JP3572599B2 - Semiconductor relay - Google Patents

Semiconductor relay Download PDF

Info

Publication number
JP3572599B2
JP3572599B2 JP27204996A JP27204996A JP3572599B2 JP 3572599 B2 JP3572599 B2 JP 3572599B2 JP 27204996 A JP27204996 A JP 27204996A JP 27204996 A JP27204996 A JP 27204996A JP 3572599 B2 JP3572599 B2 JP 3572599B2
Authority
JP
Japan
Prior art keywords
wire bonding
semiconductor relay
voltage
bonding pad
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27204996A
Other languages
Japanese (ja)
Other versions
JPH10117011A (en
Inventor
実 仲矢
雅樹 高橋
友則 小町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP27204996A priority Critical patent/JP3572599B2/en
Publication of JPH10117011A publication Critical patent/JPH10117011A/en
Application granted granted Critical
Publication of JP3572599B2 publication Critical patent/JP3572599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
  • Electronic Switches (AREA)

Description

【0001】
【産業上の利用分野】
本発明は半導体リレーに関し、更に詳しくは半導体リレーの接点部の両端に発生するオフセット電圧を除去した半導体リレーに関する。
【0002】
【従来の技術】
図3(a),(b)は高耐圧DMOS(Double Diffused MOS)FET(以下、単にFETという)半導体リレーの一般的構成を示すもので、図(a)はFETのチップレイアウト、図(b)はLED,フォトダイオード,FET,FETのオン抵抗や寄生ダイオードおよび配線抵抗を含んで示す回路図である。これらの図において、1はLED、2はこのLEDの近傍に配置された電圧出力型フォトダイオードアレイ(以下、単にフォトダイオードという)である。このフォトダイオード2のアノード側の端子はFETQ,Q(図a参照)のゲートワイヤボンディングパッド(以下、単にゲートパッドという)3に接続され、カソード側の端子はソースワイヤボンディングパッド(以下、単にソースパッドという)4に接続されている。
【0003】
5はゲートパッド3とFETQ,Qソース同士を結んで配置されたシャント抵抗であり、半導体リレーがオン状態からオフ状態へ遷移する際にゲートに蓄積された電荷を放電する放電抵抗として機能する。6はFETQのドレインワイヤボンディングパッド、7はFETQのドレインワイヤボンディングパッドである。6aはFETQの、7aはFETQのオン抵抗,6b,7bはこれらのFETの寄生ダイオード、RはQの、RはQのドレイン配線の抵抗、RはQの、RはQのソース配線の抵抗、rはソースパッド4とQのドレイン用パッドを結ぶ配線抵抗である。
【0004】
このような構成において、LED1に動作電流が流れるとLED1から光が放射され、その光の強さに応じた電圧が電圧出力型フォトダイオードアレイ2に生じ、この電圧によりFETQ,Qのゲートがオンとなって半導体リレーが導通状態となる。
【0005】
【発明が解決しようとする課題】
ところで、上記の半導体リレーはSi基板に作り込まれ、LED,フォトダイオードアレイ,FET等の各電子素子を結ぶ配線はAl等により形成されるが、完全導体ではないため30mΩ/□程度のシート抵抗を有している。そして、実際のFETではパターンにもよるが、2つのFETQ,Qを結ぶソースの配線抵抗(R,R)はおよそ0.1Ω程度である。
【0006】
ここで、LED1に動作電流(I)を5mA程度流した場合、電圧出力型フォトダイオードアレイ2からはおよそ10μA程度の電流(IPD)が得られ、FETQ のドレインワイヤボンディングパッド6,7間には1μV程度のオフセット電圧(Voffset)が発生する。
【0007】
半導体リレーをより高速に動作させるためLED1の動作電流(I)を増加させるとダイオードアレイ2の電流(IPD)が増大し、FETのゲート容量を素早く充電し高速動作が実現できるが、IPDと配線抵抗Rによる電圧降下がオフセット電圧となるため、動作電流(I)の増大とともにオフセット電圧(Voff set)も増大する。一般にLEDへ流す絶対最大定格(I)は50mA程度なので、オフセット電圧も10倍の10μV程度となる。
【0008】
図4はこのような半導体リレーを例えばレコーダやデータロガーの入力切換えスイッチに適用した例を示している。20は複数の半導体リレー、21は増幅器、22はA/D変換器、23は表示部を示している。このような多数の測定点の信号を入力する計測器では例えば熱電対の温度信号のように微弱な電圧信号が入力される場合がある。従って微弱な信号を精密に測定しようとすると、先に説明したようなオフセット電圧により計測値に誤差が生じるという問題があった。
【0009】
【課題を解決するための手段】
本発明は上記問題点を解決するために成されたもので、請求項1においては、
LEDとフォトダイオードと同一チップ上にゲートおよびソース同士が接続された一対の高耐圧DMOSFETとゲートワイヤボンディングパッドおよびソースワイヤボンディングパッドが形成された半導体リレーにおいて、前記ソースワイヤボンディングパッドとゲートワイヤボンディングパッド間にシャント抵抗を設けるとともに前記ソースワイヤーボンディングパッドを前記一対の高耐圧DMOSFETの結合点付近に配置し、前記ソースワイヤボンディングパッドとゲートワイヤボンディングパッドまでの距離を短くするすることにより、前記ソースのワイヤーボンディングパッドと前記一対の高耐圧DMOSFETの結合点間に発生する配線抵抗を零とみなせる程度まで低減したことを特徴とするものである。
【0010】
【発明の実施の形態】
図1(a),(b)は本発明の実施の形態の一例を示す要部構成図であり、(a)図はFETのチップレイアウトの拡大斜視図、(b)図は半導体リレーを構成した場合の回路図である。なお、図4と同一要素には同一符号を付している。図1において、従来例で示した図3とはゲートパッド3とFETQ,Qソース同士を結んでいたシャント抵抗5をゲートパッド3とソースパッド4との間に設けるとともにソースワイヤーボンディングパッドを一対の高耐圧DMOSFETのソース同士の結合点付近に配置した点のみが異なっている。
【0011】
上記の構成によれば、フオトダイオード2で生じた電流IPDはゲートパッド3→シャント抵抗5→ソースパッド4→フオトダイオード2のように循環する。
その結果、従来、フオトダイオード2で生じた電流IPDがゲートパッド3→シャント抵抗5→Qのソース配線の抵抗R→ソースパッド4→フオトダイオード2のように循環することによるオフセット電圧発生の原因を除去することができる。
【0012】
図2は従来と本発明の半導体リレーのFETの接点間に現れるオフセット電圧の関係を示すもので、本発明の半導体リレーのオフセット電圧は従来例に比較して格段に小さくなっていることが分かる。なお、本発明の半導体リレーのオフセット電圧がLED電流が増加するに従って多少発生するのは、LEDの光が強くなるに従いこの光がFETを照射し、オン抵抗と寄生ダイオード間に生じる電流によりオフセット電圧が生じるためと思われる。
【0013】
また、本発明の実施の形態ではソースパッド4を一対のFETの結合点付近に配置している。この様な配置は半導体リレーのFETQ,Qのドレインパッド同士をショートして片極性で使用する場合に有効である。即ち、図3(b)に示す回路でのQのオン抵抗Ron
