JP3576246B2 - Operating method of fuel cell - Google Patents

Operating method of fuel cell Download PDF

Info

Publication number
JP3576246B2
JP3576246B2 JP03368495A JP3368495A JP3576246B2 JP 3576246 B2 JP3576246 B2 JP 3576246B2 JP 03368495 A JP03368495 A JP 03368495A JP 3368495 A JP3368495 A JP 3368495A JP 3576246 B2 JP3576246 B2 JP 3576246B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
gas
fuel
electrochemical cell
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03368495A
Other languages
Japanese (ja)
Other versions
JPH08227724A (en
Inventor
均 宮本
正夫 角
房幸 南條
弘一 武信
潔 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP03368495A priority Critical patent/JP3576246B2/en
Publication of JPH08227724A publication Critical patent/JPH08227724A/en
Application granted granted Critical
Publication of JP3576246B2 publication Critical patent/JP3576246B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【産業上の利用分野】
本発明は高温で作動する固体電解質型燃料電池や固体電解質型水蒸気電解装置のような高温固体電解質型電気化学セルの運転操作方法に関し、特に固体電解質型電気化学セルの安全運転方法及び同電気化学セルの補修方法に関する。
【0002】
【従来の技術】
以下、従来技術を固体電解質型燃料電池を例に採り図2によって説明する。固体電解質型燃料電池は水素等の燃料と空気等の酸化剤を固体電解質の両側へ供給し、発電を行わせるものであるが、その構成は図2に示すようなものである。図2において、1は固体電解質、2は燃料極、3は酸素極、8は空気等の酸化ガス、9は水素等の燃料ガスを示す。このような固体電解質型燃料電池は図2のように組立て後、直ちに運転に入ることが一般的である。
【0003】
【発明が解決しようとする課題】
図2のような構成の固体電解質型燃料電池の場合、固体電解質1を介して水素等の燃料ガス9と空気等の酸化ガス8は隔離・供給されるが、周辺シール部あるいは固体電解質1に割れ等の欠陥部がある場合、燃料ガス9と酸化ガス8が混合燃焼し、燃焼ゾーン10を形成することがある。この場合、温度が2000℃近くまで上昇するため、部材の損傷を招く恐れがあり、いったんリーク燃焼現象がおこると伝播してついには運転不可能に至る場合がある。
【0004】
本発明は上記技術水準に鑑み、上述したような問題を排して容易で確実な固体電解質型電気化学セルの安全運転方法及び同電気化学セルの固体電解質が損傷した時の補修方法を提供しようとするものである。
【0005】
【課題を解決するための手段】
本発明は(1)600℃以上で操作する固体電解質型電気化学セルの運転操作の前に、温度600〜1000℃において燃料極側に固体電解質の安定化剤となる酸化物を形成する元素の塩化物とZrClと不活性ガスからなる混合ガスを、空気極側に空気、酸素及び水蒸気のうちの1種以上のガスを導入することを特徴とする固体電解質型電気化学セルの安全運転方法及び(2)600℃以上で操作する固体電解質型電気化学セルの運転中に、該電池の出口ガス温度の異常上昇が認められた場合に、燃料極側に流れる燃料ガスにZrOの安定化剤となる酸化物を形成する元素の塩化物とZrClを添加することを特徴とする固体電解質型電気化学セルの固体電解質の補修方法である。
【0006】
本発明の固体電解質型電気化学セルの固体電解質としてはY安定化ZrO(YSZ)やY安定化セリア{(CeO0.8 (Y0.2 },Cd安定化セリア{(CeO0.8 (Cd0.2 }をあげることができる。燃料極側に導入する固体電解質の安定化剤となる酸化物を形成する元素の塩化物としては、YCl、CaCl、MgCl、MgClなどがあげられる。また同時に導入する不活性ガスとしてはAr、He、N、Ne、Kr、Xcなどがあげられる。
【0007】
【作用】
固体電解質に欠陥がある場合、燃料極側に導入される例えばYClとZrClは酸素極側に導入される酸素と下記式に示すように反応し、その欠陥部にY安定化ZrOを形成する。
【0008】
【化1】
2YCl+1.50=Y+3Cl
ZrCl+O=ZrO+2Cl
【0009】
また、酸素極側に導入するガス中に水蒸気が存在すれば、下記式に示すように反応し、同じくその欠陥部にY安定化ZrOを形成する。
【0010】
【化2】
2YCl+3H0=Y+6HCl
ZrCl+2HO=ZrO+4HCl
【0011】
酸素あるいは水蒸気は酸素極側から供給されるので、このことは漏れている箇所(欠陥部)で上の反応が起こることを意味する。ここで、混合ガス中の不活性ガスはキャリアガスとして作用するものであるが、このようなキャリアガスを使用しないと反応ガスが高濃度になりすぎて、均質な緻密の成膜ができず、欠陥部を完全に閉ぐことができない。
【0012】
このようにして両電極のガスが出会うところで反応は起こり、生成した成分によって漏れ箇所は封止され、全てが封止されると酸素極側から酸素は供給されなくなるので反応は停止する。従って、固体電解質型電気化学セルを組み立てた後、上記反応を行わせれば固体電解質電気化学セルの安全運転が可能になり、また、固体電解質型電気化学セルの運転中、欠陥部が生じた場合、上記反応を行わせることによって欠陥部の完全修復が可能となる。
【0013】
【実施例】
以下、本発明の具体的な実施例をあげ、本発明の効果を明らかにする。
【0014】
(実施例1)
本発明による実施例を図1に基づいて説明する。図1は固体電解質型燃料電池を組み立てた直後、同電池の固体電解質に存在する欠陥部(割れ部)を予め修復する場合の説明図であり、割れ部分4の燃料極2側にYClガス5、ZrClガス6及び不活性ガス7を、酸素極3側に空気8を流している図を示している。
【0015】
先ず、不活性ガス7を燃料極2側に流し、定常に達した時点でYClガス5とZrClガス6を、YとZrの比率(モル比)がY/(Zr+Y)=8〜10%となるように徐々にYClとZrClの濃度を上げてゆき、最終的には不活性ガス7をなくしてYClガス5とZrClガス6のみとする。これによって割れ部分4に反応生成物11ができる。なおこの反応生成物11の反応条件としては、600〜1000℃であればよく、時間としては少なくとも30分が必要であり、かつ、反応生成物11の成膜速度は1〜10μm/Hrであるので、割れ箇所が大きければ、10時間程度を要する。また、空気の代りに水蒸気を使用する場合、生成する塩化水素ガス等を除去するために出口を真空ポンプ等で吸引して排気すればよい。
【0016】
本発明で生成するガスは塩素ガス、あるいは水蒸気を使用した場合には塩化水素ガスである。塩化水素ガスは強い腐食性があるので残留することは好ましくないので上述したような強制換気あるいはキャリァーガスによる掃気が望ましい。
【0017】
(実施例2)
以下、運転中の補修に関する実施例をあげる。75mmの大きさの固体電解質の両側に燃料極と空気極を設けた発電膜をランタンクロマイト(LaCrO)からなるインターコネクタ(電流接続子)でサンドイッチした単位発電素子を2組積層し、インターコネクタの下部に燃料および空気の出入口配管を設けた燃料電池を製造した。
【0018】
この電池の有効面積は一組当たりが25cmであり2組で50cmである。この電池を電気炉にセットし、1000℃まで100℃/hrの昇温速度で上げた。その後、燃料として水素を0.25リットル/min、空気を0.5リットル/min、それぞれのセルに送ったところ、電圧として2.0V(セル当たり1.0V)を得た。電流を取り出したところ、セル当たり0.7Vにおいて7.5Aが取り出せた。
【0019】
次にこの燃料電池の電気炉のスイッチを切って急速に降温し、室温に達したところで再び1000℃まで100℃/hrの昇温速度で上げた。この燃料電池に再び燃料(水素)と空気を供給したところ、電圧が1.8Vに下がり、また0.7V時の電流は4Aしか取り出せなかった。また燃料出口の配管に設置した熱電対は1100℃を示し、通常の1020℃に比べて80℃程高い値を示した。この原因は発電膜の割れに起因することが最も確からしいため、次の手段を取った。まず、燃料側、空気側とも真空に引いてガスを排出した。次に燃料側に窒素を50cc/min、空気側に空気を同流量流した。その後、燃料側のガスをYClとZrClガスの混合ガス(Yのモル比率10%)に置換して5時間保った。その後、再び燃料(水素)と空気を供給したところ、電圧が1.95Vに上がり、また0.7V時の電流は5.5Aまで回復した。完全に回復しなかったのは割れによる燃焼で電極の一部が劣化したためと考えられるが、効果は十分であり、また出口の温度は1020℃まで低下し、割れ部がシールされていることが確認できた。
【0020】
【発明の効果】
本発明により、次の効果が生まれる。すなわち、(1)シール性能が向上する。本発明によれば漏れている箇所を選択的にシールすることとなるのでシール性能が従来に比べて向上する。(2)燃料電池の補修方法が容易となる。すなわち、従来の燃料電池の場合、局部的な燃焼等が発生して温度が上昇した場合、止むなく降温して補修する必要があった。降温することは単に時間的な損失が生じるだけではなく、常温下で補修した結果が降温下で保証されないため、昇降温を繰り返す必要があったが、本発明によれば高温下で運転温度またはわずかに(600℃以上1000℃の範囲)温度を下げれば補修が可能となり、信頼性が向上する。
(3)燃料電池の耐久性が向上する。
【0021】
上記(1)、(2)の効果により、燃料電池の運転前に本発明の操作を行えば燃料ガスおよび酸化ガスのシール性を完璧にできるため、局部的な燃焼による劣化等の恐れがなくなる。従って電池の耐久性が増す。
【図面の簡単な説明】
【図1】本発明の一実施例に係わる燃料電池スタックの運転方法の説明図。
図である。
【図2】従来の燃料電池の運転方法の一態様の説明図。
[0001]
[Industrial applications]
The present invention relates to a method for operating a high-temperature solid-electrolyte electrochemical cell such as a solid-electrolyte fuel cell or a solid-electrolyte-type steam electrolyzer operating at a high temperature. The present invention relates to a cell repair method.
[0002]
[Prior art]
Hereinafter, the prior art will be described with reference to FIG. 2 taking a solid oxide fuel cell as an example. A solid oxide fuel cell supplies a fuel such as hydrogen and an oxidizing agent such as air to both sides of the solid electrolyte to generate power. The configuration is as shown in FIG. In FIG. 2, 1 is a solid electrolyte, 2 is a fuel electrode, 3 is an oxygen electrode, 8 is an oxidizing gas such as air, and 9 is a fuel gas such as hydrogen. It is general that such a solid oxide fuel cell is put into operation immediately after assembly as shown in FIG.
[0003]
[Problems to be solved by the invention]
In the case of a solid oxide fuel cell having a configuration as shown in FIG. 2, a fuel gas 9 such as hydrogen and an oxidizing gas 8 such as air are separated and supplied via the solid electrolyte 1. If there is a defect such as a crack, the fuel gas 9 and the oxidizing gas 8 may be mixedly burned to form the combustion zone 10. In this case, since the temperature rises to nearly 2000 ° C., there is a possibility that the members may be damaged, and once the leak combustion phenomenon occurs, it may propagate and eventually become inoperable.
[0004]
The present invention has been made in view of the above-mentioned state of the art, and provides an easy and reliable method of safely operating a solid electrolyte type electrochemical cell by eliminating the above-mentioned problems, and a method of repairing the solid electrolyte of the electrochemical cell when the solid electrolyte is damaged. It is assumed that.
[0005]
[Means for Solving the Problems]
The present invention relates to (1) an element which forms an oxide serving as a solid electrolyte stabilizer on the fuel electrode side at a temperature of 600 to 1000 ° C. before the operation of a solid oxide electrochemical cell operated at 600 ° C. or higher A method for safely operating a solid electrolyte type electrochemical cell, characterized by introducing a mixed gas comprising chloride, ZrCl 4 and an inert gas into the air electrode side by introducing at least one of air, oxygen and water vapor. And (2) stabilizing ZrO 2 in the fuel gas flowing to the fuel electrode side when an abnormal rise in the outlet gas temperature of the battery is observed during the operation of the solid electrolyte electrochemical cell operated at 600 ° C. or higher. A method for repairing a solid electrolyte of a solid electrolyte type electrochemical cell, characterized by adding a chloride of an element forming an oxide serving as an agent and ZrCl 4 .
[0006]
As the solid electrolyte of the solid electrolyte type electrochemical cell of the present invention, Y 2 O 3 stabilized ZrO 2 (YSZ) or Y 2 O 3 stabilized ceria セ (CeO 2 ) 0.8 (Y 2 O 3 ) 0.2 {, Cd 2 O 3 stabilized ceria {(CeO 2 ) 0.8 (Cd 2 O 3 ) 0.2 }. Examples of chlorides of elements forming an oxide serving as a stabilizer for the solid electrolyte introduced to the fuel electrode include YCl 3 , CaCl 2 , MgCl 2 , and MgCl 2 . Examples of the inert gas introduced at the same time include Ar, He, N 2 , Ne, Kr, and Xc.
[0007]
[Action]
When there is a defect in the solid electrolyte, for example, YCl 3 and ZrCl 4 introduced on the fuel electrode side react with oxygen introduced on the oxygen electrode side as shown in the following formula, and Y 2 O 3 is stabilized at the defective portion. Form ZrO 2 .
[0008]
Embedded image
2YCl 3 +1.50 2 = Y 2 O 3 + 3Cl 2
ZrCl 4 + O 2 = ZrO 2 + 2Cl 2
[0009]
If water vapor is present in the gas introduced to the oxygen electrode side, it reacts as shown in the following formula, and similarly forms Y 2 O 3 stabilized ZrO 2 at the defect.
[0010]
Embedded image
2YCl 3 + 3H 20 = Y 2 O 3 + 6HCl
ZrCl 4 + 2H 2 O = ZrO 2 + 4HCl
[0011]
Since oxygen or water vapor is supplied from the oxygen electrode side, this means that the above reaction occurs at a leaking portion (defect portion). Here, the inert gas in the mixed gas acts as a carrier gas, but if such a carrier gas is not used, the reaction gas becomes too high in concentration, and a uniform dense film cannot be formed. The defect cannot be completely closed.
[0012]
In this way, the reaction takes place where the gas of both electrodes meets, the leaked part is sealed by the generated components, and when all the parts are sealed, the oxygen stops being supplied from the oxygen electrode side, so the reaction stops. Therefore, after assembling the solid electrolyte type electrochemical cell, if the above reaction is performed, the safe operation of the solid electrolyte type electrochemical cell becomes possible, and a defect occurs during the operation of the solid electrolyte type electrochemical cell. By performing the above-mentioned reaction, it is possible to completely repair the defective portion.
[0013]
【Example】
Hereinafter, specific examples of the present invention will be described to clarify the effects of the present invention.
[0014]
(Example 1)
An embodiment according to the present invention will be described with reference to FIG. Figure 1 is immediately after assembling the solid oxide fuel cell is an explanatory diagram in the case of repairing defective portions existing solid electrolyte of the same cell (the cracking unit) beforehand, YCl 3 gas to the fuel electrode 2 side of the crack portions 4 5 shows a diagram in which a ZrCl 4 gas 6 and an inert gas 7 are flowing air 8 to the oxygen electrode 3 side.
[0015]
First, the inert gas 7 is caused to flow to the fuel electrode 2 side, and when it reaches a steady state, the YCl 3 gas 5 and the ZrCl 4 gas 6 are mixed with each other so that the ratio (molar ratio) of Y to Zr is Y / (Zr + Y) = 8 to 10 %, Gradually increasing the concentrations of YCl 3 and ZrCl 4 , and finally eliminating the inert gas 7 and leaving only the YCl 3 gas 5 and the ZrCl 4 gas 6. As a result, a reaction product 11 is formed in the cracked portion 4. The reaction conditions for the reaction product 11 may be 600 to 1000 ° C., the time must be at least 30 minutes, and the film formation rate of the reaction product 11 is 1 to 10 μm / Hr. Therefore, if the crack is large, it takes about 10 hours. In the case where steam is used instead of air, the outlet may be suctioned and exhausted by a vacuum pump or the like in order to remove generated hydrogen chloride gas or the like.
[0016]
The gas generated in the present invention is chlorine gas or hydrogen chloride gas when water vapor is used. Since hydrogen chloride gas has a strong corrosive property, it is not desirable to remain. Therefore, forced ventilation or scavenging with a carrier gas as described above is desirable.
[0017]
(Example 2)
Hereinafter, examples of repair during operation will be described. Two sets of unit power generation elements are stacked by sandwiching a power generation membrane having a fuel electrode and an air electrode on both sides of a 75 mm solid electrolyte with an interconnector (current connector) made of lanthanum chromite (LaCrO 3 ). A fuel cell having a fuel and air inlet / outlet pipe at the lower part of the fuel cell was manufactured.
[0018]
The effective area of this battery is 25 cm 2 per set and 50 cm 2 for two sets. The battery was set in an electric furnace and heated up to 1000 ° C. at a rate of 100 ° C./hr. Thereafter, 0.25 l / min of hydrogen and 0.5 l / min of air were sent to each cell as fuel, and a voltage of 2.0 V (1.0 V per cell) was obtained. When the current was taken out, 7.5 A was taken out at 0.7 V per cell.
[0019]
Next, the electric furnace of the fuel cell was turned off to rapidly lower the temperature. When the temperature reached room temperature, the temperature was raised again to 1000 ° C. at a rate of 100 ° C./hr. When fuel (hydrogen) and air were supplied again to this fuel cell, the voltage dropped to 1.8 V, and only 4 A at 0.7 V could be taken out. The thermocouple installed in the fuel outlet pipe showed 1100 ° C., which was about 80 ° C. higher than normal 1020 ° C. The most likely cause was cracking of the power generation membrane, so the following measures were taken. First, both the fuel side and the air side were evacuated to discharge gas. Next, 50 cc / min of nitrogen was flown to the fuel side, and air was flown to the air side at the same flow rate. Thereafter, the gas on the fuel side was replaced with a mixed gas of YCl 3 and ZrCl 4 gas (Y molar ratio: 10%) and kept for 5 hours. Thereafter, when fuel (hydrogen) and air were supplied again, the voltage increased to 1.95 V, and the current at 0.7 V recovered to 5.5 A. It is considered that part of the electrode did not recover completely due to the deterioration of the electrode due to the burning due to cracking, but the effect was sufficient, and the temperature at the outlet dropped to 1020 ° C, and the cracked part was sealed. It could be confirmed.
[0020]
【The invention's effect】
The following effects are produced by the present invention. That is, (1) the sealing performance is improved. According to the present invention, the leaking portion is selectively sealed, so that the sealing performance is improved as compared with the related art. (2) The repair method of the fuel cell becomes easy. That is, in the case of a conventional fuel cell, when local combustion or the like occurs and the temperature rises, it is necessary to constantly lower the temperature and repair it. Cooling down not only results in time loss, but also results in repairs at room temperature are not guaranteed under cooling, so it was necessary to repeat heating and cooling. If the temperature is slightly lowered (in the range of 600 ° C. to 1000 ° C.), repair becomes possible, and the reliability is improved.
(3) The durability of the fuel cell is improved.
[0021]
By the effects of the above (1) and (2), if the operation of the present invention is performed before the operation of the fuel cell, the sealing properties of the fuel gas and the oxidizing gas can be made perfect, so that there is no fear of deterioration due to local combustion. . Therefore, the durability of the battery is increased.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a method of operating a fuel cell stack according to one embodiment of the present invention.
FIG.
FIG. 2 is an explanatory diagram of one embodiment of a conventional fuel cell operation method.

Claims (2)

600℃以上で操作する固体電解質型電気化学セルの運転操作の前に、温度600〜1000℃において燃料極側に固体電解質の安定化剤となる酸化物を形成する元素の塩化物とZrClと不活性ガスからなる混合ガスを、空気極側に空気、酸素及び水蒸気のうちの1種以上のガスを導入することを特徴とする固体電解質型電気化学セルの安全運転方法。Prior to the operation of the solid electrolyte type electrochemical cell operating at 600 ° C. or higher, at a temperature of 600 to 1000 ° C., chloride and ZrCl 4 of an element forming an oxide serving as a solid electrolyte stabilizer on the fuel electrode side A method for safely operating a solid electrolyte type electrochemical cell, characterized in that a mixed gas of an inert gas is introduced into the air electrode side with at least one of air, oxygen and water vapor. 600℃以上で操作する固体電解質型電気化学セルの運転中に、該電池の出口ガス温度の異常上昇が認められた場合に、燃料極側に流れる燃料ガスにZrOの安定化剤となる酸化物を形成する元素の塩化物とZrClを添加することを特徴とする固体電解質型電気化学セルの固体電解質の補修方法。During the operation of the solid electrolyte type electrochemical cell operated at 600 ° C. or higher, when an abnormal rise in the outlet gas temperature of the battery is observed, the oxidation of the fuel gas flowing to the fuel electrode side as a stabilizer for ZrO 2 becomes A method for repairing a solid electrolyte of a solid electrolyte type electrochemical cell, characterized by adding a chloride of an element forming a substance and ZrCl 4 .
JP03368495A 1995-02-22 1995-02-22 Operating method of fuel cell Expired - Fee Related JP3576246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03368495A JP3576246B2 (en) 1995-02-22 1995-02-22 Operating method of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03368495A JP3576246B2 (en) 1995-02-22 1995-02-22 Operating method of fuel cell

Publications (2)

Publication Number Publication Date
JPH08227724A JPH08227724A (en) 1996-09-03
JP3576246B2 true JP3576246B2 (en) 2004-10-13

Family

ID=12393270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03368495A Expired - Fee Related JP3576246B2 (en) 1995-02-22 1995-02-22 Operating method of fuel cell

Country Status (1)

Country Link
JP (1) JP3576246B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050142399A1 (en) * 2003-12-31 2005-06-30 Kulp Galen W. Procedure for starting up a fuel cell using a fuel purge
JP4664933B2 (en) * 2007-03-01 2011-04-06 新日本製鐵株式会社 Oxygen separation membrane repair method, oxygen separation membrane regeneration method, oxygen separation membrane, membrane oxygen separation device, and membrane reactor
JP6376986B2 (en) * 2015-02-16 2018-08-22 三菱日立パワーシステムズ株式会社 FUEL CELL POWER GENERATOR AND METHOD OF OPERATING FUEL CELL GENERATOR
JP6486716B2 (en) * 2015-02-25 2019-03-20 三菱日立パワーシステムズ株式会社 Fuel cell, fuel cell manufacturing method, and fuel cell repair method

Also Published As

Publication number Publication date
JPH08227724A (en) 1996-09-03

Similar Documents

Publication Publication Date Title
KR101128552B1 (en) Fuel cell system
CN109643811B (en) Catalyst degradation recovery device and catalyst degradation recovery method
TW201218496A (en) Process for operating a high temperature fuel cell stack
JP5787049B2 (en) Solid oxide fuel cell
JP5242166B2 (en) Method for stopping a phosphoric acid fuel cell assembly
JP2009277621A (en) Fuel-cell system
JPH05307970A (en) Liquid fuel cell
JP3576246B2 (en) Operating method of fuel cell
JP2005268086A (en) Solid polymer type fuel cell system
CN106935887A (en) A kind of startup method of molten carbonate fuel cell heap
KR101673754B1 (en) Operation control method of fuel cell
US20070154745A1 (en) Purging a fuel cell system
JPH05251102A (en) Phospholic acid type fuel cell power generating plant
JP2004063368A (en) Fuel cell power generation system
WO2005020359A1 (en) Fuel cell system and method for stopping operation of fuel cell system
JP2004172106A (en) Operation method of fuel cell system and fuel cell system
JP2008021558A (en) Performance recovery method of fuel cell system, fuel cell system, and outside unit for performance recovery
JP5197581B2 (en) Fuel cell system and operation method thereof
JP2000156239A (en) Solid oxide type fuel cell
JP6783094B2 (en) Fuel cell control device, fuel cell protection control method, and power generation system
KR101892544B1 (en) Device for preventing oxidation of anode included in solid oxide fuel cell
JP2005267898A (en) Fuel cell system
JPH0750171A (en) Fused-salt type fuel cell power generating plant
JPH08111228A (en) Fuel cell power generation plant
JP2004207133A (en) Fuel cell system and operation method of fuel cell

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees