having higher mechanical strength than a film of a perfluorocarbon sulfonic acid-based polymer alone can be obtained by blending a crosslinked polymer such as a phenol resin with a perfluorocarbon sulfonic acid-based polymer. Can be This makes it possible to reduce the thickness of the solid polymer electrolyte in the polymer electrolyte fuel cell, and the water content of the electrolyte is easily controlled. Therefore, the resistance of the ion-exchange membrane, which is limited by the water content and the film thickness, can be reduced, and flooding can be prevented. Further, there is no problem such as interfacial peeling due to reinforcement by polymer blending.
[0040]
The present invention is not limited to the above-described embodiments at all, and various modifications can be made without departing from the spirit of the present invention. For example, in the above-described embodiment, the electrolyte membrane was prepared by limiting the blending amount (% by weight) to 1.2 wt% and 2.4 wt%, but the present invention is not limited to this, and the other amount (% by weight) is used. It may be something. In addition, it is also possible to obtain a solid electrolyte composite membrane having more excellent mechanical strength by changing the temperature conditions and the pressure conditions during the crosslinking reaction, or by changing the combination of these conditions. It is.
[0041]
【The invention's effect】
According to the solid electrolyte composite membrane of the present invention, a three-dimensional network structure is formed in an organic polymer electrolyte of a perfluorocarbon sulfonic acid-based polymer by a cross-linking reaction of a cross-linked polymer, which strengthens the membrane, thereby improving mechanical strength. In addition, a thin film can be formed. As a result, water management of the electrolyte is facilitated, and the electric resistance value can be suppressed to be low, so that a polymer electrolyte fuel cell having a high-density electric output can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a higher-order structure of perfluorocarbon sulfonic acid.
FIG. 2 is a diagram showing a relative comparison (hot press temperature of 140 ° C.) of tensile fracture strength with and without a phenol resin as a crosslinked polymer material in a solid electrolyte composite membrane.
FIG. 3 is a diagram showing a relative comparison (at a hot press temperature of 170 ° C.) of tensile breaking strength with and without a phenol resin as a crosslinked polymer material in a solid electrolyte composite membrane.
FIG. 4 is a diagram showing the relationship between the presence or absence of a phenol resin as a crosslinked polymer material in a solid electrolyte composite membrane and the gas permeability coefficient (hot press temperature 140 ° C.).
FIG. 5 is a graph showing the relationship between the presence or absence of a phenol resin as a crosslinked polymer material in the solid electrolyte composite membrane and the gas permeability coefficient of the solid electrolyte composite membrane (hot press temperature: 170 ° C.).
FIG. 6 is a diagram showing a power generation mechanism of a polymer electrolyte fuel cell.
[Table 2]
Figure 0003578307
[Table 3]
Figure 0003578307

Claims (6)

フェノール樹脂からなる三次元の骨格と、
該三次元の骨格によって強化されたフッ化カーボン系の電解質と、
からなる固体電解質複合膜。
A three-dimensional skeleton made of phenolic resin ,
A carbon fluoride-based electrolyte reinforced by the three-dimensional skeleton,
A solid electrolyte composite membrane comprising:
メラミン樹脂からなる三次元の骨格と、A three-dimensional skeleton made of melamine resin,
該三次元の骨格によって強化されたフッ化カーボン系の電解質と、A carbon fluoride-based electrolyte reinforced by the three-dimensional skeleton,
からなる固体電解質複合膜。A solid electrolyte composite membrane comprising:
ジアリルフタレート樹脂からなる三次元の骨格と、A three-dimensional skeleton made of diallyl phthalate resin,
該三次元の骨格によって強化されたフッ化カーボン系の電解質と、A carbon fluoride-based electrolyte reinforced by the three-dimensional skeleton,
からなる固体電解質複合膜。A solid electrolyte composite membrane comprising:
不飽和ポリエステル樹脂からなる三次元の骨格と、A three-dimensional skeleton made of an unsaturated polyester resin,
該三次元の骨格によって強化されたフッ化カーボン系の電解質と、A carbon fluoride-based electrolyte reinforced by the three-dimensional skeleton,
からなる固体電解質複合膜。A solid electrolyte composite membrane comprising:
ポリイミド樹脂からなる三次元の骨格と、A three-dimensional skeleton made of polyimide resin,
該三次元の骨格によって強化されたフッ化カーボン系の電解質と、A carbon fluoride-based electrolyte reinforced by the three-dimensional skeleton,
からなる固体電解質複合膜。A solid electrolyte composite membrane comprising:
シリコーン樹脂からなる三次元の骨格と、A three-dimensional skeleton made of silicone resin,
該三次元の骨格によって強化されたフッ化カーボン系の電解質と、A carbon fluoride-based electrolyte reinforced by the three-dimensional skeleton,
からなる固体電解質複合膜。A solid electrolyte composite membrane comprising:
JP16521097A 1997-06-06 1997-06-06 Solid electrolyte composite membrane Expired - Fee Related JP3578307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16521097A JP3578307B2 (en) 1997-06-06 1997-06-06 Solid electrolyte composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16521097A JP3578307B2 (en) 1997-06-06 1997-06-06 Solid electrolyte composite membrane

Publications (2)

Publication Number Publication Date
JPH10340732A JPH10340732A (en) 1998-12-22
JP3578307B2 true JP3578307B2 (en) 2004-10-20

Family

ID=15807945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16521097A Expired - Fee Related JP3578307B2 (en) 1997-06-06 1997-06-06 Solid electrolyte composite membrane

Country Status (1)

Country Link
JP (1) JP3578307B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114664A1 (en) 2007-03-16 2008-09-25 Sekisui Chemical Co., Ltd. Membrane-electrode bonding agent, proton conducting membrane with bonding layer, membrane-electrode assembly, solid polymer fuel cell, and method for producing membrane-electrode assembly

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713207B2 (en) 2000-05-18 2004-03-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Membrane electrode assembly, and solid polymer fuel cell using the assembly
KR100403754B1 (en) * 2001-06-19 2003-10-30 송민규 Composite Polymeric Electrolyte Membrane, Preparation Method Thereof and Fuel Cell Containing the Same
KR101100581B1 (en) 2003-03-06 2011-12-29 도레이 카부시키가이샤 Polymer Electrolyte Material, Polymer Electrolyte Part, Membrane Electrode Composite and Polymer Electrolyte Type Fuel Cell
CA2529926C (en) 2003-06-25 2012-07-03 Toray Industries, Inc. Polymer electrolyte as well as polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell using the same
KR100813250B1 (en) * 2004-04-09 2008-03-13 삼성에스디아이 주식회사 Solid polymer electrolyte membrane, method for producing same, and solid polymer fuel cell
KR100600150B1 (en) 2004-11-30 2006-07-12 현대자동차주식회사 Composite electrolyte membrane permeated by nano scale dendrimer and the method of preparing the same
JP5236623B2 (en) * 2008-12-30 2013-07-17 財團法人工業技術研究院 Interpenetrating network proton exchange membrane, method for producing the same, and proton exchange membrane fuel cell
TWI418580B (en) * 2008-12-31 2013-12-11 Ind Tech Res Inst High proton conductivity proton exchange membrane composites
US9017899B2 (en) * 2010-06-18 2015-04-28 Shandong Huaxia Shenzhou New Material Co., Ltd. Fluorine containing ionomer composite with ion exchange function, preparation method and use thereof
WO2012125138A1 (en) 2011-03-11 2012-09-20 Utc Power Corporation Unitized electrode assembly with high equivalent weight ionomer
JPWO2013111814A1 (en) * 2012-01-27 2015-05-11 Dic株式会社 COATING COMPOSITION, CAN COATING CONTAINING THE SAME, AND COATING METAL MATERIAL FOR INTERIORING OF CAN CAN COATED WITH THE CAN COATING
KR102018941B1 (en) 2012-12-21 2019-09-05 도요타지도샤가부시키가이샤 Proton exchange material and method therefor
KR101925670B1 (en) * 2012-12-21 2018-12-05 아우디 아게 Electrolyte membrane, dispersion and method therefor
JP6185079B2 (en) 2012-12-21 2017-08-23 アウディ アクチェンゲゼルシャフトAudi Ag Manufacturing method of electrolyte material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114664A1 (en) 2007-03-16 2008-09-25 Sekisui Chemical Co., Ltd. Membrane-electrode bonding agent, proton conducting membrane with bonding layer, membrane-electrode assembly, solid polymer fuel cell, and method for producing membrane-electrode assembly
US8318377B2 (en) 2007-03-16 2012-11-27 Sekisui Chemical Co., Ltd. Membrane-electrode junction agent, proton conducting membrane having junction layer, membrane-electrode assembly, polymer electrolyte fuel cell, and manufacturing method of the membrane-electrode assembly

Also Published As

Publication number Publication date
JPH10340732A (en) 1998-12-22

Similar Documents

Publication Publication Date Title
JP3578307B2 (en) Solid electrolyte composite membrane
JP4728208B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL SYSTEM INCLUDING THE SAME
KR100403754B1 (en) Composite Polymeric Electrolyte Membrane, Preparation Method Thereof and Fuel Cell Containing the Same
KR100723389B1 (en) Polymer electrolyte membrane and fuel cell employing the same
JP3555999B2 (en) Method for producing polymer solid electrolyte / electrode assembly for polymer electrolyte fuel cell
JP4769518B2 (en) Polymer electrolyte membrane and fuel cell employing polymer electrolyte membrane
WO2004051776A1 (en) Solid polymer electrolytic film, solid polymer fuel cell employing it, and process for producing the same
CN1707832A (en) Membrane-electrode assembly for fuel cell, preparation method, and fuel cell comprising the same
US20070166592A1 (en) Polymer electrolyte membrane, method of preparing the same and fuel cell employing the same
JP2006114502A (en) Polymer electrolyte film for direct oxidation type fuel cell, its manufacturing method, and direct oxidation type fuel cell system including this
KR101451803B1 (en) Membrane and electrode assembly for fuel cell, manufacturing method, and fuel cell using the same
JP2012069536A (en) Polymer electrolyte film for direct oxidation type fuel cell, manufacturing method therefor, and direct oxidation type fuel cell system including the same
JP2009193825A (en) Composite electrolyte membrane and its manufacturing method
JP5064233B2 (en) Membrane processing method
JP4538867B2 (en) Polymer electrolyte composite membrane
JP2004247091A (en) Electrolyte membrane electrode junction body and direct methanol type fuel cell
JP4771702B2 (en) Polymer solid electrolyte membrane with reinforcing material
US20030138686A1 (en) Fuel cell separator production method, fuel cell separators, and polymer electrolyte fuel cells
JP4899238B2 (en) Composite cross-linked electrolyte
US7074510B2 (en) Composite ion-exchange membrane, fabrication method of the same, and membrane-electrode assembly, and polymer electrolyte fuel cell having the same
JP2001325963A (en) Electrode electrolyte film bonding laminate and its manufacture method
JP2001085019A (en) High polymer solid fuel cell and manufacture of electrode therefor
KR100658739B1 (en) Polymer membrane for fuel cell and method for preparating the same
JP2006269266A (en) Compound solid polyelectrolyte membrane having reinforcement material
JPH11354140A (en) Thin film electrolyte having high strength

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140723

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees