JP3576366B2 - Method of producing binder resin for toner for developing electrostatic images - Google Patents

Method of producing binder resin for toner for developing electrostatic images Download PDF

Info

Publication number
JP3576366B2
JP3576366B2 JP32198897A JP32198897A JP3576366B2 JP 3576366 B2 JP3576366 B2 JP 3576366B2 JP 32198897 A JP32198897 A JP 32198897A JP 32198897 A JP32198897 A JP 32198897A JP 3576366 B2 JP3576366 B2 JP 3576366B2
Authority
JP
Japan
Prior art keywords
resin
water
solvent
toner
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32198897A
Other languages
Japanese (ja)
Other versions
JPH11143128A (en
Inventor
園生 松岡
梶野  薫
寺林  崇
芹沢  洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbide Industries Co Inc
Original Assignee
Nippon Carbide Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbide Industries Co Inc filed Critical Nippon Carbide Industries Co Inc
Priority to JP32198897A priority Critical patent/JP3576366B2/en
Publication of JPH11143128A publication Critical patent/JPH11143128A/en
Application granted granted Critical
Publication of JP3576366B2 publication Critical patent/JP3576366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

【0001】
【産業上の利用分野】
本発明は電子写真、静電記録、静電印刷などにおける静電荷像を現像するためのトナー用結着樹脂の製造方法に関するものである。
【0002】
【従来の技術】
静電荷像の現像する方法として、近年、乾式現像方式の技術開発が急速に進められてきた。
かかる定着の方法としては種々のものが知られているが、特に加熱ロ−ラ定着機に代表される接触加熱定着方式は、熱板定着器などの無接触加熱定着方式に比して熱効率が高く、特に高速度定着及び低温度定着が可能である点で優れている。
【0003】
加熱ロ−ラ−定着法では、静電記録体(感光ドラム)上に現像によって得られたトナ−像を一旦紙などの転写シ−トに転写した後、該転写シ−トを加熱圧着を行う定着ロ−ラ−に通してトナ−像をシ−トに融着させて定着が行なわれる。
しかしながら、従来のトナーを使用して加熱ロ−ラ−定着法により定着を行うと、熱ロール表面とトナーが溶融状態で接触するため、トナーが熱ロール表面に付着転移し、次の被定着シートにこれが再転移して汚す(オフセット現象)という問題点があった。
【0004】
一般に、静電荷像現像用トナ−は樹脂成分、顔料や磁性粉もしくは染料からなる着色剤成分および離型剤、電荷制御剤等の添加成分によって構成されいるが、上記問題点を解決するために、定着温度において確実に定着が達成される目的で、トナー用結着樹脂中に低分子量重合体を含有させ、トナ−粘度を下げると共に、接触加熱ロ−ラにトナ−の一部が付着することによるオフセット現象が防止する目的で、当該トナー用結着樹脂中に高分子量重合体を含有させトナ−弾性率を上げる方法が検討されてきた。
【0005】
これら低分子量重合体と高分子量重合体との複合体であるトナー用結着樹脂としては、主にスチレン系樹脂が多く使われており、種々の重合法が検討されてきた。
例えば、特開平2−48657号公報には、多官能性開始剤を用い、懸濁重合法によ り高分子量の重合体を製造し、この高分子量の重合体の存在下に、さらに低分子量の重合体を製造し、得られた重合体を乾燥して無溶媒の高分子量及び低分子量の重合体混合物を得、トナー用結着樹脂として使用することを検討している。
【0006】
しかしながら、一般に懸濁重合法により重合する場合、ジビニルベンゼン、ジエチレングリコールジメタクリレート、トリメチロールプロパンジメタクリレートなどの架橋剤を用いることにより、比較的容易に高分子量の重合体を得ることが可能であるが、低分子量体を製造する段階で問題が多い。すなわち、懸濁重合で低分子量の重合体を得るためには、多量の連鎖移動剤、例えばメルカプタン類やハロゲン化化合物を用いる必要があり、連鎖移動剤を用いた場合、所望されない臭気や、残存ハロゲン化化合物を除去するために、重合後処理を必要とし、コスト高になるという問題があった。更に、未反応の重合性単量体を除去することが難しいという問題も有している。
【0007】
特開平2−48675号公報には、溶液重合法により得た低分子量の重合体を高分子 量重合体を製造するための重合性単量体に溶解させ、多官能性(三官能性以上)開始剤を用いて高分子量重合体を重合し、トナー用樹脂を製造するという技術が開示されている。しかし、溶液重合法による高分子量樹脂の製造は、ワイゼンベルグ効果(攪拌棒に樹脂が巻きつく)が発生し製造が困難であるという問題があった。
また、USP5,084,368号公報には、低分子溶液重合物と高分子塊状重合物を 溶剤中で溶解混合し、溶剤を真空除去して分子量の異なる樹脂の混合物を得ている。しかしながら、高分子量の塊状重合物を溶媒中に溶解するのは極めて手間がかかってコスト高になる。
【0008】
更に、特開平2−118583号公報には低分子量重合体、高分子量重合体及び着色剤を配合、混合した後、混練することによって静電荷像現像用トナーを製造する技術も開示されている。しかしながら、一般に分子量が大きく異なり、更に樹脂組成の異なった重合体は相溶性が乏しいため、低分子量の欠点であるオフセット性の発生、高分子量体の欠点である低温度での定着不足が、重ねて発生するという欠点を有している。
【0009】
【発明が解決しようとする課題】
本発明の目的は、耐オフセット性、定着性、保存時の耐ブロッキング性(非凝集性)、像形成時の現像性等が良好である、臭気の少ない静電荷像現像用トナーを得ることができる、低分子量重合体、高分子量重合体が均一に相溶分散したトナー用結着樹脂を効率的に、且つ容易に製造する方法を提供するものである。
【0010】
【課題を解決するための手段】
本発明者らは、鋭意研究を行った結果、樹脂溶液と樹脂乳化分散液のスラッジとを特定の条件下に混合処理し、更に水分除去処理を施すことにより、上記の目的を達成することができることを見いだし、本発明を完成するに至った。即ち、本発明は、2軸連続混練機を用いて、スチレン系樹脂溶液とスチレン系樹脂乳化分散液のスラッジ中の樹脂粒子を一旦濾過洗浄し、スラッジ中の余分な乳化剤、触媒を水洗除去し、濾別粒子を再度水中に分散させた分散液との存在下で、上記樹脂溶液中の樹脂のガラス転移点以上の温度で混合処理を施し、それと並行して該混練機のジャケット温度を120〜300℃に設定し、投入口から排出口までの滞留時間を1〜60分に設定して、上記混合処理によって生成した組成物から水分及び溶媒を蒸発により除去する水分及び溶媒の除去処理を施し、無溶媒樹脂混合組成物を製造する工程を含むことを特徴とする静電荷像現像用トナー用結着樹脂の製造方法を提供する。好ましくは、樹脂溶液中の溶媒が、6〜12のSP値を有する溶媒であり、好ましくは、樹脂溶液が溶液重合で得られた樹脂溶液であり、好ましくは、樹脂乳化分散液が乳化重合で得られた重合体の乳化分散液であり、好ましくは、樹脂乳化分散液のスラッジが乳化重合で得られた重合体の乳化分散液を塩析することにより得られたスラッジであり、好ましくは、樹脂溶液中の樹脂の重量平均分子量が200,000 以下のスチレン系樹脂であり、上記樹脂乳化分散液中の樹脂の重量平均分子量が50,000以上であるスチレン系樹脂であり、好ましくは、樹脂溶液中の樹脂のGPC分子量ピークMpが1,500 〜30,000で且つその重量平均分子量(Mw)/数平均分子量(Mn)が4.0 未満であり、上記樹脂乳化分散液中の樹脂のGPC分子量ピーク(Mp)が300,000 〜3,000,000 である樹脂であり、好ましくは、混合処理及び水分及び溶媒の除去処理の後に、混練処理を更に含む静電荷像現像用トナー用結着樹脂の製造方法を提供する。更に、本発明は、2軸連続混練機を用いて、スチレン系樹脂溶液とスチレン系樹脂乳化分散液のスラッジ中の樹脂粒子を一旦濾過洗浄し、スラッジ中の余分な乳化剤、触媒を水洗除去し、濾別粒子を再度水中に分散させた分散液との存在下で、上記樹脂溶液中の樹脂のガラス転移点以上の温度で混合処理を施し、それと並行して該混練機のジャケット温度を120〜300℃に設定し、投入口から排出口までの滞留時間を1〜60分に設定して、上記混合処理によって生成した組成物から水分及び溶媒を蒸発により除去する水分及び溶媒の除去処理を施し、無溶媒樹脂混合組成物を製造し、更に着色剤を配合する工程を含むことを特徴とする静電荷像現像用トナーの製造方法を提供する。
【0011】
しかして、本発明によれば、樹脂溶液と樹脂乳化分散液のスラッジとを共存せしめて混合処理を施し、並行して又はその後に水分及び溶媒の除去処理を施すことにより、静電荷像現像用トナー用結着樹脂を効率的に且つ容易に製造することができる。
また、本発明で得たトナー用結着樹脂を使用して静電荷像現像用トナーを製造すると、低分子量重合体と高分子量重合体とが、均一に相溶分散した、非オフセット性、定着性、製造時の粉砕性、保存時の耐ブロッキング性(非凝集性)、像形成時の現像性等において良好であり、臭気の少ない静電荷像現像トナーを製造することができるという顕著な特性を有する。
以下、本発明の静電荷像現像用トナー用結着樹脂の製造方法について詳述する。
【0012】
本発明の静電荷像現像用トナー用結着樹脂の製造方法は、樹脂溶液と樹脂乳化分散液のスラッジとを共存せしめて混合処理を施し、並行して又はその後に水分及び溶媒の除去処理を施し、無溶媒樹脂混合組成物を製造する工程を含むことを特徴とする静電荷像現像用トナー用結着樹脂の製造方法である。
上記樹脂溶液と、樹脂乳化分散液のスラッジとを共存せしめて施す混合処理とは、樹脂溶液と、樹脂乳化分散液のスラッジとを、機械的その他の方法で混合する操作を行うことである。
【0013】
上記混合処理は、好ましくは上記樹脂溶液中の樹脂のガラス転移点以上の温度、更に好ましくは該ガラス転移点よりも20℃以上の温度で行うことにより、得られる樹脂溶液中の樹脂と樹脂乳化分散液のスラッジ中の樹脂との混合物の組成が均一になり、該混合物を用いて作成したトナーの諸物性が向上する。
上記混合処理による上記利点は、該混合処理中に、樹脂乳化分散液のスラッジ中の樹脂粒子あるいは樹脂粒子が更に破壊された微粒子が樹脂溶液に接触し、樹脂乳化分散液のスラッジ中の樹脂粒子が分散された状態で樹脂溶液中の樹脂と合一する作用が、上記温度で促進されるためと考えられる。
混合処理は常圧で行われても、或いは水分及び溶媒の蒸発揮散を抑制するために圧力を加えた状態で行ってもよい。
【0014】
上記水分及び溶媒の除去処理は、上記混合処理によって生成した組成物から水分及び溶媒を蒸発により除去する処理であり、この処理の結果、大部分の水分が除去された無溶媒樹脂混合組成物が得られる。このとき、上記混合物中に例えば残留モノマー、有機溶媒等の揮発性不純物が存在していれば、該揮発性不純物を同時に除去することができる。
水分及び溶媒の除去処理は、上記混合物を混合物中の水及び溶媒の蒸発平衡温度以上に加熱することにより行うことができ、さらに加熱下に減圧にすることにより、更に効率的に行うことができる。水分及び溶媒の除去を常圧で行う場合には、混合物の温度は、樹脂溶液と樹脂乳化分散液のスラッジとを混合した当初は100℃近辺 に設定されればよいが、水分及び溶媒の除去の進行と共に高温となる。
【0015】
上記水分及び溶媒の除去処理は、上記混合処理終了後に行うことができるが、両者を並行して行うことができる。そして両者を並行して行うことが効率的であり、好ましい。
水分及び溶媒の除去処理の開始とともに混合物の水分及び溶媒量の低下が始まり、最終的に大部分の水分及び溶媒が除去されるが、混合処理と並行して行う場合には混合処理の開始とともに混合物中の水分及び溶媒の蒸発が始まり、水分及び溶媒量の低下が始まる。
【0016】
さらに、樹脂溶液中の樹脂と樹脂乳化分散液のスラッジ中の樹脂との混合物の組成を高度に均一とする場合には、混合処理、水分及び溶媒の除去処理の後に、更に混練処理を施すことが好ましい。
本発明において混練りとは、大部分の水分及び溶媒が除去された無溶媒樹脂混合組成物を更に機械的に練り合わせることを言う。
この場合少量の水分及び溶媒を更に除去する条件下で混練りが行われても良い。
混練処理は、樹脂溶液中の樹脂と樹脂乳化分散液のスラッジ中の樹脂の少なくとも一方の樹脂の溶融状態で行われると、より均一な組成の混合物が得られるために好ましい。
【0017】
上記樹脂溶液と、上記樹脂乳化分散液のスラッジとを共存せしめ、混合処理、水分及び溶媒の除去処理、更に必要に応じて混練処理をする方法としては、樹脂溶液と、樹脂乳化分散液のスラッジとを共存せしめ、混合処理、水分及び溶媒の除去処理及び必要に応じて混練処理をするであれば特に制限はないが、例えば、樹脂溶液と、樹脂乳化分散液のスラッジとを加熱機能、混合機能及び蒸発による水分及び溶媒の除去機能を備えた装置に添加して行う方法が挙げられる。
【0018】
上記機能を有する好ましい装置としては、加圧ニーダー、バンバリーミキサー、ロールミル、エクストルーダー、1軸若しくは2軸の連続混練機、若しくは連続混合脱溶媒機又は乾燥機等を挙げることができる。
連続的に処理ができ、混合処理、水分及び溶媒の除去処理及び樹脂溶液中の樹脂と樹脂乳化分散液のスラッジ中の樹脂をより均一に分散させることが可能な混練処理を一つの装置で効率的に行える点で1軸若しくは2軸の連続混練機若しくは連続混合脱溶媒機又は乾燥機が好ましい。
【0019】
2軸連続混練機は各種あるが、なかでも複数のパドルを固定したセルフクリーニング性を有する2本の回転軸又はセルフクリーニング性を有する2本のスクリューを有し、特に、パドルが混練機の胴体に内接して回転するとともに、2軸の相対するパドルが相互に接触し合って回転する2軸連続混練機が混練効果が高く、又作業性が良好であるという観点からより好ましい。また、好ましい2軸連続混練機は、粘度10cps〜1×10cpsの流体をパドル又はスクリューの回転により投入口から排出口まで搬送し得るものである。なお、前記したセルフクリーニング性とは、パドルあるいはスクリューに混合物が残留付着することがほとんどなく、使用後特別に洗浄処理を必要としないことを意味する。
このような2軸連続混練機は、それ自体公知であり、例えば(株)栗本鉄工所からKRCニーダー(商品名)、不二パウダル(株)製のコンティニアス・ニーダー、(株)プラスチック工学研究所製のコンパーチブル2軸押出機として製造、販売されている。
好適な1軸又は2軸の連続混合脱溶媒機又は乾燥機としては、例えば(株)奈良機械製作所のパドルドライヤーなどが製造、販売されている。
【0020】
上記装置により、混合処理及び混練処理は上記装置の攪拌軸に固定されたスクリューあるいはバドルの回転により混合物を混合して施すことができる。また、水分及び溶媒の除去処理は通常装備されている加熱ジャケットあるいは電熱ヒーターで混合物を前記混合物中の水の蒸発平衡温度以上に加熱する、あるいは加熱に加えて装置内を減圧にすることによってより効率的に行うことができる。
また水分及び溶媒の除去処理を行う別法として、例えば上記混合物を必要に応じて加熱後、減圧域に導入し水分及び溶媒を蒸発させる、所謂それ自体公知のフラッシュ法によって実質的に無溶媒の状態とする方法を挙げることができる。
【0021】
上記混合処理及び水分及び溶媒の除去処理は単一の装置で行うこともできるし、別々の装置で行うこともできるが、単一の装置で行うことが好ましい。
更に混練処理を行う場合には、混合処理、水分及び溶媒の除去処理及び混練処理をそれぞれ別々の装置で行うこともできるし、混合処理及び水分及び溶媒の除去処理を単一の第1の装置で行い、混練処理を別の第2の装置で行う、若しくは混合処理を第1の装置で行い、水分及び溶媒の除去処理及び混練処理を別の第2の装置で行うこともできるし、混合処理、水分及び溶媒の除去処理及び混練処理を単一の装置で行うことができるが、特に均一な無溶媒樹脂混合組成物を得る場合には混合処理及び水分及び溶媒の除去処理を単一の第1の装置で行い、混練処理を別の第2の装置で行うのが好ましく、特に作業性を良好に行う場合には混合処理、水分及び溶媒の除去処理及び混練処理を単一の装置で行うことが好ましい。
【0022】
混合処理及び水分及び溶媒の除去処理を単一の第1の装置で行い、混練処理を別の第2の装置で行う場合、混合処理及び水分及び溶媒の除去処理を終えての第1の装置の排出口から得られる無溶媒樹脂混合組成物の水分含有率は20重量%以下が好ましく、5重量%以下がより好ましい。
【0023】
図1及び図2には、好ましい2軸連続混練機の構造が模式的に示されている。図1は概略平面図であり、図2は概略側面図である。図1及び図2に従って、2軸連続混練機を用いて、混合処理、水分及び溶媒の除去処理を並行して施し、更に混練処理を行う態様を説明する。
上記2軸連続混練機は多数のパドル1を固定した2本の回転軸2が設けられており、モーター3によって回転する。この回転運動により、連続的に投入口4から供給される樹脂溶液と樹脂乳化分散液のスラッジとを、樹脂溶液中の樹脂のガラス転移点以上の温度で、混合しつつ、排出口5方向にこれらの樹脂を移動させる。
【0024】
一方、蒸気、オイルなどの熱媒体の循環により加熱されたジャケット6あるいは電熱ヒーター(図示せず)により加熱し、上記乳化分散液のスラッジ中の水分及び樹脂溶液中の溶媒を蒸発口7から排出する。通常、移動する樹脂と加熱ジャケットの間に空間が生じる様に樹脂溶液及び樹脂乳化分散液のスラッジの供給速度が調整され(図示せず)、蒸発した水分及び溶媒はこの空間を経由して蒸発口7から排出される。投入口4近辺では水分及び溶媒が多量に存在するため、混合物の温度は100〜110℃であるが、水分及び溶媒量の減少と共に混合物の温度は上昇し、最終的に混合物中の大部分の水分及び溶媒が除去され、その後、好ましくは樹脂溶液中の樹脂が溶融する温度で、混練処理が行われる。この混練処理により、樹脂溶液中の樹脂と樹脂乳化分散液中のスラッジの樹脂はより一層均一に分散される。混練処理が行われる樹脂溶融領域においても残留水分及び溶媒は蒸発して蒸発口7から排出される。
排出口(5)から得られた樹脂は目的とする用途によって、更に連続的に他の装置に導入しグラニュー状、ペレット状、フレーク状等に加工することもできる。
【0025】
上記のような2軸連続混練装置を用いて混合処理、水分及び溶媒の除去処理及び混練処理を行う場合、ジャケットの加熱温度、混合処理、水分及び溶媒の除去処理及び混練処理を行うための滞留時間、その他の条件等は、樹脂溶液の樹脂及び溶媒の種類、樹脂乳化分散液のスラッジの水分量、排出口(5)から得られる無溶媒樹脂混合組成物の、意図する樹脂溶液と樹脂乳化分散液のスラッジの状態及び水分量、装置の処理能力、その他の要因によって一概に述べることはできない。しかしながら当業者にとって、上記の要因が特定されれば、理論的にかつ実験的に、上記の諸条件を設定することは容易である。
【0026】
一般的には、加熱温度を上げる等の方法により水分及び溶媒の除去速度を高めると、混合処理及び水分及び溶媒の除去処理を行う時間及び装置内の領域が短縮され、混練処理を行う時間及び装置内の領域が拡大される。
【0027】
樹脂溶液中の樹脂及び樹脂乳化分散液のスラッジ中の樹脂が、例えばポリスチレン樹脂の場合、ジャケットの温度を120〜300℃、好ましくは160〜250℃に設定し、投入口4から排出口5までの滞留時間を、装置の混練能力、その他の要因にもよるが、通常1〜60分、好ましくは5〜30分となるように設定することができる。
【0028】
上記装置の如き水分及び溶媒の蒸発口(7)を有する装置においては、水分及び溶媒の蒸発口(7)の開口面積を大きくすると、多量の水分及び溶媒を含んだ樹脂混合物からの水分及び溶媒の除去処理が効率的となる。即ち、2軸連続混練機において、胴体上部に設けられている投入口(4)と蒸発口(7)の開口面積の和が、胴体の長さと幅(各々図1のLとDに相当)の積の15〜100%の範囲に あることが、水分及び溶媒の除去処理を効率的に行う観点から、好ましい。上記の値が100%の場合は、2軸連続混練機の胴体上部が全長開口している場合であ り、好ましい態様の一つである。この場合ジャケットは胴体上部に存在せず、胴体下部に設けられるか、ジャケットを設けずに回転軸内あるいはパドル内に熱媒体を循環させる。
【0029】
本発明において、本発明の静電荷像現像用トナーの結着樹脂の製造において混合される樹脂溶液とは、溶媒中に樹脂が溶解した樹脂溶液をいう。樹脂溶液中の溶媒の量は10重量%を超える量、好ましくは20〜80重量%以上、特に好ましくは30〜70重量%以上である。
【0030】
本発明の静電荷像現像用トナーの結着樹脂の製造において、上記樹脂溶液中の樹脂は、トナー結着樹脂中の低分子量の重合体成分として使用することが好ましい。
【0031】
上記トナー結着樹脂中の低分子量の重合体成分として使用される樹脂溶液中の樹脂の分子量は、ゲルパーミエーションクロマトグラフィー(GPC)の測定チャートにおける最大値を示す分子量(分子量ピーク)Mpで表すと1,500〜30,000が好ましく、更に好ましくは、2,000〜20,000である。
Mpが上記下限値未満であると定着性は良好であるが、現像機中でトナ−が凝集し易く現像剤の寿命が短い。又、トナ−の保存安定性が悪く、高温保存時に固まる。又、Mpが上記上限値を越えると、スペント化及び微細化は起きにくいが低温領域での定着性は不良となり、定着下限温度が上昇し、かつコ−ルド・オフセット温度も不良となり好ましくない。
【0032】
上記低分子量の重合体成分として使用される樹脂の重量平均分子量Mwは、1,000〜200,000が好ましく、更に好ましくは1,000〜100,000;特に好ましくは1,000〜40,000である。
Mwが上記下限値未満であると定着性は良好であるが、現像機中でトナ−が凝集し易く現像剤の寿命が短い。又、トナ−の保存安定性が悪く、高温保存時に固まる。又、Mwが上記上限値を越えると、スペント化及び微細化は起きにくいが低温領域での定着性は不良となり、定着下限温度が上昇し、かつコ−ルド・オフセット温度も不良となり好ましくない。
又、重量平均分子量Mwと数平均分子量Mnとの比Mw/Mnが4未満であることが好ましい。Mw/Mnが上記上限値以上であると定着性が不良となり好ましくない。
【0033】
上記樹脂溶液中の樹脂は、トナーの結着樹脂として使用される樹脂であれば特に制限はなく、どのような樹脂であっても良く、例えば、アクリル系樹脂、スチレン系樹脂、エポキシ樹脂、ポリエステル樹脂、スチレンーブタジエン樹脂等が挙げられるが、トナーとしての性能が得られやすい観点からスチレン系樹脂が好ましい。
【0034】
上記スチレン系樹脂とはスチレン系単量体を主成分とする(共)重合体であり、スチレン系単量体の例としては、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、α−メチルスチレン、p−エチルスチレン、2,4−ジメチルスチレン、p−n−ブチルスチレン、p−tert−ブチルスチレン 、p−n−ヘキシルスチレン、p−n−オクチルスチレン、p−n−ノニルスチレン、p−n−デシルスチレン、p−n−ドデシルスチレン、p−メトキシスチレン、p−フェニルスチレン、p−クロルスチレン、3,4−ジクロルスチレンなどを挙げることができるが、このうちスチレンが最も好ましい。
【0035】
上記スチレン系単量体と共重合することのできる他の単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸エチルヘキシル、メタアクリル酸メチル、メタクリル酸エチル、メタクリル酸nブチル、メタクリル酸イソブチル、メタクリル酸ラウリル、メタクリル酸ステアリルがあり、特にアクリル酸nブチル、アクリル酸エチルヘキシル、メタクリル酸n−ブチル、メタクリル酸ラウリルが挙げられる。このアクリル系成分は、前記スチレン系成分のモノマ−と通常の条件下で重合せしめて得られる共重合体のガラス転移温度が30〜80℃の範囲内にあることが好ましく、更に好ましくは、ガラス転移温度が40〜70℃の範囲内にあることが好ましい。
【0036】
上記溶媒としては特に制限はなく、いずれの溶媒であってもよく、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、これらの異性体等の脂肪族炭化水素類;シクロヘキサン、メチルシクロヘキサン等の環状脂肪族炭化水素;ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン等の芳香族炭化水素;1−クロルブタン、塩化アミル、ジ臭化エチレン、塩化メチレン、ジ塩化エチレン、ジ塩化プロピレン、ジクロルペンタン、クロロホルム、1,1,2−トリクロルエタン、1,2,3−トリクロルプロパン、四塩化炭素、1,1,2,2−テトラクロルエタン、トリクロルエチレン、パークロルエチレン、エピクロルヒドリン、モノクロルベンゼン、ジクロルベンゼン、トルクロルベンゼン、弗化素炭化水素等のハロゲン化炭化水素類;メチルアルコール、エチルアルコール、アリルアルコール、プロピルアルコール、ブチルアルコール、アミルアルコール、ヘキシルアルコール、オクチルアルコール、これらの異性体等のアルコール類;ジエチルアミン、トリエチルアミン、ブレルアミン、ジアミルアミン、プロピレンジアミン、アニリン、ジメチルアニリン、シクロヘキシルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、キノリン等のアミン類;アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、メチルヘキシルケトン、ジイソブチルケトン、シクロヘキサノン、メチルヘキサノン等のケトン類;エチルエーテル、イソプロピルエーテル、ノルマルブチルエーテル、ノルマルヘキシルエーテル、ジオキサン、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルカルビトール、エチルカルビトール、ブチルカルビトール等のエーテル類;ジエチルカーボネート、ギ酸メチル、ギ酸エチル、ギ酸ブチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸アミル、プロピオン酸エチル、プロピオンサンブチル、プロピオン酸アミル、酪酸エチル、酪酸ブチル、酪酸アミル、蓚酸ジエチル、蓚酸ジブチル、乳酸メチル、乳酸エチル、乳酸ブチル、これらの異性体等のエステル類;ガソリン、石油エーテル、石油ベンジン、リグロイン、ミネラルスピリット、灯油、軽油、重油等の石油系炭化水素;ニトロメタン、ニトロエタン、ニトロプロパン、ニトロベンゼン等のニトロ炭化水素;アセトニトリル、ベンゾニトリル等のニトリル類;アセタール、テトラヒドロフラン、酢酸フルフリル、2硫化炭素等が挙げることができ、これらの溶媒の単独あるいは複数のものを使用することができる。
【0037】
上記溶媒中、脂肪族炭化水素類、環状脂肪族炭化水素類、芳香族炭化水素類、ケトン類、エーテル類、エステル類が樹脂との相溶性が良く好ましく、これらの溶剤の内沸点が50〜170℃の溶剤が、蒸発除去が効果的に行える点で更に好まし い。
上記溶媒中、溶剤の溶解度パラメーター(SP値)は好ましくは6〜12、更に好ましくは7〜11、特に好ましくは8〜10であり、SP値がこの範囲であると樹脂と溶媒との相溶性が良く、混合を行うと、樹脂溶液中の樹脂と、樹脂乳化分散液のスラッジ中の樹脂の相溶性が良好になる傾向がある。
【0038】
トナー結着樹脂中の低分子量の重合体成分として使用される上記の樹脂溶液中の樹脂は、縮合重合、付加重合、ビニル単量体の溶液重合等で直接溶液樹脂を得る方法;樹脂を溶液に溶解して得る方法等が挙げられるが、容易に得られる観点からビニル単量体の溶液重合による方法が好ましい。
【0039】
上記溶液重合は、上記単量体、溶剤及び該単量体に溶解する触媒とを共存せしめ、原料混合物を重合温度に加熱することにより行うことができる。
バッチ単位で重合しても、又原料添加、重合及び重合体の取り出しを連続的に1段又は多段で行っても良いが、連続的に溶液重合を行い、直接前記着色剤との混合装置に添加すると、効率的で好ましい。
【0040】
上記溶液重合の重合温度は40〜250℃が好ましく、更に好ましくは60〜230℃、特に好ましくは70〜220℃である。
反応温度が上記下限の温度未満であると反応速度が遅く、又、反応温度が上記上限の温度を超えるとと重合反応と共に、重合体の分解反応が起り、分子量500 以下のオリゴマーが増大し、得られる樹脂を配合してトナーを作成すると、トナーの保存性及びスペント化・微細化を起し易い。
【0041】
溶液重合に使用される触媒は、任意の従来の油溶性開始剤が使用できる。一群の適当な開始剤は、ベンゾイルパーオキサイド、t−ブチルハイドロパーオキサイド、ジ−t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t−ヘキシルハイドロパーオキサイド、p−メンタンハイドロパーオキサイド、ジ− アゾビスイソブチロニトリルが挙げられる。
特に反応温度が170℃以上と高いため、好適な開始剤としては、t−ブチルハイドロパーオキサイド、ジ−t−ブチルハイドロパーオキサイドが挙げられる。
フリーラジカル開始剤の使用量は、前記単量体の重量に基づいて、0.01〜5%の量が好ましく、0.03%〜3%の量が更に好ましく、0.05%〜1%の量が特に好ましい。
【0042】
上記の如くして得られるスチレン系低分子量重合体は、転換率が80%以上、好ましくは90%以上、更に好ましくは95%以上の転換率となる様に反応温度と反応滞留時間を設置するのが好ましい。
【0043】
本発明において、静電荷像現像用トナー用結着樹脂の製造方法で混合される樹脂乳化分散液のスラッジとは、樹脂乳化分散液中の分散樹脂粒子の分散安定性を何らかの方法で低下させた樹脂粒子の分散液であって、樹脂乳化分散液中の樹脂粒子同士が凝集したものも含まれる。これらのスラッジ中の樹脂粒子は粒子の分散安定性が損なわれているため、機械的攪拌により分散しているが、静置することにより、あるいは水で希釈することにより容易に沈降する。
上記スラッジ中の樹脂粒子の数平均粒径は好ましくは0.1μ〜1cm,更に好ましくは0.5μ〜0.3cm,特に好ましくは1μ〜0.1cmである。
【0044】
本発明の静電荷像現像用トナーの結着樹脂の製造において、上記樹脂乳化分散液のスラッジ中の樹脂は、トナー結着樹脂中の高分子量重合体成分として使用され、前記低分子量の重合体成分として使用される樹脂溶液と組み合わせて使用されるのが好ましい。従って、樹脂乳化分散液のスラッジ中の樹脂の重量平均分子量は、樹脂溶液のそれよりも大であることが好ましい。
【0045】
トナー結着樹脂中の高分子量の重合体成分として使用される樹脂乳化分散液中のスラッジの樹脂の分子量は、GPCの測定チャートにおける前記ピーク位置分子量Mpで表して、 300,000〜 3,000,000が好ましく、更に好ましくは 500,000〜 2,000,000、特に好ましくは 600,000〜 1,000,000のものが使用される。
上記Mpが上記下限値未満であると定着性は良好であるがホット・オフセットが発生しやすくなり定着可能温度幅が狭くなり好ましくない。
更に上記高分子量の重合体成分として使用される上記樹脂の分子量は、重量平均分子量Mwで表すと 100,000以上が好ましく、更に好ましくは 200,000以上、特に好ましくは 300,000以上である。
【0046】
上記樹脂乳化分散液のスラッジの樹脂の種類は前記トナー結着樹脂中の低分子量の重合体成分として使用される樹脂と同一のものを挙げることができ、特にポリスチレン系樹脂が好ましい。
【0047】
樹脂乳化分散液中の分散樹脂粒子の分散安定性を低下させて、樹脂乳化分散液のスラッジを得る方法としては、樹脂乳化分散液のスラッジを得ることのできる方法であれば特に制限はなく、いずれの方法でも良いが、例えば、樹脂乳化分散液に無機金属塩を加えて塩析する方法、樹脂乳化分散液のpHを調節して粒子の分散安定性を損なう方法、有機溶媒を加えて不安定にさせる方法、樹脂乳化分散液中の樹脂粒子の帯電極性とは逆の極性を持つ乳化剤の水溶液を加える方法、樹脂乳化分散液に強力な機械的攪拌を行って凝集させる方法、樹脂乳化分散液を冷凍した後解凍して凝集させる方法等が挙げられるが、容易に行える観点から、樹脂乳化分散液に金属塩を加えて塩析する方法、樹脂乳化分散液のpHを調節して粒子の分散安定性を損なう方法が好ましい。
【0048】
上記樹脂乳化分散液に金属塩を加えて塩析する場合には、例えば、樹脂乳化分散液を攪拌しながら、無機金属塩の水溶液を添加して行うことができる。
上記無機金属塩としては、水溶性の無機金属塩であれば特に制限はなく、いずれの無機金属塩も使用することができるが、例えば、各種金属のハロゲン化物、硫酸塩、硝酸塩、燐酸塩、酢酸塩、炭酸塩等を挙げることができ、これらの金属塩の金属としては、ナトリウム、カリウム、マグネシウム、カルシウム、鉄、亜鉛、バリウム、アルミニウム、チタン、アルミニウム等を挙げることができる。
【0049】
樹脂乳化分散液のpHを調節して粒子の分散安定性を低下させる場合には、例えば、樹脂乳化分散液がアニオン性の乳化剤で安定化されている場合には、pHを下げることにより行うことができ、樹脂乳化剤がカチオン性の乳化剤で安定化されている場合にはpHを上げることにより行うことができる。
前者の場合において、設定するpHは1〜6が好ましく、1〜3が更に好ましく、樹脂乳化分散液を攪拌しながら塩酸、硫酸、燐酸、酢酸、炭酸等あるいはそれらの水溶液を加えることにより、このpH領域にpHを設定することができる。
後者の場合においては、設定するpHは8〜14が好ましく、12〜14が更に好ましく、樹脂乳化分散液にアンモニア、各種のアミン等あるいはそれらの水溶液を加えることにより、このpH領域にpHを設定することができる。
【0050】
有機溶媒を加えて粒子分散性を不安定にさせる場合には、水に溶解し、樹脂を溶解しない溶媒を樹脂乳化分散液中に添加して行うことができる。
上記溶媒としては、例えば、樹脂乳化分散液中にメタノール、エタノール、プロパノール、ブタノール等のアルコール類、アセトニトリル、プロピオニトリル、ブチロニトリル等のニトリル類、アセトン、ジオキサン等のケトン類が挙げられる。
【0051】
樹脂乳化分散液中の樹脂粒子の帯電極性とは逆の極性を持つ乳化剤の水溶液を加える方法でスラッジを作成する場合には、プラス帯電をしている樹脂乳化分散粒子に対しては、乳化剤としてカルボン酸系、スルフォン酸系、燐酸系、等のアニオン活性剤を使用し、マイナス帯電をしている樹脂乳化分散粒子に対しては、3級アミン系、4級アミン系等のカチオン乳化剤を使用することができる。
また、ポリアミン系、ポリアクリルアミド系、ポリアクリル系等の高分子凝集剤、アルギン酸塩系、セルロース系等の水溶性親水コロイドを添加してスラッジを作成することもできる。
【0052】
上記のようにして製造したスラッジ中の樹脂粒子を一旦濾過洗浄し、スラッジ中の余分な乳化剤、触媒等を水洗除去し、濾別粒子を再度水中に分散させてスラッジとして使用することができる。
【0053】
上記のスラッジのベースとなる樹脂乳化分散液は、樹脂が乳化状態に分散されたものであって、樹脂が乳化状態に分散されたものであれば特に制限はなく、いずれのものでも良いが、例えば、樹脂を水中に強制乳化分散させた樹脂乳化分散液、乳化重合で得られる樹脂乳化分散液等が挙げられるが、保存時に安定であるという観点から、乳化重合で得られた樹脂乳化分散液が好ましい。
さらには樹脂粒子が、樹脂自体の持つ極性によって自己安定化した、乳化剤が使用されていない樹脂粒子であっても良い。
【0054】
樹脂乳化分散液を乳化重合で得るための乳化重合の方法は、公知の乳化重合の方法を用いることができる。
【0055】
上記の如くし得られたグラニュー状、ペレット状、フレーク状等の無溶媒樹脂混合組成物に、着色剤、必要に応じて帯電制御剤、磁性体、離型剤等の添加剤を配合して均一に混合溶融し、溶融混合物を冷却後必要に応じ粗砕した上ジェットミル等で微粉砕の後、分級機で分級することにより、所望の粒子径の静電荷像現像用トナーを得ることができる。
【0056】
上記着色剤の使用量は無溶媒樹脂混合組成物100重量部に対して1〜200重量部が好ましく、3〜150重量部が更に好ましい。
上記着色剤としては、無機顔料、有機顔料及び合成染料を挙げることができ、無機顔料または有機顔料が好ましく用いられ、また、一種若しくは二種以上の顔料及び/または一種若しくは二種以上の染料を組み合わせて用いることもできる。
【0057】
上記無機顔料としては、金属粉系顔料、金属酸化物系顔料、カ−ボン系顔料、硫化物系顔料、クロム酸塩系顔料、フェロシアン化塩系顔料を挙げることができる。
【0058】
上記金属粉系顔料の例としては、例えば、亜鉛粉、鉄粉、銅粉等を挙げることができる。
上記金属酸化物系顔料としては、例えば、マグネタイト、フェライト、ベンガラ、酸化チタン、亜鉛華、シリカ、酸化クロム、ウルトラマリ−ン、コバルトブル−、セルリアンブル−、ミラネルバイオレット、四酸化三鉛等を挙げることができる。
【0059】
上記カ−ボン系顔料としては、例えば、カ−ボンブラック、サ−マトミックカ−ボン、ファ−ネスブラック等を挙げることができる。
上記硫化物系顔料としては、例えば、硫化亜鉛、カドミウムレッド、セレンレッド、硫化水銀、カドミウムイエロ−等を挙げることができる。
【0060】
上記クロム酸塩系顔料としては、例えば、モリブデンレッド、バリウムイエロ−、ストロンチウムイエロ−、クロムイエロ−等を挙げることができる。フェロシアン化化合物系顔料としては、例えば、ミロリブル−等を挙げることができる。
【0061】
また、上記有機顔料としては、アゾ系顔料、酸性染料系顔料及び塩基性染料系顔料、媒染染料系顔料、フタロシアニン系顔料、並びにキナクドリン系顔料及びジオキサン系顔料等を挙げることができる。
上記アゾ系顔料としては、例えば、ベンジジンイエロ−、ベンジジンオレンジ、パ−マネントレッド4R、ピラゾロンレッド、リソ−ルレッド、ブリリアントスカ−レットG、ボンマル−ンライト等を挙げることができる。
【0062】
上記酸性染料系顔料及び塩基性染料系顔料としては、例えば、オレンジII、アシットオレンジR、エオキシン、キノリンイエロ−、タ−トラジンイエロ−、アシッドグリ−ン、ピ−コックブル−、アルカリブル−等の染料を沈澱剤で沈澱させたもの、あるいはロ−ダミン、マゼンタ、マカライトグリ−ン、メチルバイオレット、ビクトリアブル−等の染料をタンニン酸、吐酒石、リンタングステン酸、リンモリブデン酸、リンタングステンモリブデン酸などで沈澱させたもの等を挙げることができる。
【0063】
上記媒染染料系顔料としては、例えば、ヒドロキシアントラキノン類の金属塩類、アリザリンマ−ダ−レ−キ等を挙げることができる。
上記フタロシアニン系顔料としては、例えば、フタロシアニンブル−、スルホン化銅フタロシアニン等を挙げることができる。
上記キナクリドン系顔料及びジオキサン系顔料としては、例えば、キナクリドンレッド、キナクリドンバイオレット、カルバゾ−ルジオキサンバイオレット等を挙げることができる。
【0064】
上記合成染料としては、アクリジン染料、アニリン黒、アントラキノン染料、アジン染料、アゾ染料、アゾメチン染料、ベンゾ及びナフトキノン染料、インジゴ染料、インドフェノール、インドアニリン、インダミン、ロイコ建染メ染料エステル、ナフタールイミド染料、ニグロシン、インジュリン、ニトロ及びニトロソ染料、オキサジン及びジオキサジン染料、酸化染料、フタロシアニン染料、ポリメチン染料、キノフタロン染料、硫化染料、トリ及びジアリルメタン染料、チアジン染料、キサンテン染料等を挙げることができるが、好ましくは、アニリン黒、ニグロシン染料、アゾ染料が用いられ、さらに好適なものとしては、アゾ染料のうち分子中にサリチル酸、ナフトエ酸または8−オキシキノリン残基を有し、クロム、銅、コバルト、鉄、アルミニウム等の金属と錯塩を形成するものが用いられる。
【0065】
上記帯電制御剤としては、プラス用としてニグロシン系の電子供与性染料、その他、ナフテン酸または高級脂肪酸の金属塩、アルコキシル化アミン、4級アンモニウム塩、アルキルアミド、キレ−ト、顔料、フッ素処理活性剤等を挙げることができ、また、マイナス用として電子受容性の有機金属錯体、キレート化合物、その他、塩素化パラフィン、塩素化ポリエステル、酸基過剰のポリエステル、銅フタロシアニンのスルホニルアミン等を挙げることができる。
【0066】
上記離型剤としてはパラフィンワックス及びその誘導体、マイクロクリスタリンワックス及びその誘導体、フィッシャートロプシュワックス及びその誘導体、ポリオレフィンワックス及びその誘導体、カルナバワックス及びその誘導体等が挙げられる。誘導体は、酸化物、ビニル系モノマーとのブロック共重合体、ビニル系モノマーとのグラフト変成物も含む。
【0067】
その他、アルコール、脂肪酸、酸アミド、エステル、ケトン、硬化ひまし油及びその誘導体、植物系ワックス、動物系ワックス、鉱物系ワックス、ペトロラクタムも利用できる。
【0068】
上記トナーに更に流動性向上剤を添加して用いてもよい。
流動性向上剤としては、トナー粒子に添加することにより、流動性が添加前後を比較すると増加しうるものであれば、使用可能である。例えば、疎水性コロイダルシリカ微粉体、コロイダルシリカ微粉体、疎水性酸化チタン微粉体、酸化チタン微粉体、疎水性アルミナ微粉体、アルミナ微粉体、それらの混合粉体等が挙げられる。
【0069】
上記の如くして製造されたトナーは、鉄粉或いはガラスビ−ズなどより成るキャリアが前記トナ−に混合されたいわゆる二成分系現像剤を用いる現像法において、樹脂被覆層を有するキャリアを使用する現像剤に好適に用いられる。
更に、二成分系現像剤のみに限定するものではなく、キャリアを用いない一成分系現像剤、例えばトナ−中に磁性粉を含有した磁性一成分トナ−、トナ−中に磁性粉を含有しない非磁性一成分トナ−についても適用できる。
【0070】
樹脂被覆層を有するキャリアとしては、一般に鉄、ニッケル、フエライト、ガラスビ−ズより成る核体粒子の表面を絶縁性樹脂の被覆層により被覆したキャリアが代表的なものであり、絶縁性樹脂材料としては、一般にフッ素樹脂、シリコン樹脂、アクリル樹脂、スチレンアクリル共重合樹脂、ポリエステル樹脂、ポリブタジエン樹脂が代表的なものとして挙げられる。
本発明により得られる静電荷像現像用トナ−と樹脂被覆層を有するキャリアとを成分とする現像剤を用いた場合、キャリア粒子の表面にトナ−粒子が付着して汚染されるスペントが著しく少ない、キャリアとトナ−の摩擦帯電特性を制御することが可能であり、耐久性に優れ使用寿命が長い点で特に高速の電子写真機に好適である。
また、本発明の製造方法により得られる結着樹脂以外に他のスチレン系樹脂、ポリエステル系樹脂等の結着樹脂を補助的にブレンドして使用してもよいが、全結着樹脂中に補助的に用いられる上記結着樹脂が占める割合は30重量%以下が好ましい。
【0071】
更に、本発明の製造方法により静電荷像現像用トナー用結着樹脂を製造する際に、樹脂溶液又は樹脂乳化分散液のスラッジと共に、上記の各種添加剤を配合して、直接トナーを製造することもできる。
また、本発明の製造方法により得られる結着樹脂以外に他のスチレン系樹脂、ポリエステル系樹脂等の結着樹脂を補助的にブレンドして使用してもよいが、全結着樹脂中に補助的に用いられる上記結着樹脂が占める割合は30重量%以下が好ましい。
【0072】
以下、本発明を実施例、比較例により具体的に説明する。
【実施例】
以下の実施例で使用する各試験方法を以下に説明する。
〔残存単量体測定法〕
無溶媒樹脂混合組成物中の各単量体の残存単量体量は、ガスクロマトグラフィー(GC)に、カラム(25%Thermon1000)を装着した装置を用いて、試料をク ロロホルムに2.5wt%の濃度で溶解し、濾過した抽出液を3μl注入して測定を行った。
なお、試料の濃度測定に際しては、各単量体の検量線より算出した。
【0073】
〔分子量測定法〕
各種樹脂の分子量分布測定は、ゲルバーミエーションクロマトグラフィー(GPC)に、カラム(東ソー(株)製:GMH×3本)を装着した装置を用いて、試料をテトラヒドロフラン(THF)の0.2wt%の濃度で溶解し、温度20℃ において1ml/minの流速で測定を行った。なお、試料の分子量測定に際しては、該 試料の有する分子量が、数種の単分散ポリスチレン標準試料により作成された検量線の分子量の対数とカウント数が直線となる範囲内に包含される測定条件を選択した。
【0074】
〔粒子径測定法〕
エマルジョンの粒子径測定は、光散乱(日機装(株)製マイクロトラック)により測定した。
【0075】
実施例1
(樹脂溶液の調整)
攪拌機、加熱装置、冷却装置、温度計及び滴下ポンプを備えたオートクレーブを、窒素ガスで置換した後、内温を180℃に保持しながら、スチレン100重量部、キシレン50重量部及びジ・ターシャリー・ブチル・パーオキサイド1.5重量部を 均一に混合した単量体混合溶液を30分かけて連続的に添加し、添加終了後内部温度を180に保持しながら、更に2時間保持し、冷却して樹脂溶液を得た。得られた樹脂溶液の固形分は65%、分子量ピークMpが4,400で重量平均分子量Mw が5,000であった。
【0076】
(樹脂乳化分散液の調整)
攪拌機と滴下ポンプを備えた容器に、脱イオン水27重量部及びアニオン性乳化剤(花王(株)製:商品名ネオゲンR)1重量部を仕込み、攪拌溶解した後、スチレン75重量部、アクリル酸ブチル25重量部、ジビニルベンゼン0.05重量部からなる単量体混合液を攪拌滴下し、単量体乳化分散液を得た。
【0077】
次に、攪拌機、圧力計、温度計及び滴下ポンプを備えた耐圧反応容器に、脱イオン水120重量部を仕込み、窒素置換した後、80℃に昇温し、上記単量体乳化分 散液の15重量%を耐圧反応容器へ添加し、さらに、2重量%過硫酸カリウム水溶液1重量部を添加し、80℃で初期重合を行った。初期重合終了後、85℃に昇温して残りの単量体乳化分散液及び2重量%過硫酸カリウム4重量部を3時間で添加し、その後、同温度にて2時間保持し、粒子径0.13μm固形分濃度40%のスチレン系樹脂乳化分散液を得た。
得られた樹脂乳化分散液は重合転換率も高く、安定に重合可能であった。
樹脂乳化分散液を超遠心分離器で、樹脂を分離後、分子量を分析した結果、重量平均分子量Mwは970,000、分子量ピークMpは720,000であった。
【0078】
(樹脂乳化分散液のスラッジの調整)
ディスパーと滴下ポンプを備えたステンレス容器に、上記樹脂粒子分散液100重量部及び脱イオン水30重量部を仕込み、混合したのち、高速で撹拌しながら2%塩化カルシウム水溶液20重量部を30分で添加し、さらに2時間攪拌を続けた。静置して上澄みを除去し、再度水を添加して分散させた後、フィルタープレスで脱水洗浄し、不純物を除去した後、再度水を添加して分散させて、数平均粒子径1.1mm、固形分52%のスラッジを得た。
【0079】
(無溶媒樹脂混合組成物の調製)
上記樹脂溶液153重量部、及び攪拌して均一にした上記樹脂乳化分散液のスラッジ100重量部を、図1に示した連続混練機((株)栗本鐵工所製:商品名KRCニーダー)でジャケット温度215℃にて、連続的に混合処理及び加熱して水分除去処理し、水分が0.1%以下の蒸発脱水混練物を得た。得られた蒸発脱水混練物の残存単量体含有量は70ppmであった。
【0080】
(トナーの調製)
上記無溶媒樹脂混合組成物100重量部、カーボンブラック(三菱化学(株)製 :商品名カーボンブラックMA−100)6重量部、ポリプロピレンワックス(三洋化成(株)製:商品名ビスコール550P)2重量部、ニグロシン染料(オリエント化学(株)製:商品名ボントロンN−01)2重量部をボールミルで粉砕混合した後、140℃の熱ロールで30分間よく混練した。
冷却後、ハンマーミルで粗砕し、次いでジェットミルで微粉砕を行った。更に得られた微粉砕粉体を風力分級機にて分級を行い5〜20μmの粒子を得た後、疎水性シリカ(日本エアロジル(株)製:商品名R−972 )0.2重量部を加えて混合 し、平均粒子径9.8μmのトナーを得た。
上記トナーとシリコン樹脂被覆キャリアを用いて市販の複写機の定着器に温度センサーを取り付けた複写機で複写試験を行ったところ、画像の定着は140℃か ら可能となり225℃においても加熱定着ロールへのトナーのオフセットによる汚 れはなく100,000枚の複写後もキャリアへのトナー・スペントがなく初期と同様 、汚れカブリのない鮮明な画像が得られた。
【0081】
実施例2
(樹脂乳化分散液の調整)
樹脂乳化分散液の調整における単量体の組成をスチレン66重量部アクリル酸ブチル18重量部、メタクリル酸ブチル16重量部及びジビニルベンゼン0.03重量部とし、乳化剤をアニオン乳化剤(第1工業製(株):商品名ハイテノール N−08)0.8重量部とする以外は実施例1と同様にしてして樹脂乳化分散液を得た。
【0082】
(樹脂乳化分散液のスラッジの調整)
実施例1で行われた樹脂乳化分散液のスラッジの調整において、樹脂乳化分液を上記で調整した樹脂乳化分散液とし、2%塩化カルシウム水溶液20重量部にかえて塩酸5重量部及びメタノール15重量部を添加する以外は全く実施例1と同様にしてスラッジを調整し、固形分58%のスラッジを得た。
(無溶媒樹脂混合組成物の調整)
使用する樹脂原料として、実施例1で調整した樹脂溶液153重量部及び上記樹脂乳化分散液のスラッジ130重量部を使用する以外は全く実施例1と同様にして無溶媒樹脂混合組成物を調整した。
水分は0.1%以下、残存単量体含有量は80ppmであった。
【0083】
(トナーの調整)
使用する樹脂として実施例1で調整した無溶媒樹脂混合組成物100重量部を使用するかわりに上記無溶媒樹脂混合組成物を100重量部を使用する以外は、全く実施例1と同様にしてトナーを得た。
実施例1と同様にしてトナーを得、実施例1と同様の複写試験を行ったところ、画像の定着は155℃より可能となり、230℃においてもオフセットによる汚れはなく100,000枚の複写後も初期と同様、汚れカブリのない鮮明な画像が得られた。
【0084】
実施例3
(無溶媒樹脂混合組成物の調整)
200℃に溶融した実施例1で調整した樹脂溶液153重量部と実施例1で調整した樹脂乳化分散液のスラッジ130重量部とを、プラスチック工学研究所製のコンパーチブル2軸押出機でジャケット温度200℃にて、混合処理及び加熱して減圧下で水分及び溶媒の除去処理し、水分が0.1%以下の蒸発脱水混練物を得た。得られた蒸発脱水混練物の残存単量体含有量は60ppmであった。
【0085】
(トナーの調整)
上記無溶媒樹脂混合組成物を使用する以外は、実施例1と同様にしてトナーを得、同様の複写試験を行ったところ、画像の定着は140℃より可能となり、225 ℃においてもオフセットによる汚れはなく100,000枚の複写後も初期と同様、汚れカブリのない鮮明な画像が得られた。
【0086】
比較例1
(懸濁重合樹脂の調整)
撹拌機と滴下ポンプを備えた容器に、脱イオン水200重量部及びポリビニルアルコール〔(株)クラレ製:商品名PVA117〕1重量部を仕込み、撹拌溶解した後、スチレン75重量部、アクリル酸ブチル25重量部、ジ−t−ブチルパーオキシヘキサヒドロテレフタレート(日本化薬(株)製:商品名カヤエステルHTP)0.15重量部からなる単量体混合液を添加した。撹拌下に単量体混合物を分散しつつ、90℃で8時間重合し、懸濁重合樹脂分散液を得た。
次に、上記懸濁重合樹脂分散液からスチレン・アクリル酸ブチル共重合樹脂を分離した後、乾燥して懸濁重合樹脂を得た。
得られた上記懸濁重合樹脂の平均粒子径は250μmであり、重量平均分子量M wは 690,000、ピーク位置分子量Mpは 550,000であった。
【0087】
(無溶媒樹脂混合組成物の調整)
使用する樹脂として、実施例1で調整した樹脂溶液153重量部及び上記懸濁重 合樹脂52重量部を使用する以外は全く実施例1と同様にして無溶媒樹脂混合組成物を調整した。
水分は0.1%以下、残存単量体含有量は860ppmであった。
【0088】
(トナーの調整)
使用する樹脂として実施例1で調整した無溶媒樹脂混合組成物100重量部を使 用する変わりに上記無溶媒樹脂混合組成物を100重量部を使用する以外は、全く 実施例1と同様にしてトナーを得た。
実施例1と同様にしてトナーを得、実施例1と同様の複写試験を 行ったところ、定着可能温度が165℃と高く、210℃で加熱定着ロールへのオフセットが激しく、又、得られた画質もカブリの多いものであった。
【0089】
【発明の効果】
本発明の静電荷像現像用トナー用結着樹脂の製造方法は、樹脂溶液と樹脂乳化分散液のスラッジとの存在下で、混合処理を施し、それと並行又はその後に水分及び溶媒の除去処理を施し、無溶媒樹脂混合組成物を製造する工程を含むことを特徴とする静電荷像現像用トナー用結着樹脂を得ることを特徴とするものである。
【0090】
本発明によれば、樹脂溶液と樹脂乳化分散液のスラッジとから均一に混合された無溶媒樹脂混合組成物を製造後、粉砕することにより静電荷像現像用トナー用結着樹脂を効率的に、且つ容易に製造することができる。また、本発明のトナー用結着樹脂を使用して静電荷像現像用トナーを製造すると、低分子量重合体、高分子量重合体及び着色剤が、均一に相溶分散した、非オフセット性、定着性、製造時の粉砕性、保存時の耐ブロッキング性(非凝集性)、像形成時の現像性等において良好であり、臭気の少ない静電荷像現像トナーを製造することができる。
【図面の簡単な説明】
【図1】樹脂溶液と樹脂乳化分散液のスラッジとを共存せしめ、混合処理及び水分及び溶媒の除去処理を施すのに好ましい2軸連続混練り機であり、(イ)はその平面図であり、(ロ)はその側面図である。
【符号の説明】
1.バドル
2.回転軸
3.モーター
4.材料の投入口
5.混合生成物の排出口
6.加熱ジャケット
7.蒸発口
[0001]
[Industrial applications]
The present invention relates to a method for producing a binder resin for toner for developing an electrostatic image in electrophotography, electrostatic recording, electrostatic printing, and the like.
[0002]
[Prior art]
In recent years, as a method for developing an electrostatic image, technical development of a dry development method has been rapidly advanced.
Various methods are known as such a fixing method. In particular, a contact heat fixing method represented by a heat roller fixing machine has a higher thermal efficiency than a non-contact heat fixing method such as a hot plate fixing device. High, and particularly excellent in that high-speed fixing and low-temperature fixing are possible.
[0003]
In the heat roller fixing method, a toner image obtained by development on an electrostatic recording medium (photosensitive drum) is once transferred to a transfer sheet such as paper, and then the transfer sheet is heated and pressed. The toner image is fused to a sheet by passing through a fixing roller to be fixed.
However, when the toner is fixed by a heating roller fixing method using a conventional toner, the toner is brought into contact with the surface of the hot roll in a molten state. However, there is a problem that this is re-transferred and soiled (offset phenomenon).
[0004]
Generally, an electrostatic image developing toner is composed of a resin component, a colorant component composed of a pigment, a magnetic powder or a dye, and a release agent, an additive component such as a charge control agent. A low-molecular-weight polymer is contained in a binder resin for toner to lower the toner viscosity and a part of the toner adheres to a contact heating roller in order to surely achieve fixing at a fixing temperature. For the purpose of preventing the offset phenomenon caused by such a phenomenon, a method of increasing the toner elastic modulus by including a high molecular weight polymer in the binder resin for toner has been studied.
[0005]
As the binder resin for toner, which is a composite of the low molecular weight polymer and the high molecular weight polymer, a styrene resin is mainly mainly used, and various polymerization methods have been studied.
For example, Japanese Patent Application Laid-Open No. 2-48657 discloses that a high-molecular-weight polymer is produced by a suspension polymerization method using a polyfunctional initiator, and a low-molecular-weight polymer is further produced in the presence of the high-molecular-weight polymer. It has been studied to produce a polymer of the formula (1), and to dry the obtained polymer to obtain a solvent-free polymer mixture of a high molecular weight and a low molecular weight, and to use it as a binder resin for a toner.
[0006]
However, in general, when polymerizing by a suspension polymerization method, it is possible to relatively easily obtain a high molecular weight polymer by using a crosslinking agent such as divinylbenzene, diethylene glycol dimethacrylate, and trimethylolpropane dimethacrylate. There are many problems at the stage of producing low molecular weight compounds. That is, in order to obtain a low molecular weight polymer by suspension polymerization, it is necessary to use a large amount of a chain transfer agent, for example, a mercaptan or a halogenated compound. In order to remove the halogenated compound, post-polymerization treatment is required, resulting in a problem of high cost. Further, there is a problem that it is difficult to remove unreacted polymerizable monomers.
[0007]
JP-A-2-48675 discloses that a low-molecular-weight polymer obtained by a solution polymerization method is dissolved in a polymerizable monomer for producing a high-molecular-weight polymer, and polyfunctional (trifunctional or higher) is obtained. A technique has been disclosed in which a high molecular weight polymer is polymerized using an initiator to produce a resin for a toner. However, the production of a high-molecular-weight resin by the solution polymerization method has a problem that the Weissenberg effect (the resin is wound around a stirring rod) occurs and production is difficult.
In US Pat. No. 5,084,368, a low-molecular solution polymer and a high-molecular mass polymer are dissolved and mixed in a solvent, and the solvent is removed under vacuum to obtain a mixture of resins having different molecular weights. However, dissolving a high molecular weight bulk polymer in a solvent is extremely troublesome and costly.
[0008]
Further, JP-A-2-118583 discloses a technique for producing a toner for developing an electrostatic image by mixing, mixing and kneading a low molecular weight polymer, a high molecular weight polymer and a colorant. However, in general, polymers having different molecular weights are significantly different from each other, and polymers having different resin compositions are poorly compatible, so that the occurrence of offset properties, which is a drawback of low molecular weight, and the insufficient fixing at low temperature, which is a drawback of high molecular weight polymers, are repeated. It has the disadvantage that it occurs.
[0009]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a toner for developing an electrostatic charge image with low odor, which has good offset resistance, fixing property, anti-blocking property during storage (non-aggregation property), developability during image formation, and the like. An object of the present invention is to provide a method for efficiently and easily producing a binder resin for a toner in which a low molecular weight polymer and a high molecular weight polymer are uniformly compatible and dispersed.
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and as a result, it has been found that the above-mentioned object can be achieved by mixing the resin solution and the sludge of the resin emulsified dispersion under specific conditions and further performing a water removal treatment. They found what they could do and completed the invention. That is, the present invention Styrene-based using a twin-screw continuous kneader With resin solution Styrene-based Sludge of resin emulsified dispersion The resin particles inside are once filtered and washed, the excess emulsifier and catalyst in the sludge are removed by washing with water, and the separated particles are again dispersed in water. And in the presence of At a temperature above the glass transition point of the resin in the resin solution Perform mixing and parallel processing The jacket temperature of the kneader was set to 120 to 300 ° C., the residence time from the inlet to the outlet was set to 1 to 60 minutes, and the water and the solvent were evaporated from the composition produced by the mixing process. Remove by The present invention provides a method for producing a binder resin for a toner for developing an electrostatic image, comprising a step of producing a solventless resin mixture composition by removing water and a solvent. Preferably, the solvent in the resin solution is a solvent having an SP value of 6 to 12, preferably, the resin solution is a resin solution obtained by solution polymerization, and preferably, the resin emulsified dispersion is obtained by emulsion polymerization. It is an emulsified dispersion of the obtained polymer, preferably, a sludge of the resin emulsified dispersion is a sludge obtained by salting out the emulsified dispersion of the polymer obtained by emulsion polymerization, preferably, The weight average molecular weight of the resin in the resin solution is a styrene resin having a molecular weight of 200,000 or less, and the weight average molecular weight of the resin in the resin emulsified dispersion is a styrene resin having a weight average molecular weight of 50,000 or more. Has a GPC molecular weight peak Mp of 1,500 to 30,000 and a weight average molecular weight (Mw) / number average molecular weight (Mn) of less than 4.0, and a GPC molecular weight peak (Mp) of the resin in the resin emulsified dispersion of 300,000. The present invention provides a method for producing a binder resin for an electrostatic charge image developing toner, which further comprises a kneading process after a mixing process and a water and solvent removing process. Further, the present invention provides Styrene-based using a twin-screw continuous kneader With resin solution Styrene-based Sludge of resin emulsified dispersion The resin particles inside are once filtered and washed, the excess emulsifier and catalyst in the sludge are removed by washing with water, and the separated particles are again dispersed in water. And in the presence of At a temperature above the glass transition point of the resin in the resin solution Perform mixing and parallel processing The jacket temperature of the kneader was set to 120 to 300 ° C., the residence time from the inlet to the outlet was set to 1 to 60 minutes, and the water and the solvent were evaporated from the composition produced by the mixing process. Remove by The present invention provides a method for producing a toner for electrostatic image development, which comprises a step of removing water and a solvent, producing a solventless resin mixture composition, and further blending a colorant.
[0011]
According to the present invention, the resin solution and the sludge of the resin emulsified dispersion are allowed to coexist and subjected to a mixing treatment, and a treatment for removing water and a solvent is carried out in parallel or thereafter, whereby an electrostatic image developing method is carried out. The binder resin for toner can be efficiently and easily manufactured.
Further, when the toner for developing an electrostatic image is manufactured using the binder resin for a toner obtained in the present invention, the low molecular weight polymer and the high molecular weight polymer are uniformly compatible and dispersed, non-offset property, fixing property. Remarkable characteristics that the toner has good properties, pulverizability during production, anti-blocking property during storage (non-aggregation), developability during image formation, etc., and can produce an electrostatic image developing toner with little odor. Having.
Hereinafter, the method for producing the binder resin for a toner for developing an electrostatic image of the present invention will be described in detail.
[0012]
The method for producing a binder resin for a toner for developing an electrostatic image according to the present invention includes mixing a resin solution and a sludge of a resin emulsified dispersion in a coexisting manner, and removing water and a solvent in parallel or thereafter. And a process for producing a solvent-free resin mixed composition.
The mixing process for coexisting the resin solution and the sludge of the resin emulsified dispersion liquid is to perform an operation of mixing the resin solution and the sludge of the resin emulsified dispersion liquid by mechanical or other methods.
[0013]
The above-mentioned mixing treatment is preferably carried out at a temperature not lower than the glass transition point of the resin in the resin solution, more preferably at a temperature not lower than 20 ° C. above the glass transition point, whereby the resin in the obtained resin solution is emulsified with the resin. The composition of the mixture of the dispersion and the resin in the sludge becomes uniform, and various physical properties of the toner prepared using the mixture are improved.
The advantage of the mixing process is that, during the mixing process, the resin particles in the sludge of the resin emulsified dispersion or the fine particles in which the resin particles are further broken contact the resin solution, and the resin particles in the sludge of the resin emulsified dispersion are It is considered that the action of coalescing with the resin in the resin solution in a dispersed state is promoted at the above temperature.
The mixing process may be performed at normal pressure, or may be performed under pressure to suppress evaporation of water and solvent.
[0014]
The water and solvent removal treatment is a treatment for removing moisture and solvent from the composition produced by the mixing treatment by evaporation. As a result of this treatment, a solventless resin mixed composition from which most of the water has been removed is obtained. can get. At this time, if volatile impurities such as residual monomers and organic solvents are present in the mixture, the volatile impurities can be removed at the same time.
The water and solvent removal treatment can be performed by heating the mixture to a temperature equal to or higher than the evaporation equilibrium temperature of water and the solvent in the mixture, and can be more efficiently performed by further reducing the pressure under heating. . When removing water and solvent at normal pressure, the temperature of the mixture may be set to around 100 ° C at the beginning when the resin solution and the sludge of the resin emulsified dispersion are mixed. The temperature rises as the process proceeds.
[0015]
The water and solvent removal treatment can be performed after the completion of the mixing treatment, but both can be performed in parallel. It is efficient and preferable to perform both in parallel.
With the start of the water and solvent removal process, the amount of water and solvent in the mixture begins to decrease, and most of the water and solvent are eventually removed. Evaporation of water and solvent in the mixture starts, and the amount of water and solvent starts to decrease.
[0016]
Furthermore, when the composition of the mixture of the resin in the resin solution and the resin in the sludge of the resin emulsified dispersion is highly uniform, after the mixing treatment, the removal of the water and the solvent, further kneading treatment is performed. Is preferred.
In the present invention, kneading refers to mechanically kneading the solventless resin mixture composition from which most of the water and solvent have been removed.
In this case, kneading may be performed under the condition of further removing a small amount of water and solvent.
The kneading treatment is preferably performed in a molten state of at least one of the resin in the resin solution and the resin in the sludge of the resin emulsified dispersion, because a mixture having a more uniform composition is obtained.
[0017]
As a method of coexisting the resin solution and the sludge of the resin emulsified dispersion, mixing, removing water and solvent, and further kneading if necessary, the resin solution and the sludge of the resin emulsified dispersion are used. Is not particularly limited as long as the mixing process, the removal process of water and solvent, and the kneading process as necessary are not particularly limited.For example, a resin solution and a sludge of a resin emulsified dispersion are heated and mixed. A method of adding to a device having a function and a function of removing water and a solvent by evaporation is provided.
[0018]
Preferred devices having the above functions include a pressure kneader, a Banbury mixer, a roll mill, an extruder, a single-shaft or two-shaft continuous kneader, a continuous mixing desolvator, or a dryer.
Efficient mixing, kneading and mixing of resin and resin emulsified dispersion in resin sludge. A single- or twin-screw continuous kneader, continuous mixing desolvation machine, or dryer is preferable in terms of efficient operation.
[0019]
There are various types of twin-screw continuous kneaders. Among them, there are two rotating shafts each having a plurality of paddles fixed and having a self-cleaning property or two screws having a self-cleaning property. A twin-screw continuous kneader, which rotates while being inscribed in the shaft and contacting the two shafts with each other, is more preferable from the viewpoint of high kneading effect and good workability. Further, a preferable twin-screw continuous kneader has a viscosity of 10 cps to 1 × 10 8 The cps fluid can be transported from the inlet to the outlet by rotation of a paddle or a screw. The self-cleaning property described above means that the mixture hardly adheres to the paddle or the screw and does not require any special cleaning treatment after use.
Such a twin-screw continuous kneader is known per se, for example, KRC Kneader (trade name) from Kurimoto Iron Works Co., Ltd., a continuous kneader manufactured by Fuji Paudal Co., Ltd., Plastic Engineering Research Co., Ltd. It is manufactured and sold as an in-house compatible twin screw extruder.
As a suitable single-screw or twin-screw continuous mixing desolvator or dryer, for example, a paddle dryer manufactured by Nara Machinery Co., Ltd. is manufactured and sold.
[0020]
With the above device, the mixing and kneading processes can be performed by mixing the mixture by rotation of a screw or a paddle fixed to the stirring shaft of the above device. In addition, the water and solvent removal treatment is performed by heating the mixture to a temperature equal to or higher than the evaporation equilibrium temperature of the water in the mixture with a heating jacket or an electric heater that is usually equipped, or by reducing the pressure in the apparatus in addition to the heating. It can be done efficiently.
Further, as another method for removing the water and the solvent, for example, after heating the above-mentioned mixture as necessary, introducing into a reduced pressure region and evaporating the water and the solvent, a substantially solvent-free method by a so-called flash method known per se. A method for setting a state can be given.
[0021]
The mixing and the removal of water and solvent can be performed by a single device or by separate devices, but preferably performed by a single device.
When the kneading process is further performed, the mixing process, the removal process of the water and the solvent, and the kneading process can be performed by separate devices, respectively, or the mixing process and the removal process of the water and the solvent can be performed by a single first device. The kneading process is performed by another second device, or the mixing process is performed by the first device, and the water and solvent removing process and the kneading process can be performed by another second device. Although the treatment, the removal of water and the solvent, and the kneading treatment can be performed by a single apparatus, the mixing treatment and the removal of the moisture and the solvent are carried out by a single unit, particularly when a uniform solventless resin mixture composition is obtained. It is preferable that the kneading process is performed in the first device and the kneading process is performed in another second device. In particular, when the workability is good, the mixing process, the water and solvent removing process and the kneading process are performed in a single device. It is preferred to do so.
[0022]
When the mixing process and the water / solvent removal process are performed by a single first device, and the kneading process is performed by another second device, the first device after the mixing process and the water / solvent removal process is completed. Is preferably 20% by weight or less, more preferably 5% by weight or less.
[0023]
1 and 2 schematically show the structure of a preferable twin-screw continuous kneader. FIG. 1 is a schematic plan view, and FIG. 2 is a schematic side view. 1 and 2, a mode in which a mixing process, a removal process of water and a solvent are performed in parallel by using a twin-screw continuous kneader, and further a kneading process is performed will be described.
The twin-screw continuous kneader is provided with two rotating shafts 2 to which a large number of paddles 1 are fixed, and is rotated by a motor 3. By this rotational movement, the resin solution and the sludge of the resin emulsified dispersion continuously supplied from the inlet 4 are mixed at a temperature equal to or higher than the glass transition point of the resin in the resin solution, and are mixed in the direction of the outlet 5. Move these resins.
[0024]
On the other hand, heating is performed by the jacket 6 or an electric heater (not shown) heated by circulation of a heat medium such as steam or oil, and the water in the sludge of the emulsified dispersion and the solvent in the resin solution are discharged from the evaporation port 7. I do. Usually, the sludge supply speed of the resin solution and the resin emulsified dispersion is adjusted so that a space is formed between the moving resin and the heating jacket (not shown), and the evaporated water and the solvent evaporate through this space. It is discharged from the mouth 7. The temperature of the mixture is 100 to 110 ° C. due to the presence of a large amount of water and solvent in the vicinity of the inlet 4, but the temperature of the mixture increases as the amount of water and solvent decreases, and finally most of the mixture in the mixture. After removing the water and the solvent, a kneading treatment is preferably performed at a temperature at which the resin in the resin solution melts. By this kneading treatment, the resin in the resin solution and the resin in the sludge in the resin emulsified dispersion are more uniformly dispersed. Even in the resin melting region where the kneading process is performed, the residual moisture and the solvent evaporate and are discharged from the evaporation port 7.
The resin obtained from the discharge port (5) can be further continuously introduced into another device and processed into granules, pellets, flakes, etc., depending on the intended use.
[0025]
When the mixing process, the removal process of the moisture and the solvent, and the kneading process are performed using the above-described twin-screw continuous kneading apparatus, the heating temperature of the jacket, the mixing process, the staying process for the removal process of the moisture and the solvent, and the kneading process are performed. The time, other conditions, etc. are determined by the type of the resin and the solvent of the resin solution, the amount of water in the sludge of the resin emulsified dispersion, the intended resin solution and the resin emulsification of the solvent-free resin mixture obtained from the outlet (5). It cannot be stated in general according to the state of sludge and the amount of water in the dispersion, the processing capacity of the apparatus, and other factors. However, it is easy for those skilled in the art to set the above conditions theoretically and experimentally once the above factors are specified.
[0026]
In general, when the removal rate of water and solvent is increased by a method such as increasing the heating temperature, the time for performing the mixing process and the removal process of the moisture and the solvent and the area in the apparatus are shortened, and the time for performing the kneading process and The area inside the device is enlarged.
[0027]
When the resin in the resin solution and the resin in the sludge of the resin emulsified dispersion are, for example, a polystyrene resin, the temperature of the jacket is set to 120 to 300 ° C., preferably 160 to 250 ° C., and from the inlet 4 to the outlet 5 The residence time can be set to be usually 1 to 60 minutes, preferably 5 to 30 minutes, depending on the kneading capacity of the apparatus and other factors.
[0028]
In an apparatus having a water and solvent evaporating port (7) such as the above apparatus, if the opening area of the water and solvent evaporating port (7) is increased, the water and solvent from the resin mixture containing a large amount of water and solvent are increased. Removal processing becomes efficient. That is, in the twin-screw continuous kneader, the sum of the opening areas of the charging port (4) and the evaporating port (7) provided at the upper part of the body is the length and width of the body (corresponding to L and D in FIG. 1, respectively). Is preferably in the range of 15 to 100% of the product from the viewpoint of efficiently removing water and the solvent. When the above value is 100%, it is a case where the upper part of the body of the twin-screw continuous kneader is open to the full length, which is one of preferred embodiments. In this case, the jacket is not provided at the upper part of the body, but is provided at the lower part of the body, or the heat medium is circulated in the rotating shaft or the paddle without providing the jacket.
[0029]
In the present invention, the resin solution mixed in the production of the binder resin of the toner for developing an electrostatic image of the present invention refers to a resin solution in which the resin is dissolved in a solvent. The amount of the solvent in the resin solution is more than 10% by weight, preferably 20 to 80% by weight or more, particularly preferably 30 to 70% by weight or more.
[0030]
In the production of the binder resin for the toner for developing electrostatic images of the present invention, the resin in the resin solution is preferably used as a low molecular weight polymer component in the toner binder resin.
[0031]
The molecular weight of the resin in the resin solution used as a low molecular weight polymer component in the toner binder resin is represented by a molecular weight (molecular weight peak) Mp showing the maximum value in a measurement chart of gel permeation chromatography (GPC). And 1,500 to 30,000, more preferably 2,000 to 20,000.
When Mp is less than the above lower limit, the fixing property is good, but the toner easily aggregates in the developing machine and the life of the developer is short. Further, the storage stability of the toner is poor, and the toner hardens during high-temperature storage. On the other hand, if Mp exceeds the above upper limit, spent and miniaturization are unlikely to occur, but the fixability in a low temperature region becomes poor, the minimum fixing temperature rises, and the cold offset temperature becomes poor.
[0032]
The weight average molecular weight Mw of the resin used as the low molecular weight polymer component is preferably from 1,000 to 200,000, more preferably from 1,000 to 100,000; and particularly preferably from 1,000 to 40,000. It is.
When Mw is less than the above lower limit, the fixing property is good, but the toner easily aggregates in the developing machine and the life of the developer is short. Further, the storage stability of the toner is poor, and the toner hardens during high-temperature storage. On the other hand, if Mw exceeds the above upper limit value, it is not preferable because spent and fine particles hardly occur, but the fixability in a low temperature region becomes poor, the minimum fixing temperature rises, and the cold offset temperature becomes poor.
Further, the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn is preferably less than 4. If Mw / Mn is greater than or equal to the above upper limit, the fixability becomes poor, which is not preferable.
[0033]
The resin in the resin solution is not particularly limited as long as it is a resin used as a binder resin of the toner, and may be any resin, for example, an acrylic resin, a styrene resin, an epoxy resin, or a polyester. Resins, styrene-butadiene resins and the like can be mentioned, but styrene-based resins are preferred from the viewpoint of easily obtaining the performance as a toner.
[0034]
The styrene resin is a (co) polymer having a styrene monomer as a main component. Examples of the styrene monomer include styrene, o-methylstyrene, m-methylstyrene, and p-methylstyrene. , Α-methylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, pn-butylstyrene, p-tert-butylstyrene, pn-hexylstyrene, pn-octylstyrene, pn- Nonylstyrene, pn-decylstyrene, pn-dodecylstyrene, p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, 3,4-dichlorostyrene, etc. Is most preferred.
[0035]
Other monomers that can be copolymerized with the styrene monomer include , Methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, ethyl hexyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, lauryl methacrylate, stearyl methacrylate Is Yes, especially n-butyl acrylate, ethylhexyl acrylate, n-butyl methacrylate, lauryl methacrylate Is No. The acrylic component preferably has a glass transition temperature of a copolymer obtained by polymerizing the monomer of the styrene component with a monomer under ordinary conditions in the range of 30 to 80 ° C., and more preferably glass. Preferably, the transition temperature is in the range of 40-70C.
[0036]
The solvent is not particularly limited and may be any solvent, for example, aliphatic hydrocarbons such as pentane, hexane, heptane, octane, and isomers thereof; and cycloaliphatic hydrocarbons such as cyclohexane and methylcyclohexane. Hydrogen; aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene and diethylbenzene; 1-chlorobutane, amyl chloride, ethylene dibromide, methylene chloride, ethylene dichloride, propylene dichloride, dichloropentane, chloroform, 1,1 , 2-Trichloroethane, 1,2,3-trichloropropane, carbon tetrachloride, 1,1,2,2-tetrachloroethane, trichloroethylene, perchlorethylene, epichlorohydrin, monochlorobenzene, dichlorobenzene, tolchlorobenzene , Fluorine hydrocarbons and other halogens Hydrocarbons; methyl alcohol, ethyl alcohol, allyl alcohol, propyl alcohol, butyl alcohol, amyl alcohol, hexyl alcohol, octyl alcohol, alcohols such as isomers thereof; diethylamine, triethylamine, brureamine, diamylamine, propylenediamine, aniline, Amines such as dimethylaniline, cyclohexylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, quinoline; acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, methyl hexyl ketone, diisobutyl ketone, cyclohexanone, methyl Ketones such as hexanone; ethyl ether, isopropyl ether, normal butyl ether Ethers such as ter, normal hexyl ether, dioxane, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl carbitol, ethyl carbitol, butyl carbitol; diethyl carbonate, methyl formate, ethyl formate, butyl formate, methyl acetate, methyl acetate, ethyl acetate, Propyl acetate, butyl acetate, amyl acetate, ethyl propionate, propion sunbutyl, amyl propionate, ethyl butyrate, butyl butyrate, amyl butyrate, diethyl oxalate, dibutyl oxalate, methyl lactate, ethyl lactate, butyl lactate, isomers thereof, etc. Esters of petroleum; petroleum hydrocarbons such as gasoline, petroleum ether, petroleum benzine, ligroin, mineral spirits, kerosene, light oil, heavy oil; nitrohydrocarbons such as nitromethane, nitroethane, nitropropane, nitrobenzene Nitriles such as acetonitrile and benzonitrile; acetal, tetrahydrofuran, furfuryl acetate and carbon disulfide; and the like, and one or more of these solvents can be used.
[0037]
In the above solvent, aliphatic hydrocarbons, cycloaliphatic hydrocarbons, aromatic hydrocarbons, ketones, ethers, and esters have good compatibility with the resin, and the internal boiling points of these solvents are preferably 50 to 50. Solvents at 170 ° C. are more preferred because they can be effectively removed by evaporation.
In the above solvent, the solubility parameter (SP value) of the solvent is preferably from 6 to 12, more preferably from 7 to 11, and particularly preferably from 8 to 10. When the SP value is within this range, the compatibility between the resin and the solvent is increased. When mixing is performed, the compatibility between the resin in the resin solution and the resin in the sludge of the resin emulsified dispersion tends to be good.
[0038]
The resin in the above resin solution used as a low molecular weight polymer component in the toner binder resin is obtained by directly obtaining a solution resin by condensation polymerization, addition polymerization, solution polymerization of vinyl monomers, or the like; A method obtained by dissolving the vinyl monomer in a solution is preferred, but a method based on solution polymerization of a vinyl monomer is preferable from the viewpoint of easily obtaining the solution.
[0039]
The solution polymerization can be performed by coexisting the monomer, the solvent and the catalyst dissolved in the monomer, and heating the raw material mixture to a polymerization temperature.
The polymerization may be carried out in batch units, or the raw material addition, the polymerization and the removal of the polymer may be carried out continuously in one stage or in multiple stages, but the solution polymerization is carried out continuously and directly into the mixing device with the colorant. The addition is efficient and preferred.
[0040]
The polymerization temperature of the solution polymerization is preferably from 40 to 250C, more preferably from 60 to 230C, and particularly preferably from 70 to 220C.
When the reaction temperature is lower than the lower limit temperature, the reaction rate is slow, and when the reaction temperature is higher than the upper limit temperature, a polymerization reaction occurs, a polymer decomposition reaction occurs, and oligomers having a molecular weight of 500 or less increase, When a toner is prepared by blending the obtained resin, storage stability of the toner, and spent and miniaturization tend to occur.
[0041]
Any conventional oil-soluble initiator can be used as the catalyst used in the solution polymerization. A group of suitable initiators are benzoyl peroxide, t-butyl hydroperoxide, di-t-butyl hydroperoxide, cumene hydroperoxide, t-hexyl hydroperoxide, p-menthane hydroperoxide, di-azo Bisisobutyronitrile is mentioned.
Particularly, since the reaction temperature is as high as 170 ° C. or more, preferred initiators include t-butyl hydroperoxide and di-t-butyl hydroperoxide.
The amount of the free radical initiator used is preferably 0.01 to 5%, more preferably 0.03 to 3%, and more preferably 0.05 to 1%, based on the weight of the monomer. Is particularly preferred.
[0042]
The reaction temperature and the reaction residence time are set so that the conversion of the styrene type low molecular weight polymer obtained as described above is 80% or more, preferably 90% or more, more preferably 95% or more. Is preferred.
[0043]
In the present invention, the sludge of the resin emulsified dispersion mixed in the method for producing a toner binder resin for electrostatic image development is reduced in some way the dispersion stability of the dispersed resin particles in the resin emulsified dispersion. A dispersion of resin particles, which includes agglomeration of resin particles in a resin emulsion dispersion is also included. The resin particles in these sludges are dispersed by mechanical agitation because the dispersion stability of the particles is impaired, but easily settle by standing or by dilution with water.
The number average particle size of the resin particles in the sludge is preferably 0.1 μm to 1 cm, more preferably 0.5 μm to 0.3 cm, and particularly preferably 1 μm to 0.1 cm.
[0044]
In the production of the binder resin for the electrostatic image developing toner of the present invention, the resin in the sludge of the resin emulsified dispersion is used as a high molecular weight polymer component in the toner binder resin, and the low molecular weight polymer is used. It is preferably used in combination with a resin solution used as a component. Therefore, the weight average molecular weight of the resin in the sludge of the resin emulsified dispersion is preferably higher than that of the resin solution.
[0045]
The molecular weight of the resin of the sludge in the resin emulsified dispersion used as the high molecular weight polymer component in the toner binder resin is represented by the peak position molecular weight Mp in a GPC measurement chart, from 300,000 to 3,000. 000, more preferably 500,000 to 2,000,000, particularly preferably 600,000 to 1,000,000.
If the Mp is less than the lower limit, the fixing property is good, but hot offset is apt to occur and the fixing temperature range is undesirably narrow.
Furthermore, the molecular weight of the resin used as the high molecular weight polymer component is preferably 100,000 or more, more preferably 200,000 or more, and particularly preferably 300,000 or more, as represented by weight average molecular weight Mw.
[0046]
The type of sludge resin in the resin emulsified dispersion may be the same as the resin used as the low molecular weight polymer component in the toner binder resin, and a polystyrene resin is particularly preferred.
[0047]
The method of reducing the dispersion stability of the dispersed resin particles in the resin emulsified dispersion and obtaining sludge of the resin emulsified dispersion is not particularly limited as long as the method can obtain sludge of the resin emulsified dispersion. Either method may be used, for example, a method of adding an inorganic metal salt to the resin emulsified dispersion to perform salting out, a method of adjusting the pH of the resin emulsified dispersion to impair the dispersion stability of particles, Stabilizing method, adding an aqueous solution of an emulsifier having a polarity opposite to the charge polarity of the resin particles in the resin emulsified dispersion, a method of aggregating the resin emulsified dispersion by strong mechanical stirring, emulsification and dispersion of the resin A method of freezing and then thawing and agglomerating the liquid may be mentioned, but from the viewpoint of easy operation, a method of adding a metal salt to the resin emulsified dispersion and salting out, adjusting the pH of the resin emulsified dispersion to adjust the particle size Impair dispersion stability Cormorants methods are preferred.
[0048]
When a metal salt is added to the resin emulsified dispersion and salted out, for example, an aqueous solution of an inorganic metal salt can be added while stirring the resin emulsified dispersion.
The inorganic metal salt is not particularly limited as long as it is a water-soluble inorganic metal salt, and any inorganic metal salt can be used.For example, halides, sulfates, nitrates, phosphates of various metals, Acetates, carbonates and the like can be mentioned, and as the metals of these metal salts, sodium, potassium, magnesium, calcium, iron, zinc, barium, aluminum, titanium, aluminum and the like can be mentioned.
[0049]
When the pH of the resin emulsified dispersion is adjusted to decrease the dispersion stability of the particles, for example, when the resin emulsified dispersion is stabilized with an anionic emulsifier, the pH should be lowered. When the resin emulsifier is stabilized with a cationic emulsifier, the reaction can be carried out by increasing the pH.
In the former case, the pH to be set is preferably from 1 to 6, more preferably from 1 to 3, and hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, carbonic acid or the like or an aqueous solution thereof is added while stirring the resin emulsified dispersion. The pH can be set in the pH range.
In the latter case, the pH to be set is preferably from 8 to 14, more preferably from 12 to 14, and the pH is set in this pH range by adding ammonia, various amines or the like or an aqueous solution thereof to the resin emulsified dispersion. can do.
[0050]
When the dispersibility of particles is made unstable by adding an organic solvent, a solvent that dissolves in water and does not dissolve the resin can be added to the resin emulsified dispersion.
Examples of the solvent include alcohols such as methanol, ethanol, propanol and butanol, nitriles such as acetonitrile, propionitrile and butyronitrile, and ketones such as acetone and dioxane in the resin emulsified dispersion.
[0051]
When sludge is prepared by adding an aqueous solution of an emulsifier having a polarity opposite to the charge polarity of the resin particles in the resin emulsified dispersion, for the positively charged resin emulsified dispersion particles, an emulsifier is used. Use anionic surfactants such as carboxylic acid, sulfonic acid, and phosphoric acid, and use tertiary amine-based and quaternary amine-based cationic emulsifiers for negatively charged resin emulsified and dispersed particles. can do.
Sludge can also be prepared by adding a polymer coagulant such as polyamine, polyacrylamide, or polyacryl, or a water-soluble hydrocolloid such as alginate or cellulose.
[0052]
The resin particles in the sludge produced as described above are once filtered and washed, excess emulsifier, catalyst and the like in the sludge are removed by washing with water, and the separated particles are again dispersed in water to be used as sludge.
[0053]
The resin emulsified dispersion serving as the base of the above-described sludge is a resin in which the resin is dispersed in an emulsified state, and is not particularly limited as long as the resin is dispersed in an emulsified state, although any one may be used. For example, a resin emulsified dispersion obtained by forcibly emulsifying and dispersing a resin in water, a resin emulsified dispersion obtained by emulsion polymerization, and the like, from the viewpoint of stability during storage, a resin emulsified dispersion obtained by emulsion polymerization Is preferred.
Further, the resin particles may be resin particles which are self-stabilized by the polarity of the resin itself and do not use an emulsifier.
[0054]
A known emulsion polymerization method can be used as a method of emulsion polymerization for obtaining a resin emulsified dispersion by emulsion polymerization.
[0055]
Granules, pellets, flakes, and other solvent-free resin mixture compositions obtained as described above are blended with additives such as a coloring agent, a charge control agent, if necessary, a magnetic substance, and a release agent. After homogeneously mixing and melting, the melted mixture is cooled and then finely crushed as necessary after being finely crushed by a jet mill or the like, and then classified by a classifier to obtain a toner for developing an electrostatic image having a desired particle diameter. it can.
[0056]
The amount of the colorant to be used is preferably 1 to 200 parts by weight, more preferably 3 to 150 parts by weight, based on 100 parts by weight of the solventless resin mixture composition.
Examples of the colorant include inorganic pigments, organic pigments, and synthetic dyes. Inorganic pigments or organic pigments are preferably used, and one or more pigments and / or one or more dyes may be used. They can be used in combination.
[0057]
Examples of the inorganic pigment include metal powder pigments, metal oxide pigments, carbon pigments, sulfide pigments, chromate pigments, and ferrocyanide pigments.
[0058]
Examples of the metal powder pigment include zinc powder, iron powder, copper powder, and the like.
Examples of the metal oxide pigments include magnetite, ferrite, red iron oxide, titanium oxide, zinc white, silica, chromium oxide, ultramarine, cobalt blue, celerian blue, Milanel violet, and trilead tetroxide. Can be mentioned.
[0059]
Examples of the carbon-based pigment include carbon black, thermotomic carbon, and furnace black.
Examples of the sulfide pigment include zinc sulfide, cadmium red, selenium red, mercury sulfide, and cadmium yellow.
[0060]
Examples of the chromate pigments include molybdenum red, barium yellow, strontium yellow, and chrome yellow. Examples of the ferrocyanide compound-based pigment include, for example, miroribble.
[0061]
Examples of the organic pigment include azo pigments, acidic dye pigments and basic dye pigments, mordant dye pigments, phthalocyanine pigments, quinacdrine pigments, and dioxane pigments.
Examples of the azo pigments include benzidine yellow, benzidine orange, permanent red 4R, pyrazolone red, lysole red, brilliant scarlet G, and bommarnlite.
[0062]
Examples of the acidic dye-based pigment and the basic dye-based pigment include Orange II, Acid Orange R, Eoxin, Quinoline Yellow, Tartrazine Yellow, Acid Green, Peak Cockle, and Alkaline Blue. Dyes precipitated with a precipitant, or dyes such as rhodamine, magenta, macalite green, methyl violet, Victoria Blue, etc., are converted to tannic acid, tartarite, phosphotungstic acid, phosphomolybdic acid, phosphotungsten molybdenum Examples thereof include those precipitated with an acid or the like.
[0063]
Examples of the mordant dye-based pigments include metal salts of hydroxyanthraquinones and alizarin merda lake.
Examples of the phthalocyanine pigment include phthalocyanine blue and sulfonated copper phthalocyanine.
Examples of the quinacridone-based pigment and dioxane-based pigment include quinacridone red, quinacridone violet, carbazole-dioxane violet, and the like.
[0064]
Examples of the synthetic dye include acridine dye, aniline black, anthraquinone dye, azine dye, azo dye, azomethine dye, benzo and naphthoquinone dye, indigo dye, indophenol, indoaniline, indamine, leuco vat dye dye ester, naphthalimide dye, Nigrosine, indulin, nitro and nitroso dyes, oxazine and dioxazine dyes, oxidation dyes, phthalocyanine dyes, polymethine dyes, quinophthalone dyes, sulfur dyes, tri and diallyl methane dyes, thiazine dyes, xanthene dyes and the like, preferably , Aniline black, nigrosine dyes, and azo dyes are used, and more preferable are azo dyes having a salicylic acid, naphthoic acid or 8-oxyquinoline residue in the molecule, and chromium, copper, cobalt, etc. , Iron, which forms a metal complex salts such as aluminum are used.
[0065]
Examples of the charge control agent include a nigrosine-based electron-donating dye for plus, a metal salt of naphthenic acid or a higher fatty acid, an alkoxylated amine, a quaternary ammonium salt, an alkylamide, a chelate, a pigment, and a fluorine treatment activity. And an electron-accepting organometallic complex, a chelate compound, and others, chlorinated paraffin, chlorinated polyester, polyester having an excess acid group, and sulfonylamine of copper phthalocyanine. it can.
[0066]
Examples of the release agent include paraffin wax and its derivatives, microcrystalline wax and its derivatives, Fischer-Tropsch wax and its derivatives, polyolefin wax and its derivatives, carnauba wax and its derivatives, and the like. The derivatives also include oxides, block copolymers with vinyl monomers, and graft modified products with vinyl monomers.
[0067]
In addition, alcohols, fatty acids, acid amides, esters, ketones, hardened castor oil and derivatives thereof, vegetable waxes, animal waxes, mineral waxes, and petrolactam can also be used.
[0068]
A fluidity improver may be further added to the above toner.
Any fluidity improver can be used as long as it can be added to toner particles to increase the fluidity before and after the addition. Examples thereof include hydrophobic colloidal silica fine powder, colloidal silica fine powder, hydrophobic titanium oxide fine powder, titanium oxide fine powder, hydrophobic alumina fine powder, alumina fine powder, and a mixed powder thereof.
[0069]
The toner manufactured as described above uses a carrier having a resin coating layer in a developing method using a so-called two-component developer in which a carrier made of iron powder or glass beads is mixed with the toner. It is suitably used for a developer.
Further, the present invention is not limited to the two-component developer alone, and is not limited to a one-component developer using a carrier, for example, a magnetic one-component toner containing a magnetic powder in the toner, and no magnetic powder in the toner. The invention can be applied to a non-magnetic one-component toner.
[0070]
As a carrier having a resin coating layer, a carrier in which the surfaces of core particles made of iron, nickel, ferrite, and glass beads are generally coated with a coating layer of an insulating resin is typical. Typical examples thereof include a fluorine resin, a silicone resin, an acrylic resin, a styrene-acrylic copolymer resin, a polyester resin, and a polybutadiene resin.
When a developer containing the toner for developing an electrostatic charge image obtained by the present invention and a carrier having a resin coating layer as components is used, the spent particles which adhere to the toner particles on the surface of the carrier particles and are contaminated are extremely small. It is possible to control the triboelectric charging characteristics of the carrier and the toner, and it is particularly suitable for a high-speed electrophotographic machine in that it has excellent durability and a long service life.
In addition to the binder resin obtained by the production method of the present invention, other styrene-based resins, a binder resin such as a polyester-based resin may be used as an auxiliary blend, The proportion occupied by the binder resin used in general is preferably 30% by weight or less.
[0071]
Further, when producing a binder resin for a toner for developing an electrostatic image by the production method of the present invention, together with the sludge of the resin solution or the resin emulsified dispersion, the above various additives are blended to directly produce a toner. You can also.
In addition to the binder resin obtained by the production method of the present invention, other styrene-based resins, a binder resin such as a polyester-based resin may be used as an auxiliary blend, The proportion occupied by the binder resin used in general is preferably 30% by weight or less.
[0072]
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
【Example】
Each test method used in the following examples is described below.
(Residual monomer measurement method)
The residual monomer amount of each monomer in the solvent-free resin mixture composition was determined by using a gas chromatography (GC) equipped with a column (25% Thermon 1000) and transferring the sample to chloroform by 2.5 wt. %, And 3 μl of the filtered extract was injected and measured.
In measuring the concentration of the sample, the concentration was calculated from the calibration curve of each monomer.
[0073]
(Molecular weight measurement method)
The molecular weight distribution of various resins was measured by using a gel permeation chromatography (GPC) equipped with a column (manufactured by Tosoh Corporation: GMH × 3) using a sample equipped with 0.2 wt% of tetrahydrofuran (THF). At a temperature of 20 ° C. at a flow rate of 1 ml / min. When measuring the molecular weight of a sample, the measurement conditions in which the molecular weight of the sample is included in a range in which the logarithm of the molecular weight and the count number of a calibration curve prepared from several types of monodisperse polystyrene standard samples are linear are shown. Selected.
[0074]
(Particle size measurement method)
The particle size of the emulsion was measured by light scattering (Microtrack manufactured by Nikkiso Co., Ltd.).
[0075]
Example 1
(Adjustment of resin solution)
After replacing the autoclave equipped with a stirrer, a heating device, a cooling device, a thermometer and a dropping pump with nitrogen gas, while maintaining the internal temperature at 180 ° C., 100 parts by weight of styrene, 50 parts by weight of xylene and di-tertiary・ Continuously add monomer mixture solution containing 1.5 parts by weight of butyl peroxide uniformly over 30 minutes. After completion of addition, keep internal temperature at 180, hold for 2 hours, and cool Thus, a resin solution was obtained. The solid content of the obtained resin solution was 65%, the molecular weight peak Mp was 4,400, and the weight average molecular weight Mw was 5,000.
[0076]
(Preparation of resin emulsified dispersion)
A container equipped with a stirrer and a dropping pump was charged with 27 parts by weight of deionized water and 1 part by weight of an anionic emulsifier (manufactured by Kao Corporation: Neogen R), and dissolved by stirring. A monomer mixture comprising 25 parts by weight of butyl and 0.05 parts by weight of divinylbenzene was added dropwise with stirring to obtain a monomer emulsified dispersion.
[0077]
Next, 120 parts by weight of deionized water was charged into a pressure-resistant reaction vessel equipped with a stirrer, a pressure gauge, a thermometer, and a dropping pump. After purging with nitrogen, the temperature was raised to 80 ° C. Was added to a pressure-resistant reaction vessel, and 1 part by weight of a 2% by weight aqueous solution of potassium persulfate was further added, and initial polymerization was carried out at 80 ° C. After the completion of the initial polymerization, the temperature was raised to 85 ° C., and the remaining monomer emulsified dispersion and 4 parts by weight of 2% by weight potassium persulfate were added over 3 hours. A styrene resin emulsified dispersion having a solids concentration of 0.13 μm and a solid concentration of 40% was obtained.
The resulting resin emulsified dispersion had a high polymerization conversion rate and could be polymerized stably.
After separating the resin from the resin emulsified dispersion with an ultracentrifuge, the molecular weight was analyzed. As a result, the weight average molecular weight Mw was 970,000, and the molecular weight peak Mp was 720,000.
[0078]
(Adjustment of sludge of resin emulsified dispersion)
100 parts by weight of the above resin particle dispersion and 30 parts by weight of deionized water are charged and mixed in a stainless steel container equipped with a disper and a dropping pump, and then 20 parts by weight of a 2% aqueous solution of calcium chloride is stirred at high speed for 30 minutes. Addition and stirring continued for another 2 hours. After leaving still, the supernatant was removed, water was again added and dispersed, and then dewatered and washed with a filter press to remove impurities. Then, water was again added and dispersed, and the number average particle diameter was 1.1 mm. A sludge having a solid content of 52% was obtained.
[0079]
(Preparation of solventless resin mixture composition)
153 parts by weight of the resin solution and 100 parts by weight of a sludge of the resin emulsified dispersion obtained by stirring and homogenizing were mixed with a continuous kneader shown in FIG. At a jacket temperature of 215 ° C., the mixture was continuously mixed and heated to remove water, thereby obtaining a kneaded product by evaporation and dehydration having a moisture of 0.1% or less. The residual monomer content of the obtained evaporative dewatering kneaded product was 70 ppm.
[0080]
(Preparation of toner)
100 parts by weight of the solvent-free resin mixture composition, 6 parts by weight of carbon black (trade name: carbon black MA-100, manufactured by Mitsubishi Chemical Corporation), 2 parts by weight of polypropylene wax (trade name: Viscol 550P, manufactured by Sanyo Chemical Co., Ltd.) And 2 parts by weight of a nigrosine dye (trade name: Bontron N-01, manufactured by Orient Chemical Co., Ltd.), pulverized and mixed in a ball mill, and kneaded well with a hot roll at 140 ° C. for 30 minutes.
After cooling, the mixture was roughly crushed by a hammer mill and then finely crushed by a jet mill. Further, the obtained finely pulverized powder is classified by an air classifier to obtain particles of 5 to 20 μm, and 0.2 parts by weight of hydrophobic silica (trade name: R-972, manufactured by Nippon Aerosil Co., Ltd.) is added. The resulting mixture was mixed to obtain a toner having an average particle diameter of 9.8 μm.
A copy test was conducted using a copier equipped with a temperature sensor on the fixing unit of a commercially available copier using the toner and the silicone resin-coated carrier. As a result, it was possible to fix the image from 140 ° C. The toner was not stained due to the offset of the toner on the carrier, and after copying 100,000 sheets, there was no toner spent on the carrier, and a clear image without stain and fog was obtained as in the initial stage.
[0081]
Example 2
(Preparation of resin emulsified dispersion)
The composition of the monomers in the preparation of the resin emulsified dispersion was 66 parts by weight of styrene, 18 parts by weight of butyl acrylate, 16 parts by weight of butyl methacrylate and 0.03 parts by weight of divinylbenzene, and the emulsifier was an anionic emulsifier (manufactured by Daiichi Kogyo ( Co., Ltd .: Hytenol N-08) A resin emulsified dispersion was obtained in the same manner as in Example 1 except that 0.8 part by weight was used.
[0082]
(Adjustment of sludge of resin emulsified dispersion)
In the preparation of the sludge of the resin emulsified dispersion performed in Example 1, the resin emulsified liquid was used as the resin emulsified dispersion prepared above, and 5 parts by weight of hydrochloric acid and 15 parts of methanol were used instead of 20 parts by weight of a 2% aqueous calcium chloride solution. Sludge was adjusted in the same manner as in Example 1 except that the weight part was added, and a sludge having a solid content of 58% was obtained.
(Preparation of solventless resin mixture composition)
A solvent-free resin mixture composition was prepared in the same manner as in Example 1, except that 153 parts by weight of the resin solution prepared in Example 1 and 130 parts by weight of sludge of the resin emulsified dispersion were used as resin raw materials to be used. .
The water content was 0.1% or less, and the residual monomer content was 80 ppm.
[0083]
(Adjustment of toner)
A toner was prepared in the same manner as in Example 1 except that 100 parts by weight of the solventless resin mixture composition used in Example 1 was used instead of 100 parts by weight of the solventless resin mixture composition prepared in Example 1. Got.
A toner was obtained in the same manner as in Example 1, and a copy test was performed in the same manner as in Example 1. As a result, it was possible to fix the image at 155 ° C., and there was no stain due to offset even at 230 ° C. after 100,000 copies. In the same manner as in the initial stage, a clear image without stain fog was obtained.
[0084]
Example 3
(Preparation of solventless resin mixture composition)
153 parts by weight of the resin solution prepared in Example 1 melted at 200 ° C. and 130 parts by weight of the sludge of the resin emulsified dispersion prepared in Example 1 were heated to a jacket temperature of 200 with a compatible twin screw extruder manufactured by Plastics Engineering Laboratory. At ℃, the mixture was heated and heated to remove water and the solvent under reduced pressure to obtain an evaporatively dewatered kneaded product having a water content of 0.1% or less. The residual monomer content of the obtained evaporative dewatering kneaded product was 60 ppm.
[0085]
(Adjustment of toner)
A toner was obtained in the same manner as in Example 1 except that the above-mentioned solvent-free resin mixture composition was used, and a similar copy test was carried out. After the copying of 100,000 sheets, a clear image without stain and fog was obtained as in the initial stage.
[0086]
Comparative Example 1
(Adjustment of suspension polymerization resin)
In a container equipped with a stirrer and a dropping pump, 200 parts by weight of deionized water and 1 part by weight of polyvinyl alcohol [manufactured by Kuraray Co., Ltd .: trade name: PVA117] were charged and dissolved by stirring, followed by 75 parts by weight of styrene and butyl acrylate. A monomer mixture comprising 25 parts by weight and 0.15 parts by weight of di-t-butylperoxyhexahydroterephthalate (trade name: Kayaester HTP, manufactured by Nippon Kayaku Co., Ltd.) was added. Polymerization was carried out at 90 ° C. for 8 hours while dispersing the monomer mixture with stirring to obtain a suspension polymerization resin dispersion.
Next, a styrene / butyl acrylate copolymer resin was separated from the suspension polymer resin dispersion and dried to obtain a suspension polymer resin.
The average particle diameter of the obtained suspension polymerization resin was 250 μm, the weight average molecular weight Mw was 690,000, and the peak position molecular weight Mp was 550,000.
[0087]
(Preparation of solventless resin mixture composition)
A solvent-free resin mixture composition was prepared in the same manner as in Example 1 except that 153 parts by weight of the resin solution prepared in Example 1 and 52 parts by weight of the above-mentioned suspension polymer resin were used as the resin to be used.
The water content was 0.1% or less, and the residual monomer content was 860 ppm.
[0088]
(Adjustment of toner)
Except for using 100 parts by weight of the solventless resin mixture composition prepared in Example 1 as the resin to be used, the same procedure as in Example 1 was carried out except that 100 parts by weight of the solventless resin mixture composition was used. A toner was obtained.
A toner was obtained in the same manner as in Example 1, and a copying test was performed in the same manner as in Example 1. As a result, the fixable temperature was as high as 165 ° C., and the offset to the heat fixing roll was severe at 210 ° C. The image quality was also fogged.
[0089]
【The invention's effect】
The method for producing a binder resin for a toner for developing an electrostatic image of the present invention includes performing a mixing treatment in the presence of a resin solution and a sludge of a resin emulsified dispersion, and performing a removal treatment of water and a solvent in parallel or thereafter. And obtaining a binder resin for a toner for developing an electrostatic image, comprising a step of producing a solvent-free resin mixed composition.
[0090]
According to the present invention, after producing a solvent-free resin mixed composition uniformly mixed from the resin solution and the sludge of the resin emulsified dispersion, the binder resin for electrostatic image developing toner is efficiently produced by grinding. , And can be easily manufactured. Further, when the toner for developing an electrostatic image is manufactured using the binder resin for a toner of the present invention, the low molecular weight polymer, the high molecular weight polymer and the colorant are uniformly compatible and dispersed, non-offset property, fixing property. The toner has good properties, pulverizability during production, anti-blocking property during storage (non-aggregation property), developability during image formation, and the like, and can produce an electrostatic charge image developing toner with little odor.
[Brief description of the drawings]
FIG. 1 is a preferred twin-screw continuous kneader for coexisting a resin solution and sludge of a resin emulsified dispersion, and performing a mixing treatment and a removal treatment of water and a solvent. (B) is a side view thereof.
[Explanation of symbols]
1. Baddle
2. Axis of rotation
3. motor
4. Material input
5. Mixture product outlet
6. Heating jacket
7. Evaporation port

Claims (6)

2軸連続混練機を用いて、スチレン系樹脂溶液とスチレン系樹脂乳化分散液のスラッジ中の樹脂粒子を一旦濾過洗浄し、スラッジ中の余分な乳化剤、触媒を水洗除去し、濾別粒子を再度水中に分散させた分散液との存在下で、上記樹脂溶液中の樹脂のガラス転移点以上の温度で混合処理を施し、それと並行して該混練機のジャケット温度を120〜300℃に設定し、投入口から排出口までの滞留時間を1〜60分に設定して、上記混合処理によって生成した組成物から水分及び溶媒を蒸発により除去する水分及び溶媒の除去処理を施し、無溶媒樹脂混合組成物を製造する工程を含むことを特徴とする静電荷像現像用トナー用結着樹脂の製造方法。 Using a twin-screw continuous kneader , the resin particles in the sludge of the styrene-based resin solution and the styrene-based resin emulsified dispersion are once filtered and washed, excess emulsifier and catalyst in the sludge are removed by washing with water, and the separated particles are filtered again. In the presence of a dispersion liquid dispersed in water , a mixing treatment is performed at a temperature equal to or higher than the glass transition point of the resin in the resin solution, and in parallel with this, the jacket temperature of the kneader is set to 120 to 300 ° C. , The residence time from the inlet to the outlet is set to 1 to 60 minutes, and the water and solvent are removed from the composition produced by the mixing process by evaporation to remove the water and the solvent. A method for producing a binder resin for a toner for developing an electrostatic image, comprising a step of producing a composition. 上記樹脂溶液が溶液重合で得られた樹脂溶液である請求項1に記載の製造方法。The method according to claim 1, wherein the resin solution is a resin solution obtained by solution polymerization. 上記樹脂乳化分散液が乳化重合で得られた重合体の乳化分散液である請求項1又は請求項2のいずれかに記載の製造方法。The method according to claim 1, wherein the resin emulsion dispersion is an emulsion dispersion of a polymer obtained by emulsion polymerization. 上記樹脂乳化分散液のスラッジが乳化重合で得られた重合体の乳化分散液を塩析することにより得られた請求項1〜3のいずれかに記載の製造方法。The method according to any one of claims 1 to 3, wherein the sludge of the resin emulsified dispersion is obtained by salting out an emulsified dispersion of a polymer obtained by emulsion polymerization. 上記樹脂溶液中の樹脂の重量平均分子量が1,000 200,000 のスチレン系樹脂であり、上記樹脂乳化分散液中の樹脂の重量平均分子量が 100,000以上であるスチレン系樹脂である請求項1〜4のいずれかに記載の製造方法。The resin in the resin solution is a styrene resin having a weight average molecular weight of 1,000 to 200,000 , and the resin in the resin emulsified dispersion is a styrene resin having a weight average molecular weight of 100,000 or more. The production method described in Crab. 2軸連続混練機を用いて、スチレン系樹脂溶液とスチレン系樹脂乳化分散液のスラッジ中の樹脂粒子を一旦濾過洗浄し、スラッジ中の余分な乳化剤、触媒を水洗除去し、濾別粒子を再度水中に分散させた分散液との存在下で、上記樹脂溶液中の樹脂のガラス転移点以上の温度で混合処理を施し、それと並行して該混練機のジャケット温度を120〜300℃に設定し、投入口から排出口までの滞留時間を1〜60分に設定して、上記混合処理によって生成した組成物から水分及び溶媒を蒸発により除去する水分及び溶媒の除去処理を施し、無溶媒樹脂混合組成物を製造し、更に着色剤を配合する工程を含むことを特徴とする静電荷像現像用トナーの製造方法。 Using a twin-screw continuous kneader , the resin particles in the sludge of the styrene-based resin solution and the styrene-based resin emulsified dispersion are once filtered and washed, excess emulsifier and catalyst in the sludge are removed by washing with water, and the separated particles are filtered again. In the presence of a dispersion liquid dispersed in water , a mixing treatment is performed at a temperature equal to or higher than the glass transition point of the resin in the resin solution, and in parallel with this, the jacket temperature of the kneader is set to 120 to 300 ° C. , The residence time from the inlet to the outlet is set to 1 to 60 minutes, and the water and solvent are removed from the composition produced by the mixing process by evaporation to remove the water and the solvent. A method for producing a toner for developing electrostatic images, comprising a step of producing a composition and further blending a colorant.
JP32198897A 1997-11-10 1997-11-10 Method of producing binder resin for toner for developing electrostatic images Expired - Fee Related JP3576366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32198897A JP3576366B2 (en) 1997-11-10 1997-11-10 Method of producing binder resin for toner for developing electrostatic images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32198897A JP3576366B2 (en) 1997-11-10 1997-11-10 Method of producing binder resin for toner for developing electrostatic images

Publications (2)

Publication Number Publication Date
JPH11143128A JPH11143128A (en) 1999-05-28
JP3576366B2 true JP3576366B2 (en) 2004-10-13

Family

ID=18138675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32198897A Expired - Fee Related JP3576366B2 (en) 1997-11-10 1997-11-10 Method of producing binder resin for toner for developing electrostatic images

Country Status (1)

Country Link
JP (1) JP3576366B2 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150855A (en) * 1981-03-13 1982-09-17 Konishiroku Photo Ind Co Ltd Toner for developing electrostatic charge image
JPS6435458A (en) * 1987-07-30 1989-02-06 Hitachi Chemical Co Ltd Production of toner for electrophotography
JPH0193748A (en) * 1987-10-06 1989-04-12 Hitachi Chem Co Ltd Production of toner for electrophotography
JPH01100562A (en) * 1987-10-13 1989-04-18 Kao Corp Production of toner for developing electrostatic charge image
JP2941964B2 (en) * 1990-01-19 1999-08-30 キヤノン株式会社 Electrostatic image developing toner and heat fixing method
JPH05119528A (en) * 1991-10-29 1993-05-18 Tdk Corp Production of electrophotographic developer and electrophotographic developer
JPH06194879A (en) * 1992-10-28 1994-07-15 Sekisui Chem Co Ltd Production of toner resin composition
JP3953117B2 (en) * 1993-08-09 2007-08-08 三菱化学株式会社 Toner for electrostatic image development
JPH07168392A (en) * 1993-12-13 1995-07-04 Sekisui Chem Co Ltd Production of resin comosition for toner
JPH07287419A (en) * 1994-04-15 1995-10-31 Mitsubishi Chem Corp Production of binder resin for electrophotographic toner
JP3278313B2 (en) * 1994-05-13 2002-04-30 キヤノン株式会社 Electrostatic image developing toner, process cartridge and image forming method
JP3244983B2 (en) * 1995-02-01 2002-01-07 キヤノン株式会社 Image forming method
JP3347557B2 (en) * 1995-10-30 2002-11-20 キヤノン株式会社 Toner for developing electrostatic images
JPH09127723A (en) * 1995-10-30 1997-05-16 Canon Inc Toner for developing electrostatic charge image

Also Published As

Publication number Publication date
JPH11143128A (en) 1999-05-28

Similar Documents

Publication Publication Date Title
JP3304812B2 (en) Method for producing binder resin for toner
EP1890195B1 (en) Process for producing binder resin for electrostatic charge image developing toner
JP3540565B2 (en) Method of producing binder resin for toner for developing electrostatic images
JP3912863B2 (en) Method for producing binder resin for toner for developing electrostatic image
JP3576366B2 (en) Method of producing binder resin for toner for developing electrostatic images
JP3576374B2 (en) Method for producing toner for developing electrostatic images
JP3429442B2 (en) Method for producing binder resin for toner for developing electrostatic images
JP3429447B2 (en) Method for producing toner for developing electrostatic images
JP2004004908A (en) Method for manufacturing binding resin for toner for electrostatically charged image development
JP4339096B2 (en) Method for producing binder resin for toner for developing electrostatic image and method for producing toner using the same
JP3576373B2 (en) Method of producing binder resin for toner for developing electrostatic images
JP3347267B2 (en) Method for producing toner for developing electrostatic images
JP3347266B2 (en) Method for producing toner for developing electrostatic images
JP3347269B2 (en) Method for producing toner for developing electrostatic images
EP0827037A1 (en) Process for producing toner for developing electrostatic latent image
JP2736983B2 (en) Method for producing binder resin for toner
JP6450255B2 (en) Method for producing binder resin for toner, and method for producing toner
JPH04274247A (en) Heat fixing toner
JPH02141763A (en) Toner for developing electrostatic charge image
JPH04274253A (en) Magnetic toner for electrostatic image development
JPH0675423A (en) Electrostatic charge image developing toner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees