JP3573354B2 - Culture solution of embryonic stem cells - Google Patents

Culture solution of embryonic stem cells Download PDF

Info

Publication number
JP3573354B2
JP3573354B2 JP21792593A JP21792593A JP3573354B2 JP 3573354 B2 JP3573354 B2 JP 3573354B2 JP 21792593 A JP21792593 A JP 21792593A JP 21792593 A JP21792593 A JP 21792593A JP 3573354 B2 JP3573354 B2 JP 3573354B2
Authority
JP
Japan
Prior art keywords
cells
soluble
embryonic stem
interleukin
differentiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21792593A
Other languages
Japanese (ja)
Other versions
JPH0751060A (en
Inventor
忠三 岸本
哲也 田賀
寛二 吉田
清 保川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP21792593A priority Critical patent/JP3573354B2/en
Publication of JPH0751060A publication Critical patent/JPH0751060A/en
Application granted granted Critical
Publication of JP3573354B2 publication Critical patent/JP3573354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は胚性幹細胞の増殖及び/又は維持を行うために使用される培養液等に関するものである。
【0002】
【従来の技術】
近年、発生工学並びに分子生物学における知識の蓄積と技術の発展に伴い、人為的に調製された外来遺伝子を初期胚に導入し、さらに個体に発生させるトランスジェニック動物(以下TG動物)の作製が可能となった(Gordon et al., Proc. Natl. Acad. Sci.USA, 77, p7380, 1980 年参照)。このようなTG動物の作製は、遺伝子工学的手法でクロ−ンされた遺伝子を実際に生体内において発現させることにより、導入された遺伝子の機能や作用を個体レベルで検討すること以外に、疾病モデルTG動物や有用物質生産TG動物が開発されるにおよび、医学分野のみならず産業分野においても有用性が認識されつつある。
【0003】
TG動物の作製方法としては、前核期胚に外来遺伝子断片を極微ピペットで直接注入するマイクロインジェクション法、外来遺伝子を組込んだレトロウイルスを初期胚に感染させるレトロウイルス法等が確立されている。しかしこれらの方法ではいずれも宿主染色体に対し外来遺伝子がランダムに組込まれるため、外来遺伝子の組込み部位を制御することは不可能である。このため再現性や外来遺伝子の効率的な発現等に問題を残している。
【0004】
一方、発生工学上の新たな分野として、各種個体形成組織への分化能を保持しながら未文化状態のまま試験菅内で培養可能な株化細胞である胚性幹細胞(Embryonic stem cell 、以下ES細胞)が樹立された(Evanceら、Nature, 292, p7634, 1981年参照)。ES細胞は正常二倍体の核型を保持した正常細胞であり、正常初期胚に移植することにより、初期胚由来の細胞とES細胞由来細胞が混在したまま一つの個体、すなわちキメラ動物を高率に形成することが確認されている(Bredley ら、Nature, 309, p255, 1986 年参照)。
【0005】
ES細胞に対しては、他の株化細胞と同様に、従来法を用いて外来遺伝子を導入することができ、また外来遺伝子導入細胞の集団の中から後述するように相同組み換え体のみを選別できるようになったことで、マイクロインジェクション法等とは異なるTG動物作製法が提案されている。
【0006】
従来法による外来遺伝子の細胞への導入では、外来遺伝子は宿主染色体上のランダムな位置に組込まれるが、ある一定の確率で外来遺伝子と相同な宿主染色体上の内在性遺伝子との間で相同組換えと呼ばれる染色体異変を起こすことが知られている。すなわち目的とする内在性遺伝子と相同な配列部位を持つ外来遺伝子を導入すれば、ランダムな組換え体と同時に、標的とした内在性遺伝子配列に対して相同組換えを起こした相同組換え体をも生じさせることが可能である。またこのような相同組換え体を選別するために考案された外来遺伝子を導入することにより全組換え細胞集団より相同組換え体のみを選別し、最終的に宿主染色体上の任意の遺伝子を標的として変異を組込んだ相同組換え細胞クロ−ンを獲得することができる(Mansour ら、Nature, 336, p348, 1988 年参照、Capecchiら、TIG, 5, p70, 1989 年参照)。
【0007】
以上のような方法は一般にジ−ンタ−ゲッティングと総称されているが、ジ−ンタ−ゲッティングの方法を相同組換えES細胞の選抜に応用することで、マイクロインジェクション法など従来のTG動物作製方法では不可能であった、任意の位置に外来遺伝子を挿入した相同組換えTG動物作製の可能性が示され、キメラ動物を介したTG動物作製のためのES細胞に対する期待が高まっている。
【0008】
【発明が解決しようとする課題】
ES細胞(株)の樹立においては支持細胞層として退仔繊維芽細胞を使用し、以下の過程により行われる。まず、支持細胞層上で初期胚を培養することで初期胚が支持細胞層に定着した後、胚外周の栄養芽細胞の伸展成長が始まる。さらに初期胚内部に存在する内部細胞塊(Inner cell mass:以下ICM) が伸展した栄養芽細胞上でド−ム状に増殖を開始し、十分にICMが増殖した時点でICMのみを分離・分散して新たな支持細胞層上に継代する。継代されたICM由来細胞の内、未分化形態を維持したまま増殖を続けるものがごくわずかに出現するようになる。この未分化細胞をさらに継代していくことでES細胞(株)が樹立される(Robertson ら、Teratocarcinomas and embryonic stem cells, pp71−112, Robertson, E. J. ed., IRL Press Lim., Oxford., 1987年参照)。
【0009】
ES細胞株を樹立、維持するための培養液としてはDME培養液を基礎培養液とし、これに非必須アミノ酸混合液・核酸混合液・メルカプトエタノ−ル・新生児牛血清及び/又は牛胎児血清を加えたものが利用されている。また、マウスES細胞(株)を樹立・維持する際に、胚性奇形腫細胞(Embryonal carcinoma cell;EC細胞)培養上清またはバッファロ−ラット肝臓細胞培養上清(BRL−CM)を一定量上記培養液に添加することで、分化抑制及び増殖促進が同時に起こることが報告され(Smith, Dev. Biol., 121, p1, 1987年参照) 、これらの培養上清に含まれる活性は分化抑制因子(differentiation−inhibiting activity;以下DIA)と呼ばれる。さらにその後DIAは白血病抑制因子(leukemia inhibiting factor; 以下LIF)という一種のサイトカインであることが判明している(Williams, Nature, 336, p684, 1988 年参照)。
【0010】
LIFは、特定のマウスの系統(129/sv系やC57BL/6系)においては不存在の場合に比較してES細胞(株)の樹立効率を向上させ、また既に樹立されているES細胞(株)に対しては分化抑制活性及び増殖促進活性を示す
(Pease, Dev. Biol., 144, p344, 1990年参照)。しかし、他のマウスの系統や他種動物において顕著な効果は見られず、なおも前記特定種マウス以外のES細胞の分化を抑制し、増殖を促進する有効な手法等は報告されていない。
【0011】
【課題を解決するための手段】
インタ−ロイキン−6(以下IL−6)は、標的細胞膜上のインタ−ロイキン−6レセプタ−(以下IL−6R)と結合し、さらにIL−6とIL−6Rの複合体が細胞膜上の膜蛋白質gp130と結合することにより、種々の重要な生理活性を誘導する。また、標的細胞膜上にIL−6Rが発現していない場合には、IL−6と可溶型IL−6R(IL−6レセプタ−の細胞外領域)が標的細胞膜上のgp130に結合することにより、生理活性が誘導される(Tagaら、Cell, 58, p573, 1989年参照)。近年、gp130のシグナル伝達作用を阻害する抗体を用いた研究(Tagaら、Proc. Natl. Acad., Sci. USA, 89, p10998, 1992 年参照)により、gp130は、IL−6だけでなく、LIF、オンコスタチンM、CNTF(ciliary neurotrophic factor )等のシグナル伝達因子でもあることが示唆されている。
【0012】
また、LIFレセプタ−やgp130のcDNAを細胞に導入してLIFの結合性を調べた研究(Gearing ら、Science, 255, p1434, 1992 年参照)により、LIFがES細胞をも含めた標的細胞に作用するためには、標的細胞上にLIFレセプタ−とgp130がともに発現していることが必要条件であることも示唆されている。
【0013】
本発明者らは、以上の知見に基づき、gp130のシグナル伝達に関係するIL−6及び/又はIL−6RによるES細胞の分化抑制及び/又は増殖促進効果について鋭意研究を行った結果、本発明を完成した。即ち本発明は、IL−6及び/又はIL−6Rを有効成分とする、多能性及び/又は全能性分化能を持つ胚性幹細胞に対する分化抑制及び/又は増殖促進薬であり、IL−6及び/又はIL−6Rを共存させることを特徴とする、多能性及び/又は全能性分化能を持つ胚性幹細胞の分化抑制及び/又は増殖促進方法である。また本発明は、IL−6及び/又はIL−6Rを有効成分として含有する、多能性及び/又は全能性分化能を持つ胚性幹細胞の増殖及び/又は維持用培養液であり、IL−6及び/又はIL−6Rを共存させることを特徴とする、多能性及び/又は全能性分化能を持つ胚性幹細胞を増殖及び/又は維持し得る培養方法である。以下本発明を詳細に説明する。
【0014】
IL−6又はIL−6Rは、いかなる動物種由来のものでも良い。また、自然界に存在する材料から精製又は抽出された天然型のものはもちろん、遺伝子工学的に生産された組換え型のいずれでも良い。更に、IL−6又はIL−6Rの基本構造及び/又はアミノ酸配列を基礎とする部分ペプチド、変異体又は修飾体であっても良い。遺伝子工学的IL−6の製造法は、公知の方法(Yasukawaら, Biotechnol. Lett., 1990 年、Saito ら、Biotechnol. Lett., 1992 年参照)に従うことが、また遺伝子工学的IL−6Rの製造法もまた、公知の方法(Yasukawaら、J. Biochem., 108, p673, 1990年、Saito ら、J. Immunol.,38,p168,1991年参照)に従うことが例示できる。なお、IL−6Rについては、前述の公知方法に記載されたように、細胞膜貫通領域及び細胞内領域の欠失した可溶型(細胞外領域のみの部分ペプチド)であっても良い。すなわち、IL−6Rは、約360アミノ酸で構成される細胞外領域だけが、IL−6との結合及びgp130との結合に関与しているからである。
【0015】
本発明の分化抑制及び/又は増殖促進薬は、IL−6やIL−6Rの相互作用からも、IL−6又はIL−6Rを単独で含んでいることで効果を発揮する。しかしながら、目的とするES細胞がIL−6Rを発現していないか、又は十分量のIL−6Rを発現していないことが予想される場合等には、IL−6及びIL−6Rの両方を含むことが必要である。従って、目的とするES細胞のIL−6やIL−6Rの発現が予想できない場合等に備え、IL−6及びIL−6Rの両方を含む分化抑制及び/又は増殖促進薬を使用することが好ましい。良好な分化抑制及び/又は増殖促進効果を得るため、IL−6は1〜1000ng/ml、好ましくは50〜500ng/mlの濃度となるように、IL−6Rは100ng/ml〜100μg/ml、好ましくは1〜10μg/mlの濃度となるように含有量を調整することが好ましいが、この範囲以外であっても前記効果を得ることはできる。
【0016】
ES細胞の分化抑制及び/又は増殖促進を行うためには、例えばES細胞の培養液等にIL−6及び/又はIL−6Rを添加して、ES細胞とIL−6等を共存させるのみで良い。IL−6又はIL−6Rは単独で使用しても良いが、目的とするES細胞がIL−6Rを発現していないか、又は十分量のIL−6Rを発現していないことが予想される場合等には、特にIL−6及びIL−6Rを使用することが好ましい。良好な分化抑制及び/又は増殖促進効果を得るために、IL−6は1〜1000ng/ml、好ましくは50〜500ng/mlの濃度となるように、IL−6Rは100ng/ml〜100μg/ml、好ましくは1〜10μg/mlの濃度となるように使用すると良いが、この範囲以外であっても前記効果を得ることはできる。
【0017】
本発明の培養液は、ES細胞(株)の樹立、維持及び/又は培養のため、IL−6及び/又はIL−6Rを含むことを特徴とする。良好な分化抑制及び/又は増殖促進効果を得るために、IL−6は1〜1000ng/ml、好ましくは50〜500ng/mlの濃度で添加し、IL−6Rは100ng/ml〜100μg/ml、好ましくは1〜10μg/ml添加するが、この範囲以外であっても前記効果を得ることはできる。培養液は、IL−6又はIL−6Rを単独で含んでいても良い。しかしながら、目的とするES細胞が、IL−6Rを発現していないか、又は十分量のIL−6Rを発現していないことが予想される場合等には、特にIL−6及びIL−6Rを含むことが好ましい。 培養液は、IL−6及び/又はIL−6R以外に、既知の培養液組成、例えば199、NTCT135、CMRL1066、BME、MEM、DME、MB752/1、5A、RITC80−7、F−10、F−12、L−15又はMCDB104等の各種培養液及びその変法による培養液の組成、を含むことができる。中でも、好ましくは高グルコ−ス含有培養液、さらに好ましくは非必須アミノ酸混合液(NEAA)、核酸混合液(NMS)、メルカプトエタノ−ル、セレン化合物、副腎皮質ホルモン及びその化合物、トランスフェリン、インシュリン等の内から選ばれる添加物を添加した高グルコ−ス含有培養液を用いると良い。このような培養液に、さらに新生児牛血清(NCS)及び/又は牛胎児血清(FCS)を1〜50%、さらに好ましくは5〜30%添加することで、より良好な培養を実現し得る培養液を得ることができる。
【0018】
前記培養液を使用するES細胞(株)の培養は、公知の方法により行うことができる。現在までにES細胞が樹立されていない動物種及び/又は系統においても、ES細胞(株)の樹立が可能となる。既にES細胞が樹立されている動物種及び/又は系統においても、新規なES細胞(株)の樹立効率の向上、培養維持の安定化及び増殖の促進を図ることができる。このようにして多種多様なES細胞(株)及びES細胞クロ−ンを容易に提供できるような培養液の開発は、ES細胞を用いたキメラ動物の作製及びキメラ動物を介するTG動物の作製を大きく進展させることが期待される。
【0019】
【発明の効果】
本発明によれば、従来特定の動物種及び/又は系統にのみ限定されていたES細胞(株)の樹立が、多種多様な動物種及び/又は系統において可能となり、また既にES細胞が樹立されている動物種及び/又は系統においても新規なES細胞(株)の樹立効率の向上、培養維持の安定化及び増殖の促進を図ることができる。
【0020】
【実施例】
以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれら実施例に限定されるものではない。
【0021】
実施例1 IL−6とIL−6RによるES細胞の維持培養−1
1000ユニット/mlの市販のLIF(Amrad 社製)共存下、15%牛血清含有DMEM培地で継代培養したマウス由来のES細胞をA、B、Cの3つのグル−プに分け、以下のような成分の共存下、24穴ウエルプレ−トで250細胞/ウエルの条件で8日間培養した。
【0022】
Aグル−プ:それぞれ1000、100、10又は1ユニット/mlのLIFを含む培地
Bグル−プ:それぞれ200、20、2又は0.2ng/mlのIL−6を含む培地
Cグル−プ:それぞれ200、20、2又は0.2ng/mlのIL−6と2μg/mlの可溶型IL−6Rを含む培地(可溶型IL−6R濃度は常に一定)
培養後、細胞をアルコ−ル固定し、未分化型ES細胞マ−カ−であるアルカリフォスファタ−ゼの活性測定を市販の測定試薬(Sigma Diagnostic Kit No.86、シグマ社製)を用いて行った。この試薬に含まれるアルカリフォスファタ−ゼ基質は溶液状であるが、アルカリフォスファタ−ゼと反応することで不溶性色素に変換される。なお、前記可溶型IL−6Rは、特開平3−133390号公報に記載された、全長468アミノ酸残基のうち、N末端から19アミノ酸残基、C末端から124アミノ酸残基が削除された325アミノ酸残基のものである。
【0023】
結果を図1に示す。図1から明らかなように、100ユニット/ml以上のLIF存在下(図1のA)及び2ng/ml以上のIL−6と可溶型IL−6Rの両方の共存下(図1のC)では、アルカリフォスファタ−ゼ活性が検出され、ES細胞の未分化性が保たれていることが分かる。一方、IL−6共存:可溶型IL−6R非共存下(図1のB)ではアルカリフォスファタ−ゼ活性は検出されず未分化性が保たれていないこと、及び本実施例で使用したES細胞上にはIL−6Rが発現していないことが分かる。
【0024】
実施例2 IL−6とIL−6RによるES細胞の維持培養−2
1000ユニット/mlの市販のLIF(Amrad 社製)共存下で、15%牛血清含有DMEM培地で継代培養してきたマウス由来のES細胞を、1000ユニット/mlのLIF共存下、200ng/mlのIL−6及び2μg/mlの可溶型IL−6R共存下、200ng/mlのIL−6共存下、2μg/mlの可溶型IL−6R共存下、又はこれらの非存在下で、3.5cmディッシュで9000細胞/ディッシュの条件で6日間培養した。次に、未分化型ES細胞の表面マ−カ−であるSSEA−1(Stage Specific Embryonic Antigen−1)に対する抗体を使用して、通常の方法でFACS解析を行った。なお、本実施例で使用した可溶型IL−6Rは実施例1で使用したものと同一である。
【0025】
結果を図2〜6に示す。これらから明らかなように、LIF共存下(図2)及びIL−6と可溶型IL−6Rの両方の共存下(図3)では、SSEA−1の発現が検出され、ES細胞の未分化性が保たれていることが分かる。一方、IL−6共存:可溶型IL−6R非共存下(図4)、可溶型IL−6R共存:IL−6非共存下(図5)では、これらを共存させなかった場合(図6)と同様SSEA−1の発現は検出されず、未分化性が保たれていないこと及び本実施例で使用したES細胞上にはIL−6Rが発現していないことが分かる。
【0026】
実施例3 IL−6とIL−6レセプタ−によるES細胞の維持培養−3
実施例2と同様の条件で継代培養してきたES細胞を、実施例2と同様の各種ファクタ−共存下、チャンバ−スライド(ヌンク社製)で、50000細胞/チャンバ−の条件で6日間培養した。次に、SSEA−1に対する抗体と、該抗体に対する蛍光色素標識抗体を使用して、イムノステイニングを行った。結果を図7〜11に示す。
【0027】
これらから明らかなように、LIF共存下(図7)及びIL−6と可溶型IL−6Rの両方の共存下(図8)ではSSEA−1の発現が検出され、ES細胞の未分化性が保たれていることが分かる。一方、IL−6共存:可溶型IL−6R非共存下(図9)、可溶型IL−6R共存:IL−6非共存下(図10)では、これらを共存させなかった場合(図11)と同様にSSEA−1の発現は見られず、未分化性が保たれていないこと及び本実施例で使用したES細胞上にはIL−6Rが発現していないことが分かる。
【0028】
実施例4.IL−6とIL−6RによるES細胞の維持培養−4
実施例2と同様の条件で継代培養してきたES細胞を、実施例2と同様の各種ファクタ−存在下、実施例3と同様の培養条件で培養した。次に細胞を固定化し、顕微鏡観察を行った。結果を図12〜16に示す。
【0029】
図4から明らかなように、LIF共存下(図12)及びIL−6と可溶型IL−6Rの両方の共存下(図13)では、ES特有の形態(細胞が密に凝集しており細胞中の大部分を核が占めている)が観察され、ES細胞の未分化性が保たれていることが分かる。IL−6共存:可溶型IL−6R非共存下(図14)、可溶型IL−6R共存:IL−6非共存下(図15)では、これらを共存させなかった場合(図16)と同様にこのような形態は観察されず、未分化性が保たれていないこと及び本実施例で使用したES細胞上にはIL−6Rが発現していないことが分かる。
【図面の簡単な説明】
【図1】図1は、実施例1により得られた生物の形態を示す写真であり、培養したES細胞培養上清中のアルカリフォスファタ−ゼ活性を示す。図中、AはLIF存在下、BはIL−6共存:可溶型IL−6R非共存下、CはIL−6と可溶型IL−6Rの両方の共存下を示す。ウエル中の黒点は、アルカリフォスファタ−ゼ活性に関連して出現した不溶性色素を示す。なお、Aにおいては、左から順に、LIF濃度がそれぞれ10000、1000、100、10ユニット/mlの場合を、B及びCにおいては、左から順にIL−6濃度がそれぞれ200、20、2、0.2ng/mlの場合を示す(CにおいてIL−6R濃度は常に一定)。
【図2】図2は、実施例2中、LIF共存下で培養したES細胞についてのFACSの結果を示すクロマトグラフ写真である。縦軸は相対細胞数を示す。
【図3】図3は、実施例2中、IL−6及び可溶型IL−6R共存下で培養したES細胞についてのFACSの結果を示すクロマトグラフ写真である。縦軸は相対細胞数を示す。
【図4】図4は、実施例2中、IL−6共存、可溶型IL−6R非共存下で培養したES細胞についてのFACSの結果を示すクロマトグラフ写真である。縦軸は相対細胞数を示す。
【図5】図5は、実施例2中、IL−6非共存、可溶型IL−6R共存下で培養したES細胞についてのFACSの結果を示すクロマトグラフ写真である。縦軸は相対細胞数を示す。
【図6】図6は、実施例2中、IL−6と可溶型IL−6Rの両方を非共存下で培養したES細胞についてのFACSの結果を示すクロマトグラフ写真である。縦軸は相対細胞数を示す。
【図7】図7は、実施例3中、LIF共存下で培養したES細胞についてイムノステイニングを行った場合の生物の形態を示す写真である。
【図8】図8は、実施例3中、IL−6及び可溶型IL−6R共存下で培養したES細胞についてイムノステイニングを行った場合の生物の形態を示す写真である。
【図9】図9は実施例3中、IL−6共存、可溶型IL−6R非共存下で培養したES細胞についてイムノステイニングを行った場合の生物の形態を示す写真である。
【図10】図10は、実施例3中、IL−6非共存、可溶型IL−6R共存下で培養したES細胞についてイムノステイニングを行った場合の生物の形態を示す写真である。
【図11】図11は、実施例3中、IL−6共存と可溶型IL−6Rの両方を非共存下で培養したES細胞についてイムノステイニングを行った場合の生物の形態を示す写真である。
【図12】図12は、実施例4中、LIF共存下で培養したES細胞について顕微鏡観察を行った場合の生物の形態を示す写真である。
【図13】図13は、実施例4中、IL−6及び可溶型IL−6R共存下で培養したES細胞について顕微鏡観察を行った場合の生物の形態を示す写真である。
【図14】図14は、実施例4中、IL−6共存、可溶型IL−6R非共存下で培養したES細胞について顕微鏡観察を行った場合の生物の形態を示す写真である。
【図15】図15は、実施例4中、IL−6非共存、可溶型IL−6R共存下で培養したES細胞について顕微鏡観察を行った場合の生物の形態を示す写真である。
【図16】図16は、実施例4中、IL−6共存と可溶型IL−6Rの両方を非共存下で培養したES細胞について顕微鏡観察を行った場合の生物の形態を示す写真である。
[0001]
[Industrial applications]
The present invention relates to a culture solution and the like used for growing and / or maintaining embryonic stem cells.
[0002]
[Prior art]
In recent years, with the accumulation of knowledge and the development of technology in developmental engineering and molecular biology, the production of transgenic animals (hereinafter referred to as TG animals) that introduces artificially prepared foreign genes into early embryos and further develops them into individuals. (See Gordon et al., Proc. Natl. Acad. Sci. USA, 77, p7380, 1980). The production of such TG animals involves not only examining the functions and effects of the introduced genes at the individual level by actually expressing the genes cloned by genetic engineering techniques in vivo, but also producing diseases. As model TG animals and useful substance-producing TG animals are developed, their usefulness is being recognized not only in the medical field but also in the industrial field.
[0003]
As a method for preparing a TG animal, a microinjection method of directly injecting a foreign gene fragment into a pronuclear stage embryo with a micropipette, a retrovirus method of infecting an early embryo with a retrovirus incorporating a foreign gene, and the like have been established. . However, in any of these methods, since a foreign gene is randomly integrated into a host chromosome, it is impossible to control the integration site of the foreign gene. Therefore, problems remain in reproducibility, efficient expression of foreign genes, and the like.
[0004]
On the other hand, as a new field in developmental engineering, an embryonic stem cell (hereinafter referred to as ES cell), which is a cell line that can be cultured in a test tube in an uncultivated state while retaining the ability to differentiate into various individual forming tissues, is maintained. ) Was established (see Evance et al., Nature, 292, p7634, 1981). ES cells are normal cells that retain the normal diploid karyotype. By transplanting the cells into normal early embryos, one individual, that is, a chimeric animal can be highly evolved while cells from early embryos and ES cell-derived cells are mixed. (See Bredley et al., Nature, 309, p 255, 1986).
[0005]
As with other cell lines, a foreign gene can be introduced into ES cells using a conventional method, and only a homologous recombinant is selected from a population of foreign gene-transfected cells as described later. Due to the fact that the method can be used, a TG animal production method different from the microinjection method or the like has been proposed.
[0006]
In the case of introducing a foreign gene into a cell by the conventional method, the foreign gene is integrated at a random position on the host chromosome, but there is a certain probability that the homologous integration between the foreign gene and an endogenous gene on the host chromosome that is homologous to the host gene. It is known to cause chromosomal abnormalities called recombination. That is, if a foreign gene having a sequence site homologous to the endogenous gene of interest is introduced, a homologous recombination that has undergone homologous recombination with the targeted endogenous gene sequence can be performed simultaneously with the random recombinant. Can also occur. In addition, by introducing a foreign gene designed to select such homologous recombinants, only homologous recombinants are selected from the entire recombinant cell population, and finally any gene on the host chromosome is targeted. (See Mansour et al., Nature, 336, p348, 1988; Capecchi et al., TIG, 5, p70, 1989).
[0007]
Although the above method is generally referred to as gene targeting, by applying the gene targeting method to the selection of homologous recombinant ES cells, conventional TG animals such as microinjection method can be used. The possibility of producing a homologous recombinant TG animal in which a foreign gene has been inserted at an arbitrary position, which was impossible with the production method, has been shown, and expectations for ES cells for producing a TG animal via a chimeric animal are increasing. .
[0008]
[Problems to be solved by the invention]
The establishment of an ES cell (strain) is carried out by the following process using an excreted fibroblast as a feeder cell layer. First, by culturing the early embryo on the feeder cell layer, the early embryo is established on the feeder cell layer, and then the trophoblasts on the outer periphery of the embryo start to grow. Furthermore, an inner cell mass (hereinafter referred to as ICM) existing inside the early embryo starts to grow in a dome-like manner on the expanded trophoblast, and when the ICM has sufficiently grown, only the ICM is separated and dispersed. And pass on a new feeder layer. Only a few of the passaged ICM-derived cells that continue to grow while maintaining their undifferentiated morphology appear. ES cells are established by further subculturing the undifferentiated cells (Robertson et al., Teratocarcinomas and embryonic stem cells, pp71-112, Robertson, EJ J. ed., IRL Press Lim. Oxford., 1987).
[0009]
As a culture medium for establishing and maintaining an ES cell line, a DME culture medium is used as a basic culture medium, and a non-essential amino acid mixture, a nucleic acid mixture, mercaptoethanol, newborn calf serum and / or fetal calf serum are added thereto. The additions are used. In addition, when establishing and maintaining a mouse ES cell line, a certain amount of a culture supernatant of embryonic teratoma cells (Embryonal carcinoma cells; EC cells) or a culture supernatant of buffalo-rat liver cells (BRL-CM) is used. It has been reported that addition to a culture solution simultaneously suppresses differentiation and promotes proliferation (see Smith, Dev. Biol., 121, p1, 1987), and the activity contained in these culture supernatants is a differentiation inhibitory factor. (Differentiation-inhibiting activity; hereinafter, DIA). Furthermore, it has been subsequently found that DIA is a kind of cytokine called leukemia inhibitory factor (hereinafter, LIF) (see Williams, Nature, 336, p684, 1988).
[0010]
LIF improves the establishment efficiency of ES cells (strain) in a specific mouse line (129 / sv line or C57BL / 6 line) as compared to the absence thereof, Strain) shows differentiation inhibitory activity and growth promoting activity (see Pease, Dev. Biol., 144, p344, 1990). However, no remarkable effect was observed in other mouse strains or other species of animals, and no effective method for suppressing the differentiation and promoting proliferation of ES cells other than the specific species of mouse has not yet been reported.
[0011]
[Means for Solving the Problems]
Inter-leukin-6 (hereinafter, IL-6) binds to an inter-leukin-6 receptor (hereinafter, IL-6R) on the target cell membrane, and furthermore, a complex of IL-6 and IL-6R forms a membrane on the cell membrane. By binding to the protein gp130, various important biological activities are induced. When IL-6R is not expressed on the target cell membrane, IL-6 and soluble IL-6R (extracellular region of IL-6 receptor) bind to gp130 on the target cell membrane. , A physiological activity is induced (see Taga et al., Cell, 58, p573, 1989). In recent years, studies using antibodies that inhibit the signaling activity of gp130 (see Taga et al., Proc. Natl. Acad., Sci. USA, 89, p10998, 1992) show that gp130 is not only IL-6 but also IL-6. It has been suggested that it is also a signal transduction factor such as LIF, oncostatin M, and CNTF (ciliary neurotropic factor).
[0012]
In addition, a study in which LIF receptor and gp130 cDNA were introduced into cells to examine LIF binding properties (see Gearing et al., Science, 255, p1434, 1992) showed that LIF could be expressed in target cells including ES cells. It has also been suggested that a requirement is that both the LIF receptor and gp130 be expressed on target cells in order to work.
[0013]
Based on the above findings, the present inventors have conducted intensive studies on the effect of IL-6 and / or IL-6R related to gp130 signal transduction to suppress differentiation and / or promote the proliferation of ES cells. Was completed. That is, the present invention is an agent for suppressing differentiation and / or promoting proliferation of embryonic stem cells having pluripotency and / or totipotent differentiation ability, which comprises IL-6 and / or IL-6R as an active ingredient. And / or coexistence of IL-6R, which is a method for suppressing differentiation and / or promoting proliferation of embryonic stem cells having pluripotency and / or totipotent differentiation ability. The present invention also provides a culture medium for growing and / or maintaining embryonic stem cells having pluripotency and / or totipotent differentiation ability, which comprises IL-6 and / or IL-6R as an active ingredient. The present invention relates to a culture method capable of proliferating and / or maintaining embryonic stem cells having pluripotency and / or totipotent differentiation ability, characterized by coexistence of IL-6R and / or IL-6R. Hereinafter, the present invention will be described in detail.
[0014]
IL-6 or IL-6R can be from any animal species. In addition, any natural type purified or extracted from materials existing in nature, or any recombinant type produced by genetic engineering may be used. Furthermore, it may be a partial peptide, a mutant or a modification based on the basic structure and / or amino acid sequence of IL-6 or IL-6R. The method for producing a genetically engineered IL-6 may be in accordance with a known method (see Yasukakawa et al., Biotechnol. Lett., 1990; Saito et al., Biotechnol. Lett., 1992), or may be performed using a genetically engineered IL-6R. The production method can also be exemplified according to a known method (see Yasukakawa et al., J. Biochem., 108, p673, 1990; Saito et al., J. Immunol., 38, p168, 1991). As described in the above-mentioned known method, the soluble form of IL-6R (partial peptide having only an extracellular region) in which the transmembrane region and the intracellular region are deleted may be used. That is, only the extracellular region of about 360 amino acids of IL-6R is involved in binding to IL-6 and binding to gp130.
[0015]
The differentiation-suppressing and / or proliferation-promoting agent of the present invention exerts an effect also from the interaction between IL-6 and IL-6R by containing IL-6 or IL-6R alone. However, when the target ES cell does not express IL-6R or is expected not to express a sufficient amount of IL-6R, for example, both IL-6 and IL-6R are used. It is necessary to include. Therefore, it is preferable to use a differentiation inhibitor and / or a growth promoting agent containing both IL-6 and IL-6R in case the expression of IL-6 or IL-6R of the target ES cell cannot be predicted. . In order to obtain a good differentiation-suppressing and / or growth-promoting effect, IL-6R is used at a concentration of 1 to 1000 ng / ml, preferably 50 to 500 ng / ml, and IL-6R is used at a concentration of 100 ng / ml to 100 μg / ml. Preferably, the content is adjusted to a concentration of 1 to 10 μg / ml, but the effect can be obtained even outside this range.
[0016]
In order to suppress the differentiation and / or promote the proliferation of ES cells, for example, IL-6 and / or IL-6R is added to a culture solution of ES cells or the like, and only the coexistence of ES-6 with IL-6 and the like is required. good. Although IL-6 or IL-6R may be used alone, it is expected that the target ES cells do not express IL-6R or do not express a sufficient amount of IL-6R. In some cases, it is particularly preferable to use IL-6 and IL-6R. In order to obtain a good differentiation inhibitory and / or growth promoting effect, IL-6R is used at a concentration of 1 to 1000 ng / ml, preferably 50 to 500 ng / ml, and IL-6R is used at a concentration of 100 ng / ml to 100 μg / ml. The concentration is preferably 1 to 10 μg / ml, but the effect can be obtained even outside this range.
[0017]
The culture solution of the present invention is characterized by containing IL-6 and / or IL-6R for establishing, maintaining and / or culturing ES cells (strain). In order to obtain a good differentiation inhibitory and / or growth promoting effect, IL-6 is added at a concentration of 1 to 1000 ng / ml, preferably 50 to 500 ng / ml, and IL-6R is added at a concentration of 100 ng / ml to 100 μg / ml, Preferably, 1 to 10 μg / ml is added, but the effect can be obtained even outside this range. The culture solution may contain IL-6 or IL-6R alone. However, when the target ES cells do not express IL-6R or are expected not to express a sufficient amount of IL-6R, IL-6 and IL-6R may be used in particular. It is preferred to include. The culture solution may be a known culture solution composition other than IL-6 and / or IL-6R, for example, 199, NTCT135, CMRL1066, BME, MEM, DME, MB752 / 1, 5A, RITC80-7, F-10, F -12, L-15 or MCDB 104, etc., and the composition of a culture solution obtained by a modification thereof. Among them, preferably, a high glucose-containing culture solution, more preferably a non-essential amino acid mixture (NEAA), a nucleic acid mixture (NMS), mercaptoethanol, a selenium compound, a corticosteroid and its compounds, transferrin, insulin and the like It is preferable to use a culture medium containing high glucose to which an additive selected from the above is added. A culture that can achieve better culture by further adding 1-50%, more preferably 5-30% of newborn calf serum (NCS) and / or fetal calf serum (FCS) to such a culture solution. A liquid can be obtained.
[0018]
The culture of the ES cell (strain) using the culture solution can be performed by a known method. ES cells (strains) can be established even in animal species and / or lines in which ES cells have not been established to date. Even in animal species and / or lines in which ES cells have already been established, it is possible to improve the establishment efficiency of new ES cells (strain), stabilize culture maintenance, and promote proliferation. As described above, the development of a culture solution that can easily provide a variety of ES cells (strains) and ES cell clones involves the production of chimeric animals using ES cells and the production of TG animals via chimeric animals. It is expected to make great progress.
[0019]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, establishment of ES cell (strain) conventionally limited only to a specific animal species and / or line becomes possible in a wide variety of animal species and / or lines, and ES cells have already been established. It is also possible to improve the establishment efficiency of novel ES cells (strain), stabilize culture maintenance, and promote proliferation in the used animal species and / or strain.
[0020]
【Example】
Hereinafter, examples will be described in order to explain the present invention in further detail, but the present invention is not limited to these examples.
[0021]
Example 1 Maintenance culture of ES cells by IL-6 and IL-6R-1
ES cells derived from mice subcultured in a DMEM medium containing 15% bovine serum in the presence of 1000 units / ml of commercially available LIF (manufactured by Amrad) were divided into three groups of A, B, and C. The cells were cultured in a 24-well plate at 250 cells / well for 8 days in the presence of the above components.
[0022]
A group: medium containing 1000, 100, 10 or 1 unit / ml LIF respectively B group: medium C group containing 200, 20, 2 or 0.2 ng / ml IL-6 respectively: Medium containing 200, 20, 2 or 0.2 ng / ml of IL-6 and 2 μg / ml of soluble IL-6R (soluble IL-6R concentration is always constant)
After the culture, the cells were fixed with alcohol and the activity of alkaline phosphatase, an undifferentiated ES cell marker, was measured using a commercially available measuring reagent (Sigma Diagnostic Kit No. 86, manufactured by Sigma). went. The alkaline phosphatase substrate contained in this reagent is in the form of a solution, but is converted into an insoluble dye by reacting with the alkaline phosphatase. In the soluble IL-6R, 19 amino acid residues from the N-terminus and 124 amino acid residues from the C-terminus were deleted from a total of 468 amino acid residues described in JP-A-3-133390. 325 amino acid residues.
[0023]
The results are shown in FIG. As is clear from FIG. 1, in the presence of LIF at 100 units / ml or more (A in FIG. 1) and in the coexistence of both IL-6 and soluble IL-6R at 2 ng / ml or more (C in FIG. 1). In this case, alkaline phosphatase activity was detected, indicating that undifferentiation of ES cells was maintained. On the other hand, in the presence of IL-6: in the absence of soluble IL-6R (FIG. 1B), no alkaline phosphatase activity was detected and undifferentiation was not maintained, and it was used in this example. It can be seen that IL-6R is not expressed on ES cells.
[0024]
Example 2 Maintenance culture of ES cells by IL-6 and IL-6R-2
ES cells derived from mice subcultured in a DMEM medium containing 15% bovine serum in the presence of 1000 units / ml of commercially available LIF (Amrad) were cultured at 200 ng / ml in the presence of 1000 units / ml of LIF. 2. In the presence of IL-6 and 2 μg / ml of soluble IL-6R, in the presence of 200 ng / ml of IL-6, in the presence of 2 μg / ml of soluble IL-6R, or in the absence thereof. The cells were cultured in a 5 cm dish at 9000 cells / dish for 6 days. Next, FACS analysis was performed by an ordinary method using an antibody against SSEA-1 (Stage Specific Embronic Antigen-1), which is a surface marker of undifferentiated ES cells. The soluble IL-6R used in this example is the same as that used in Example 1.
[0025]
The results are shown in FIGS. As is clear from these, SSEA-1 expression was detected in the presence of LIF (FIG. 2) and in the presence of both IL-6 and soluble IL-6R (FIG. 3), and undifferentiated ES cells It can be seen that the sex is maintained. On the other hand, in the case of coexistence of IL-6: in the absence of soluble IL-6R (FIG. 4) and in the presence of soluble IL-6R: in the absence of IL-6 (FIG. 5), these were not coexistent (FIG. 5). As in 6), expression of SSEA-1 was not detected, indicating that undifferentiation was not maintained and that IL-6R was not expressed on the ES cells used in this example.
[0026]
Example 3 Maintenance culture of ES cells by IL-6 and IL-6 receptor-3
ES cells subcultured under the same conditions as in Example 2 were cultured for 6 days on a chamber slide (manufactured by Nunc) under the same conditions as in Example 2 under the condition of 50,000 cells / chamber. did. Next, immunostaining was performed using an antibody against SSEA-1 and a fluorescent dye-labeled antibody against the antibody. The results are shown in FIGS.
[0027]
As is apparent from these results, SSEA-1 expression was detected in the presence of LIF (FIG. 7) and in the presence of both IL-6 and soluble IL-6R (FIG. 8), indicating that ES cells were undifferentiated. It can be seen that is maintained. On the other hand, in the case of coexistence of IL-6: in the absence of soluble IL-6R (FIG. 9) and in the presence of soluble IL-6R: in the absence of IL-6 (FIG. 10), these were not coexisted (FIG. 10). As in 11), SSEA-1 expression was not observed, indicating that undifferentiation was not maintained and that IL-6R was not expressed on the ES cells used in this example.
[0028]
Embodiment 4. FIG. Maintenance culture of ES cells by IL-6 and IL-6R-4
ES cells subcultured under the same conditions as in Example 2 were cultured under the same culture conditions as in Example 3 in the presence of various factors as in Example 2. Next, the cells were fixed and observed under a microscope. The results are shown in FIGS.
[0029]
As is evident from FIG. 4, in the presence of LIF (FIG. 12) and in the presence of both IL-6 and soluble IL-6R (FIG. 13), ES-specific morphology (cells are densely aggregated). Nuclei occupy most of the cells), indicating that the undifferentiated state of the ES cells is maintained. IL-6 coexistence: in the absence of soluble IL-6R (FIG. 14), soluble IL-6R coexistence: in the absence of IL-6 (FIG. 15), when these were not allowed to coexist (FIG. 16). Similarly to this, such a form was not observed, indicating that undifferentiation was not maintained and that the ES cells used in this example did not express IL-6R.
[Brief description of the drawings]
FIG. 1 is a photograph showing the form of an organism obtained in Example 1, and shows alkaline phosphatase activity in a cultured ES cell culture supernatant. In the figure, A shows the presence of LIF, B shows the presence of IL-6: in the absence of soluble IL-6R, and C shows the presence of both IL-6 and soluble IL-6R. The black dots in the wells indicate insoluble dyes that appeared in connection with alkaline phosphatase activity. In addition, in the case of A, the LIF concentration is 10000, 1000, 100, and 10 units / ml in order from the left, and in the case of B and C, the IL-6 concentration is 200, 20, 2, 0 in the order from the left. .2 ng / ml (IL-6R concentration is always constant in C).
FIG. 2 is a chromatographic photograph showing the results of FACS on ES cells cultured in the presence of LIF in Example 2. The vertical axis indicates the relative cell number.
FIG. 3 is a chromatographic photograph showing the results of FACS on ES cells cultured in Example 2 in the presence of IL-6 and soluble IL-6R. The vertical axis indicates the relative cell number.
FIG. 4 is a chromatographic photograph showing the results of FACS on ES cells cultured in Example 2 in the presence of IL-6 and in the absence of soluble IL-6R. The vertical axis indicates the relative cell number.
FIG. 5 is a chromatographic photograph showing the results of FACS on ES cells cultured in Example 2 in the absence of IL-6 and in the presence of soluble IL-6R. The vertical axis indicates the relative cell number.
FIG. 6 is a chromatographic photograph showing the results of FACS for ES cells cultured in the absence of both IL-6 and soluble IL-6R in Example 2. The vertical axis indicates the relative cell number.
FIG. 7 is a photograph showing the morphology of an organism when immunostaining was performed on ES cells cultured in the presence of LIF in Example 3.
FIG. 8 is a photograph showing the form of an organism when immunostaining was performed on ES cells cultured in Example 3 in the presence of IL-6 and soluble IL-6R.
FIG. 9 is a photograph showing the morphology of an organism when immunostaining was performed on ES cells cultured in the presence of IL-6 and in the absence of soluble IL-6R in Example 3.
FIG. 10 is a photograph showing the form of an organism when immunostaining was performed on ES cells cultured in the absence of IL-6 and in the presence of soluble IL-6R in Example 3.
FIG. 11 is a photograph showing the morphology of an organism when immunostaining was performed on ES cells cultured in the absence of both IL-6 and soluble IL-6R in Example 3. It is.
FIG. 12 is a photograph showing the morphology of an organism when microscopy was performed on ES cells cultured in the presence of LIF in Example 4.
FIG. 13 is a photograph showing a morphology of an organism when ES cells cultured in Example 4 in the presence of IL-6 and soluble IL-6R were observed under a microscope.
FIG. 14 is a photograph showing the morphology of an organism when ES cells cultured in Example 4 in the presence of IL-6 and in the absence of soluble IL-6R were observed under a microscope.
FIG. 15 is a photograph showing the morphology of an organism in Example 4 when ES cells cultured in the absence of IL-6 and in the presence of soluble IL-6R were observed under a microscope.
FIG. 16 is a photograph showing the morphology of an organism when ES cells cultured in the absence of both IL-6 and soluble IL-6R in Example 4 were observed under a microscope. is there.

Claims (4)

1から1000ng/mlのインターロイキン−6及び100ng/mlから100μg/mlのインターロイキン−6レセプターを有効成分とする、多能性及び/又は全能性分化能を持つ胚性幹細胞の未分化性維持薬。Undifferentiated maintenance of pluripotent and / or totipotent embryonic stem cells containing 1 to 1000 ng / ml interleukin-6 and 100 ng / ml to 100 μg / ml interleukin-6 receptor as active ingredients medicine. 1から1000ng/mlのインターロイキン−6及び100ng/mlから100μg/mlのインターロイキン−6レセプターを共存させることを特徴とする、多能性及び/又は全能性分化能を持つ胚性幹細胞の未分化性を維持する方法。An embryonic stem cell having pluripotency and / or totipotent differentiation ability, characterized by coexistence of 1 to 1000 ng / ml interleukin-6 and 100 ng / ml to 100 μg / ml interleukin-6 receptor. How to maintain differentiation. 1から1000ng/mlのインターロイキン−6及び100ng/mlから100μg/mlのインターロイキン−6レセプターを有効成分とする、多能性及び/又は全能性分化能を持つ胚性幹細胞をその未分化性を維持したまま培養するための培養液。Embryonic stem cells having pluripotent and / or totipotent differentiation potential containing 1 to 1000 ng / ml of interleukin-6 and 100 ng / ml to 100 μg / ml of interleukin-6 receptor as active ingredients can be used as undifferentiated cells. A culture solution for culturing while maintaining. 1から1000ng/mlのインターロイキン−6及び100ng/mlから100μg/mlのインターロイキン−6レセプターを共存させることを特徴とする、多能性及び/又は全能性分化能を持つ胚性幹細胞をその未分化性を維持したまま培養する方法。An embryonic stem cell having pluripotency and / or totipotent differentiation, characterized by coexistence of 1 to 1000 ng / ml interleukin-6 and 100 ng / ml to 100 μg / ml interleukin-6 receptor. A method of culturing while maintaining undifferentiation.
JP21792593A 1993-08-11 1993-08-11 Culture solution of embryonic stem cells Expired - Lifetime JP3573354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21792593A JP3573354B2 (en) 1993-08-11 1993-08-11 Culture solution of embryonic stem cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21792593A JP3573354B2 (en) 1993-08-11 1993-08-11 Culture solution of embryonic stem cells

Publications (2)

Publication Number Publication Date
JPH0751060A JPH0751060A (en) 1995-02-28
JP3573354B2 true JP3573354B2 (en) 2004-10-06

Family

ID=16711881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21792593A Expired - Lifetime JP3573354B2 (en) 1993-08-11 1993-08-11 Culture solution of embryonic stem cells

Country Status (1)

Country Link
JP (1) JP3573354B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10259772B2 (en) 2014-11-06 2019-04-16 Nippon Menard Cosmetic Co., Ltd. Agents for maintaining undifferentiated state and promoting proliferation of stem cells

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2246712A1 (en) * 1996-02-16 1997-08-21 The University Of Edinburgh Cytokine expressed by dia/lif-deficient embryonic stem cells for the inhibition of differentiation
JP5197998B2 (en) * 2007-06-06 2013-05-15 日本メナード化粧品株式会社 Stem cells cultured by specific method and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10259772B2 (en) 2014-11-06 2019-04-16 Nippon Menard Cosmetic Co., Ltd. Agents for maintaining undifferentiated state and promoting proliferation of stem cells

Also Published As

Publication number Publication date
JPH0751060A (en) 1995-02-28

Similar Documents

Publication Publication Date Title
CN1543500B (en) Cardiomyocyte precursors from human embryonic stem cells
US5914268A (en) Embryonic cell populations and methods to isolate such populations
Eppig et al. Development in vitro of mouse oocytes from primordial follicles
US6555318B2 (en) Method for identification of cell growth or differentiation factors
Johnson et al. Pleiotropic effects of a null mutation in the c-fos proto-oncogene
CA2827654C (en) Method for generating an animal homozygous for a genetic modification
JP2001521380A (en) Human embryonic germ cell lines and methods of use
CN1768133A (en) Use of ISLET 1 as a marker for isolating or generating stem cells
CN1659273A (en) Control of ES cell self renewal and lineage specification, and medium therefor
US20060057657A1 (en) Stem cell selection and differentiation
CN1303425A (en) PNS cell lines and methods of use therefor
WO2010069008A9 (en) A germline competent cell derived from adult tissue
JP3573354B2 (en) Culture solution of embryonic stem cells
US7491866B2 (en) Transgenic rats and spermatogonial stem cells
US20020132342A1 (en) Method for generating immortal dendritic cell lines
JP5144073B2 (en) Use of IL-6-type cytokines for oocyte maturation
JPH05304951A (en) Culture solution for early embryo and embryonic stem cell
WO2009096101A1 (en) Method for introducing foreign gene into early embryo of primate animal, and method for production of transgenic primate animal comprising the introduction method
JPH0638742A (en) Method for culturing animal embryonic stem cell
JP2006345702A (en) Agent for maintaining embryonic stem cell in undifferentiated state
KR101348299B1 (en) Method for culturing cell expressing bmp4 as single clone in serum free medium
AU2012261726B2 (en) Media for Culturing Stem Cells
DeLuca et al. Production of human B cells from CD34+ CD38− T− B− progenitors in organ culture by sequential cytokine stimulation
JP2004344060A (en) Bovine embryonic stem cell and method for producing bovine
MXPA99008933A (en) Human embryonic germ cell line and methods of use

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040223

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term