JP3574948B2 - Truss point structure - Google Patents

Truss point structure Download PDF

Info

Publication number
JP3574948B2
JP3574948B2 JP2000077413A JP2000077413A JP3574948B2 JP 3574948 B2 JP3574948 B2 JP 3574948B2 JP 2000077413 A JP2000077413 A JP 2000077413A JP 2000077413 A JP2000077413 A JP 2000077413A JP 3574948 B2 JP3574948 B2 JP 3574948B2
Authority
JP
Japan
Prior art keywords
truss
joined
chord
diagonal
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000077413A
Other languages
Japanese (ja)
Other versions
JP2001262716A (en
Inventor
康行 栗原
真志 加藤
康弘 猪村
進一 出間
昌幸 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chuzo Co Ltd
JFE Engineering Corp
Original Assignee
Nippon Chuzo Co Ltd
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chuzo Co Ltd, JFE Engineering Corp filed Critical Nippon Chuzo Co Ltd
Priority to JP2000077413A priority Critical patent/JP3574948B2/en
Publication of JP2001262716A publication Critical patent/JP2001262716A/en
Application granted granted Critical
Publication of JP3574948B2 publication Critical patent/JP3574948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、土木、建築等の分野で使用されるトラスの格点構造に関するものである。
【0002】
【従来の技術】
パイプ部材を三角形状に接合した単位を組合わせて得られた構造体は、パイプトラスとして橋梁その他の土木、建築等の分野で広く使用されている。
このようなパイプトラスは、上弦材と下弦材との間に複数の斜材を三角形状に接合したもので、これら上弦材と斜材及び下弦材と斜材とは、一般に、溶接によって接合されており、この接合部は格点部と呼ばれている。
【0003】
従来、円形断面を有する鋼管部材で製作されたトラス構造において、格点部を構築する場合は、図8に示すように、複数の斜材23a,23bと弦材21を溶接により直接接合する構造が用いられており、スイスのルーリー橋等の格点部にこの構造が採用されている。
【0004】
このような構造の格点部に於いては、圧縮力が作用する一方の斜材(例えば23a)の端部を弦材21の表面に密着するように、また他方の斜材23bの端部を斜材23aにかぶせるように、かつ互いに重なり合うように、さらに、弦材21に十分密着するように、三次元加工を行う。
また、溶接の溶け込みを良好にするために、斜材23a,23bの端部に開先を設ける必要があり、これらの部材を突き合わせ溶接等によって接合することにより格点部を構成する。
【0005】
上記のように構成した格点部においては、斜材23a,23bに圧縮又は引張りの軸力が作用すると、弦材21の局部変形が発生し、この局部変形に伴う応力が発生して疲労強度が低下する。
このような問題を防止するために、図9に示すように、弦材21上にカバープレート24を溶接により接合して弦材21の板厚を局部的に増加させ、このカバープレート24に上述の要領で斜材23a,23bを接合して、弦材21の局部変形を防止するようにした格点部が一般に行われている。
【0006】
【発明が解決しようとする課題】
図10はトラス橋の模式図である。このような構造のトラス橋20に於いて、自動車等の活荷重P が載荷されると、斜材23a,23bは中央を境界として左右対称に圧縮力と引張り力が交互に作用し、下弦材21には引張り力が、また上弦材22には圧縮力が働く。この作用によって格点部には、図11に示すように、一方の斜材23aには圧縮力が、他方の斜材23bには引張り力が作用し、下弦材21側の格点部には引張り力が、上弦材22側の格点部には圧縮力が作用する。このため、このような条件下においては、次のような問題が生じる。
【0007】
図12は斜材23a,23b間で押引きするように働く斜材軸力の流れを矢印Aで示したものである。この軸力により斜材23a,23bの接合部に局部的なせん断力による応力集中31が発生し、このため格点部の疲労強度が低下する。また、斜材23aからの軸力がカバープレート24の溶接部に流れ込んで応力集中32が発生し、弦材21の疲労強度を低下させる原因になる。
【0008】
図13は引張りの弦材軸力による応力の流れを矢印Bで示したものである。応力は剛性の大きい箇所に引き付けられる性質があるため、引張り力によって発生した応力は剛性の比較的大きいカバープレート24を目指し、カバープレート24の両端部の溶接部から急激に流れ込む。これにより溶接部に応力集中33が発生し、弦材21の疲労強度を低下させるおそれがある。これは、弦材軸力が圧縮力の場合も同様の性質を示す。
【0009】
また、図8、図9に示すように、従来の格点構造では、格点部を構成するために、格点部内の応力が複雑に作用する構造的に重要な部分にも溶接を施さなければならず、この溶接による急熱、急冷によって残留応力や変形などが発生し易く、強度信頼性が著しく低下する。
さらに、斜材の両端部に複雑な三次元加工を必要とし、その上開先を設けて溶接を施す必要があるため、施工面でコスト高になることは避けられない。
【0010】
本発明は、上記の課題を解決するめたになされたもので、簡単な構造で応力集中を低減することにより、弦材の疲労破壊を防止すると共に、加工及び接合が容易で信頼性が高く、その上総工費を低減できる接合金具によって構成したトラスの格点構造を得ることを目的としたものである。
【0011】
【課題を解決するための手段】
本発明に係るトラスの格点構造は、弦材の外形の一部に対応した形状の底部と、該底部から所定の角度で立設され先端部に斜材が接合される複数の中空の枝管とを有し、前記底部に前記枝管の中空部と連通する開口部を設けると共に、前記枝管の交差部に該枝管の周壁に連なる隔壁設けてこれらを一体に形成した接合金具によって構成したものである。
【0012】
上記の接合金具を鋳造によって一体に形成した。
【0013】
【発明の実施の形態】
図1は一部を断面で示した本発明に係るトラスの格点構造の一実施の形態の正面図、図2は図1のI−I断面図、図3は図1の側面図である。図において、1は格点部を構成する接合金具、11は鋼管からなり接合金具1が接合される弦材、13は鋼管からなり接合金具1に接合される斜材である。
【0014】
接合金具1は、下弦材11(又は後述の上弦材12、以下、両者を併せて単に弦材11ということがある)の外形の一部に対応した円弧状で、平面形状が小判状の底部2と、底部2から所定の角度で上方に突設された斜材13の外径とほぼ等しい外径で、中空の複数(図には2本の場合が示してある)の枝管3a,3bとを一体に構成したもので、枝管3a,3bの中空部は底部2に設けた開口部4とそれぞれ連通している。
【0015】
そして、枝管3a,3bの交差部(接合金具1の中心部)には所定厚みの隔壁5が形成されており、枝管3a,3bの内壁は、隔壁5が所定の厚みになるように、枝管3a,3bの軸心に対して偏心して、したがって、内側(中心部側)の板厚が外側の板厚より厚くなるように形成されている。ここに、隔壁5の板厚は、例えば、枝管3a,3bの内側の板厚の2倍程度とすることが望ましい。
この接合金具1は、溶接性にすぐれた材料によって鋳造、鍛造等により一体に構成されるが、隔壁5や枝管3a,3bの内壁の変化に対する対応が容易な鋳造によって製造することが望ましい。
【0016】
上記のような接合金具1を用いてパイプトラスを製作するには、図4に示すように、工場などで、運搬車に積載可能な長さに切断された下弦材11に、その長手方向に所定の間隔で接合金具1を取付けるための位置決めを行い、それぞれの位置に接合金具1を配設して底部2を隅肉溶接により下弦材11に接合する。
同様にして、上弦材12も同じピッチ(但し、通常は下弦材11に接合した接合金具1の中間に位置するように)で位置決めを行い、それぞれ接合金具1の底部2を隅肉溶接により上弦材12に接合する。
【0017】
このようにして接合金具1が接合された下弦材11、上弦材12及び所定の長さに切断された斜材13を運搬車により現場に輸送し、例えば、下弦材11に接合した接合金具1の枝管3a,3bに、斜材13の一端を突き合わせて、それぞれ全周溶接などにより接合する。また、上弦材12に接合した接合金具1の枝管3a,3bに、斜材13の他端をそれぞれ全周溶接などにより接合すれば、図5に示すようなパイプトラスが完成する。なお、枝管3a,3bへの斜材13の接合にあたっては、両者の間に裏当金を挿入し、あるいは両者をインロー結合して全周溶接するなど、適宜の手段を用いればよい。なお、工場などで斜材13の接合までの工程を行ってもよい。
【0018】
上記のように構成した本発明によれば、接合金具1の構造が簡単で下弦材11への取付も容易であり、斜材13の端部に三次元加工などを施す必要がないので、信頼性の高い格点構造を得ることができ、その上工期を短縮し総工費を低減することができる。
【0019】
また、接合金具1の枝管3a,3bの交差部に隔壁5を設けると共に、枝管3a,3bの内壁を枝管3a,3bの軸心に対して偏心させることにより、応力集中が発生しやすい中心部(交差部)の隔壁5の板厚を厚くしたので、せん断力による応力が小さくなり、応力集中を抑制することができる。
【0020】
さらに、接合金具1の中心部に隔壁5を設けたことにより、例えば図6に示すように、一方の枝管(例えば、3a)に圧縮力が、他方の枝管3bに引張り力が作用した場合、矢印Aで示すように、応力の流れの大部分が隔壁5を介して枝管3a,3b間でやり取りするようになるため、弦材11との溶接部に流れ込む応力の方向を変えることができ、これにより溶接部への応力集中を減少させることができる。
【0021】
また、接合金具1の底部2には、図2に示すように、枝管3a,3bに連通する開口部4が設けられているため周壁と隔壁5以外は中空であり、弦材11の軸方向の剛性がきわめて小さい。このため、弦材11の軸力による作用応力は、図7に矢印Bで示すように流れ、底部2の溶接部に応力集中が発生しにくい。
【0022】
さらに、接合金具1を鋳造によって一体に製造することにより、格点部内に溶接を施す必要がないため、溶接による残留応力や変形が生じることがなく、このため強度信頼性が向上する。
また、接合金具1を鋳造によって製造することにより、各部の形状、板厚等を作用応力に応じて容易に変化させることができ、その上、構造上急激な断面変化が必要な箇所でもフィレット等を付すことにより、断面変化を和らげることができる。さらに、材料の使用量が少ないため、材料コストを上げることなく応力集中を低減した接合金具1を得ることができる。
【0023】
さらに、鋳造品である接合金具1を弦材11に接合するための開先を加工する必要がないばかりでなく、底部2が小判状なので複雑な溶接を必要としない。また、斜材13の端部は軸方向に対して直角に切断するだけでよく、枝管3a,3bとの接合も簡単なので、従来技術に比べて三次元加工による切断作業や溶接作業を大幅に減らすことができ、その上多量生産が可能なためコストを低減できるので、総工費を低減することができる。
【0024】
【発明の効果】
本発明に係るトラスの格点構造は、弦材の外形の一部に対応した形状の底部と、この底部から所定の角度で立設され先端部に斜材が接合される複数の中空の枝管とを有し、前記底部に前記枝管の中空部と連通する開口部を設けると共に、前記枝管の交差部に該枝管の周壁に該枝管の周壁に連なる隔壁設けてこれらを一体に形成した接合金具によって構成したので、構造が簡単で複雑な溶接を行う必要がなく、このため、工期が短縮し、総工費を低減することができる。また、底部の近傍に生じる弦材軸力による応力集中など、局部的な応力集中を低減できるので、信頼性の高い格点構造を得ることができる。
【0027】
上記の接合金具を鋳造によって構成したので、格点部内に溶接を施す必要がなく、このため溶接による残留応力や変形を生じることがないので、強度信頼性の高い格点構造が得られる。
また、接合金具を鋳造製とすることで、各部の形状や板厚を作用応力に応じて容易に変化させることができ、さらに材料の使用量が少ないため、材料コストを上げることなく応力集中を低減することができる。また、多量生産が可能なので、安価な接合金具を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態の一部を断面で示した正面図である。
【図2】図1のI−I断面図である。
【図3】図1の側面図である。
【図4】本発明に係る接合金具を使用したパイプトラスの製造手順を示す説明図である。
【図5】図4の完成図である。
【図6】本発明に係る接合金具の作用説明図である。
【図7】本発明に係る接合金具を接合した弦材の作用説明図である。
【図8】従来の格点構造の一例の説明図である。
【図9】従来の格点構造の他の例の説明図である。
【図10】パイプトラスに作用する圧縮力及び引張り力の説明図である。
【図11】図10の格点部の説明図である。
【図12】図9の格点構造の作用説明図である。
【図13】図9の格点構造による弦材の作用説明図である。
【符号の説明】
1 接合金具
2 底部
3a,3b 枝管
4 開口部
5 隔壁
11 下弦材
12 上弦材
13 斜材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a point structure of a truss used in fields such as civil engineering and construction.
[0002]
[Prior art]
BACKGROUND ART A structure obtained by combining units in which pipe members are joined in a triangular shape is widely used as a pipe truss in fields such as bridges and other civil engineering and construction.
In such a pipe truss, a plurality of diagonal members are joined in a triangular shape between an upper chord member and a lower chord member, and the upper chord member and the diagonal member and the lower chord member and the diagonal member are generally joined by welding. This joint is called the point.
[0003]
Conventionally, in a truss structure made of a steel pipe member having a circular cross section, when constructing a point portion, as shown in FIG. 8, a structure in which a plurality of diagonal members 23a and 23b and a chord member 21 are directly joined by welding. This structure is used in point sections such as the Lurie Bridge in Switzerland.
[0004]
In the point portion having such a structure, the end of one diagonal member (for example, 23a) on which a compressive force acts is brought into close contact with the surface of the chord member 21, and the end of the other diagonal member 23b is formed. The three-dimensional processing is performed so as to cover the diagonal member 23a, overlap with each other, and sufficiently adhere to the chord member 21.
Further, in order to improve the penetration of the welding, it is necessary to provide a groove at the end of the diagonal members 23a and 23b, and these points are joined by butt welding or the like to form a graded portion.
[0005]
When the compressive or tensile axial force acts on the diagonal members 23a and 23b, the string member 21 locally deforms at the graded portion configured as described above, and the stress accompanying the local deformation occurs to generate fatigue strength. Decreases.
In order to prevent such a problem, as shown in FIG. 9, a cover plate 24 is joined to the chord material 21 by welding to locally increase the thickness of the chord material 21, and the cover plate 24 In general, diagonal members 23a and 23b are joined in the manner described above to prevent local deformation of the chord material 21.
[0006]
[Problems to be solved by the invention]
FIG. 10 is a schematic diagram of a truss bridge. Such a structure at the truss bridge 20, the live load P 1 of an automobile or the like is loading, diagonal members 23a, 23b are compression force and tensile force symmetrically to the center as a boundary acts alternately, lower chord A tension force acts on the material 21 and a compression force acts on the upper chord material 22. As shown in FIG. 11, a compressive force acts on the diagonal member 23a and a tensile force acts on the other diagonal member 23b, and the diagonal point on the lower chord member 21 side is exerted on the diagonal point part. Tensile force acts on the point on the upper chord material 22 side, and compressive force acts on it. Therefore, under such conditions, the following problem occurs.
[0007]
FIG. 12 shows the flow of the diagonal member axial force acting to push and pull between the diagonal members 23a and 23b by an arrow A. Due to this axial force, stress concentration 31 occurs due to local shearing force at the joint between the diagonal members 23a and 23b, and thus the fatigue strength at the critical point decreases. In addition, the axial force from the diagonal member 23a flows into the welded portion of the cover plate 24 to generate a stress concentration 32, which causes the fatigue strength of the chord member 21 to decrease.
[0008]
FIG. 13 shows the flow of the stress due to the tensile axial force of the chord by arrow B. Since the stress has a property of being attracted to a portion having high rigidity, the stress generated by the tensile force flows toward the cover plate 24 having relatively high rigidity and rapidly flows from the welded portions at both ends of the cover plate 24. As a result, stress concentration 33 occurs in the welded portion, and the fatigue strength of the chord material 21 may be reduced. This shows the same property when the chord axial force is a compressive force.
[0009]
In addition, as shown in FIGS. 8 and 9, in the conventional point structure, in order to form the point part, welding must be applied to a structurally important part where stress in the point part acts in a complicated manner. In addition, residual heat and deformation are likely to occur due to rapid heating and rapid cooling due to this welding, and strength reliability is significantly reduced.
Further, complicated three-dimensional processing is required at both ends of the diagonal material, and it is necessary to provide a groove on the diagonal material and to perform welding, so that it is inevitable that the cost is increased in terms of construction.
[0010]
The present invention has been made to solve the above-described problems, and by reducing stress concentration with a simple structure, while preventing fatigue destruction of the string material, processing and joining are easy and highly reliable, In addition, the purpose is to obtain a truss point structure composed of metal fittings that can reduce the total construction cost.
[0011]
[Means for Solving the Problems]
The point structure of the truss according to the present invention includes a bottom having a shape corresponding to a part of the outer shape of the chord, and a plurality of hollow branches which are erected at a predetermined angle from the bottom and to which the diagonal is joined at the tip. A pipe having an opening communicating with the hollow portion of the branch pipe at the bottom, and a partition connected to the peripheral wall of the branch pipe at an intersection of the branch pipe and integrally forming these. It is composed of metal fittings.
[0012]
The above-mentioned joint fitting was integrally formed by casting.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a front view of an embodiment of a truss point structure of a truss according to the present invention, a part of which is shown in cross section, FIG. 2 is a sectional view taken along line II of FIG. 1, and FIG. 3 is a side view of FIG. . In the drawing, reference numeral 1 denotes a joining metal part forming a point portion, 11 denotes a chord material made of a steel pipe and joined to the joining metal part 1, and 13 denotes a diagonal member made of a steel pipe and joined to the joining metal part 1.
[0014]
The joint fitting 1 has an arcuate shape corresponding to a part of the outer shape of a lower chord material 11 (or an upper chord material 12, which will be hereinafter simply referred to as a chord material 11 in some cases), and an oval bottom portion having a planar shape. 2 and a plurality of hollow branch pipes 3a (two are shown in the figure) having an outer diameter substantially equal to the outer diameter of the diagonal member 13 protruding upward at a predetermined angle from the bottom 2. 3b and the hollow portions of the branch pipes 3a and 3b communicate with the opening 4 provided in the bottom portion 2, respectively.
[0015]
A partition wall 5 having a predetermined thickness is formed at the intersection of the branch pipes 3a and 3b (the center of the joint 1), and the inner walls of the branch pipes 3a and 3b are formed so that the partition wall 5 has a predetermined thickness. The branch pipes 3a and 3b are formed so as to be eccentric with respect to the axial center thereof, so that the inner (center side) plate thickness is larger than the outer plate thickness. Here, it is desirable that the plate thickness of the partition wall 5 is, for example, about twice the plate thickness inside the branch pipes 3a and 3b.
The joining fitting 1 is integrally formed by casting, forging, or the like using a material having excellent weldability, but it is preferable that the joining fitting 1 be manufactured by casting that can easily cope with changes in the inner walls of the partition walls 5 and the branch pipes 3a and 3b.
[0016]
In order to manufacture a pipe truss using the above-described joint fitting 1, as shown in FIG. 4, in a factory or the like, a lower chord material 11 cut into a length that can be loaded on a transport vehicle is provided in a longitudinal direction thereof. Positioning for attaching the joint fittings 1 is performed at predetermined intervals, the joint fittings 1 are arranged at each position, and the bottom 2 is joined to the lower chord material 11 by fillet welding.
Similarly, the upper chord material 12 is positioned at the same pitch (however, usually positioned at the middle of the joint fitting 1 joined to the lower chord material 11), and the bottom 2 of the joining fitting 1 is filled with the upper chord by fillet welding. It is joined to the material 12.
[0017]
The lower chord 11, the upper chord 12, and the oblique material 13 cut to a predetermined length to which the joint 1 has been joined are transported to a site by a carrier, and for example, the joint 1 joined to the lower chord 11. One end of the diagonal member 13 is brought into contact with the branch pipes 3a and 3b, and is joined by full-circumferential welding or the like. Further, if the other ends of the diagonal members 13 are respectively joined to the branch pipes 3a and 3b of the joint fitting 1 joined to the upper chord member 12 by welding all around, a pipe truss as shown in FIG. 5 is completed. In joining the diagonal members 13 to the branch pipes 3a and 3b, an appropriate means may be used, such as inserting a backing metal between the two, or welding the entire circumference by spigot-linking the two. The steps up to the joining of the diagonal members 13 may be performed in a factory or the like.
[0018]
According to the present invention configured as described above, the structure of the joint fitting 1 is simple, the attachment to the lower chord material 11 is easy, and it is not necessary to apply three-dimensional processing to the end of the diagonal member 13. It is possible to obtain a highly reliable point structure, shorten the construction period, and reduce the total construction cost.
[0019]
Further, the partition wall 5 is provided at the intersection of the branch pipes 3a and 3b of the joint fitting 1, and the inner wall of the branch pipes 3a and 3b is eccentric with respect to the axis of the branch pipes 3a and 3b, so that stress concentration occurs. Since the thickness of the partition wall 5 at the central portion (intersection), which is likely to be large, is increased, the stress due to the shearing force is reduced, and the concentration of stress can be suppressed.
[0020]
Further, by providing the partition wall 5 at the center of the joint 1, a compressive force acts on one branch pipe (for example, 3 a) and a tensile force acts on the other branch pipe 3 b , as shown in FIG. 6, for example. In this case, as indicated by the arrow A, most of the flow of stress is exchanged between the branch pipes 3a and 3b via the partition wall 5, so that the direction of the stress flowing into the welded portion with the chord material 11 must be changed. This can reduce the concentration of stress on the weld.
[0021]
Further, as shown in FIG. 2, an opening 4 communicating with the branch pipes 3a and 3b is provided at the bottom 2 of the joint 1 so that the portion other than the peripheral wall and the partition 5 is hollow, and The rigidity in the direction is extremely small. For this reason, the acting stress due to the axial force of the chord material 11 flows as shown by an arrow B in FIG. 7, and stress concentration hardly occurs in the welded portion of the bottom 2.
[0022]
Furthermore, since the joining fitting 1 is integrally manufactured by casting, it is not necessary to perform welding in the corners, so that there is no residual stress or deformation due to welding, and therefore, the strength reliability is improved.
In addition, by manufacturing the metal joint 1 by casting, the shape, thickness, etc. of each part can be easily changed according to the applied stress. By adding, the change in cross section can be reduced. Furthermore, since the amount of material used is small, it is possible to obtain the joint 1 with reduced stress concentration without increasing the material cost.
[0023]
Furthermore, not only is it unnecessary to machine a groove for joining the joint 1 that is a cast product to the chord material 11, but since the bottom 2 is oval, complicated welding is not required. Further, the end of the diagonal member 13 only needs to be cut at a right angle to the axial direction, and the joining with the branch pipes 3a and 3b is easy. In addition, the cost can be reduced because mass production is possible, so that the total construction cost can be reduced.
[0024]
【The invention's effect】
The point structure of the truss according to the present invention includes a bottom having a shape corresponding to a part of the outer shape of the chord, and a plurality of hollow branches which are erected at a predetermined angle from the bottom and to which the diagonal member is joined at the tip. A pipe, and an opening communicating with the hollow portion of the branch pipe is provided at the bottom, and a partition wall connected to the peripheral wall of the branch pipe is provided at the intersection of the branch pipe at the intersection of the branch pipe, and these are provided. Since it is constituted by integrally formed joints, it is not necessary to perform a simple and complicated welding, and therefore, the construction period can be shortened and the total construction cost can be reduced. In addition, since local stress concentration such as stress concentration due to a chord axial force generated near the bottom can be reduced , a highly reliable point structure can be obtained.
[0027]
Since the above-mentioned joining metal fitting is formed by casting, it is not necessary to perform welding in the point part, so that residual stress or deformation due to welding does not occur, so that a point structure with high strength reliability can be obtained.
In addition, by making the metal fittings by casting, the shape and thickness of each part can be easily changed according to the applied stress, and since the amount of material used is small, stress concentration can be achieved without increasing material costs. Can be reduced. In addition, since mass production is possible, an inexpensive metal fitting can be obtained.
[Brief description of the drawings]
FIG. 1 is a front view showing a part of an embodiment of the present invention in cross section.
FIG. 2 is a sectional view taken along line II of FIG.
FIG. 3 is a side view of FIG. 1;
FIG. 4 is an explanatory view showing a procedure for manufacturing a pipe truss using the joint fitting according to the present invention.
FIG. 5 is a completed view of FIG. 4;
FIG. 6 is an operation explanatory view of the joining fitting according to the present invention.
FIG. 7 is an operation explanatory view of a chord material joined with the joint fitting according to the present invention.
FIG. 8 is an explanatory diagram of an example of a conventional point structure.
FIG. 9 is an explanatory diagram of another example of the conventional point structure.
FIG. 10 is an explanatory diagram of a compressive force and a tensile force acting on a pipe truss.
FIG. 11 is an explanatory diagram of a point portion in FIG. 10;
FIG. 12 is an operation explanatory view of the point structure of FIG. 9;
FIG. 13 is an explanatory diagram of the operation of the chord material having the point structure of FIG. 9;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Joining metal fitting 2 Bottom part 3a, 3b Branch pipe 4 Opening part 5 Partition wall 11 Lower chord material 12 Upper chord material 13 Diagonal material

Claims (2)

弦材の外形の一部に対応した形状の底部と、該底部から所定の角度で立設された先端部に斜材が接合される複数の中空の枝管とを有し、前記底部に前記枝管の中空部と連通する開口部を設けると共に、前記枝管の交差部に該枝管の周壁に連なる隔壁を設けてこれらを一体に形成した接合金具によって構成したことを特徴とするトラスの格点構造。A bottom portion having a shape corresponding to a part of the outer shape of the chord material, and a plurality of hollow branch pipes to which a diagonal member is joined to a tip portion erected at a predetermined angle from the bottom portion; The truss is characterized by being provided with an opening communicating with the hollow portion of the branch pipe, and at the intersection of the branch pipes, provided with a partition wall connected to the peripheral wall of the branch pipe and integrally forming these with a joint fitting. Case structure. 前記接合金具を鋳造によって一体に形成したことを特徴とする請求項1記載のトラスの格点構造。2. A truss point structure according to claim 1, wherein said joint is integrally formed by casting.
JP2000077413A 2000-03-21 2000-03-21 Truss point structure Expired - Lifetime JP3574948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000077413A JP3574948B2 (en) 2000-03-21 2000-03-21 Truss point structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000077413A JP3574948B2 (en) 2000-03-21 2000-03-21 Truss point structure

Publications (2)

Publication Number Publication Date
JP2001262716A JP2001262716A (en) 2001-09-26
JP3574948B2 true JP3574948B2 (en) 2004-10-06

Family

ID=18594988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000077413A Expired - Lifetime JP3574948B2 (en) 2000-03-21 2000-03-21 Truss point structure

Country Status (1)

Country Link
JP (1) JP3574948B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6461789B2 (en) * 2012-06-10 2019-01-30 エムエイチアイ ヴェスタス オフショア ウィンド エー/エス Nodal structure for lattice frames
CN112458917B (en) * 2020-11-30 2022-06-17 中铁大桥局第七工程有限公司 Truss sheet type closure construction method for truss arch bridge
CN113106833A (en) * 2021-05-21 2021-07-13 中铁广州工程局集团有限公司 Special-shaped pedestrian landscape bridge structure and construction method thereof

Also Published As

Publication number Publication date
JP2001262716A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
JP5306922B2 (en) Reinforced concrete column and steel beam jointing device and reinforced concrete column and steel beam joint structure
JP6813589B2 (en) Support structure used for wind power plants
JP2002088909A (en) Joint structure of steel column and reinforced concrete beam
KR101960671B1 (en) Joint Structure of Circular Hollow Tube Truss and it's Fabrication Method
JP3574948B2 (en) Truss point structure
JP4350121B2 (en) Reinforced welded column beam joint fixing structure
JP6590571B2 (en) Precast concrete beam end joint structure and precast concrete beam column frame
JP2001098650A (en) Panel point structure of truss and pipe truss
JP2719543B2 (en) Beam-column joint
JP4011499B2 (en) Joint structure of steel column and steel beam
KR102505657B1 (en) Reinforcing structure of beam and reinforcing method of beam
JPH04106256A (en) Steel pipe concrete column
JPH07189330A (en) Two-piece box culvert
JP4727091B2 (en) Steel joint structures in reinforced steel concrete structures
JP7431119B2 (en) joint structure
JP2001348961A (en) Panel point structure for truss
JP2951271B2 (en) Connecting pile structure
JPH057373Y2 (en)
JP3958175B2 (en) Beam-column connection structure of circular steel pipe column
JPH11190096A (en) Composite segment structure
JP3628412B2 (en) segment
JPH03250129A (en) Manufacture of column-beam joint fitting
JPH052714Y2 (en)
WO2019215942A1 (en) Joint structure for h-shaped cross-sectioned member, and method for manufacturing same
JPH02292430A (en) Post-girder joining section structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040623

R150 Certificate of patent or registration of utility model

Ref document number: 3574948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140716

Year of fee payment: 10

EXPY Cancellation because of completion of term