JP3576358B2 - Polymer electrolyte battery - Google Patents

Polymer electrolyte battery Download PDF

Info

Publication number
JP3576358B2
JP3576358B2 JP22668697A JP22668697A JP3576358B2 JP 3576358 B2 JP3576358 B2 JP 3576358B2 JP 22668697 A JP22668697 A JP 22668697A JP 22668697 A JP22668697 A JP 22668697A JP 3576358 B2 JP3576358 B2 JP 3576358B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
sealing
electrolyte battery
battery
folding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22668697A
Other languages
Japanese (ja)
Other versions
JPH1167165A (en
Inventor
茂雄 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP22668697A priority Critical patent/JP3576358B2/en
Publication of JPH1167165A publication Critical patent/JPH1167165A/en
Application granted granted Critical
Publication of JP3576358B2 publication Critical patent/JP3576358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、小形、軽量、薄型化だけでなく、高容量化に対応したポリマー電解質二次電池に関する。
【0002】
【従来の技術】
たとえば携帯電話機、もしくは携帯型ノートパーソナルコンピューターなどの電子機器のコードレス化に当たっては、駆動電源として使用される二次電池について、高性能、小形、軽量、薄型化だけでなく、高容量化が求められている。そして、この種の二次電池としては、鉛蓄電池、ニッケルカドミウム二次電池、ニッケル水素二次電池、リチウムイオン二次電池が一般的であるが、最近では、さらに軽量化を図ることができるポリマー電解質電池に関心が払われている。
【0003】
すなわち、正極層、ポリマ−電解質層および負極層を重ね合わせ、熱・圧着により電池要素をシート状に一体化構成し、各電極端子を導出させながら外装フイルムで液密に封装して成るシート状のポリマー電解質二次電池が開発されつつある(たとえば米国特許第 5,296,318号明細書)。ここで、正極層はリチウムイオンを吸蔵、放出する炭素質材料(たとえばポリアニリン、ポリアセン)や金属酸化物を含有する正極、負極層はリチウムイオンの吸蔵、放出が可能な活物質を含むリチウム金属や炭素質およびリチウム合金系である。なお、正極層および負極層は、柔軟性などを付与するために電解質保持性のポリマーを適宜含有するとともに、集電体を有している。
【0004】
図3 (a)は従来のポリマー電解質電池の要部構成を斜視的に、また、図3 (b)は従来のポリマー電解質電池の要部構成を断面的にそれぞれ示したものである。図3 (a), (b)において、1はセパレーターの機能をする電解質保持性のポリマ−電解質系(たとえばヘキサフロロプロピレン−フッ化ビニリデン共重合体などのポリマと、リチウム塩などのエチレンカーボネート溶液…非水電解液…との系)、2はリチウムイオンを吸蔵、放出する金属酸化物などの活物質、非水電解液および電解質保持性ポリマを含む正極層を集電体に積層して成る正極、3はリチウムイオンを吸蔵、放出する活物質、非水電解液および電解質保持性ポリマを含む負極層を集電体に積層して成る負極、4,5は前記正極2および負極3の裏面側を被覆保護する外装・シール用樹脂フイルム(シート)である。なお、図において、6a,6bは正極2および負極3の集電体に電気的に接続する導出端子である。
【0005】
【発明が解決しようとする課題】
しかしながら、上記ポリマー電解質電池の構成では、次のような不都合が認められる。すなわち、シート状電池化によって、高性能、小形、軽量、薄型化などは図られるが、平面的な大きさ・形状の割合に、電池容量を大きく採れないという問題がある。
【0006】
さらに、説明すると、正極2および負極3の裏面側および側面側を被覆保護するとともに、液密ないし気密に封装する外装・シール用樹脂フイルム(シート)4,5は、一般的に、周縁部の熱圧接・封着領域 Aを要することになり、この分、ポリマー電解質電池の有効な機能領域の低減となる。たとえば、30×60mm角の薄型ポリマー電解質電池の場合、前記周縁部の熱圧接・封着領域aが 5〜10mm程度に設定されており、この熱圧接・封着領域aの占める面積比が割合大きく、結果的に、薄型ポリマー電解質電池の高容量化が損なわれている。
【0007】
本発明は、上記事情に対処してなされたもので、小形、軽量、薄型で、高容量化が図られたポリマー電解質電池の提供を目的とする。
【0008】
【課題を解決するための手段】
請求項1の発明は、セパレーター機能をする電解質保持性の固体ポリマ−電解質、リチウムイオンの吸蔵、放出が可能な活物質を含む正極、およびリチウムイオンの吸蔵、放出が可能な活物質を含む負極を積層して成る板状の電極要素と、前記電極要素を液密に被覆・保護する外装・シール用樹脂層とを有するポリマー電解質電池において、前記外装・シール用樹脂層は、樹脂フイルム片の一対の対向する端縁部の側面電極要素の端面に沿って折り込み型に封止して筒状体を形成し、該筒状体の開口一端側を折り畳んで折り込み型に封止し、前記電極要素の正極および負極のぞれぞれに電気的に接続された導出端子を開口他端側から外部に導出させて、該開口他端側を折り畳んで折り込み型に封止して構成されることを特徴とするポリマー電解質電池である。
【0009】
すなわち、本発明のポリマー電解質電池は、たとえば、▲1▼厚さ90μm 程度のセパレーターの機能をする電解質保持性のポリマ−電解質系(たとえばヘキサフロロプロピレン−フッ化ビニリデン共重合体などのポリマおよびリチウム塩などのエチレンカーボネート溶液…非水電解液…の混合系)、▲2▼金属酸化物などの活物質、非水電解液および電解質保持性ポリマを含む正極層を集電体に積層して成る厚さ 150μm 程度の正極、▲3▼リチウムイオンを吸蔵,放出する活物質,非水電解液および電解質保持性ポリマを含む負極層を集電体に積層して成る厚さ 130μm 程度の負極、および▲4▼前記ポリマ−電解質系を介して重ね合わせた正極,負極の外表面(裏面)側および側面側を液密に被覆保護する厚さ25μm 程度のポリイミド系樹脂製シール層で構成されている。
【0010】
そして、前記基本的な構成は、従来の場合と変わらないが、本発明においては、外装・シール用の樹脂層が、対向する少なくとも一対の辺側面部で、電極要素の端面に沿って折り込み型に封止し、平面的に封止領域部を低減させ、平面的に電池要素部が占める面積を相対的に大きくした点に特徴付けられる。
【0011】
ここで、正極の活物質としては、たとえばリチウムマンガン複合酸化物,二酸化マンガン,リチウム含有コバルト酸化物,リチウム含有ニッケルコバルト酸化物,リチウムを含む非晶質五酸化バナジウム,カルコゲン化合物などが挙げられる。また、負極活物質としては、たとえばビスフェノール樹脂,ポリアクリロニトリル,セルローズなどの焼成物、コークスやピッチの焼成物が挙げられ、これらは天然もしくは人口グラファイト,カーボンブラック,アセチレンブラック,ケッチェンブラック,ニッケル粉末,ニッケル粉末などを含有した形態を採ってもよい。
【0012】
さらに、電解質系は、たとえばエチレンカーボネート,プロピレンカーボネート,ブチレンカーボネート,ジメチルカーボネート,ジエチルカーボネート,メチルエチルカーボネートなどの非水溶媒に、過塩素酸リチウム,六フッ化リン酸リチウム,ホウ四フッ化リチウム,六フッ化ヒ素リチウム,トリフルオロメタンスルホン酸リチウムなどを 0.2〜 2mol/ l程度に溶解させたものが挙げられる。また、集電体としては、たとえばアルミニウム箔,アルミニウムメッシュ,アルミニウム製エキスバンドメタル,アルミニウム製パンチメタルなどが挙げられ、また、負極の集電体としては、銅箔,銅メッシュ,銅製エキスバンドメタル,銅製パンチメタルなどが挙げられる。
【0013】
本発明において、発電要素を液密に被覆保護するシール用樹脂層としては、たとえば厚さ10〜 150μm 程度のポリイミド系樹脂フィルム、ポリエステル樹脂フィルム、アラミド樹脂フィルムなどが挙げられる。そして、たとえば四角形に切断加工したフイルムを、レーザビーム照射による溶着・溶接法などで断面長方形、円形、楕円形などの筒状もしくは有底筒状に形成し、この筒状体内に発電要素を挿入・位置決め・装着した後、電極端子を導出しながら開口端部を折り込み、その折り込み部を接着剤などで接合することにより、外装・封止が行われる。なお、前記筒状体化は、切断加工したフイルムの折り込みなどで行うこともできる。
【0014】
請求項1の発明では、外装封止の接合部が平面的に占める割合を低減し、同一外形寸法の場合、前記接合部が低減する分、平面的に電池要素領域の占める割合を大きくできるので、少なくとも、電池要素領域の平面的な拡大領域分、電池容量を大きくすることが可能となる。すなわち、ポリマー電解質電池は、高性能、小形、軽量、薄型化だけでなく、高容量化も容易に図られる。
【0015】
【発明の実施の形態】
以下図1 (a), (b)および図2 (a), (b)を参照して実施例を説明する。
【0016】
図1 (a)は、第1の実施例に係るポリマー電解質電池電池の概略構成を示す斜視図、図1 (b)は図1 (a)の B−B線に沿った断面図である。図1 (a), (b)において、7はポリマー電解質電池である。
【0017】
ここで、ポリマー電解質電池7は、セパレーターの機能をする電解質保持性のポリマ−電解質系8、リチウムイオンを吸蔵、放出する金属酸化物などの活物質、非水電解液および電解質保持性ポリマーを含む正極層を集電体に積層して成る正極9、およびリチウムイオンを吸蔵、放出する活物質、非水電解液および電解質保持性ポリマーを含む負極層を集電体に積層して成る負極10を積層して形成された電池要素7′と、前記電池要素7′の表裏面および側面を被覆保護する外装・シール用樹脂層(フイルムないしシート)11である。
【0018】
また、前記外装・シール用樹脂層11は、次のようにして保護被覆したものである。すなわち、四角形に切断された樹脂フイルム片の対向する一対の端縁部を重ね合わせ 11a、レーザービーム照射で溶着して断面長方形の筒状体11′とする。その後、図2 (a)に斜視的に示すように、筒状体11′の一開口端側を折り込み、面 (b)に側面的に示すごとく、折り畳み、かつレーザービーム照射などで溶着して、有底筒状体化する。
【0019】
次いで、前記有底筒状体内に、電池要素7′を挿入・位置決め・装着し、正極9および負極10の集電体に電気的に接続する導出端子 12a, 12bを導出する一方、上記に準じて、有底筒状体の開口他端側を、折り込み・折り畳みした後、接着剤などによって折り畳み部を相互に接合する。
【0020】
上記電池要素7′をシール用樹脂層11で外装・保護した構成、たとえば外形48×34×86mmのポリマー電解質電池の場合、同じ外形寸法とした従来の構成の場合(図3参照)に比べて、電池容量が約 8%向上していた。すなわち、高性能、小形、軽量、薄型化が行われるだけでなく、高容量化したポリマー電解質電池として機能することが確認された。
【0021】
上記では、四角形に切断された樹脂フイルム片を素材として、断面長方形の筒状体11′化し、さらに、有底筒状体化して電池要素7′を保護・被覆する構成を例示したが、たとえば射出成型法などで形成した薄膜の有底筒状体で行ってもよいし、あるいは対向する一対の辺だけでなく各側面全体について折り込み・折り畳み方式で液密に保護・被覆封装を行っても、同様に、高容量化を図ることができる。
【0022】
なお、本発明は上記例示に限定されるものでなく、発明の趣旨を逸脱しない範囲でいろいろの変形を採ることができる。すなわち、ポリマー電解質電池要素の構成素材、厚さ・形状、電池要素を被覆・保護する外装・シールする樹脂層の構造、素材、形状などは、特に限定されるものでない。
【0023】
【発明の効果】
請求項1の発明によれば、外装・シール用樹脂フイルムの封止・接合に要するスペースが低減されるので、小形化を容易に図ることができる。ここで、外装・シール用樹脂フイルムの封止・接合部のスペース効率を向上できることは、その分を電池要素用領域として活用できるので、同じ外形寸法ならば、電池容量の大きいポリマー電解質電池が提供される。つまり、電子機器のコードレス化に当たり駆動電源として要求される特性、換言すると、高性能、小形、軽量、薄型化、高容量化を兼ね備えた電池を提供できる。
【図面の簡単な説明】
【図1】実施例のポリマー電解質電池の概略構成を示すもので、 (a)は斜視図、 (b)は (a)の B− B線に沿った断面図。
【図2】(a)は実施例のポリマー電解質電池の外装・シール用樹脂層を形成する筒状体の開口端の折り込みみ状態を模式的に示す拡大斜視図、 (b)は折り畳み状態を模式的に示す側面図。
【図3】従来のポリマー電解質電池の概略構成例を示すもので、 (a)は斜視図、 (b)は (a)の A− A線に沿った断面図。
【符号の説明】
1,8……ポリマ−電解質系
2,9……正極
3,10……負極
4,5,11……外装シール用樹脂層(フイルム、シート)
6a,6b, 12a, 12b……導出端子
7……ポリマー電解質電池
11a……フイルムの重ね合わせ
11b……フイルム筒状体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer electrolyte secondary battery that is not only compact, lightweight and thin, but also has a high capacity.
[0002]
[Prior art]
For example, when making electronic devices such as mobile phones and portable notebook personal computers cordless, secondary batteries used as drive power sources must not only have high performance, small size, light weight and thinness, but also high capacity. ing. As such secondary batteries, lead-acid batteries, nickel-cadmium secondary batteries, nickel-metal hydride secondary batteries, and lithium-ion secondary batteries are generally used. There is interest in electrolyte batteries.
[0003]
In other words, the positive electrode layer, the polymer electrolyte layer, and the negative electrode layer are superimposed, the battery element is integrally formed into a sheet shape by heat and pressure bonding, and each electrode terminal is led out while being sealed in a liquid-tight manner with an exterior film. Are being developed (for example, US Pat. No. 5,296,318). Here, the positive electrode layer contains a carbonaceous material (for example, polyaniline or polyacene) or a metal oxide that absorbs and releases lithium ions, and the negative electrode layer contains lithium metal containing an active material capable of absorbing and releasing lithium ions. Carbonaceous and lithium alloy based. In addition, the positive electrode layer and the negative electrode layer appropriately contain an electrolyte-retaining polymer for imparting flexibility and the like, and have a current collector.
[0004]
FIG. 3A is a perspective view of a main part configuration of a conventional polymer electrolyte battery, and FIG. 3B is a cross-sectional view of a main part configuration of a conventional polymer electrolyte battery. In FIGS. 3 (a) and 3 (b), reference numeral 1 denotes a polymer-electrolyte system (for example, a polymer such as a hexafluoropropylene-vinylidene fluoride copolymer) and an ethylene carbonate solution such as a lithium salt, which function as a separator. , A nonaqueous electrolyte solution), 2 is formed by stacking a positive electrode layer containing an active material such as a metal oxide that occludes and releases lithium ions, a nonaqueous electrolyte solution, and an electrolyte-retaining polymer on a current collector. Positive electrode, 3 is a negative electrode formed by laminating a negative electrode layer containing an active material for absorbing and releasing lithium ions, a non-aqueous electrolyte and an electrolyte-retaining polymer on a current collector, and 4, 5 are back surfaces of the positive electrode 2 and the negative electrode 3 This is an exterior / sealing resin film (sheet) that covers and protects the side. In the drawing, 6a and 6b are lead terminals electrically connected to the current collectors of the positive electrode 2 and the negative electrode 3.
[0005]
[Problems to be solved by the invention]
However, the configuration of the polymer electrolyte battery has the following disadvantages. In other words, although high performance, small size, light weight, thinness, etc. can be achieved by using a sheet-shaped battery, there is a problem that a large battery capacity cannot be obtained in proportion to a planar size and shape.
[0006]
More specifically, the resin films (sheets) 4 and 5 for covering and sealing the rear and side surfaces of the positive electrode 2 and the negative electrode 3 and sealing them in a liquid-tight or air-tight manner generally have a peripheral portion. The heat welding / sealing area A is required, which reduces the effective functional area of the polymer electrolyte battery. For example, in the case of a thin polymer electrolyte battery having a size of 30 × 60 mm square, the heat-sealing / sealing area “a” of the peripheral portion is set to about 5 to 10 mm, and the area ratio of the heat-sealing / sealing area “a” As a result, the high capacity of the thin polymer electrolyte battery is impaired.
[0007]
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a small, lightweight, thin, and high-capacity polymer electrolyte battery.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 provides a solid polymer electrolyte having an electrolyte retention function as a separator, a positive electrode containing an active material capable of inserting and extracting lithium ions, and a negative electrode containing an active material capable of inserting and extracting lithium ions. In a polymer electrolyte battery having a plate-shaped electrode element formed by laminating, and an exterior / sealing resin layer for covering and protecting the electrode element in a liquid-tight manner, the exterior / sealing resin layer is formed of a resin film piece. and sealing the folding type along a side edge portion of a pair of opposing the end face of the electrode elements to form a tubular body, sealed in a folding-type folding the opening end side of the cylindrical body, wherein A lead terminal electrically connected to each of the positive electrode and the negative electrode of the electrode element is led out to the outside from the other end of the opening, and the other end of the opening is folded and sealed in a folding type. Polymer characterized by the following: It is the solution electrolyte battery.
[0009]
That is, the polymer electrolyte battery of the present invention is, for example, (1) a polymer-electrolyte system (for example, a polymer such as hexafluoropropylene-vinylidene fluoride copolymer and the like) capable of functioning as a separator having a thickness of about 90 μm. (2) a positive electrode layer containing an active material such as a metal oxide, a non-aqueous electrolyte, and an electrolyte-retaining polymer laminated on a current collector; A positive electrode having a thickness of about 150 μm; (3) a negative electrode having a thickness of about 130 μm formed by laminating a negative electrode layer containing an active material for absorbing and releasing lithium ions, a non-aqueous electrolyte and an electrolyte-retaining polymer on a current collector; {Circle around (4)} A port having a thickness of about 25 μm for liquid-tightly covering and protecting the outer surface (rear surface) and side surfaces of the positive electrode and the negative electrode which are superposed via the polymer electrolyte system. It is composed of an imide-based resin sealing layer.
[0010]
Although the basic configuration is the same as that of the conventional case, in the present invention, the resin layer for exterior and sealing is formed by folding at least at a pair of opposed side surfaces along the end surface of the electrode element. This is characterized in that the sealing region portion is reduced planarly, and the area occupied by the battery element portion is relatively increased planarly.
[0011]
Here, examples of the active material of the positive electrode include lithium manganese composite oxide, manganese dioxide, lithium-containing cobalt oxide, lithium-containing nickel cobalt oxide, lithium-containing amorphous vanadium pentoxide, chalcogen compound, and the like. Examples of the negative electrode active material include fired products of bisphenol resin, polyacrylonitrile, cellulose, and the like, and fired products of coke and pitch. These are natural or artificial graphite, carbon black, acetylene black, ketjen black, nickel powder, and the like. , Nickel powder or the like.
[0012]
Further, the electrolyte system may be used in a non-aqueous solvent such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate, for example, lithium perchlorate, lithium hexafluorophosphate, lithium borotetrafluoride, Examples thereof include those in which lithium arsenide hexafluoride, lithium trifluoromethanesulfonate, and the like are dissolved at about 0.2 to 2 mol / l. Examples of the current collector include aluminum foil, aluminum mesh, aluminum band metal, and aluminum punch metal. Examples of the current collector for the negative electrode include copper foil, copper mesh, and copper band metal. And copper punch metal.
[0013]
In the present invention, examples of the sealing resin layer that covers and protects the power generation element in a liquid-tight manner include a polyimide resin film, a polyester resin film, and an aramid resin film having a thickness of about 10 to 150 μm. Then, for example, the film cut into a square is formed into a tubular or bottomed tubular shape such as a rectangular, circular, or elliptical cross section by a welding / welding method using laser beam irradiation, and the power generating element is inserted into the tubular body. After positioning and mounting, the exterior end is sealed by folding the open end while leading out the electrode terminals and joining the folded portion with an adhesive or the like. The cylindrical body can be formed by folding a cut film.
[0014]
According to the first aspect of the present invention, the ratio of the joint portion of the exterior sealing occupying a plane can be reduced, and in the case of the same external dimensions, the proportion of the battery element region can be increased in a planar manner by the reduced joint portion. It is possible to increase the battery capacity at least by the planar enlarged area of the battery element area. That is, the polymer electrolyte battery can easily achieve not only high performance, small size, light weight and thinness but also high capacity.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment will be described below with reference to FIGS. 1 (a) and 1 (b) and FIGS. 2 (a) and 2 (b).
[0016]
FIG. 1A is a perspective view illustrating a schematic configuration of a polymer electrolyte battery according to a first embodiment, and FIG. 1B is a cross-sectional view taken along line BB of FIG. 1A. 1A and 1B, reference numeral 7 denotes a polymer electrolyte battery.
[0017]
Here, the polymer electrolyte battery 7 includes an electrolyte-holding polymer-electrolyte system 8 that functions as a separator, an active material such as a metal oxide that absorbs and releases lithium ions, a nonaqueous electrolyte, and an electrolyte-holding polymer. A positive electrode 9 formed by laminating a positive electrode layer on a current collector, and a negative electrode 10 formed by laminating a negative electrode layer containing an active material that occludes and releases lithium ions, a non-aqueous electrolyte solution, and an electrolyte-retaining polymer on a current collector. A battery element 7 'formed by lamination, and a resin layer (film or sheet) 11 for exterior and sealing for covering and protecting the front and back and side surfaces of the battery element 7'.
[0018]
The exterior / seal resin layer 11 is protectively coated as follows. That is, a pair of opposite edge portions of a resin film piece cut into a square is overlapped 11a and welded by laser beam irradiation to form a cylindrical body 11 'having a rectangular cross section. Then, as shown in perspective in FIG. 2 (a), one open end side of the cylindrical body 11 'is folded, and as shown in side view on the surface (b), the tube is folded and welded by laser beam irradiation or the like. , Into a bottomed tubular body.
[0019]
Next, the battery element 7 'is inserted, positioned, and mounted in the bottomed cylindrical body, and lead-out terminals 12a, 12b electrically connected to the current collectors of the positive electrode 9 and the negative electrode 10 are led out. Then, after the other end of the opening of the bottomed cylindrical body is folded and folded, the folded portions are joined to each other by an adhesive or the like.
[0020]
A configuration in which the battery element 7 'is externally protected by a sealing resin layer 11, for example, in the case of a polymer electrolyte battery having an external size of 48 × 34 × 86 mm, as compared with a conventional configuration having the same external size (see FIG. 3). The battery capacity was improved by about 8%. That is, it was confirmed that not only high performance, small size, light weight, and thinning were performed, but also the polymer electrolyte battery functioned as a high capacity polymer electrolyte battery.
[0021]
In the above description, a configuration in which a resin film piece cut into a square is used as a material to form a tubular body 11 ′ having a rectangular cross section, and further a tubular body with a bottom to protect and cover the battery element 7 ′ has been described. It may be performed with a bottomed cylindrical body of a thin film formed by injection molding, etc., or it may be liquid-tightly protected / covered and sealed by folding / folding not only on a pair of opposing sides but also on the entire side. Similarly, the capacity can be increased.
[0022]
It should be noted that the present invention is not limited to the above examples, and various modifications can be made without departing from the spirit of the invention. That is, the constituent material, thickness and shape of the polymer electrolyte battery element, and the structure, material and shape of the resin layer for covering and protecting the battery element for exterior and sealing are not particularly limited.
[0023]
【The invention's effect】
According to the first aspect of the present invention, the space required for sealing and joining the resin film for exterior and sealing is reduced, so that downsizing can be easily achieved. Here, the improvement of the space efficiency of the sealing / joining portion of the resin film for the exterior / seal can be utilized as an area for the battery element, so that a polymer electrolyte battery having a large battery capacity can be provided with the same external dimensions. Is done. In other words, it is possible to provide a battery having characteristics required as a drive power source for cordless electronic devices, in other words, high performance, small size, light weight, thinness, and high capacity.
[Brief description of the drawings]
FIG. 1 shows a schematic configuration of a polymer electrolyte battery according to an example, in which (a) is a perspective view, and (b) is a cross-sectional view taken along line BB of (a).
FIG. 2A is an enlarged perspective view schematically showing a folded state of an open end of a cylindrical body forming a resin layer for exterior and sealing of a polymer electrolyte battery of an example, and FIG. 2B is a folded state. The side view which shows typically.
FIG. 3 shows a schematic configuration example of a conventional polymer electrolyte battery, wherein (a) is a perspective view, and (b) is a cross-sectional view taken along line AA of (a).
[Explanation of symbols]
1,8 ... Polymer-electrolyte system 2,9 ... Positive electrode 3,10 ... Negative electrode 4,5,11 ... Outer sealing resin layer (film, sheet)
6a, 6b, 12a, 12b Lead-out terminal 7 Polymer electrolyte battery 11a Lamination of film 11b Film cylindrical body

Claims (1)

セパレーター機能をする電解質保持性の固体ポリマ−電解質、リチウムイオンの吸蔵、放出が可能な活物質を含む正極、およびリチウムイオンの吸蔵、放出が可能な活物質を含む負極を積層して成る板状の電極要素と、前記電極要素を液密に被覆・保護する外装・シール用樹脂層とを有するポリマー電解質電池において、
前記外装・シール用樹脂層は、樹脂フイルム片の一対の対向する端縁部の側面電極要素の端面に沿って折り込み型に封止して筒状体を形成し、該筒状体の開口一端側を折り畳んで折り込み型に封止し、前記電極要素の正極および負極のぞれぞれに電気的に接続された導出端子を開口他端側から外部に導出させて、該開口他端側を折り畳んで折り込み型に封止して構成されることを特徴とするポリマー電解質電池。
A plate formed by stacking an electrolyte-retaining solid polymer electrolyte serving as a separator, a positive electrode containing an active material capable of absorbing and releasing lithium ions, and a negative electrode containing an active material capable of absorbing and releasing lithium ions. Electrode element, a polymer electrolyte battery having a resin layer for exterior and sealing to cover and protect the electrode element in a liquid-tight manner,
The outer seal resin layer along the side edge portions of a pair of opposed resin film piece on the end face of the electrode elements by sealing the folding-type to form a cylindrical body, the opening of the cylindrical body One end side is folded and sealed in a folding type, and lead terminals electrically connected to the positive electrode and the negative electrode of the electrode element are led out to the outside from the other end of the opening, and the other end of the opening is opened. Characterized in that the polymer electrolyte battery is constructed by folding and sealing in a folding type .
JP22668697A 1997-08-22 1997-08-22 Polymer electrolyte battery Expired - Fee Related JP3576358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22668697A JP3576358B2 (en) 1997-08-22 1997-08-22 Polymer electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22668697A JP3576358B2 (en) 1997-08-22 1997-08-22 Polymer electrolyte battery

Publications (2)

Publication Number Publication Date
JPH1167165A JPH1167165A (en) 1999-03-09
JP3576358B2 true JP3576358B2 (en) 2004-10-13

Family

ID=16849074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22668697A Expired - Fee Related JP3576358B2 (en) 1997-08-22 1997-08-22 Polymer electrolyte battery

Country Status (1)

Country Link
JP (1) JP3576358B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980042828A (en) * 1997-11-27 1998-08-17 다카노야스아키 Thin-film Batteries
JP2000048781A (en) * 1998-07-28 2000-02-18 Ricoh Co Ltd Flat, thin battery
JP3825593B2 (en) * 1999-10-15 2006-09-27 Tdk株式会社 Manufacturing method of package
KR20010104136A (en) * 2000-05-13 2001-11-24 김순택 Battery with pouch cover
JP5591569B2 (en) * 2010-02-05 2014-09-17 三洋電機株式会社 Square battery, method for manufacturing the same, and assembled battery using the same

Also Published As

Publication number Publication date
JPH1167165A (en) 1999-03-09

Similar Documents

Publication Publication Date Title
US7704638B2 (en) Battery and battery module
JP3964521B2 (en) Assembled battery
JP3767531B2 (en) Battery assembly
US8986879B2 (en) Pouch type rechargeable battery
JP2004111219A (en) Laminate secondary cell, cell pack module made of a plurality of laminated secondary cells, cell pack made of a plurality of cell pack modules, and electric car loading either thereof
JP4096664B2 (en) Laminated battery
US20130280576A1 (en) Battery
US11205815B2 (en) Secondary battery
JP7014294B2 (en) Secondary battery
JP3632062B2 (en) Thin polymer battery
JP3583592B2 (en) Thin rechargeable battery
JP2004031137A (en) Thin battery
JP4224739B2 (en) Battery with frame
JP4075534B2 (en) Laminated secondary battery, assembled battery module, assembled battery and electric vehicle equipped with this battery
JP3576358B2 (en) Polymer electrolyte battery
JP4377475B2 (en) Thin battery
JP4273369B2 (en) Battery with frame
JP3378178B2 (en) Lithium polymer battery
WO2021140838A1 (en) Secondary battery
JP2000277159A (en) Nonaqueous electrolyte secondary battery
JPH11162421A (en) Sheet type battery
CN110036501B (en) Secondary battery
JPH1167167A (en) Sheet battery
JP2004319099A (en) Electrochemical cell
JP2000021383A (en) Thin battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees