JP3577648B2 - Hot water temperature control device - Google Patents

Hot water temperature control device Download PDF

Info

Publication number
JP3577648B2
JP3577648B2 JP29608995A JP29608995A JP3577648B2 JP 3577648 B2 JP3577648 B2 JP 3577648B2 JP 29608995 A JP29608995 A JP 29608995A JP 29608995 A JP29608995 A JP 29608995A JP 3577648 B2 JP3577648 B2 JP 3577648B2
Authority
JP
Japan
Prior art keywords
temperature
water
control
amount
tapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29608995A
Other languages
Japanese (ja)
Other versions
JPH09113031A (en
Inventor
広久 成田
広輝 金澤
Original Assignee
パロマ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パロマ工業株式会社 filed Critical パロマ工業株式会社
Priority to JP29608995A priority Critical patent/JP3577648B2/en
Publication of JPH09113031A publication Critical patent/JPH09113031A/en
Application granted granted Critical
Publication of JP3577648B2 publication Critical patent/JP3577648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Control Of Temperature (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はフィ−ドフォワ−ド制御とフィ−ドバック制御とにより燃焼量を調節してガス瞬間給湯器の出湯温度を制御する出湯温度制御装置に関する。
【0002】
【従来の技術】
一般に、瞬間式のガス給湯器においては、その出湯温度制御の手法として、入水温度,設定温度,水の流量及び熱効率から、出湯温度を設定温度にする為に必要なガス供給量を演算・制御するフィ−ドフォワ−ド制御(以後、FF制御と呼ぶ)と、実際の出湯温度と設定温度との偏差に基づいて、そのFF制御量を補正するフィ−ドバック制御(以後、FB制御と呼ぶ)とが用いられており、優れた出湯温度特性が得られる。
【0003】
こうした(FF+FB)制御量を演算して出湯温度を制御する場合、燃焼量を算出する為に入水温度センサ−,出湯温度センサ−,流量センサ−を必要とするが、最近では入水温度センサ−を用いずに、以下に示す出湯温度制御を行うものも知られている。
例えば、特公平3−50184に示されたガス瞬間給湯器では、バ−ナの点火開始前に出湯温度センサ−によって検出された水温を入水温度と推定し、その推定された入水温度をFF制御量を算出する要素として、以後の出湯温度制御に用いることによって、入水温度サ−ミスタを省略し、コスト削減を図っている。
また、特公平6−97118に示されたガス瞬間給湯器では、やはり入水温度センサ−を省略するものとして、バ−ナの燃焼時における加熱量,給水流量,出湯温度あるいは設定温度に基づいて入水温度を逆算し、それをFF制御量を算出する為の要素に用いることによって入水温度センサ−を用いることなく、出湯温度制御を行うものも知られている。
【0004】
【発明が解決しようとする課題】
ところで、(FF+FB)制御においては、FB制御の補正量を極力少なくすることが望まれる。つまり、FB制御の場合は、熱交換器の熱容量により加熱制御に対して出湯温度の変化が遅れてしまい、出湯温度のハンチングを生じやすい為、極力FF制御のみで設定温度に近い出湯温度を得ることが望ましい。
しかしながら、給湯前の出湯温度センサ−による検出値を入水温度とみなした特告平3−50184のガス瞬間給湯器においては、燃焼停止中の器具内の水温が、給水温度の高い夏場や、逆に給水温度の低い冬場においては、器具内の熱交換器が集熱器となったり放熱器となったりして、給湯時に通水される水の温度と大きな開きが生じてしまう。この為、FF制御量が継続して不適切な値を取り続け、これを補正する為のFB制御量が大きくなる。従って、FB制御の影響によって出湯温度がオ−バ−シュ−トとアンダ−シュ−トとを繰り返すハンチングを生じてしまい、出湯温度特性が悪化してしまう。また、入水温度を逆算するタイプのものでは、逆算した後にFF制御量の算出を行う為、処理が複雑になり、その間の演算誤差も大きくなってしまう。
本発明の出湯温度制御装置は上記課題を解決し、入水温度センサ−を用いることなく良好な出湯温度特性を維持する低コストで高性能なガス瞬間給湯器を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の請求項1記載の出湯温度制御装置は、
器具内に通水される水を加熱する加熱手段と、
上記通水される水の流量を検出する流量検出手段と、
上記加熱手段により加熱された湯の出湯温度を検出する出湯温度検出手段と、
出湯温度を設定する出湯温度設定手段と、
上記加熱手段へ通水される水の温度を想定する入水温度想定手段と、
上記流量検出手段により検出された流量と、上記出湯温度設定手段により設定された設定温度と、上記入水温度想定手段により想定された入水温度とに基づいて点火初期のフィ−ドフォワ−ド制御量を演算して加熱量を制御する初期フィ−ドフォワ−ド制御手段と、
上記出湯温度と上記設定温度との偏差に基づいて上記フィ−ドフォワ−ド制御量をフィードバック制御により補正するフィ−ドバック演算手段と、
上記フィードフォワード制御量をフィードバック制御手段により補正したトータル制御量を順次記憶更新する制御出力量記憶部と、
上記通水される水の流量値を順次記憶更新する流量値記憶部と、
出湯温度安定後に、上記制御出力量記憶部に記憶した前回のトータル制御量に、前回の加熱量算出時の水の流量に対する今回の水の流量の増減比を乗じた値に基づいて上記フィ−ドフォワ−ド制御量を更新するフィ−ドフォワ−ド更新演算手手段とを備えたことを要旨とする。
【0006】
上述した構成を有する本発明の請求項1記載の出湯温度制御装置は、初期フィ−ドフォワ−ド制御手段が、水の流量,設定温度及び想定入水温度に基づき、点火初期のフィ−ドフォワ−ド制御量を演算し、加熱手段による加熱量を制御すると共に、フィ−ドバック演算手段が出湯温度と設定温度との偏差に基づいてフィ−ドフォワ−ド制御量を補正する。そして、出湯温度安定後、補正されたフィ−ドフォワ−ド制御量に水の流量の増減比を乗じた値に基づき、フィ−ドフォワ−ド制御量を更新する。従って、仮に想定した入水温度が実際の入水温度と大きく相違していても、ト−タル制御量(フィ−ドフォワ−ド制御量+フィ−ドバック制御量)を次回のフィ−ドフォワ−ド制御量に置き換え、しかも、流量の増減比(前回の加熱量を算出した時の流量に対して、今回の加熱量を算出しようとする時の流量比)を乗じている為、適切なフィ−ドフォワ−ド制御量となるので、以後のフィ−ドバック制御量は減少し、フィ−ドバック制御によるハンチングがほとんど生じなく、出湯温度が設定温度と等しく安定する。
【0009】
本発明の請求項記載の出湯温度制御装置は、
請求項1記載の出湯温度制御装置において、
上記入水温度想定手段は、加熱開始後の上記出湯温度検出手段により検出される出湯温度の上昇勾配が所定値以上になったときの出湯温度を、上記入水温度として想定することを要旨とする。
【0010】
上記構成を有する本発明の請求項記載の出湯温度制御装置は、入水温度想定手段が、出湯温度検出手段によって検出される出湯温度の上昇勾配に基づいて想定入水温度を想定する為、器具内に残っていた水の温度の影響を受けることなく、より正確な入水温度を想定することができるので、より良好な出湯温度特性を得ることができる。
【0013】
【発明の実施の形態】
以上説明した本発明の構成・作用を一層明らかにするために、以下本発明の出湯温度制御装置の好適な実施例について説明する。
【0014】
図1は一実施例としての出湯温度制御装置を備えたガス瞬間給湯器を示す。
このガス瞬間給湯器は、バ−ナ10の燃焼熱により通水中の水を加熱する熱交換器11が設けられ、水入口から熱交換器11へ通じる給水経路12に供給水圧の変動が生じても流量変動を所定流量以下に保つ水ガバナ13、入水流量を一定時間(例えば、0.2秒)毎に検出する流量センサ−14が設けられている。
また、出湯経路15上には、一定時間(例えば、0.2秒)毎に出湯温度を検知する出湯温度サ−ミスタ16が設けられている。
【0015】
また、バ−ナ10へのガス供給経路21には後述する燃焼コントロ−ラ33から出力される制御信号に基づいてガス量を制御する比例制御弁22、ガス供給経路21を開閉する元電磁弁23、主電磁弁24が設けられている。また、燃焼に必要な空気を供給するファン25、及び排気を器具外へ導き排出する為の排気筒26で構成される給排気経路が設けられている。
【0016】
また、バ−ナ10には放電により燃焼ガスへ点火するイグナイタ電極31、燃焼炎を検出するフレ−ムロッド32が設けられている。これらは、前記センサ−類・アクチュエ−タ類とともに燃焼コントロ−ラ33へと電気的に接続され、出湯・運転・停止等の所定の制御を行っている。
この燃焼コントロ−ラ33内には、熱効率等の燃焼制御に必要な様々な定数を予め記憶しておく為の演算定数記憶部,フィ−ドフォワ−ド制御の出力量(以後、FF値と呼ぶ)及びフィ−ドバック制御による補正量(以後、FB値と呼ぶ)をそれぞれ一定周期で算出する燃焼量算出部,その算出された燃焼量(FF値+FB値)を順次記憶更新する為の制御出力量記憶部,流量値Q(n)を順次記憶更新する為の流量値記憶部,リモコン34にて設定された設定温度を記憶する為の設定温度記憶部,前回の給湯終了からの経過時間を記憶する時間記憶部等がそれぞれ設けられており、流量センサ−14及び出湯温度サ−ミスタ16からの各信号に基づいて、後述する制御ル−チンに沿って、リモコン34内に設けられる出湯温度設定部で入力された出湯温度となるように、比例制御弁22に指令を出し、燃焼量をフィ−ドフォワ−ド制御(以後、FF制御と呼ぶ)及びフィ−ドバック制御(以後、FB制御と呼ぶ)を用いて制御する。また、比例制御弁22の開度に応じた燃焼用空気を供給する為にファン25の回転数制御も行っている。
【0017】
次に、燃焼コントロ−ラ33の行う出湯温度制御について図2及び図3に示すフロ−チャ−トを用いて説明する。
まず、電源投入により本ル−チンが起動すると、ステップ1にてフラグを0にセットする。
次に、ステップ2にて、流量センサ−14から検出された器具内の実流量Qが加熱動作をする為に十分な水量(以後、点火水量と呼ぶ)以上であるか否かを確認し、点火水量に満たない間は、この処理を繰り返す。この時同時に、ステップ3にて前回給湯終了(止水後)から2時間以上経過しているかどうかを確認し、2時間以上経過している場合には、各検出デ−タをリセットする為に、ステップ4にてフラグを0にセットする。
【0018】
こうした流量確認を行っている最中に、給湯カランが開かれ、実流量Qが点火水量を越えると、ステップ5にて点火動作を行う。続いて、ステップ6にてフラグが0にセットされているか否かを判断し、フラグが0にセットされているならば、出湯温度サ−ミスタ16によって検出される出湯側水温Tに基づいてステップ7にて入水温度を推定し(入水温度Tiの推定処理については後述する)、推定入水温度Tiを決定する。
【0019】
次に、ステップ8にて、流量センサ−14から検出される実流量Qが、予め設定された消火水量以上を維持しているか否かを確認し、給湯カランが閉じて消火水量未満になれば、ステップ9にて燃焼動作を停止する。
また、実流量Qが燃焼動作を続ける為に十分な量であれば、ステップ10にてフラグの状態を確認し、フラグが0にセットされている場合は、ステップ12の処理に移行する。
ステップ12では、現在流量Qと推定入水温度Tiと設定温度Tsと熱効率ηとからFF制御量(FF値)を
FF=Q×(Ts−Ti)÷η ・・・▲1▼
として演算すると共に、実際の出湯温度Tと設定温度Tsとの偏差に基づくFB制御(本実施例では、PID制御を用いる)により実際の出湯温度Tが設定温度Tsになるように燃焼量を補正する(FF値+FB値)。こうした燃焼量の演算制御は繰り返され、その途中で出湯温度サ−ミスタ16から検出される出湯温度Tの変化が、ステップ13にてx秒(本実施例では、5秒)間、±1℃以内、つまり安定状態であるか否か及び流量Qの変化が20%以内におさまっているか否かを確認する。
【0020】
そして、ステップ13の条件を満たす安定状態になれば、上述した(FF+FB)制御によるト−タル出力量(FF値+FB値)を制御出力量記憶部に記憶する(記憶値・・FF(m))。また、その時の流量値Q及び設定温度Tsも同様に、ステップ14にて燃焼コントロ−ラ33内の流量値記憶部及び設定温度記憶部に記憶される(記憶値・・Q(m),Ts(m))。更に、ステップ15にてフラグを1にセットすると、ステップ8に戻る。
【0021】
また、ステップ8に戻った後、給湯動作が継続されているならば、ステップ15にてフラグは1にセットされていることから、その後は、ステップ11の出湯温度制御を繰り返し行う。つまり、前回記憶したト−タル制御量FF(m),流量値Q(m),設定温度Ts(m),現在の流量値Q,設定温度Ts,及び▲1▼式から、以下に示す式にてFF値を求め、出湯温度制御を行う。

Figure 0003577648
また、FB制御によるFB値は、ステップ12と同様に、新たにPID制御にて演算され、FF値を補正する(FF値+FB値)。
つまり、直前回のト−タル制御量(FF値+FB値)に流量比を乗じ、しかも設定温度Tsの変更分で熱量を補正した値を今回のFF値に置き換えるのである。この為、仮に推定入水温度Tiが適切でなくても、この置き換えによりFF値が適正なものとなり、理論的にはFB値が0となる。従って、実際の出湯温度Tが設定温度Tsと一致して安定する。
尚、▲2▼式の設定温度を含む第2項は、給湯動作中に設定温度Tsが変更されなければ、0となるので、次式で表すことができる。
FF=FF(m)×{Q÷Q(m)} ・・・▲3▼
【0022】
また、前回給湯停止から2時間以上経過していなく、器具内も十分に冷えていない状態からの再給湯の場合には、フラグは1にセットされている為、入水温度の推定処理を行わず、そのままステップ11に移行し、上述した出湯温度制御が行われる。
【0023】
次に、ステップ7の推定入水温度Tiを算出する処理について、図4に示した入水温度推定ル−チンを表すフロ−チャ−トを用いて説明する。
給湯開始後、ステップ21にて出湯温度サ−ミスタ16によって検出された出湯側水温T(n)(nは、検出された順番)は入水温度推定部内に記憶される。本実施例では、0.2秒毎に温度T(n)を記憶すると共に、ステップ22にて1秒間における平均温度θ(n)を算出する。そして、この平均温度θ(n)の上昇勾配dθが、ステップ23にて、
dθ=θ(n)−θ(n−1)≧α(℃/秒) ・・・▲4▼
となった時の温度θ(n−1)を、ステップ24にて、その給湯時の入水温度Tiと推定し、FF制御に用いる。本実施例では、α=1とする。
【0024】
例えば、図5に示すように、点bにて水入口を開栓し、点cにて点火を開始すると、その器具内に残っていた水(雰囲気温度とほぼ等しい温度)は、新しく給水された水と混ざることによって温度が一時的に低下する。しかし、入水温度Tw付近の点dまで低下すると、バ−ナ10による燃焼加熱が行われている為に上昇し始める。本実施例では、点火開始から出湯温度サ−ミスタ16によって出湯温度Tを0.2秒毎に検出し、α(例えば、+1)(℃/秒)以上の温度変化が見られた時の出湯温度、つまり図5中の最下点dにおける出湯温度Tを推定入水温度Tiとし、ステップ12の出湯温度制御に用いる。その為、実際の出湯温度Tが設定温度Tsに到達するまでの時間及び設定温度Tsに安定するまでの時間が大きく短縮される。尚、図中に示した従来例は、点火前の出湯温度サ−ミスタ16による読み取り値を推定入水温度Tiとして制御した例である。
【0025】
図6は夏場の出湯温度の変化を表すものである。
この場合、器具内に滞留していた水の温度が高いことから従来例では、実際の入水温度Twよりもかなり高い点火開始前の点gでの温度を入水温度と推定する為、実際の入水温度Twよりも高い値と判断してしまい、バ−ナ10による加熱量も少なく、温度上昇が遅くなり、点nにて出湯温度Tは安定する。それに対して本実施例では、実際の入水温度Twに最も近い点iでの水温を入水温度Tiと推定する為、バ−ナ10による加熱量も多く、設定温度Tsに到達するまでの時間及び設定温度Tsに安定するまでの時間が短縮され、従来例と比較すると、d(t2)の時間だけ早い点mにて安定する。
【0026】
また、冬場においては、図7に示したように器具内に滞留した水の温度が低くなることから従来例では、実際の入水温度Twよりもかなり低い点火開始前の点oでの水温を入水温度と推定する為、バ−ナ10による加熱量がそれだけ大きくなる。それに対して、本実施例では、実際の入水温度Twとほぼ一致する高い点qでの温度を入水温度Tiと推定する為、バ−ナ10による加熱量がそれだけ減ることとなる。故に、従来例及び本実施例のオ−バ−シュ−トの最大温度上昇点u及びsによる温度差dTが生じ、結果として本実施例の方が短時間で安定した温度に到達することとなる。
【0027】
以上説明したように、本実施例の出湯温度制御装置によれば、給湯動作中の出湯温度制御は(FF+FB)制御で行われ、周期的に新しいデ−タ及び各記憶部に記憶されている前回のデ−タを用いて、新たにFF制御量を更新する。しかも新たに求めるFF値には、前回のト−タル制御量(FF値+FB値)を導入して算出する為、FB値は小さくなり、実際の出湯温度Tが設定温度Tsと一致して安定する。
しかも、入水温度の推定値Tiを実際の入水温度Twに近い値を採用している為、季節(器具周りの雰囲気温度)に関わらず、設定温度に到達する時間及び安定するまでにかかる時間を短縮することができる。
【0028】
以上本発明の実施例について説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。例えば、最初の入水温度の想定値は、予め設定した固定値(例えば、15℃)を記憶回路に記憶しておき、その記憶値を読み込んで加熱量の演算に用いても良い。また、この固定値は複数通り記憶させあり、器具内外の諸条件から、その内の1つを選択して用いるように構成しても良い。
【0029】
【発明の効果】
以上記述したように本発明の請求項1記載の出湯温度制御装置によれば、入水温度センサ−を設けなくても良好な(FF+FB)制御が可能となり、優れた出湯温度特性が得られる。しかも、FB値を少なくするようにFF値を更新していく為、出湯温度のハンチングが少ない。また、入水側の温度検出手段が不要になった為、それによるコスト削減もできる。更に、従来のような入水温度を逆算してからFF値を演算する複雑な演算を行わず、ト−タル加熱量と流量比とに基づいて直接FF値を求めている為、演算による負担が少なく、演算誤差も少ない。 また、請求項記載の出湯温度制御装置によれば、実際の入水温度に近い温度を想定することができるので、どの季節でも一様に、より良好な出湯温度の立ち上がり特性を得ることができる。また、ほぼ設定した出湯温度の湯を使用することができる。
【図面の簡単な説明】
【図1】一実施例としてのガス瞬間給湯器の概略図である。
【図2】出湯温度制御ル−チンを表すフロ−チャ−トである。
【図3】出湯温度制御ル−チンを表すフロ−チャ−トである。
【図4】入水温度推定ル−チンを表すフロ−チャ−トである。
【図5】出湯温度の推移を表す説明図である。
【図6】夏場における出湯温度の推移を表す説明図である。
【図7】冬場における出湯温度の推移を表す説明図である。
【符号の説明】
11・・・熱交換器 14・・・流量センサ−
16・・・出湯温度サ−ミスタ 22・・・比例制御弁
33・・・燃焼コントロ−ラ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a tapping temperature control device for controlling a tapping temperature of a gas instantaneous water heater by adjusting a combustion amount by feedforward control and feedback control.
[0002]
[Prior art]
Generally, in instantaneous gas water heaters, as a method of controlling the tap water temperature, the amount of gas supply required to bring the tap water temperature to the set temperature is calculated and controlled from the incoming water temperature, the set temperature, the flow rate of water, and the thermal efficiency. Feed-forward control (hereinafter referred to as FF control) and feedback control (hereinafter referred to as FB control) for correcting the FF control amount based on the deviation between the actual tapping temperature and the set temperature. And excellent tapping temperature characteristics can be obtained.
[0003]
When calculating the (FF + FB) control amount to control the outlet water temperature, an inlet water temperature sensor, outlet water temperature sensor, and flow rate sensor are required to calculate the amount of combustion. There is also known one that performs the tapping temperature control described below without using it.
For example, in the gas instantaneous water heater disclosed in Japanese Patent Publication No. 3-50184, the water temperature detected by the tap water temperature sensor before the start of burner ignition is estimated as the incoming water temperature, and the estimated incoming water temperature is subjected to FF control. As an element for calculating the amount, it is used in the subsequent tap water temperature control, thereby omitting an inlet water temperature thermistor and reducing costs.
In the gas instantaneous water heater disclosed in Japanese Patent Publication No. 6-97118, the water inlet temperature sensor is also omitted, and water is supplied based on the heating amount, water supply flow rate, outlet water temperature or set temperature during burner combustion. There is also known a device that performs a hot water temperature control without using an incoming water temperature sensor by calculating the temperature back and using it as an element for calculating the FF control amount.
[0004]
[Problems to be solved by the invention]
By the way, in the (FF + FB) control, it is desired to minimize the correction amount of the FB control. That is, in the case of the FB control, the change of the tapping temperature is delayed with respect to the heating control due to the heat capacity of the heat exchanger, and hunting of the tapping temperature is easily caused. Therefore, the tapping temperature close to the set temperature is obtained only by the FF control as much as possible. It is desirable.
However, in the gas instantaneous water heater of Japanese Patent Application Laid-Open No. 3-50184, in which the value detected by the outlet temperature sensor before hot water supply is regarded as the incoming water temperature, the water temperature in the appliance during combustion stoppage is high in summer when the water supply temperature is high, or in reverse. In winter, when the temperature of water supply is low, the heat exchanger in the appliance may function as a heat collector or a radiator, resulting in a large difference in the temperature of the water supplied during hot water supply. Therefore, the FF control amount continues to take an inappropriate value, and the FB control amount for correcting this value increases. As a result, hunting occurs in which the tapping temperature repeats overshooting and undershooting due to the influence of the FB control, and the tapping temperature characteristics deteriorate. Further, in the case of the type that reversely calculates the incoming water temperature, the FF control amount is calculated after performing the reverse calculation, so that the processing becomes complicated and the calculation error during that time increases.
An object of the present invention is to provide a low-cost, high-performance gas instantaneous water heater that solves the above-mentioned problems and maintains good hot-water temperature characteristics without using an incoming water temperature sensor.
[0005]
[Means for Solving the Problems]
The tap water temperature control device according to claim 1 of the present invention
Heating means for heating water passed through the appliance,
Flow rate detection means for detecting the flow rate of the water to be passed,
Tapping temperature detecting means for detecting the tapping temperature of the hot water heated by the heating means,
Tapping temperature setting means for setting tapping temperature;
Incoming water temperature estimating means for estimating the temperature of water passed through the heating means,
Based on the flow rate detected by the flow rate detecting means, the set temperature set by the tapping temperature setting means, and the incoming water temperature assumed by the incoming water temperature estimating means, the feedforward control amount at the initial stage of ignition. Initial feedforward control means for controlling the amount of heating by calculating
Feedback calculation means for correcting the feedforward control amount by feedback control based on a deviation between the tapping temperature and the set temperature;
A control output amount storage unit that sequentially stores and updates the total control amount obtained by correcting the feedforward control amount by the feedback control unit,
A flow value storage unit that sequentially stores and updates the flow value of the water to be passed,
After the tapping temperature is stabilized, the above-described field is calculated based on a value obtained by multiplying the previous total control amount stored in the control output amount storage unit by the increase / decrease ratio of the current flow rate of water to the flow rate of water at the time of calculating the previous heating amount. A gist of the present invention is to provide a feed forward update calculating means for updating the forward control amount.
[0006]
In the tapping temperature control apparatus according to the first aspect of the present invention having the above-described structure, the initial feedforward control means controls the feedforward in the initial stage of ignition based on the flow rate of water, the set temperature, and the assumed inlet water temperature. The control amount is calculated to control the amount of heating by the heating means, and the feedback calculation means corrects the feedforward control amount based on the deviation between the tapping temperature and the set temperature. After the tapping temperature is stabilized, the feedforward control amount is updated based on a value obtained by multiplying the corrected feedforward control amount by the increase / decrease ratio of the flow rate of water. Therefore, even if the assumed incoming water temperature is greatly different from the actual incoming water temperature, the total control amount (feedforward control amount + feedback control amount) is changed to the next feedforward control amount. And the flow rate increase / decrease ratio (the flow rate at the time of calculating the current heating amount with respect to the flow rate at the time of calculating the previous heating amount) is multiplied by the appropriate feedforward. Since the feedback control amount is used, the feedback control amount thereafter decreases, hunting due to the feedback control hardly occurs, and the tapping temperature is stabilized equal to the set temperature.
[0009]
The tapping temperature control device according to claim 2 of the present invention is:
The tapping temperature control device according to claim 1,
The gist is that the inflow temperature estimating means assumes the outflow temperature when the rising gradient of the outflow temperature detected by the outflow temperature detection means after the start of heating is equal to or higher than a predetermined value as the inflow temperature. I do.
[0010]
In the tapping water temperature control device according to the second aspect of the present invention having the above-described configuration, the tap water temperature estimating means estimates the assumed tap water temperature based on the rising gradient of the tap water temperature detected by the tap water temperature detecting means. It is possible to assume a more accurate incoming water temperature without being affected by the temperature of the remaining water, and thus it is possible to obtain better outlet water temperature characteristics.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to further clarify the configuration and operation of the present invention described above, a preferred embodiment of the tapping temperature control device of the present invention will be described below.
[0014]
FIG. 1 shows a gas instantaneous water heater provided with a hot water temperature control device as one embodiment.
This gas instantaneous water heater is provided with a heat exchanger 11 for heating the water in the passing water by the heat of combustion of the burner 10, and the supply water pressure fluctuates in a water supply path 12 leading from the water inlet to the heat exchanger 11. Also provided are a water governor 13 for keeping the flow rate fluctuation below a predetermined flow rate, and a flow rate sensor 14 for detecting the incoming water flow rate at regular intervals (for example, 0.2 seconds).
Also, on the hot water supply path 15, a hot water temperature thermistor 16 for detecting the hot water temperature every predetermined time (for example, 0.2 seconds) is provided.
[0015]
Further, a proportional control valve 22 for controlling a gas amount based on a control signal output from a combustion controller 33 to be described later, and an original solenoid valve for opening and closing the gas supply path 21 are provided in a gas supply path 21 to the burner 10. 23 and a main solenoid valve 24 are provided. Further, a supply / exhaust path including a fan 25 for supplying air required for combustion and an exhaust tube 26 for guiding and exhausting exhaust gas out of the apparatus is provided.
[0016]
Further, the burner 10 is provided with an igniter electrode 31 for igniting the combustion gas by discharge and a frame rod 32 for detecting a combustion flame. These are electrically connected to the combustion controller 33 together with the sensors and actuators, and perform predetermined control such as tapping, operation, and stop.
In the combustion controller 33, an arithmetic constant storage unit for storing in advance various constants required for combustion control such as thermal efficiency, and an output amount of the feedforward control (hereinafter referred to as an FF value). ) And a correction amount by feedback control (hereinafter referred to as FB value) in a fixed cycle, and a control output for sequentially storing and updating the calculated combustion amount (FF value + FB value). The power storage unit, the flow value storage unit for sequentially storing and updating the flow value Q (n), the set temperature storage unit for storing the set temperature set by the remote controller 34, and the elapsed time from the end of the previous hot water supply. A time storage unit for storing the temperature is provided, and based on each signal from the flow rate sensor 14 and the tap water temperature thermistor 16, a tap water temperature provided in the remote controller 34 along a control routine to be described later. Input in the setting section A command is issued to the proportional control valve 22 so that the discharged hot water temperature is obtained, and the amount of combustion is controlled using feedforward control (hereinafter referred to as FF control) and feedback control (hereinafter referred to as FB control). Control. Further, the number of rotations of the fan 25 is controlled in order to supply combustion air in accordance with the degree of opening of the proportional control valve 22.
[0017]
Next, the tapping temperature control performed by the combustion controller 33 will be described with reference to the flowcharts shown in FIGS.
First, when this routine is started by turning on the power, a flag is set to 0 in step 1.
Next, in step 2, it is confirmed whether or not the actual flow rate Q in the appliance detected by the flow rate sensor 14 is equal to or more than a sufficient water amount (hereinafter, referred to as an ignition water amount) for performing a heating operation. This process is repeated while the amount of ignition water is less than the amount. At this time, at the same time, it is checked in step 3 whether or not two hours or more have elapsed since the last hot water supply was completed (after stopping the water supply). In step 4, the flag is set to 0.
[0018]
During such flow rate confirmation, the hot water supply currant is opened, and if the actual flow rate Q exceeds the amount of ignition water, the ignition operation is performed in step 5. Subsequently, it is determined in step 6 whether the flag is set to 0 or not. If the flag is set to 0, the process proceeds to step 6 based on the tapping water temperature T detected by the tapping temperature thermistor 16. At 7, the inlet water temperature is estimated (the process of estimating the inlet water temperature Ti will be described later), and the estimated inlet water temperature Ti is determined.
[0019]
Next, in step 8, it is checked whether or not the actual flow rate Q detected by the flow rate sensor 14 is equal to or higher than a preset amount of fire extinguishing water. In step 9, the combustion operation is stopped.
If the actual flow rate Q is sufficient to continue the combustion operation, the state of the flag is checked in step 10, and if the flag is set to 0, the process proceeds to step 12.
In step 12, the FF control amount (FF value) is calculated based on the current flow rate Q, the estimated inlet water temperature Ti, the set temperature Ts, and the thermal efficiency η by FF = Q × (Ts−Ti) ÷ η (1)
And the FB control (in this embodiment, PID control is used) based on the difference between the actual tapping temperature T and the set temperature Ts, so that the combustion amount is corrected so that the actual tapping temperature T becomes the set temperature Ts. (FF value + FB value). The calculation control of the combustion amount is repeated, and the change of the tapping temperature T detected by the tapping temperature thermistor 16 during the process is ± 1 ° C. for x seconds (5 seconds in this embodiment) at step 13. It is confirmed whether the state is within the stable state, and whether the change of the flow rate Q is within 20%.
[0020]
When a stable state that satisfies the condition of step 13 is reached, the total output amount (FF value + FB value) by the above-mentioned (FF + FB) control is stored in the control output amount storage unit (storage value... FF (m)). ). Similarly, the flow value Q and the set temperature Ts at that time are also stored in the flow value storage unit and the set temperature storage unit in the combustion controller 33 in step 14 (storage value... Q (m), Ts). (M)). Further, when the flag is set to 1 in step 15, the process returns to step 8.
[0021]
Further, if the hot water supply operation is continued after returning to step 8, the flag is set to 1 in step 15, and thereafter, the tapping temperature control in step 11 is repeated. That is, from the previously stored total control amount FF (m), flow rate value Q (m), set temperature Ts (m), current flow rate value Q, set temperature Ts, and equation (1), the following equation is used. To determine the FF value and control the hot water temperature.
Figure 0003577648
Further, the FB value by the FB control is newly calculated by the PID control as in step 12, and the FF value is corrected (FF value + FB value).
That is, the value obtained by multiplying the total control amount (FF value + FB value) of the immediately preceding operation by the flow rate ratio and correcting the heat amount by the change in the set temperature Ts is replaced with the current FF value. Therefore, even if the estimated inlet water temperature Ti is not appropriate, the FF value becomes appropriate by this replacement, and the FB value becomes 0 in theory. Therefore, the actual tapping temperature T matches the set temperature Ts and stabilizes.
The second term including the set temperature in the equation (2) becomes 0 if the set temperature Ts is not changed during the hot water supply operation, and can be expressed by the following equation.
FF = FF (m) × {Q ÷ Q (m)} ・ ・ ・ ▲ 3 ▼
[0022]
In addition, in the case of re-water supply from a state in which two hours or more have not elapsed since the last stop of hot water supply and the inside of the appliance has not been sufficiently cooled, the flag is set to 1 so that the processing for estimating the incoming water temperature is not performed. Then, the process directly proceeds to step 11, and the above-described tapping temperature control is performed.
[0023]
Next, the process of calculating the estimated inlet water temperature Ti in step 7 will be described with reference to a flowchart showing the estimated inlet water temperature routine shown in FIG.
After the start of hot water supply, the tap water temperature T (n) (n is the order of detection) detected by the tap temperature thermistor 16 in step 21 is stored in the incoming water temperature estimating unit. In this embodiment, the temperature T (n) is stored every 0.2 seconds, and the average temperature θ (n) for one second is calculated in step 22. Then, the rising gradient dθ of the average temperature θ (n) is
dθ = θ (n) −θ (n−1) ≧ α (° C./sec) (4)
In step 24, the temperature θ (n-1) at the time when the water supply temperature is estimated is used as the water supply temperature Ti at the time of hot water supply, and is used for FF control. In the present embodiment, α = 1.
[0024]
For example, as shown in FIG. 5, when the water inlet is opened at a point b and ignition is started at a point c, the water remaining in the apparatus (a temperature substantially equal to the ambient temperature) is newly supplied. The temperature drops temporarily when mixed with the water. However, when the temperature drops to a point d near the incoming water temperature Tw, the temperature starts to rise because the combustion heating by the burner 10 is performed. In this embodiment, the tapping temperature T is detected every 0.2 seconds by the tapping temperature thermistor 16 from the start of ignition, and tapping occurs when a temperature change of α (for example, +1) (° C./sec) or more is observed. The temperature, that is, the tapping temperature T at the lowest point d in FIG. 5 is used as the estimated tapping-in temperature Ti and used for tapping-out temperature control in step 12. Therefore, the time until the actual tapping temperature T reaches the set temperature Ts and the time until it is stabilized at the set temperature Ts are greatly reduced. The conventional example shown in the figure is an example in which the value read by the tapping temperature thermistor 16 before ignition is controlled as the estimated inlet temperature Ti.
[0025]
FIG. 6 shows a change in tapping temperature in summer.
In this case, since the temperature of the water staying in the appliance is high, in the conventional example, the temperature at the point g before the start of ignition, which is considerably higher than the actual water inlet temperature Tw, is estimated as the water inlet temperature. It is determined that the temperature is higher than the temperature Tw, the amount of heating by the burner 10 is small, the temperature rise is delayed, and the tapping temperature T is stabilized at the point n. On the other hand, in this embodiment, since the water temperature at the point i closest to the actual water temperature Tw is estimated as the water temperature Ti, the amount of heating by the burner 10 is also large, and the time required to reach the set temperature Ts is reduced. The time required to stabilize at the set temperature Ts is shortened, and stabilizes at a point m earlier by d (t2) compared to the conventional example.
[0026]
In winter, as shown in FIG. 7, since the temperature of the water staying in the apparatus becomes low as shown in FIG. 7, in the conventional example, the water temperature at the point o before the start of ignition, which is considerably lower than the actual water temperature Tw, is calculated. Since the temperature is estimated, the amount of heating by the burner 10 increases accordingly. On the other hand, in the present embodiment, the temperature at the high point q which substantially coincides with the actual water inlet temperature Tw is estimated as the water inlet temperature Ti, so that the amount of heating by the burner 10 is reduced accordingly. Therefore, a temperature difference dT occurs due to the maximum temperature rise points u and s of the overshoots of the conventional example and the present embodiment. As a result, the present embodiment achieves a stable temperature in a shorter time. Become.
[0027]
As described above, according to the hot water temperature control apparatus of the present embodiment, hot water temperature control during hot water supply operation is performed by (FF + FB) control, and new data is periodically stored in each storage unit. The FF control amount is newly updated using the previous data. Moreover, since the newly calculated FF value is calculated by introducing the previous total control amount (FF value + FB value), the FB value becomes small, and the actual tapping temperature T matches the set temperature Ts and becomes stable. I do.
Moreover, since the estimated value Ti of the incoming water temperature is a value close to the actual incoming water temperature Tw, the time required to reach the set temperature and the time required to stabilize the temperature regardless of the season (atmospheric temperature around the appliance). Can be shortened.
[0028]
Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments at all, and it goes without saying that the present invention can be implemented in various modes without departing from the gist of the present invention. For example, as the assumed value of the first incoming water temperature, a fixed value (for example, 15 ° C.) set in advance may be stored in a storage circuit, and the stored value may be read and used for calculating the heating amount. In addition, a plurality of fixed values may be stored, and one of the fixed values may be selected from various conditions inside and outside the instrument and used.
[0029]
【The invention's effect】
As described above, according to the tapping temperature control apparatus of the first aspect of the present invention, excellent (FF + FB) control can be performed without providing a tapping temperature sensor, and excellent tapping temperature characteristics can be obtained. Moreover, since the FF value is updated so as to reduce the FB value, hunting of the tapping temperature is small. Further, since the temperature detecting means on the water inlet side is not required, the cost can be reduced. Further, since the conventional FF value is directly calculated based on the total heating amount and the flow rate ratio without performing the complicated operation of calculating the FF value after calculating the incoming water temperature in the conventional manner, the burden of the calculation is reduced. There are few calculation errors. In addition, according to the tapping temperature control apparatus of the second aspect , a temperature close to the actual tapping temperature can be assumed, so that a better tapping temperature rise characteristic can be obtained uniformly in any season. . Also, hot water having a substantially set tapping temperature can be used.
[Brief description of the drawings]
FIG. 1 is a schematic view of a gas instantaneous water heater as one embodiment.
FIG. 2 is a flowchart showing a tapping temperature control routine.
FIG. 3 is a flowchart showing a tapping temperature control routine.
FIG. 4 is a flowchart showing an entry temperature estimation routine.
FIG. 5 is an explanatory diagram showing transition of a tapping temperature.
FIG. 6 is an explanatory diagram showing transition of tapping temperature in summer.
FIG. 7 is an explanatory diagram showing transition of tapping temperature in winter.
[Explanation of symbols]
11: heat exchanger 14: flow sensor
16. Hot water temperature thermistor 22 ... Proportional control valve 33 ... Combustion controller

Claims (2)

器具内に通水される水を加熱する加熱手段と、
上記通水される水の流量を検出する流量検出手段と、
上記加熱手段により加熱された湯の出湯温度を検出する出湯温度検出手段と、
出湯温度を設定する出湯温度設定手段と、
上記加熱手段へ通水される水の温度を想定する入水温度想定手段と、
上記流量検出手段により検出された流量と、上記出湯温度設定手段により設定された設定温度と、上記入水温度想定手段により想定された入水温度とに基づいて点火初期のフィ−ドフォワ−ド制御量を演算して加熱量を制御する初期フィ−ドフォワ−ド制御手段と、
上記出湯温度と上記設定温度との偏差に基づいて上記フィ−ドフォワ−ド制御量をフィードバック制御により補正するフィ−ドバック演算手段と、
上記フィードフォワード制御量をフィードバック制御手段により補正したトータル制御量を順次記憶更新する制御出力量記憶部と、
上記通水される水の流量値を順次記憶更新する流量値記憶部と、
出湯温度安定後に、上記制御出力量記憶部に記憶した前回のトータル制御量に、前回の加熱量算出時の水の流量に対する今回の水の流量の増減比を乗じた値に基づいて上記フィ−ドフォワ−ド制御量を更新するフィ−ドフォワ−ド更新演算手段とを備えたことを特徴とする出湯温度制御装置。
Heating means for heating water passed through the appliance,
Flow rate detection means for detecting the flow rate of the water to be passed,
Tapping temperature detecting means for detecting the tapping temperature of the hot water heated by the heating means,
Tapping temperature setting means for setting tapping temperature;
Incoming water temperature estimating means for estimating the temperature of water passed through the heating means,
Based on the flow rate detected by the flow rate detecting means, the set temperature set by the tapping temperature setting means, and the incoming water temperature assumed by the incoming water temperature estimating means, the feedforward control amount at the initial stage of ignition. Initial feedforward control means for controlling the amount of heating by calculating
Feedback calculation means for correcting the feedforward control amount by feedback control based on a deviation between the tapping temperature and the set temperature;
A control output amount storage unit that sequentially stores and updates the total control amount obtained by correcting the feedforward control amount by the feedback control unit,
A flow value storage unit that sequentially stores and updates the flow value of the water to be passed,
After the tapping temperature is stabilized, the above-described field is calculated based on a value obtained by multiplying the previous total control amount stored in the control output amount storage unit by the increase / decrease ratio of the current flow rate of water to the flow rate of water at the time of calculating the previous heating amount. A tapping temperature control device comprising: a feedforward update calculating means for updating a feedforward control amount.
請求項1記載の出湯温度制御装置において、
上記入水温度想定手段は、加熱開始後の上記出湯温度検出手段により検出される出湯温度の上昇勾配が所定値以上になったときの出湯温度を、上記入水温度として想定することを特徴とする出湯温度制御装置。
The tapping temperature control device according to claim 1,
The inlet water temperature estimating means is characterized by assuming the outlet water temperature when the rising gradient of the outlet water temperature detected by the outlet water temperature detecting means after the start of heating becomes a predetermined value or more as the inlet water temperature. Hot water temperature control device.
JP29608995A 1995-10-18 1995-10-18 Hot water temperature control device Expired - Fee Related JP3577648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29608995A JP3577648B2 (en) 1995-10-18 1995-10-18 Hot water temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29608995A JP3577648B2 (en) 1995-10-18 1995-10-18 Hot water temperature control device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004137058A Division JP3837142B2 (en) 2004-05-06 2004-05-06 Water heater

Publications (2)

Publication Number Publication Date
JPH09113031A JPH09113031A (en) 1997-05-02
JP3577648B2 true JP3577648B2 (en) 2004-10-13

Family

ID=17828984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29608995A Expired - Fee Related JP3577648B2 (en) 1995-10-18 1995-10-18 Hot water temperature control device

Country Status (1)

Country Link
JP (1) JP3577648B2 (en)

Also Published As

Publication number Publication date
JPH09113031A (en) 1997-05-02

Similar Documents

Publication Publication Date Title
JP3577648B2 (en) Hot water temperature control device
JP3837142B2 (en) Water heater
JP4234690B2 (en) Combustion equipment
JP3733977B2 (en) Water heater
CN111912117A (en) Constant temperature control method of gas water heater
JPH09318153A (en) Hot-water supplier
JP3177192B2 (en) Water heater
JP3769659B2 (en) Water volume control device for water heater
JP3894884B2 (en) Heating medium supply type heating equipment
JPH1047772A (en) Hot water supply device
JP3322937B2 (en) Hot water temperature stabilization method of hot water heater
JP2820583B2 (en) Water heater temperature control device
JP3642118B2 (en) Water heater
JP3756998B2 (en) Hot water heater and combustion control method during re-watering
JP3756997B2 (en) Hot water heater and combustion control method during re-watering
JP3848761B2 (en) Water heater
JP3307561B2 (en) Combustion equipment
KR940001218B1 (en) Combustion control device for hot water boiler
JP3300150B2 (en) Combustion apparatus and method for updating combustion capacity
JP2669662B2 (en) Water heater control device
JPH0711361B2 (en) Water heater controller
JP3103674B2 (en) Hot water supply temperature control device
JPH0478899B2 (en)
JPH076627B2 (en) Combustion control device for water heater
JPH02213644A (en) Temperature controller device for hot water feeder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees