JP3577901B2 - Electronic dehumidifier control device and electronic dehumidifier control method - Google Patents

Electronic dehumidifier control device and electronic dehumidifier control method Download PDF

Info

Publication number
JP3577901B2
JP3577901B2 JP20708197A JP20708197A JP3577901B2 JP 3577901 B2 JP3577901 B2 JP 3577901B2 JP 20708197 A JP20708197 A JP 20708197A JP 20708197 A JP20708197 A JP 20708197A JP 3577901 B2 JP3577901 B2 JP 3577901B2
Authority
JP
Japan
Prior art keywords
temperature
output
polarity
specified temperature
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20708197A
Other languages
Japanese (ja)
Other versions
JPH1133339A (en
Inventor
愼一郎 守山
幸雄 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP20708197A priority Critical patent/JP3577901B2/en
Publication of JPH1133339A publication Critical patent/JPH1133339A/en
Application granted granted Critical
Publication of JP3577901B2 publication Critical patent/JP3577901B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof
    • F25B2321/0212Control thereof of electric power, current or voltage

Landscapes

  • Drying Of Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低温時のペルチェ素子の冷却側の氷結による除湿能力の低下を防止する電子除湿器の制御装置及びその制御方法に関する。
【0002】
【従来の技術】
一般に、屋外に設置される電気設備の箱体内には、配電,制御用等の電気機器が収納されており、場合によっては、この電気機器は高温に弱く、保証される高温の上限温度が低いものがある。このような場合は、夏季の強い直射日光により箱体内が高温になるのを防ぐ高温対策が必要である。
【0003】
一方、空気中の水分量と温度,相対湿度の関係は、図6に示すように、低温では空気中の水分量が少ないが、高温になる程、水分量が多くなり、高湿の環境下では、金属が発錆しやすくなり、かつ、電気機器の絶縁特性が大きく低下する。そのため、高温,高湿の環境下では、高温対策に加えて結露対策が必要になる。
【0004】
つぎに、一般の電気設備につき、切断右側面図の図7、図7の電子除湿器の拡大断面図の図8Aを参照して説明する。
【0005】
1は屋外形の箱体、2は箱体1の前面開口を閉塞した扉、3は箱体1の内天井板、4は内天井板3の上面の前部,後部に固着された支持板、5は外天井板であり、両支持板4に支持され、内天井板3の上方に空気層6を介して設けられている。7は箱体1内の後部に設けられた電子除湿器である。
【0006】
8は電子除湿器7の収納ケースであり、前面が開口した切断平面がコ字形の縦長になっている。9はケース8の背板、10は背板9の下部に一体に前方に膨出して形成された接合台、11は背板9の上部に一体に前方へ向け形成された上側フィン、12は接合台10と上側フィン11との間の背板9に肉厚に一体に形成された熱伝導体であり、接合台10の熱を上側フィン11へ伝導する。
【0007】
13はケース8の天板、14は天板13に形成された排気口、15はケース8の底部に形成された水受部であり、背板9に天板13,水受部15及び左右の側板が一体に形成されている。16は水受部15に形成された排水口、17は排水口16に接続された排水ホース、18はケース8の前面の開口を閉塞した蓋板、19は蓋板18の下部に形成された吸気口である。
【0008】
20は一面が接合台10に接合されたペルチェ素子、21は素子20の周面に設けられた断熱材、22は素子20の他面に装着された下側フィンであり、上側フィン11の下方に、かつ水受部15の上方に位置している。23は上側フィン11の上方に設けられた電源装置であり、商用交流を所定電圧の直流に変換する。24は電源装置23の上方に設けられた換気用ファンであり、天板13の排気口14の下方に位置している。
【0009】
そして、外天井板5及び空気層6により直射日光による熱が遮断され、素子20に電源装置23より直流電圧が供給され、通常の除湿時、下側フィン22が冷却されて吸熱し、接合台10,熱伝導体12を介して上側フィン11から放熱され、ファン24の駆動により、図8Aの矢印に示すように、蓋板18の吸気口19より流入した空気が下側フィン22で冷却され、空気中の水蒸気が下側フィン22に凝縮して結露し、この凝結水が水受部15の排水口16より排水ホース17を経て排出され、下側フィン22で除湿された空気は、上側フィン11で暖められ、ファン24により天板13の排気口14からケース8外へ排出され、多湿空気が除湿される。
【0010】
(従来例1)
そして、除湿器7の制御の従来例1は、図8Bの動作説明用のフローチャートに示すように、温度に関係なく、連続除湿運転が行われる。
【0011】
(従来例2)
従来例2は、箱体1内の電子除湿器7の下部に温度センサ25を設け、電子除湿器7の制御の動作説明用の図9のフローチャートに示すように、センサ25の検知温度が規定温度Tより高い場合は、連続除湿運転を行い、規定温度T以下の場合は、除湿運転を停止している。
【0012】
(従来例3)
従来例3を、その制御回路のブロック図の図10を参照して説明する。26は温度センサ25の検知温度が規定温度以下の場合に判定信号を出力し続ける判定回路、27は判定回路26の判定信号の入力により作動し始めるタイマ回路であり、所定の長時間の第1出力と、第1出力の出力に続いての所定の短時間の第2出力とを出力し、第2出力の出力終了迄、判定回路26の判定信号の入力を受け付けない。
【0013】
28は極性切換回路であり、電源装置23の直流電圧及びタイマ回路27の第1,第2出力が入力され、規定温度より高い場合及び第1出力の入力中、素子20に正方向の極性の直流電圧を給電し、除湿器7が除湿運転を行い、第2出力の入力中、直流電圧の極性を逆方向に切り換えて給電し、除湿器7が解氷運転を行い、第2出力終了後、再度直流電圧の極性を逆方向から正方向に切り換える。
【0014】
つぎに動作について、図10の回路の動作説明用のフローチャートの図11及び運転説明図の図12を参照して説明する。
【0015】
箱体1の内部温度が鎖線の規定温度T、例えば10℃より高い場合、判定回路26の判定信号の出力はなく、タイマ回路27も動作せず、極性切換回路28を介して除湿器7の素子20に正方向の直流電圧が給電され、素子20の下側フィン22が冷却され、通常の連続除湿運転が行われる。
【0016】
つぎに、箱体1の内部温度が規定温度T以下になった場合、判定回路26によりセンサ25の検知温度が規定温度T以下になったと判定され、判定回路26より判定信号がタイマ回路27へ出力され、タイマ回路27が作動し、所定の長時間、例えば12時間の第1出力と、第1出力に続いて所定の短時間、例えば10分間の第2出力とが極性切換回路28に出力され、極性切換回路28において、第1出力の入力中、12時間の除湿運転が行われ、その後、第2出力の入力中、素子20への直流電圧の極性が正方向から逆方向に切り換わり、素子20の下側フィン22が加熱され、10分間の解氷運転が行われる。
【0017】
そして、タイマ回路27のタイマ出力終了時点において、箱体1の内部温度が規定温度Tより高い場合、判定回路26の判定信号はなく、通常の除湿運転が行われる。
【0018】
また、第2出力の終了時点で箱体1の内部温度が規定温度T以下の場合、前記除湿,解氷の運転がくり返される。
【0019】
【発明が解決しようとする課題】
従来例1の場合、温度に関係なく除湿運転を行っているため、0℃以下の低温時、素子20の下側フィン22の凝結水が氷結し、除湿能力が低下するという問題点がある。
【0020】
つぎに従来例2の場合、低温時の氷結は防止できるが、規定温度以下では除湿運転が停止されるため、低温時の除湿が行われないという問題点がある。
【0021】
また、従来例3の場合、箱体1の内部温度が例えば0℃以下の場合、解氷運転により生じた下側フィン22の水が水受部15や排水ホース17の内部で氷結し、水が流れずに水受部15からあふれて水漏れが発生する。
【0022】
しかも、素子20への直流電圧の極性を正方向から逆方向又は逆方向から正方向に切り換えるため、ペルチェ素子20に熱膨張,収縮による損傷を与えるという問題点がある。
【0023】
【0024】
請求項及び請求項に記載の発明は、ペルチェ素子へ直流電圧の極性の切り換えを行って給電するが、除湿能力の低下を防止し、かつ、水漏れを防止する電子除湿器の制御装置及び制御方法を提供することを目的とする。
【0025】
【0026】
【0027】
【0028】
【0028】
【課題を解決するための手段】
発明の請求項記載の電子除湿器の制御装置は、配電,制御用等の電気機器が収納された箱体内を、ペルチェ素子への電源装置からの直流電圧の給電により除湿するようにした電子除湿器の制御装置において、前記箱体内の温度を検知する温度センサと、前記温度センサの検知温度が第1の規定温度以下で,かつ,前記第1の規定温度より低い第2の規定温度以上の場合に判定信号を出力する判定回路と、前記判定信号の入力により作動し,所定の長時間の第1出力と,前記第1出力に続いての所定の短時間の第2出力とを出力し,前記第2出力の出力終了迄前記判定回路からの判定信号を受け付けないタイマ回路と、前記第1出力の入力中,ペルチェ素子が除湿運転するよう電源装置からの直流電圧の極性を正方向にして前記素子に給電し,前記第2出力の入力中,前記素子が解氷運転するよう前記極性を逆方向に切り換えて前記素子に給電する極性切換回路とを備え、前記センサの検知温度が前記第2の規定温度より低い場合に、前記素子に前記直流電圧の極性を正方向にして給電するものである。
【0029】
また、請求項記載の電子除湿器の制御方法は、配電,制御用等の電気機器が収納された箱体内を、ペルチェ素子への電源装置からの直流電圧の給電により除湿するようにした電子除湿器の制御方法において、前記箱体内の温度を検知する温度センサの検知温度が、第1の規定温度以下で,かつ,前記第1の規定温度より低い第2の規定温度以上の場合に、所定の長時間の間、前記素子が除湿運転するよう前記直流電圧の極性を正方向にして前記素子に給電し前記所定の長時間に続いての所定の短時間の間、前記素子が解氷運転するよう前記極性を逆方向に切り換えて前記素子に給電し、前記所定の短時間の後の,前記温度センサの検知温度が、前記第1の規定温度以下で、かつ、前記第2の規定温度以上の場合に、前記長時間の除湿運転と前記短時間の解氷運転を行い、前記短時間の後の前記検知温度が、前記第2の規定温度より低い場合に、前記直流電圧の極性を正方向にして前記素子に給電し、除湿運転を行うものである。
【0030】
従って、請求項及び請求項に記載の発明は、センサの検知温度が第1の規定温度以下で,かつ,第1の規定温度より低い第2の規定温度以上の場合、所定の長時間の間、素子への正方向の給電による除湿運転と、所定の短時間の間、素子への逆方向の給電による解氷運転とが行われ、検知温度が第1の規定温度より高い場合は勿論、第2の規定温度より低い場合も、連続して除湿運転が行われ、さらに、センサの検知温度が第2の規定温度より低い場合、空気中の水分量は微量であるため、電子除湿器の冷却側において、除湿運転による凝結水は少なく、凝結水の氷結による除湿能力の低下はなく、凝結水による水受部や排水ホースの内部の氷結はなく、水漏れを生じない。
【0031】
【発明の実施の形態】
まず、参考形態につき、図1ないし図を参照して説明する。
参考態)
参考態につき、制御回路のブロック図の図1を参照して説明する。同図において、図10と同一符号は同一もしくは相当するものを示し、29は直流電圧給電,停止回路であり、電源装置23の直流電圧及びタイマ回路27の第1,第2出力が入力され、規定温度より高い場合及び所定の長時間の第1出力の入力中、電子除湿器7のペルチェ素子20に正方向の直流電圧を給電し、所定の短時間の第2出力の入力中、直流電圧の給電を停止する。
【0032】
つぎに動作について、図1の回路の動作説明用のフローチャートの図2及び運転説明図の図3を参照して説明する。温度センサ25の検知温度が規定温度Tより高い場合、判定回路26の出力はなく、除湿器7の素子20に直流電圧が給電され、連続除湿運転が行われる。
【0033】
つぎに、センサ25の検知温度が規定温度T以下になった場合、判定回路26によりセンサ25の検知温度が規定温度T以下と判定され、判定回路26より判定信号がタイマ回路27へ出力され、タイマ回路27が作動し、タイマ回路27より、例えば、12時間の長時間の第1出力と、第1出力に続いて1時間の短時間の第2出力とが出力され、直流電圧給電,停止回路29において、第1出力の入力中、12時間の除湿運転が行われ、その後、第2出力の入力中、1時間の除湿運転の停止が行われる。
【0034】
この除湿運転の停止中、除湿運転で氷結した除湿器7の下側フィン22の凝結水は、箱体1に収納された電気機器の発熱による箱体1の内部温度により解氷される。
【0035】
例えば、外気の温度が0℃、箱体1の内部温度が5℃、除湿器7の下側フィン22の温度が−5℃であった場合、1時間の除湿運転停止により、下側フィン22の温度が−5℃から箱体1の内部温度の+5℃まで上昇し、氷結した凝結水が解氷される。
【0036】
そして、第2出力の終了後、センサ25の検知温度が規定温度Tより高い場合は、連続除湿運転が行われ、規定温度T以下の場合は、タイマ回路27が作動し、長時間の除湿運転と、短時間の運転休止が繰り返される。
【0037】
なお、前記参考態の場合、氷結した下側フィン22の凝結水が、箱体1の内部温度で解氷するため、外気の温度が−5℃以上又は箱体1の内部温度が0℃以上であることが望ましい。
【0038】
従って、除湿運転で氷結した凝結水を、電気機器の発熱による箱体の内部温度により解氷することができ、凝結水の氷結による除湿能力の低下が防止され、水漏れが防止される。さらに、凝結水の解氷を、素子への直流電圧の極性を反転するのでなく、運転を休止して行うため、素子への給電の極性の切り換えがなく、素子への損傷が防止される。
【0039】
本発明の実施の形態
本発明の実施の態につき、動作説明用のフローチャートの図4及び運転説明図の図5を参照して説明する。この実施の形態は、従来例3の図10のブロック図における判定回路26が異なっている。即ち、判定回路26が、温度センサ25の検知温度が第1の規定温度以下で,かつ,第1の規定温度より低い第2の規定温度以上の場合に、判定信号を出力するようにした点である。
【0040】
例えば、第1の規定温度T1 を10℃±3℃とし、第2の規定温度T2 を0℃±3℃とすると、センサ25の検知温度が例えば10℃以下で,かつ,0℃以上の場合、判定回路26から判定信号がタイマ回路27へ出力され、従来例3の場合と同様、タイマ回路27から所定の長時間の第1出力と、第1出力に続いての所定の短時間の第2出力とが極性切換回路28に出力され、極性切換回路28において、第1出力の入力中、例えば12時間の除湿運転が行われ、その後、第2出力の入力中、素子20への直流電圧の極性が正方向から逆方向に切り換わり、例えば10分間の解氷運転が行われる。
【0041】
つぎに、センサ25の検知温度が、第1の規定温度T1 の10℃より高い場合及び第2の規定温度T2 の0℃より低い場合、判定回路26から判定信号は出力されず、通常の連続除湿運転が行われる。
【0042】
そして、センサ25の検知温度が0℃より低い場合、図6に示すように、空気中の水分量は微量であるため、電子除湿器7の冷却側において、除湿運転による凝結水は少なく、凝結水の氷結による除湿能力の低下は殆どなく、また、凝結水による水漏れを生ずることはない。
【0043】
【0044】
【0045】
【発明の効果】
発明の請求項記載の電子除湿器の制御装置及び請求項記載の制御方法は、センサの検知温度が第1の規定温度以下で,かつ,第1の規定温度より低い第2の規定温度以上の場合、所定の長時間の間、素子への正方向の給電による除湿運転と、所定の短時間の間、素子への逆方向の給電による解氷運転とが行われ、検知温度が第1の規定温度より高い場合は勿論、第2の規定温度より低い場合も、連続して除湿運転が行われ、さらに、センサの検知温度が第2の規定温度より低い場合、空気中の水分量は微量であるため、電子除湿器の冷却側において、除湿運転による凝結水は少なく、凝結水の氷結による除湿能力の低下はなく、凝結水による水受部や排水ホースの内部の氷結はなく、水漏れを生じない。
【図面の簡単な説明】
【図1】参考態の電子除湿器の制御回路のブロック図である。
【図2】参考態の動作説明用のフローチャートである。
【図3】参考態の運転説明図である。
【図4】本発明の実施の形態の動作説明用のフローチャートである。
【図5】本発明の実施の態の運転説明図である。
【図6】空気中の水分量と温度,相対湿度の関係を示した図である。
【図7】一般の電気設備の切断右側面図である。
【図8】Aは図7の電子除湿器の拡大断面図、Bは電子除湿器の制御の従来例1の動作説明用のフローチャートである。
【図9】従来例2の電子除湿器の制御の動作説明用のフローチャートである。
【図10】従来例3の電子除湿器の制御回路のブロック図である。
【図11】従来例3の動作説明用のフローチャートである。
【図12】従来例3の運転説明図である。
【符号の説明】
1 箱体
20 ペルチェ素子
23 電源装置
25 温度センサ
26 判定回路
27 タイマ回路
28 極性切換回路
29 直流電圧給電,停止回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device and a control method for an electronic dehumidifier that prevent a decrease in dehumidifying capacity due to icing on a cooling side of a Peltier element at a low temperature.
[0002]
[Prior art]
In general, electrical equipment for power distribution, control, and the like is housed in a box of electrical equipment installed outdoors. In some cases, the electrical equipment is weak to high temperatures, and the guaranteed upper limit of the high temperature is low. There is something. In such a case, it is necessary to take a high-temperature measure to prevent the inside of the box from becoming hot due to strong direct sunlight in summer.
[0003]
On the other hand, as shown in FIG. 6, the relationship between the amount of water in the air and the temperature and relative humidity is as shown in FIG. In such a case, the metal is likely to rust, and the insulation properties of the electric device are greatly reduced. Therefore, in an environment of high temperature and high humidity, it is necessary to take measures against dew condensation in addition to measures against high temperature.
[0004]
Next, general electric equipment will be described with reference to FIG. 7 of a cut right side view and FIG. 8A of an enlarged sectional view of the electronic dehumidifier of FIG.
[0005]
1 is an outdoor box, 2 is a door closing the front opening of the box 1, 3 is an inner ceiling plate of the box 1, 4 is a support plate fixed to the front and rear of the upper surface of the inner ceiling plate 3. Reference numeral 5 denotes an outer ceiling plate, which is supported by both support plates 4 and is provided above the inner ceiling plate 3 via an air layer 6. Reference numeral 7 denotes an electronic dehumidifier provided at a rear part in the box 1.
[0006]
Reference numeral 8 denotes a storage case for the electronic dehumidifier 7, and a cut plane having an open front has a vertically long U shape. 9 is a back plate of the case 8, 10 is a joining table formed integrally and swelling forward at a lower portion of the back plate 9, 11 is an upper fin formed integrally and forward on an upper portion of the back plate 9, 12 is It is a heat conductor integrally formed on the back plate 9 between the joining table 10 and the upper fin 11 so as to be thick, and conducts the heat of the joining table 10 to the upper fin 11.
[0007]
13 is a top plate of the case 8, 14 is an exhaust port formed on the top plate 13, 15 is a water receiving portion formed on the bottom of the case 8, and the back plate 9 is provided with the top plate 13, the water receiving portion 15 and the left and right. Are integrally formed. Reference numeral 16 denotes a drain port formed in the water receiving portion 15, 17 denotes a drain hose connected to the drain port 16, 18 denotes a cover plate that closes an opening on the front surface of the case 8, and 19 denotes a lower portion of the cover plate 18. It is an inlet.
[0008]
Reference numeral 20 denotes a Peltier element whose one surface is joined to the joining table 10, 21 denotes a heat insulating material provided on a peripheral surface of the element 20, 22 denotes a lower fin mounted on the other surface of the element 20, and a lower fin 11 below the upper fin 11. And above the water receiving portion 15. Reference numeral 23 denotes a power supply device provided above the upper fin 11, and converts a commercial AC into a DC having a predetermined voltage. Reference numeral 24 denotes a ventilation fan provided above the power supply device 23, and is located below the exhaust port 14 of the top plate 13.
[0009]
Then, heat from direct sunlight is cut off by the outer ceiling plate 5 and the air layer 6, a DC voltage is supplied from the power supply device 23 to the element 20, and the lower fin 22 is cooled and absorbs heat during normal dehumidification, and 10, heat is radiated from the upper fins 11 via the heat conductors 12, and the air flowing in from the air inlet 19 of the cover plate 18 is cooled by the lower fins 22 by driving the fan 24, as shown by arrows in FIG. The water vapor in the air is condensed on the lower fins 22 and condenses, and the condensed water is discharged from the drain port 16 of the water receiving portion 15 through the drain hose 17, and the air dehumidified by the lower fins 22 is The air is heated by the fins 11, discharged from the exhaust port 14 of the top plate 13 to the outside of the case 8 by the fan 24, and the humid air is dehumidified.
[0010]
(Conventional example 1)
In the first conventional example of the control of the dehumidifier 7, the continuous dehumidifying operation is performed irrespective of the temperature as shown in the flowchart for explaining the operation in FIG. 8B.
[0011]
(Conventional example 2)
In Conventional Example 2, a temperature sensor 25 is provided below the electronic dehumidifier 7 in the box 1, and as shown in a flowchart of FIG. When the temperature is higher than the temperature T, the continuous dehumidifying operation is performed. When the temperature is equal to or lower than the specified temperature T, the dehumidifying operation is stopped.
[0012]
(Conventional example 3)
Conventional example 3 will be described with reference to FIG. 10 which is a block diagram of the control circuit. Reference numeral 26 denotes a determination circuit that keeps outputting a determination signal when the temperature detected by the temperature sensor 25 is equal to or lower than a specified temperature. Reference numeral 27 denotes a timer circuit that starts operating in response to the input of the determination signal from the determination circuit 26. An output and a second output for a predetermined short period following the output of the first output are output, and the input of the determination signal of the determination circuit 26 is not accepted until the output of the second output ends.
[0013]
A polarity switching circuit 28 receives the DC voltage of the power supply 23 and the first and second outputs of the timer circuit 27. When the temperature is higher than a specified temperature and during the input of the first output, the element 20 has a positive polarity. The DC voltage is supplied, the dehumidifier 7 performs the dehumidifying operation, and while the second output is being input, the polarity of the DC voltage is switched in the opposite direction to supply the power, the dehumidifier 7 performs the deicing operation, and after the second output is completed. Then, the polarity of the DC voltage is switched from the reverse direction to the forward direction again.
[0014]
Next, the operation will be described with reference to FIG. 11 of the flowchart for explaining the operation of the circuit of FIG. 10 and FIG. 12 of the operation explanatory diagram.
[0015]
When the internal temperature of the box 1 is higher than the specified temperature T of the dashed line, for example, 10 ° C., there is no output of the determination signal of the determination circuit 26, the timer circuit 27 does not operate, and the dehumidifier 7 is switched via the polarity switching circuit 28. The element 20 is supplied with a DC voltage in the positive direction, the lower fin 22 of the element 20 is cooled, and a normal continuous dehumidifying operation is performed.
[0016]
Next, when the internal temperature of the box 1 falls below the specified temperature T, the determination circuit 26 determines that the detected temperature of the sensor 25 has fallen below the specified temperature T, and the determination circuit 26 sends a determination signal to the timer circuit 27. The first output for a predetermined long time, for example, 12 hours, and the second output for a predetermined short time, for example, 10 minutes following the first output, are output to the polarity switching circuit 28. Then, in the polarity switching circuit 28, the dehumidifying operation for 12 hours is performed during the input of the first output, and then, during the input of the second output, the polarity of the DC voltage to the element 20 is switched from the forward direction to the reverse direction. Then, the lower fins 22 of the element 20 are heated, and the thawing operation is performed for 10 minutes.
[0017]
When the internal temperature of the box 1 is higher than the specified temperature T at the end of the timer output of the timer circuit 27, there is no determination signal from the determination circuit 26, and normal dehumidification operation is performed.
[0018]
If the internal temperature of the box 1 is equal to or lower than the specified temperature T at the end of the second output, the operations of dehumidification and deicing are repeated.
[0019]
[Problems to be solved by the invention]
In the case of Conventional Example 1, since the dehumidifying operation is performed irrespective of the temperature, at a low temperature of 0 ° C. or less, there is a problem that the condensed water of the lower fins 22 of the element 20 freezes and the dehumidifying ability is reduced.
[0020]
Next, in the case of Conventional Example 2, icing at low temperatures can be prevented, but there is a problem that dehumidification at low temperatures is not performed because the dehumidifying operation is stopped below the specified temperature.
[0021]
In the case of the conventional example 3, when the internal temperature of the box 1 is, for example, 0 ° C. or less, the water of the lower fins 22 generated by the de-icing operation freezes inside the water receiving portion 15 and the drain hose 17, and Does not flow and overflows from the water receiving portion 15 to cause water leakage.
[0022]
In addition, since the polarity of the DC voltage to the element 20 is switched from the forward direction to the reverse direction or from the reverse direction to the forward direction, there is a problem that the Peltier element 20 is damaged by thermal expansion and contraction.
[0023]
[0024]
According to the first and second aspects of the present invention, the power is supplied to the Peltier element by switching the polarity of the DC voltage, but the control device of the electronic dehumidifier prevents the dehumidification ability from decreasing and prevents water leakage. And a control method.
[0025]
[0026]
[0027]
[0028]
[0028]
[Means for Solving the Problems]
The control device for an electronic dehumidifier according to the first aspect of the present invention is configured to dehumidify the inside of a box in which electric devices for power distribution, control, and the like are stored by supplying a DC voltage from a power supply device to a Peltier device. In the control device of the electronic dehumidifier, a temperature sensor for detecting a temperature inside the box , and a second specified temperature at which the detected temperature of the temperature sensor is equal to or lower than a first specified temperature and lower than the first specified temperature A determination circuit that outputs a determination signal in the above case, and a first output for a predetermined long time and a second output for a predetermined short time following the first output that operate in response to the input of the determination signal. A timer circuit that outputs a signal and does not receive a determination signal from the determination circuit until the output of the second output is completed; and a polarity of a DC voltage from a power supply device is set so that the Peltier element performs a dehumidifying operation during the input of the first output. And feed power to the element And a polarity switching circuit for switching the polarity in the reverse direction so that the element performs a de-icing operation during the input of the second output and supplying power to the element, wherein the detection temperature of the sensor is higher than the second specified temperature. When the voltage is low, the DC voltage is supplied to the element with the polarity of the DC voltage being set to the positive direction.
[0029]
According to a second aspect of the present invention, there is provided a method of controlling an electronic dehumidifier, wherein an inside of a box in which electric equipment for power distribution, control and the like is stored is dehumidified by supplying a DC voltage from a power supply to a Peltier element. In the method for controlling a dehumidifier, when a temperature detected by a temperature sensor for detecting a temperature in the box body is equal to or lower than a first specified temperature and equal to or higher than a second specified temperature lower than the first specified temperature, During a predetermined long time, the polarity of the DC voltage is set to the positive direction so that the element performs a dehumidifying operation, and power is supplied to the element, and the element is allowed to thaw for a predetermined short time following the predetermined long time. The polarity is switched in the reverse direction so as to operate, and the power is supplied to the element. After the predetermined short time, the temperature detected by the temperature sensor is equal to or lower than the first specified temperature and the second specified temperature. If the temperature is equal to or higher than the long-term dehumidifying operation The defrosting operation is performed for a short time, and when the detected temperature after the short time is lower than the second specified temperature, the polarity of the DC voltage is set to the positive direction to supply power to the element, and the dehumidifying operation is performed. Is what you do.
[0030]
Therefore, the invention described in claim 1 and claim 2 is characterized in that when the detected temperature of the sensor is equal to or lower than the first specified temperature and equal to or higher than the second specified temperature lower than the first specified temperature, a predetermined long time During the period, the dehumidifying operation by supplying power in the forward direction to the element and the de-icing operation by supplying power in the reverse direction to the element for a predetermined short time are performed, and when the detected temperature is higher than the first specified temperature, Of course, when the temperature is lower than the second specified temperature, the dehumidifying operation is continuously performed. When the detected temperature of the sensor is lower than the second specified temperature, the amount of moisture in the air is very small. On the cooling side of the vessel, there is little condensed water due to the dehumidifying operation, there is no reduction in the dehumidifying capacity due to the freezing of the condensed water, there is no freezing in the water receiving portion and the drainage hose due to the condensed water, and no water leakage occurs.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
First, every reference embodiment will be described with reference to FIGS.
(Reference-shaped state)
Per reference type state, it will be described with reference to Figure 1 of the block diagram of the control circuit. 10, the same reference numerals as those in FIG. 10 denote the same or corresponding components, and 29 denotes a DC voltage supply / stop circuit to which the DC voltage of the power supply 23 and the first and second outputs of the timer circuit 27 are input. When the temperature is higher than the specified temperature and during the input of the first output for a predetermined long time, a DC voltage in the positive direction is supplied to the Peltier element 20 of the electronic dehumidifier 7, and during the input of the second output for a predetermined short time, the DC voltage is supplied. Stop supplying power to
[0032]
Next, the operation will be described with reference to FIG. 2 of the flowchart for explaining the operation of the circuit of FIG. 1 and FIG. 3 of the operation explanatory diagram. If the temperature detected by the temperature sensor 25 is higher than the specified temperature T, the output of the determination circuit 26 is not provided, and the DC voltage is supplied to the element 20 of the dehumidifier 7 to perform the continuous dehumidification operation.
[0033]
Next, when the detected temperature of the sensor 25 becomes equal to or lower than the specified temperature T, the determination circuit 26 determines that the detected temperature of the sensor 25 is equal to or lower than the specified temperature T, and the determination circuit 26 outputs a determination signal to the timer circuit 27, The timer circuit 27 operates, and the timer circuit 27 outputs, for example, a first output for a long time of 12 hours and a second output for a short time of 1 hour following the first output. In the circuit 29, the dehumidification operation for 12 hours is performed while the first output is being input, and then the dehumidification operation for one hour is stopped while the second output is being input.
[0034]
While the dehumidifying operation is stopped, the condensed water in the lower fins 22 of the dehumidifier 7 frozen by the dehumidifying operation is thawed by the internal temperature of the box 1 due to the heat generated by the electric equipment stored in the box 1.
[0035]
For example, when the temperature of the outside air is 0 ° C., the internal temperature of the box 1 is 5 ° C., and the temperature of the lower fins 22 of the dehumidifier 7 is −5 ° C., the dehumidifying operation is stopped for one hour, and the lower fins 22 are stopped. Rises from −5 ° C. to + 5 ° C., the internal temperature of the box 1, and the frozen condensed water is thawed.
[0036]
Then, after the end of the second output, if the detected temperature of the sensor 25 is higher than the specified temperature T, the continuous dehumidifying operation is performed. If the detected temperature is equal to or lower than the specified temperature T, the timer circuit 27 is operated, and the long-time dehumidifying operation is performed. Then, the operation suspension for a short time is repeated.
[0037]
Incidentally, the case of the reference type state, condensed water of the lower fin 22 which icing is to de-ice at an internal temperature of the box 1, the outside air temperature is -5 ° C. or higher, or the internal temperature of the box 1 is 0 ℃ It is desirable that this is the case.
[0038]
Therefore, the condensed water frozen in the dehumidifying operation can be thawed by the internal temperature of the box due to the heat generated by the electric device, and the dehumidifying ability due to the freezing of the condensed water is prevented from lowering, thereby preventing water leakage. Furthermore, since the deicing of the condensed water is performed by suspending the operation without inverting the polarity of the DC voltage to the element, the polarity of the power supply to the element is not switched, and damage to the element is prevented.
[0039]
( Embodiment of the present invention )
For the shape condition of the present invention will be described with reference to FIG. 5 in FIG. 4 and the operation explanatory diagram of a flow chart for explaining the operation. This embodiment is different from the conventional example 3 in the determination circuit 26 in the block diagram of FIG. That is, the determination circuit 26 outputs a determination signal when the temperature detected by the temperature sensor 25 is equal to or lower than the first specified temperature and equal to or higher than a second specified temperature lower than the first specified temperature. It is.
[0040]
For example, if the first specified temperature T1 is 10 ° C. ± 3 ° C. and the second specified temperature T2 is 0 ° C. ± 3 ° C., the detection temperature of the sensor 25 is, for example, 10 ° C. or less and 0 ° C. or more. The determination signal is output from the determination circuit 26 to the timer circuit 27, and the first output for a predetermined long time and the first output for a predetermined short time following the first output are output from the timer circuit 27 in the same manner as in the third conventional example. The two outputs are output to the polarity switching circuit 28. In the polarity switching circuit 28, a dehumidifying operation is performed during the input of the first output, for example, for 12 hours, and then, during the input of the second output, the DC voltage to the element 20 is output. Is switched from the forward direction to the reverse direction, and for example, a thaw operation for 10 minutes is performed.
[0041]
Next, when the detected temperature of the sensor 25 is higher than the first specified temperature T1 of 10 ° C. or lower than the second specified temperature T2 of 0 ° C., the judgment signal is not output from the judgment circuit 26 and the normal continuous Dehumidification operation is performed.
[0042]
When the temperature detected by the sensor 25 is lower than 0 ° C., as shown in FIG. 6, since the amount of water in the air is very small, the condensed water due to the dehumidifying operation on the cooling side of the electronic dehumidifier 7 is small. There is almost no decrease in dehumidification capacity due to freezing of water, and no water leakage due to condensed water occurs.
[0043]
[0044]
[0045]
【The invention's effect】
In the control device for the electronic dehumidifier according to the first aspect of the present invention and the control method according to the second aspect , the detection temperature of the sensor is equal to or lower than the first specified temperature and is lower than the first specified temperature. If the temperature is equal to or higher than the temperature, a dehumidifying operation by supplying power in a forward direction to the element for a predetermined long time and a de-icing operation by supplying power in a reverse direction to the element for a predetermined short time are performed. The dehumidifying operation is continuously performed not only when the temperature is higher than the first specified temperature but also when the temperature is lower than the second specified temperature, and when the detected temperature of the sensor is lower than the second specified temperature, the moisture in the air is reduced. Since the amount is very small, on the cooling side of the electronic dehumidifier, there is little condensed water due to the dehumidifying operation, there is no decrease in the dehumidifying capacity due to freezing of the condensed water, and there is no freezing in the water receiving part and the drain hose due to the condensed water. No water leakage.
[Brief description of the drawings]
1 is a block diagram of an electronic dehumidifier of the control circuit reference type status.
2 is a flowchart for explaining the operation of the reference type status.
FIG. 3 is an operation explanatory diagram of a reference-type state.
Is a flow chart for explaining the operation of the form status of implementation of the present invention; FIG.
FIG. 5 is an operation explanatory view of the shape states of the present invention.
FIG. 6 is a diagram showing the relationship between the amount of water in air, temperature, and relative humidity.
FIG. 7 is a cutaway right side view of general electric equipment.
8A is an enlarged cross-sectional view of the electronic dehumidifier of FIG. 7, and FIG. 8B is a flowchart for explaining the operation of the conventional example 1 of the control of the electronic dehumidifier.
FIG. 9 is a flowchart for explaining an operation of controlling the electronic dehumidifier of the second conventional example.
FIG. 10 is a block diagram of a control circuit of the electronic dehumidifier of Conventional Example 3.
FIG. 11 is a flowchart for explaining the operation of Conventional Example 3.
FIG. 12 is an operation explanatory diagram of Conventional Example 3.
[Explanation of symbols]
1 Box 20 Peltier element 23 Power supply 25 Temperature sensor 26 Judgment circuit 27 Timer circuit 28 Polarity switching circuit 29 DC voltage supply / stop circuit

Claims (2)

配電,制御用等の電気機器が収納された箱体内を、ペルチェ素子への電源装置からの直流電圧の給電により除湿するようにした電子除湿器の制御装置において、
前記箱体内の温度を検知する温度センサと、
前記センサの検知温度が第1の規定温度以下で,かつ,前記第1の規定温度より低い第2の規定温度以上の場合に判定信号を出力する判定回路と、
前記判定信号の入力により作動し,所定の長時間の第1出力と,前記第1出力に続いての所定の短時間の第2出力とを出力し,前記第2出力の出力終了迄前記判定回路からの判定信号を受け付けないタイマ回路と、
前記第1出力の入力中,前記素子が除湿運転するよう前記直流電圧の極性を正方向にして前記素子に給電し,前記第2出力の入力中,前記素子が解氷運転するよう前記極性を逆方向に切り換えて前記素子に給電する極性切換回路と
を備え、前記センサの検知温度が前記第2の規定温度より低い場合に、前記素子に前記直流電圧の極性を正方向にして給電することを特徴とする電子除湿器の制御装置。
In a control device of an electronic dehumidifier configured to dehumidify a box housing electric devices for power distribution and control by supplying a DC voltage from a power supply device to a Peltier device,
A temperature sensor for detecting the temperature inside the box,
A determination circuit that outputs a determination signal when the temperature detected by the sensor is equal to or lower than a first specified temperature and equal to or higher than a second specified temperature lower than the first specified temperature;
It operates in response to the input of the determination signal and outputs a first output for a predetermined long time and a second output for a predetermined short time following the first output, and the determination is completed until the output of the second output is completed. A timer circuit that does not receive a determination signal from the circuit;
During the input of the first output, the polarity of the DC voltage is set to the positive direction so that the element performs a dehumidifying operation, and power is supplied to the element. During the input of the second output, the polarity is controlled so that the element performs a de-icing operation. A polarity switching circuit for switching the power supply to the element by switching in a reverse direction, and when the detected temperature of the sensor is lower than the second prescribed temperature, supplying the element with the polarity of the DC voltage in the positive direction. A control device for an electronic dehumidifier.
配電,制御用等の電気機器が収納された箱体内を、ペルチェ素子への電源装置からの直流電圧の給電により除湿するようにした電子除湿器の制御方法において、
前記箱体内の温度を検知する温度センサの検知温度が、第1の規定温度以下で,かつ,前記第1の規定温度より低い第2の規定温度以上の場合に、所定の長時間の間、前記素子が除湿運転するよう前記直流電圧の極性を正方向にして前記素子に給電し、前記所定の長時間に続いての所定の短時間の間、前記素子が解氷運転するよう前記極性を逆方向に切り換えて前記素子に給電し、前記所定の短時間の後の,前記温度センサの検知温度が、前記第1の規定温度以下で、かつ、前記第2の規定温度以上の場合に、前記長時間の除湿運転と前記短時間の解氷運転を行い、
前記短時間の後の前記検知温度が、前記第2の規定温度より低い場合に、前記直流電圧の極性を正方向にして前記素子に給電し、除湿運転を行うことを特徴とする電子除湿器の制御方法。
An electronic dehumidifier control method for dehumidifying a box housing electrical equipment for power distribution and control by supplying a DC voltage from a power supply to a Peltier element.
When the temperature detected by the temperature sensor for detecting the temperature inside the box is equal to or lower than a first specified temperature and equal to or higher than a second specified temperature lower than the first specified temperature, for a predetermined long time, Power is supplied to the element with the polarity of the DC voltage being positive so that the element performs a dehumidifying operation, and the polarity is set so that the element performs a deicing operation for a predetermined short time following the predetermined long time. When the detected temperature of the temperature sensor after the predetermined short time is equal to or lower than the first specified temperature and equal to or higher than the second specified temperature, the power is supplied to the element by switching in the opposite direction. Perform the long-time dehumidification operation and the short-time de-icing operation,
An electronic dehumidifier, wherein when the detected temperature after the short time is lower than the second specified temperature, the polarity of the DC voltage is set to a positive direction to supply power to the element to perform a dehumidifying operation. Control method.
JP20708197A 1997-07-15 1997-07-15 Electronic dehumidifier control device and electronic dehumidifier control method Expired - Lifetime JP3577901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20708197A JP3577901B2 (en) 1997-07-15 1997-07-15 Electronic dehumidifier control device and electronic dehumidifier control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20708197A JP3577901B2 (en) 1997-07-15 1997-07-15 Electronic dehumidifier control device and electronic dehumidifier control method

Publications (2)

Publication Number Publication Date
JPH1133339A JPH1133339A (en) 1999-02-09
JP3577901B2 true JP3577901B2 (en) 2004-10-20

Family

ID=16533891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20708197A Expired - Lifetime JP3577901B2 (en) 1997-07-15 1997-07-15 Electronic dehumidifier control device and electronic dehumidifier control method

Country Status (1)

Country Link
JP (1) JP3577901B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5626237B2 (en) * 2012-02-22 2014-11-19 トヨタ自動車株式会社 Battery temperature control device and vehicle interior temperature control device
CN107588576A (en) * 2017-08-21 2018-01-16 上海空间电源研究所 The thermoelectric cooling power optimization regulating system and method for high precision temperature control

Also Published As

Publication number Publication date
JPH1133339A (en) 1999-02-09

Similar Documents

Publication Publication Date Title
CN208012210U (en) Condenser system with automatic detection and automatic de-icing function
JP2005049002A (en) Air conditioner
CN111029949A (en) Transformer case with dehumidification cooling function
JP2503119Y2 (en) Heat recovery type ventilation device
JP3577901B2 (en) Electronic dehumidifier control device and electronic dehumidifier control method
US4114396A (en) Refrigeration evaporator coil with non-frosting fins
CN109682154A (en) A kind of air cooling refrigerator evaporator defrosting system and control method
JP2001147074A (en) Forced evaporation mechanism of defrost water
KR20000007553U (en) Electric heater device for outdoor unit defrost of air conditioner
KR0136386Y1 (en) Heat exchanger for heat accumulator
JP2847698B2 (en) Electronic refrigerator
JP2001330340A (en) Electronic dehumidifier
JP2001012844A (en) Cooling system
JP2508905B2 (en) Thaw control device
CA2877249C (en) Variable effectiveness heat recovery ventilator
CN213243194U (en) External circulating switch board dehydrating unit
JPH0519692Y2 (en)
JP2870936B2 (en) Operation control device for air conditioner
JP3870308B2 (en) Ice making detector
KR200297298Y1 (en) A deicer of a refrigerator
KR100340055B1 (en) Refrigerator improved in defrosting ability
JPH0765763B2 (en) Electronic dehumidifier
KR100288263B1 (en) Defroster of refrigerator
CN115459073A (en) Dehumidification control method for power distribution cabinet
JPH0658576A (en) Cooling or heating device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term