on={(6a+R+R+R)×(7a+R)}/{(6a+R+R+R)+(7a+R)}+r…▲1▼
となり、
【0014】
図1(b)に示す本発明のQのオン抵抗Ron’は
on’={(6a+R+R)×(7a+R+R)}/ {(6a+R+R)+(7a+R+R)}・・・▲2▼
となる(なお、一般に低オン抵抗半導体リレーを実現しようとした場合、チップサイズが大きく、ソース配線の引き回しが長くなってrが10Ω程度になることもある)本発明ではソースパッド4からゲートパッドまでの距離を短くすることにより、▲2▼式に示すようにrを零とみなせる程度まで低減することができ、またrを含まない式の上でもオン抵抗を減少させることができる。
【0015】
【発明の効果】
以上詳しく説明したように本発明によれば、LEDとフォトダイオードと同一チップ上にゲートおよびソース同士が接続された一対の高耐圧DMOSFETとゲートワイヤボンディングパッドおよびソースワイヤボンディングパッドが形成された半導体リレーにおいて、前記ソースワイヤボンディングパッドとゲートワイヤボンディングパッド間にシャント抵抗を設けるとともに前記ソースワイヤーボンディングパッドを前記一対の高耐圧DMOSFETの結合点付近に配置し、前記ソースワイヤボンディングパッドとゲートワイヤボンディングパッドまでの距離を短くするすることにより、前記ソースのワイヤーボンディングパッドと前記一対の高耐圧DMOSFETの結合点間に発生する配線抵抗を零とみなせる程度まで低減した。これにより、従来FETのドレイン配線抵抗により発生していた電圧降下を除去することができ、オフセットを除去した半導体リレーを実現することができた。また、ソースのワイヤーボンディングパッドを一対のFETの結合点付近に配置したので、半導体リレーを片極性で使用する場合もオン抵抗を低減させることができた。
【図面の簡単な説明】
【図1】本発明の半導体リレーの実施の形態の一例を示すFETの拡大図(a)及び回路図である。
【図2】本発明と従来の半導体リレーのオフセット電圧とLED動作電流の関係を示す図である。
【図3】従来の半導体リレー回路の一例を示すFETの拡大図(a)及び回路図である。
【図4】半導体リレーをレコーダに適用した状態を示す要部構成図である。
【符号の説明】
1 LED
2 フォトダイオードアレイ
3 ゲートワイヤボンディングパッド
4 ソースワイヤボンディングパッド
5 シャント抵抗
6 Q用ドレインワイヤボンディングパッド
6a Qのオン抵抗
6b Qの寄生ダイオード
7 Q用ドレインワイヤボンディングパッド
7a Qのオン抵抗
7b Qの寄生ダイオード
,Q 高耐圧DMOSFET
[0001]
[Industrial applications]
The present invention relates to a semiconductor relay, and more particularly, to a semiconductor relay in which an offset voltage generated at both ends of a contact portion of a semiconductor relay is removed.
[0002]
[Prior art]
FIGS. 3A and 3B show a general configuration of a high voltage DMOS (Double Diffused MOS) FET (hereinafter simply referred to as FET) semiconductor relay. FIG. 3A shows the chip layout of the FET and FIG. 4) is a circuit diagram including the LED, the photodiode, the FET, the on-resistance of the FET, the parasitic diode, and the wiring resistance. In these figures, 1 is an LED, and 2 is a voltage output type photodiode array (hereinafter simply referred to as a photodiode) arranged near the LED. The anode-side terminal of the photodiode 2 is connected to a gate wire bonding pad (hereinafter, simply referred to as a gate pad) 3 of FETs Q 1 and Q 2 (see FIG. A), and the cathode-side terminal is a source wire bonding pad (hereinafter, referred to as a gate pad). 4 simply referred to as a source pad).
[0003]
Reference numeral 5 denotes a shunt resistor connected between the gate pad 3 and the sources of the FETs Q 1 and Q 2. The shunt resistor 5 serves as a discharge resistor for discharging the charge stored in the gate when the semiconductor relay changes from the on state to the off state. Function. 6 the drain wire bonding pads of FETs Q 1, 7 is a drain wire bonding pads of FETs Q 2. 6a is the FETs Q 1, 7a is the on-resistance FETQ 2, 6b, 7b are parasitic diodes of these FET, R 1 is of Q 1, the resistance of R 4 is Q 2 of drain lines, R 2 is of Q 1, R 3 the resistance of the source wiring of Q 2, r is the wiring resistance connecting the drain pad of the source pad 4 and Q 2.
[0004]
In such a configuration, when an operating current flows through the LED 1, light is emitted from the LED 1 , and a voltage corresponding to the intensity of the light is generated in the voltage output type photodiode array 2, and this voltage causes the gates of the FETs Q 1 and Q 2 to operate. Is turned on, and the semiconductor relay is turned on.
[0005]
[Problems to be solved by the invention]
By the way, the above-mentioned semiconductor relay is built on a Si substrate, and wiring connecting each electronic element such as LED, photodiode array, FET and the like is formed of Al or the like. However, since it is not a perfect conductor, the sheet resistance is about 30 mΩ / □. have. In an actual FET, the wiring resistance (R 2 , R 3 ) of the source connecting the two FETs Q 1 and Q 2 is about 0.1Ω, depending on the pattern.
[0006]
Here, when an operating current (I F ) of about 5 mA flows through the LED 1 , a current (I PD ) of about 10 μA is obtained from the voltage output type photodiode array 2, and the drain wire bonding pads of the FETs Q 1 and Q 2 An offset voltage (V offset ) of about 1 μV is generated between 6 and 7.
[0007]
When the operating current (I F ) of the LED 1 is increased to operate the semiconductor relay at higher speed, the current (I PD ) of the diode array 2 is increased, and the gate capacitance of the FET can be quickly charged to realize high-speed operation. since the voltage drop due to PD and the wiring resistance R M is the offset voltage, the offset voltage (V off set) with the increase in operating current (I F) is also increased. Generally, the absolute maximum rating (I F ) flowing to the LED is about 50 mA, so the offset voltage is about 10 μV, which is ten times as large.
[0008]
FIG. 4 shows an example in which such a semiconductor relay is applied to, for example, an input switch of a recorder or a data logger. Reference numeral 20 denotes a plurality of semiconductor relays, 21 denotes an amplifier, 22 denotes an A / D converter, and 23 denotes a display unit. In such measuring instruments that input signals at a large number of measurement points, a weak voltage signal such as a temperature signal of a thermocouple may be input. Therefore, when trying to accurately measure a weak signal, there is a problem that an error occurs in the measured value due to the offset voltage as described above.
[0009]
[Means for Solving the Problems]
The present invention has been made to solve the above problems.
In a semiconductor relay having a pair of high breakdown voltage DMOSFETs having a gate and a source connected to each other on the same chip as an LED and a photodiode, and a gate wire bonding pad and a source wire bonding pad, the source wire bonding pad and the gate wire bonding pad are provided. A source shunt resistor is provided between the pair of high-breakdown-voltage DMOSFETs, and the source wire bonding pad is disposed near the junction between the pair of high-breakdown-voltage DMOSFETs to reduce the distance between the source wire bonding pad and the gate wire bonding pad. The present invention is characterized in that a wiring resistance generated between a bonding point between a wire bonding pad and the pair of high breakdown voltage DMOSFETs is reduced to a level that can be regarded as zero .
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
1 (a) and 1 (b) are main part configuration diagrams showing an example of an embodiment of the present invention. FIG. 1 (a) is an enlarged perspective view of an FET chip layout, and FIG. It is a circuit diagram in the case of having done. The same elements as those in FIG. 4 are denoted by the same reference numerals. In Figure 1, Rutotomoni source wire bonding is provided between the gate pad 3 and FETs Q 1, gate shunt resistor 5 which had signed the sources with each other Q 2 'pad 3 and source pad 4 and FIG. 3 shown in the conventional example The only difference is that the pads are arranged near the junction between the sources of the pair of high breakdown voltage DMOSFETs .
[0011]
According to the above configuration, the current I PD generated by photodiode 2 is circulated as the gate pad 3 → shunt resistor 5 → source pad 4 → photodiode 2.
As a result, conventional, photodiode 2 in the resulting current I PD is the gate pad 3 → shunt resistor 5 → resistance of the source lines of Q 2 R 3 → source pad 4 → photodiode offset voltage generator by circulating as 2 Can be eliminated.
[0012]
FIG. 2 shows the relationship between the offset voltage appearing between the contacts of the conventional and the FETs of the semiconductor relay of the present invention. It can be seen that the offset voltage of the semiconductor relay of the present invention is much smaller than that of the conventional example. . The reason why the offset voltage of the semiconductor relay of the present invention is slightly generated as the LED current increases is that this light irradiates the FET as the LED light becomes stronger, and the offset voltage is generated by the current generated between the on-resistance and the parasitic diode. Seems to be caused.
[0013]
Further, in the embodiment of the present invention, the source pad 4 is arranged near the junction of the pair of FETs. Such an arrangement is effective when the drain pads of the FETs Q 1 and Q 2 of the semiconductor relay are short-circuited and used with one polarity. That is, the ON resistance R on of Q 1 in the circuit shown in FIG. 3B is R on = {(6a + R 1 + R 2 + R 3 ) × (7a + R 4 )} / {(6a + R 1 + R 2 + R 3 ) + ( 7a + R 4 )} + r ... ▲ 1 ▼
Becomes
[0014]
Figure 1 of the on-resistance R on Q 1 of the present invention shown in (b) 'is R on' = {(6a + R 1 + R 2) × (7a + R 3 + R 4)} / {(6a + R 1 + R 2) + (7a + R 3 + R 4 )} ・ ・ ・ ▲ 2 ▼
(In general, when realizing a low on-resistance semiconductor relay, the chip size is large, the routing of the source wiring is long, and r may be about 10Ω). By reducing the distance to, r can be reduced to a level that can be regarded as zero, as shown in equation (2), and the on-resistance can be reduced even in an equation not including r.
[0015]
【The invention's effect】
As described above in detail, according to the present invention, a semiconductor relay in which a pair of high-breakdown-voltage DMOSFETs whose gates and sources are connected to each other and a gate wire bonding pad and a source wire bonding pad are formed on the same chip as an LED and a photodiode A shunt resistor is provided between the source wire bonding pad and the gate wire bonding pad, and the source wire bonding pad is arranged near a connection point of the pair of high breakdown voltage DMOSFETs; , The wiring resistance generated between the source wire bonding pad and the connection point of the pair of high breakdown voltage DMOSFETs is reduced to a level that can be regarded as zero . As a result, a voltage drop caused by the drain wiring resistance of the conventional FET can be removed, and a semiconductor relay with an offset removed can be realized. Further, since the source wire bonding pad is disposed near the junction of the pair of FETs, the on-resistance can be reduced even when the semiconductor relay is used in one polarity.
[Brief description of the drawings]
FIG. 1 is an enlarged view (a) and a circuit diagram of an FET showing an example of an embodiment of a semiconductor relay of the present invention.
FIG. 2 is a diagram showing a relationship between an offset voltage and an LED operating current of the semiconductor relay of the present invention and a conventional semiconductor relay.
FIG. 3 is an enlarged view (a) and a circuit diagram of an FET showing an example of a conventional semiconductor relay circuit.
FIG. 4 is a main part configuration diagram showing a state where a semiconductor relay is applied to a recorder.
[Explanation of symbols]
1 LED
2 on the photodiode array 3 gate wire bonding pads 4 source wire bonding pads 5 shunt resistor 6 Q 1 for the drain wire bonding pads 6a drain parasitic diode 7 Q 2 of the on-resistance 6b Q 1 Q 1 wire bonding pads 7a Q 2 Parasitic diodes Q 1 , Q 2 of resistance 7b Q 2 High breakdown voltage DMOSFET

Claims (1)

LEDとフォトダイオードと同一チップ上にゲートおよびソース同士が接続された一対の高耐圧DMOSFETとゲートワイヤボンディングパッドおよびソースワイヤボンディングパッドが形成された半導体リレーにおいて、前記ソースワイヤボンディングパッドとゲートワイヤボンディングパッド間にシャント抵抗を設けるとともに前記ソースワイヤーボンディングパッドを前記一対の高耐圧DMOSFETの結合点付近に配置し、前記ソースワイヤボンディングパッドとゲートワイヤボンディングパッドまでの距離を短くするすることにより、前記ソースのワイヤーボンディングパッドと前記一対の高耐圧DMOSFETの結合点間に発生する配線抵抗を零とみなせる程度まで低減したことを特徴とする半導体リレー。In a semiconductor relay having a pair of high-breakdown-voltage DMOSFETs having a gate and a source connected to each other on the same chip as an LED and a photodiode, and a gate wire bonding pad and a source wire bonding pad, the source wire bonding pad and the gate wire bonding pad are provided. A shunt resistor is provided between the pair of high-breakdown-voltage DMOSFETs, and the source wire bonding pad is disposed near the junction of the pair of high-withstand-voltage DMOSFETs. A semiconductor relay characterized in that a wiring resistance generated between a bonding point of a wire bonding pad and a pair of said high breakdown voltage DMOSFETs is reduced to a level that can be regarded as zero .
JP27204996A 1996-10-15 1996-10-15 Semiconductor relay Expired - Fee Related JP3572599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27204996A JP3572599B2 (en) 1996-10-15 1996-10-15 Semiconductor relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27204996A JP3572599B2 (en) 1996-10-15 1996-10-15 Semiconductor relay

Publications (2)

Publication Number Publication Date
JPH10117011A JPH10117011A (en) 1998-05-06
JP3572599B2 true JP3572599B2 (en) 2004-10-06

Family

ID=17508405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27204996A Expired - Fee Related JP3572599B2 (en) 1996-10-15 1996-10-15 Semiconductor relay

Country Status (1)

Country Link
JP (1) JP3572599B2 (en)

Also Published As

Publication number Publication date
JPH10117011A (en) 1998-05-06

Similar Documents

Publication Publication Date Title
KR930010102B1 (en) Transistor provided with a current detecting function
US5341003A (en) MOS semiconductor device having a main unit element and a sense unit element for monitoring the current in the main unit element
US5773883A (en) Semiconductor device and semiconductor module
KR910000114B1 (en) Semiconductor device
US5426323A (en) Integrated semiconductor circuit with ESD protection
US7525333B1 (en) Current sense circuit
US6269014B1 (en) Half-bridge configuration
JP2008533734A (en) MOSFET with temperature sensing function
JP3599575B2 (en) Temperature detecting circuit of voltage-driven semiconductor device, driving device using the same, and voltage-driven semiconductor device
US20200049569A1 (en) Power Semiconductor Circuit and Method for Determining a Temperature of a Power Semiconductor Component
US7126354B2 (en) Circuit configuration having a load transistor and a current measuring configuration, method for ascertaining the load current in a load transistor, semiconductor component, and measuring configuration
JPH0661816A (en) Circuit device for limiting of electric current of power mosfet
US4352092A (en) Digital to analog converter
KR100259796B1 (en) Semiconductor integrated circuit device
US9429598B2 (en) Current measurement and control of a semiconductor element based on the current measurement in a power semiconductor arrangement
JP3572599B2 (en) Semiconductor relay
JP3013894B2 (en) FET device
KR20080025045A (en) Semiconductor device
US5029322A (en) Power MOSFET with current-monitoring
US6177733B1 (en) Semiconductor device
US7439582B2 (en) Semiconductor device with sense structure
US5406100A (en) Semiconductor integrated circuit device having multi-contact wiring structure
JP2004228317A (en) Semiconductor memory device
JPH10126239A (en) Semiconductor relay
US6201263B1 (en) Semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees