JP3570331B2 - Method for producing high silicon steel sheet with excellent surface properties - Google Patents

Method for producing high silicon steel sheet with excellent surface properties Download PDF

Info

Publication number
JP3570331B2
JP3570331B2 JP2000064263A JP2000064263A JP3570331B2 JP 3570331 B2 JP3570331 B2 JP 3570331B2 JP 2000064263 A JP2000064263 A JP 2000064263A JP 2000064263 A JP2000064263 A JP 2000064263A JP 3570331 B2 JP3570331 B2 JP 3570331B2
Authority
JP
Japan
Prior art keywords
steel sheet
treatment
silicon steel
high silicon
siliconizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000064263A
Other languages
Japanese (ja)
Other versions
JP2001254164A (en
Inventor
勝司 笠井
和久 岡田
常弘 山路
操 浪川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000064263A priority Critical patent/JP3570331B2/en
Publication of JP2001254164A publication Critical patent/JP2001254164A/en
Application granted granted Critical
Publication of JP3570331B2 publication Critical patent/JP3570331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、浸珪処理法による高けい素鋼板の製造方法に関する。
【0002】
【従来の技術】
トランスやモ−タ等の電気機器用鉄心材料として広く用いられるけい素鋼板には、通常、集合組織制御および固有抵抗増大のためにSiが添加される。このけい素鋼板の軟磁気特性はSiの添加量と共に向上し、特に6.5重量%付近で最高の透磁率を示すことが知られている。また、高けい素鋼板と呼ばれるSi含有量が約4重量%超のけい素鋼板は、電気抵抗が高いため特に高周波領域での磁気特性が優れる。
【0003】
高けい素鋼板を工業的に製造する方法として浸珪処理法が知られている。この製造方法(例えば、特公平5−49745号公報等に示される製造技術)は、工業的プロセスで圧延が可能なSi:4重量%以下の薄鋼板と四塩化けい素とを高温で反応させることによりSiを浸透させ、浸透したSiを板厚方向に拡散させることにより高けい素鋼板を得る方法であり、例えば特公平5−49745号公報では、鋼板を四塩化けい素が5〜35vol%含まれる無酸化性ガス雰囲気中において1023〜1200℃の温度で連続的に浸珪処理し、コイル状の高けい素鋼板を得ている。通常、この浸珪処理ではSi供給用の原料ガスとして四塩化けい素が使用され、この四塩化けい素は以下に示す浸珪反応式により鋼板と反応してSi富化層が鋼板表層に生成する。
SiCl + 5Fe → FeSi + 2FeCl
【0004】
このようにして鋼板表層に成長したSi富化層中のSiは、四塩化けい素を含まない無酸化性雰囲気中で鋼板を均熱処理することにより板厚方向に拡散される。
【0005】
このようにして製造される高けい素鋼板では、浸珪処理を行う雰囲気中の酸素及び水分によりけい素酸化物が生成され、このけい素酸化物による表面欠陥の発生及び粒界酸化に起因する加工性の劣化が従来より製造上の課題であった。これに対し、従来は、雰囲気制御により改善する方法が採られていた。
【0006】
【発明が解決しようとする課題】
しかし、上記の対策を実施しても、十分に表面性状並びに加工性に優れた高珪素鋼板の製造は実現されていない。
【0007】
本発明は上記問題点に鑑みなされたもので、表面性状またはさらに加工性に優れた高けい素鋼板の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく研究を重ねた結果、以下の知見を得た。
・浸珪処理する際に、Si供給用原料ガス中に有機系化合物が存在すると浸珪処理中、鋼板表面にて局所的な浸炭が行われ、鋼板の融点が低下する。その結果、局部的な溶融及び溶融による孔が生成し、表面性状が著しく劣化する。したがって、浸炭による溶融を防止し、表面性状を改善するためには、Si供給用原料ガス中の有機物存在量示す供給ガス中炭素濃度を低減することが重要である
・浸珪処理する際に、浸珪処理中に鋼板表層部(Si高濃度層)と鋼板内層部とにSi濃度較差が生じ、この較差によるSiの拡散が進む過程において、濃度勾配の拡散効果を得たSiの拡散速度と鉄の拡散速度に著しい差異が生じ、その結果、Siの移動に鉄の移動が追いつかなくなり、多数の空孔(ボイド)が生じる。この空孔(ボイド)は鋼板の磁気特性(透磁率)を劣化させるばかりでなく、加工性に関しても悪影響を与える。この鋼板内に発生する空孔(ボイド)の生成を抑制するためには、1回の浸珪量を抑制し、浸珪処理と拡散均熱処理を交互に各々複数回行うことが有効である
以上を見出した。
【0009】
本発明はかかる知見に基づきなされたもので、以下のような構成を有する。
[1] Si:4重量%未満の母材鋼板に対して、加熱処理、浸珪処理、拡散均熱処理及び冷却処理を順次行い、高けい素鋼板を製造する方法において、浸珪処理する際の供給ガス中炭素濃度[C]を0.2重量%以下とすることを特徴とする表面性状に優れた高けい素鋼板の製造方法である。
【0010】
[2]上記[1]において、浸珪処理と拡散均熱処理を交互に各々複数回行うことを特徴とする表面性状に優れた高けい素鋼板の製造方法である。
【0011】
【発明の実施の形態】
以下、本発明の詳細をその限定理由とともに説明する。
本発明による高けい素鋼板の製造方法は、圧延による製造が容易なSi:4重量%未満の鋼板を母材鋼板とし、この母材鋼板に対して加熱処理、浸珪処理、拡散均熱処理及び冷却処理を順次実施することにより高けい素鋼板を製造する。
【0012】
以下、その一実施形態について説明すると、まず、Si:4重量%未満の鋼を熱間圧延、冷間圧延し、薄板(母材鋼板)とする。母材鋼板を無酸化性ガス雰囲気中で浸珪処理温度またはその近傍まで加熱し、次いで、四塩化けい素が5〜35vol%含まれる無酸化性ガス雰囲気中において1023〜1200℃の温度で連続的に母材鋼板に浸珪処理を施す。
【0013】
次いで、この浸珪処理を施された鋼板に四塩化けい素を含まない無酸化性ガス雰囲気中で拡散均熱処理を施し、板表層に生成したSi富化層を板厚方向に拡散させた後、常温ないし300℃まで冷却し、しかる後巻き取り、高けい素鋼板を得る。
【0014】
得られた高けい素鋼板は、焼鈍を施し、必要に応じて絶縁を目的とする皮膜が塗布される。対象となる絶縁皮膜の種類としては、酸素もしくは酸化物を含む有機タイプ、有機−無機混合タイプ、無機タイプがあげられる。
また、必要に応じて絶縁・コア形状成形の目的でワニスが含浸される。
【0015】
このようにして製造される高けい素鋼板のSiは4〜7重量%とするのが好ましい。Siが4重量%未満では鉄損が大きく、一方、7重量%を超えると脆くなるためである。
【0016】
本発明では、このような高けい素鋼板の製造方法において、浸珪処理する際の供給ガス中炭素濃度[C]を0.2重量%以下とする。ここで、Si供給用原料ガス中への有機系化合物(炭素)混入源としては、炉及びガス処理系の各摺動設備に設置される潤滑油(グリス)の揮発混入、処理対象鋼材の防錆、圧延油の炉内への持ち込み油の揮発混入等が挙げられる。また、これを低減する方法としては、各シール部面積の低減や鋼板洗浄の強化等が考えられる。
【0017】
供給ガス中炭素濃度と鋼板の溶融跡(深さ5μm以上の穴を溶融跡として測定)の発生頻度との関係を調べた結果、供給ガス中の炭素濃度が0.2重量%以下であれば、溶融跡の発生が1.0個/m以下に抑えられ表面性状が劣化しないことがわかった。さらに、供給ガス中の炭素濃度が20ppm以下であれば、溶融跡の発生を0に抑えられることもわかった。以上より、供給ガス中の炭素濃度[C]は0.2重量%以下、望ましくは20ppm以下とする。
【0018】
さらに、本発明では、上記条件に加えて、浸珪処理と均熱拡散処理を交互に各々複数回行うことが望ましい。浸珪処理と均熱拡散処理を交互に各々複数回行うことにより、鋼板内に発生する空孔(ボイド)の生成を抑制することができ、空孔(ボイド)生成の抑制により内部欠陥が無くなり、加工性が向上し、磁気特性、特に透磁率の改善効果が得られる。
【0019】
ここで、本発明の対象は方向性けい素鋼板であるか無方向性けい素鋼板であるかは問わない。また、通常電磁鋼板の表面には絶縁を目的とした皮膜が形成されたり、ワニスが含浸されたりするが、本発明の効果はこのような皮膜、ワニスの種類に影響されない。
【0020】
【実施例】
(実施例1)
図1に示すような入側から順に加熱帯1、浸珪処理帯2、均熱帯3、冷却帯4を備えた連続浸珪処理設備において、Si:3.0重量%の母材鋼板に加熱処理、浸珪処理、拡散均熱処理及び冷却処理を施し、Si:6.5重量%の高けい素鋼板を製造した。この時、有機化合物の混入比率を変えることで、供給ガス中炭素濃度を0〜1重量%まで変化させ浸珪処理を行い、処理後の鋼板表面における溶融跡(孔深さ5μm以上)の発生頻度を測定した。図2及び図3に供給ガス中炭素濃度と溶融跡発生頻度との関係を示す。図2、図3において、溶融跡の発生頻度は検査員目視にて確認可能な溶融跡発生数を一定コイル長さ間で計測した。
【0021】
図2より、供給ガス中炭素濃度が0.2重量%以下において、溶融跡の発生頻度は1.0個/m以下であり、問題のないレベルまで減少し、表面性状が良好であることがわかる。
【0022】
また、図3より供給ガス中炭素濃度が20ppm以下であれば、溶融跡の発生を完全に無くすことができ、さらに表面性状が良好であることがわかる。
【0023】
(実施例2)
図1に示す入側から順に加熱帯1、浸珪処理帯2、均熱帯3、冷却帯4を備えた連続浸珪処理設備において、Si:3.0重量%の母材鋼板に加熱処理、浸珪処理、拡散均熱処理及び冷却処理を施し、Si:6.5重量%の高けい素鋼板を製造した。この時、供給ガス中炭素濃度を20ppm以下として浸珪処理を行うとともに、浸珪処理、拡散均熱処理を交互に各々複数回行い、それぞれで得られた高けい素鋼板のボイド発生率及び最大透磁率を測定した。図4に測定したボイド発生率及び最大透磁率を示す。図4において、通板回数とは、浸珪処理−拡散均熱処理の実施回数であり、浸珪処理、拡散均熱処理を順次1回ずつ行う場合を1とした。また、通板回数に拘わらず、ト−タルの拡散処理時間は同一と成るように処理速度にて調整を行った。また、ボイド発生数は板幅1mm当たりに発生するボイド数を測定した。
【0024】
図4より、通板回数を増加させるに従い、ボイド発生率は低下し、最大透磁率は上昇することが分かり、表面性状が良好で且つ内部欠陥の無い高けい素鋼板が得られている。
【0025】
【発明の効果】
本発明によれば、表面性状に優れた高けい素鋼板が得られる。さらに、浸珪処理と拡散均熱処理を交互に各々複数回行うことにより、表面性状に優れ、かつ、内部欠陥の無い磁気特性特に透磁率に優れた高けい素鋼板が得られる。本発明により得られる高けい素鋼板は、表面性状またはさらに加工性に優れるので、トランスやモ−タ等の電気機器用鉄心材料として好適である。
【図面の簡単な説明】
【図1】連続Si浸珪処理ラインを示す図である。
【図2】供給ガス中炭素濃度と溶融跡発生頻度との関係を示す図である。
【図3】供給ガス中炭素濃度と溶融跡発生頻度との関係を示す第二の図である。
【図4】浸珪処理−拡散均熱処理の繰り返し回数とボイド発生率及び最大透磁率との関係を示す図である。
【符号の説明】
1 加熱帯
2 浸珪処理帯
3 均熱帯
4 冷却帯
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a high silicon steel sheet by a siliconizing treatment method.
[0002]
[Prior art]
Silicon steel sheets, which are widely used as core materials for electric equipment such as transformers and motors, are usually added with Si for controlling texture and increasing specific resistance. It is known that the soft magnetic properties of this silicon steel sheet improve with the addition amount of Si, and exhibit the highest magnetic permeability especially at around 6.5% by weight. In addition, a silicon steel sheet having a Si content of more than about 4% by weight, which is called a high silicon steel sheet, has a high electric resistance and thus has excellent magnetic properties particularly in a high frequency range.
[0003]
As a method of industrially producing a high silicon steel sheet, a siliconizing treatment method is known. In this production method (for example, a production technique disclosed in Japanese Patent Publication No. 5-49745), a thin steel sheet of 4 wt% or less of Si that can be rolled by an industrial process is reacted with silicon tetrachloride at a high temperature. This is a method of obtaining a high silicon steel sheet by infiltrating Si in the direction of the thickness of the steel sheet and diffusing the infiltrated Si in the thickness direction. For example, Japanese Patent Publication No. 5-49745 discloses that a steel sheet is made of silicon tetrachloride of 5-35 vol% In a non-oxidizing gas atmosphere contained, siliconizing treatment is continuously performed at a temperature of 1023 to 1200 ° C. to obtain a coiled high silicon steel sheet. Normally, in this siliconizing treatment, silicon tetrachloride is used as a raw material gas for supplying Si, and this silicon tetrachloride reacts with the steel sheet by the following siliconizing reaction formula to form an Si-enriched layer on the surface layer of the steel sheet. I do.
SiCl 4 + 5Fe → Fe 3 Si + 2FeCl 2
[0004]
The Si in the Si-enriched layer thus grown on the surface of the steel sheet is diffused in the thickness direction by soaking the steel sheet in a non-oxidizing atmosphere containing no silicon tetrachloride.
[0005]
In the high silicon steel sheet manufactured in this manner, silicon oxide is generated by oxygen and moisture in the atmosphere in which the siliconizing treatment is performed, and the silicon oxide is caused by generation of surface defects and grain boundary oxidation. Deterioration of workability has conventionally been a problem in manufacturing. On the other hand, conventionally, a method of improving by controlling the atmosphere has been adopted.
[0006]
[Problems to be solved by the invention]
However, even if the above measures are taken, production of a high silicon steel sheet having sufficiently excellent surface properties and workability has not been realized.
[0007]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing a high silicon steel sheet having excellent surface properties and further excellent workability.
[0008]
[Means for Solving the Problems]
The present inventors have conducted various studies to solve the above-mentioned problems, and have obtained the following findings.
-If an organic compound is present in the Si supply raw material gas during the siliconizing treatment, local carburization is performed on the steel sheet surface during the siliconizing treatment, and the melting point of the steel sheet decreases. As a result, local melting and pores due to melting are generated, and the surface properties are significantly deteriorated. Therefore, in order to prevent melting due to carburization and to improve the surface properties, it is important to reduce the carbon concentration in the supply gas indicating the amount of organic matter present in the raw material gas for Si supply. During the siliconizing treatment, a difference in the Si concentration occurs between the surface layer of the steel sheet (high-concentration Si layer) and the inner layer of the steel sheet. There is a significant difference in the diffusion rate of iron, and as a result, the movement of iron cannot keep up with the movement of Si, and a large number of voids (voids) are generated. The voids (voids) not only deteriorate the magnetic properties (permeability) of the steel sheet, but also adversely affect workability. In order to suppress the generation of voids (voids) generated in the steel sheet, it is effective to suppress the amount of siliconizing once and alternately perform the siliconizing treatment and the diffusion soaking process plural times. Was found.
[0009]
The present invention has been made based on such knowledge, and has the following configuration.
[1] Si: A heat treatment, a siliconizing treatment, a diffusion soaking treatment and a cooling treatment are sequentially performed on a base steel sheet having a content of less than 4% by weight, and the silicon steel sheet is subjected to a siliconizing treatment in a method of producing a high silicon steel sheet. This is a method for producing a high silicon steel sheet having excellent surface properties, wherein the carbon concentration [C] in the supplied gas is 0.2% by weight or less.
[0010]
[2] The method for producing a high-silicon steel sheet having excellent surface properties according to the above [1], wherein the siliconizing treatment and the diffusion soaking heat treatment are alternately performed a plurality of times.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the details of the present invention will be described together with the reasons for limitation.
The method for producing a high silicon steel sheet according to the present invention comprises, as a base steel sheet, a steel sheet having an Si content of less than 4% by weight, which is easy to manufacture by rolling, and subjecting this base steel sheet to heat treatment, siliconizing treatment, diffusion soaking treatment, A high silicon steel sheet is manufactured by sequentially performing a cooling process.
[0012]
In the following, an embodiment will be described. First, steel having less than 4% by weight of Si is hot-rolled and cold-rolled to obtain a thin plate (base material steel plate). The base steel sheet is heated to or near the siliconizing temperature in a non-oxidizing gas atmosphere, and then continuously at a temperature of 1023 to 1200 ° C. in a non-oxidizing gas atmosphere containing 5 to 35 vol% of silicon tetrachloride. The base steel sheet is subjected to siliconizing treatment.
[0013]
Next, the siliconized steel sheet is subjected to diffusion soaking in a non-oxidizing gas atmosphere containing no silicon tetrachloride to diffuse the Si-enriched layer formed on the sheet surface in the sheet thickness direction. After cooling to room temperature to 300 ° C., winding is performed to obtain a high silicon steel sheet.
[0014]
The obtained high silicon steel sheet is annealed, and a coating for insulation is applied as necessary. Examples of the type of the insulating film include an organic type containing oxygen or an oxide, an organic-inorganic mixed type, and an inorganic type.
Also, if necessary, a varnish is impregnated for the purpose of molding the insulation and core shape.
[0015]
It is preferable that the content of Si in the high silicon steel sheet manufactured in this way is 4 to 7% by weight. If Si is less than 4% by weight, iron loss is large, while if it exceeds 7% by weight, it becomes brittle.
[0016]
In the present invention, in such a method for producing a high silicon steel sheet, the carbon concentration [C] in the supply gas during the siliconizing treatment is set to 0.2% by weight or less. Here, as a source of the organic compound (carbon) mixed into the raw material gas for Si supply, volatilization of lubricating oil (grease) installed in each sliding equipment of the furnace and the gas processing system, and prevention of steel to be processed. Rust, volatilization of oil brought into the furnace by rolling oil, and the like. Further, as a method of reducing this, it is conceivable to reduce the area of each seal portion, strengthen cleaning of a steel plate, or the like.
[0017]
As a result of examining the relationship between the carbon concentration in the supply gas and the frequency of occurrence of the melting trace of the steel sheet (measured as a hole having a depth of 5 μm or more as a melting trace), if the carbon concentration in the supply gas is 0.2% by weight or less, It was found that the occurrence of melting traces was suppressed to 1.0 particles / m 2 or less, and the surface properties did not deteriorate. Further, it was found that if the carbon concentration in the supply gas was 20 ppm or less, the occurrence of traces of melting could be suppressed to zero. From the above, the carbon concentration [C] in the supply gas is set to 0.2% by weight or less, preferably 20 ppm or less.
[0018]
Further, in the present invention, in addition to the above conditions, it is desirable to alternately perform the siliconizing treatment and the soaking diffusion treatment plural times. By alternately performing the siliconizing treatment and the soaking process, each time, the generation of voids generated in the steel sheet can be suppressed, and the internal defects are eliminated by suppressing the generation of voids. In addition, the workability is improved, and the effect of improving the magnetic properties, particularly, the magnetic permeability is obtained.
[0019]
Here, it does not matter whether the object of the present invention is a oriented silicon steel sheet or a non-oriented silicon steel sheet. Also, a film for the purpose of insulation is usually formed on the surface of the electromagnetic steel sheet or varnish is impregnated, but the effect of the present invention is not affected by the type of such a film or varnish.
[0020]
【Example】
(Example 1)
In a continuous siliconizing treatment facility having a heating zone 1, a siliconizing zone 2, a soaking zone 3 and a cooling zone 4 as shown in FIG. Treatment, siliconizing treatment, diffusion soaking treatment, and cooling treatment were performed to produce a high silicon steel sheet containing 6.5% by weight of Si. At this time, by changing the mixing ratio of the organic compound, the carbon concentration in the supplied gas is changed from 0 to 1% by weight to perform the siliconizing treatment, and the generation of a melting mark (a hole depth of 5 μm or more) on the steel sheet surface after the treatment is generated. The frequency was measured. 2 and 3 show the relationship between the carbon concentration in the supply gas and the frequency of occurrence of the trace of melting. In FIG. 2 and FIG. 3, the frequency of occurrence of the melting trace was determined by measuring the number of melting trace occurrences that can be visually confirmed by an inspector between fixed coil lengths.
[0021]
From FIG. 2, it can be seen that, when the carbon concentration in the supplied gas is 0.2% by weight or less, the frequency of occurrence of melting traces is 1.0 / m 2 or less, which is reduced to a level without a problem, and the surface properties are good. I understand.
[0022]
Further, it can be seen from FIG. 3 that if the carbon concentration in the supply gas is 20 ppm or less, the occurrence of melting traces can be completely eliminated, and the surface properties are more favorable.
[0023]
(Example 2)
In a continuous siliconizing treatment facility including a heating zone 1, a siliconizing zone 2, a soaking zone 3, and a cooling zone 4 in order from the entry side shown in FIG. A siliconizing treatment, a diffusion soaking heat treatment and a cooling treatment were performed to produce a high silicon steel sheet with 6.5% by weight of Si. At this time, the silicon concentration treatment was performed with the carbon concentration in the supplied gas being 20 ppm or less, and the siliconizing treatment and the diffusion soaking heat treatment were alternately performed a plurality of times, and the void generation rate and the maximum permeability of the high silicon steel sheet obtained in each case. The magnetic susceptibility was measured. FIG. 4 shows the measured void generation rate and maximum magnetic permeability. In FIG. 4, the number of times of passing means the number of times of performing the siliconizing treatment and the diffusion soaking heat treatment. Further, the processing speed was adjusted so that the total diffusion processing time was the same irrespective of the number of passes. The number of voids was determined by measuring the number of voids generated per 1 mm of the sheet width.
[0024]
FIG. 4 shows that as the number of passes increases, the void generation rate decreases and the maximum magnetic permeability increases, and a high silicon steel sheet having good surface properties and no internal defects is obtained.
[0025]
【The invention's effect】
According to the present invention, a high silicon steel sheet having excellent surface properties can be obtained. Further, by alternately performing the siliconizing treatment and the diffusion soaking process a plurality of times, a high silicon steel sheet having excellent surface properties and free from internal defects, particularly excellent in magnetic properties, particularly magnetic permeability, can be obtained. The high silicon steel sheet obtained according to the present invention is excellent in surface properties or workability, and thus is suitable as a core material for electric equipment such as transformers and motors.
[Brief description of the drawings]
FIG. 1 is a diagram showing a continuous Si siliconizing treatment line.
FIG. 2 is a diagram showing a relationship between a carbon concentration in a supply gas and a frequency of occurrence of a melting trace.
FIG. 3 is a second diagram showing the relationship between the carbon concentration in the supplied gas and the frequency of occurrence of the trace of melting.
FIG. 4 is a diagram showing the relationship between the number of repetitions of siliconizing treatment and diffusion soaking treatment, void generation rate, and maximum magnetic permeability.
[Explanation of symbols]
1 heating zone 2 silicification zone 3 mean tropical zone 4 cooling zone

Claims (2)

Si:4重量%未満の母材鋼板に対して、加熱処理、浸珪処理、拡散均熱処理及び冷却処理を順次行い、高けい素鋼板を製造する方法において、浸珪処理する際の供給ガス中炭素濃度[C]を0.2重量%以下とすることを特徴とする表面性状に優れた高けい素鋼板の製造方法。Si: Heat treatment, siliconizing treatment, diffusion soaking treatment, and cooling treatment are sequentially performed on a base steel sheet having a content of less than 4% by weight, and in a method of producing a high silicon steel sheet, in a supply gas for siliconizing treatment. A method for producing a high silicon steel sheet having excellent surface properties, wherein the carbon concentration [C] is 0.2% by weight or less. 浸珪処理と拡散均熱処理を交互に各々複数回行うことを特徴とする請求項1記載の表面性状に優れた高けい素鋼板の製造方法。2. The method according to claim 1, wherein the siliconizing treatment and the diffusion soaking treatment are alternately performed a plurality of times.
JP2000064263A 2000-03-09 2000-03-09 Method for producing high silicon steel sheet with excellent surface properties Expired - Fee Related JP3570331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000064263A JP3570331B2 (en) 2000-03-09 2000-03-09 Method for producing high silicon steel sheet with excellent surface properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000064263A JP3570331B2 (en) 2000-03-09 2000-03-09 Method for producing high silicon steel sheet with excellent surface properties

Publications (2)

Publication Number Publication Date
JP2001254164A JP2001254164A (en) 2001-09-18
JP3570331B2 true JP3570331B2 (en) 2004-09-29

Family

ID=18583986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000064263A Expired - Fee Related JP3570331B2 (en) 2000-03-09 2000-03-09 Method for producing high silicon steel sheet with excellent surface properties

Country Status (1)

Country Link
JP (1) JP3570331B2 (en)

Also Published As

Publication number Publication date
JP2001254164A (en) 2001-09-18

Similar Documents

Publication Publication Date Title
KR102325011B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101903008B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
CN110678568A (en) Non-oriented electromagnetic steel sheet and method for producing same
WO1999046417A1 (en) Silicon steel sheet and method for producing the same
JP2007247022A (en) Method for producing grain-oriented electrical steel sheet
JP2020190026A (en) Non-oriented electromagnetic steel sheet and method for manufacturing the same
TWI615485B (en) Grain oriented electrical steel with improved forsterite coating characteristics
CN114514332B (en) Non-oriented electromagnetic steel sheet and method for producing same
JP7173286B2 (en) Non-oriented electrical steel sheet
JP3570331B2 (en) Method for producing high silicon steel sheet with excellent surface properties
JP4333613B2 (en) High silicon steel sheet
JP3275712B2 (en) High silicon steel sheet excellent in workability and method for producing the same
JP5664286B2 (en) Method for producing high silicon steel sheet
WO2021261518A1 (en) Production method for grain-oriented electrical steel sheet
JP4010090B2 (en) Method for producing high silicon steel sheet
JP4010089B2 (en) Method for producing high silicon steel sheet
JP3598934B2 (en) Manufacturing method of high silicon steel sheet with excellent high frequency magnetic properties
JP4269350B2 (en) Method for producing high silicon steel sheet
JP5664287B2 (en) Method for producing high silicon steel sheet
JP3873301B2 (en) Method for producing grain-oriented silicon steel sheet
JP2001254123A (en) High silion steel sheet excellent in adhesion strength
JP6870791B2 (en) Non-oriented electrical steel sheet
RU2779397C1 (en) Sheet of non-textured electrical steel
KR0140318B1 (en) Manufacturing method for electric conductor plate with superior coating characteristics
KR100721819B1 (en) Grain-oriented electrical steel sheets manufacturing method with low core loss, high magnetic induction

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3570331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees