JP3569936B2 - Cylindrical non-aqueous electrolyte battery - Google Patents

Cylindrical non-aqueous electrolyte battery Download PDF

Info

Publication number
JP3569936B2
JP3569936B2 JP30052493A JP30052493A JP3569936B2 JP 3569936 B2 JP3569936 B2 JP 3569936B2 JP 30052493 A JP30052493 A JP 30052493A JP 30052493 A JP30052493 A JP 30052493A JP 3569936 B2 JP3569936 B2 JP 3569936B2
Authority
JP
Japan
Prior art keywords
separator
electrode
band
shaped
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30052493A
Other languages
Japanese (ja)
Other versions
JPH07153488A (en
Inventor
雅之 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP30052493A priority Critical patent/JP3569936B2/en
Publication of JPH07153488A publication Critical patent/JPH07153488A/en
Application granted granted Critical
Publication of JP3569936B2 publication Critical patent/JP3569936B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、円筒型の電池缶内に巻回電極体を収納した円筒型非水電解質電池に関する。
【0002】
【従来の技術】
近年の電子技術のめざましい進歩は、電子機器の小型・軽量化を次々と実現させている。それに伴い移動用電源としての電池に対しても益々小型・軽量かつ高エネルギー密度のものが求められている。
【0003】
従来、一般用途の二次電池としては鉛電池、ニッケル・カドミウム電池等の水溶液系電池が主流であった。しかし、これら水溶液系電池は、サイクル特性には優れるものの電池重量やエネルギー密度の点で十分満足できるものとは言えない。
【0004】
そこで、最近、リチウムやリチウム合金もしくは炭素材料のような,リチウムイオンのドープ・脱ドープが可能な物質を負極に用い、リチウムコバルト複合酸化物等のリチウム複合酸化物を正極に使用する非水電解液二次電池の研究・開発が行われている。この電池は電池電圧が高く、高いエネルギー密度を有している。
【0005】
ところで、これら非水電解液二次電池の用途としては、高エネルギー密度が得られるという特長を活かして、ビデオ・カメラやラップ・トップ・パソコン等の比較的消費電流の大きな携帯用電子機器の供給電源が想定されている。
【0006】
電池を比較的消費電流の大きな電子機器の供給電源として用いる場合には、電極形式として巻回電極体形式を採ることが望ましい。巻回電極体は、帯状正極と帯状負極とを間にセパレータを介して積層し、この積層体を渦巻状に巻回することで作製されるものであり、電極面積が広くとれ、耐重負荷放電に耐え得るものである。
【0007】
ここで、このような巻回電極体では、セパレータと、帯状正極,帯状負極の幅を全く同一にすると、作製過程で帯状正極,帯状負極とが高さ方向にずれたときに、セパレータより帯状正極,帯状負極の一部がはみ出して、互いに接触して内部短絡が誘発される虞れがある。
【0008】
このため、セパレータとして帯状正極,帯状負極よりも幅が大なるものを用いて、積層体を巻回した状態でセパレータの一部が帯状正極,帯状負極より上下にはみ出すようにし、帯状負極,帯状正極が少し位上下にずれても、セパレータを越えて接触するといったことのないような、余裕を持った設計とされるのが通常である。
【0009】
【発明が解決しようとする課題】
しかしながら、このようにセパレータの一部が帯状正極,帯状負極より上下にはみ出すような設計にすると、電池缶にも、当然そのセパレータのはみ出し分に相当する余分な容積を確保することが必要になってくる。
【0010】
巻回電極体を用いる非水電解液二次電池では、この電池容量に関与しない余分なスペースを確保する必要があることから、電極の実質的な充填量の増大が制限され、体積当たりのエネルギーを十分に高めることができないのが実情である。
【0011】
本発明は、このような従来の実情に鑑みて提案されたものであり、セパレータより帯状正極、帯状負極とがはみ出して内部短絡が誘発されるといったことがなく、電極の実質的な充填量を増大させることができ、高容量の円筒型非水電解質電池を提供することを目的とする。
【0012】
【課題を解決するための手段】
上述の目的を達成するために、本発明は、集電体の両面に活物質を成型した帯状正極と集電体の両面に炭素質材料を含む活物質を成型した帯状負極との間にセパレータを介在させて渦巻状に巻回した巻回電極体を、非水電解液が注入された電池缶に収納した非水電解質電池であり、この電池の巻回電極体は、上記帯状正極及び上記帯状負極よりも幅が大なるセパレータが上記帯状負極及び上記帯状正極の上下にはみ出して巻回されるとともに、上記セパレータの上記帯状負極及び上記帯状正極の上下にはみ出した部分が、加熱成型によって上記帯状正極及び上記帯状負極の上下をそれぞれ覆うように当該巻回電極体の内側又は外側に折り曲げられ、且つ、上記セパレータの折り曲げられた部分が上記非水電解液の移行を可能とする状態で重ね合わせられている。
【0013】
本発明に係る円筒型非水電解質電池の巻回電極体を構成する帯状正極は、活物質として遷移金属とリチウムとの複合化合物を用い、集電体として金属箔が用いられる。
【0014】
本発明に係る円筒型非水電解質電池を構成する巻回電極体は、図1に示すように、セパレータ3として帯状正極2、帯状負極1よりも幅が大なるものが用いられる。巻回電極体は、帯状正極2と帯状負極3との間にセパレータ3を介在させた積層体を巻回して形成される。このとき、巻回電極体は、帯状正極2及び帯状負極3の上下にセパレータ3の一部がはみ出すように巻回される。セパレータ3の帯状正極2及び帯状負極3の上下にはみ出した部分は、図2に示すように、帯状正極2及び帯状負極3の上下を覆うように巻回電極体の内側に向かって折り曲げられる。この折り曲げは、セパレータ3のはみ出した部分を加熱成型して行われる。なお、セパレータ3の帯状正極2及び帯状負極3の上下にはみ出した部分は、巻回電極体の外側に向かって折り曲げるようにしてもよい。
【0015】
このように積層体を巻回した状態で帯状正極2,帯状負極1よりはみ出したセパレータ3の一部を加熱成型によって内側または外側に曲折するようにすると、セパレータ3とセパレータ3の間の帯状正極2あるいは帯状負極1が配置されているスペース4が、セパレータの曲折部によっていわば蓋をされた状態になる。したがって、帯状負極1,帯状正極2とが何らかの原因で上下にずれたとしても、セパレータを越えて互いに接触するといったことはなく、帯状正極2,帯状負極1同士の接触による内部短絡が防止される。
【0016】
また、このように帯状正極2,帯状負極1より上下にはみ出したセパレータ3が曲折されている巻回電極体では、セパレータ3のはみ出し分がそのまま高さ方向に延在されている巻回電極体に比べて高さが低く抑えられる。したがって、
電池缶容積を低減でき、実質的な電極充填密度が大きく、容量の大なる円筒型非水電解質二次電池が得られることになる。
【0017】
なお、電池の内部短絡を確実に防止するためには、巻回電極体全体の高さと帯状負極1,帯状正極2の高さのバランスが重要である。
【0018】
すなわち、図1に示すように加熱成型していない状態のセパレータ3の高さをh,電極のうち長さの長い方の電極1の高さをhとし、図2に示すように加熱成型した状態の巻回電極体全体の高さをH,電極のうち長さの長い方の電極1の高さをHとしたときに、hとhが0.8h≦h≦hより好ましくは0.9h≦h≦0.98hなる条件を満たし、HとHが0.94H≦H≦Hより好ましくは、0.95H≦H≦0.99Hなる条件を満たすことが望ましい。
【0019】
帯状電極1,2の高さが上記範囲を超える場合には、加熱成型した状態の電極配置スペース4において蓋となるセパレータ3の曲折部と帯状電極1,2端部の間に余裕がないために、該曲折部とそれと隣り合うセパレータ3の間の僅かな隙間から帯状電極1,2端部が露出し、これが内部短絡の原因になる。
【0020】
逆に、帯状電極1,2の高さが上記範囲を下回る場合には、巻回電極体当たりのセパレータ3使用面積が増大することを意味し、材料コストの面から好ましくない。
【0021】
上記セパレータ3としては、通常、非水電解質電池において用いられているものがいずれも使用可能であり、ポリプロピレン,ポリエチレン,ポリブチレン等のポリオレフィン系樹脂、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン等よりなる微多孔性フィルムが用いられる。
【0022】
これらセパレータ3を加熱成型する方法は特に限定されないが、セパレータ3に対して熱風を吹きつけることで成型する熱風ブロー方式、加熱治具により上下から圧力を印加することで成型する加熱加圧方式等が採用できる。
【0023】
但し、加熱成型の際の加熱温度は、セパレータ3を軟化させ且つ溶融させない温度、すなわちセパレータ3の軟化点以上、融点未満に設定することが望ましい。加熱温度をセパレータ3の融点以上に設定した場合には、セパレータ3が溶融して空孔の一部が埋まる、溶融したセパレータ3と、それと隣合うセパレータ3とが融着一体化する等により、電極配置スペース4に非水電解液が移行し難い状況になる。これにより、電極1,2の電解液含浸量が不足し、放電容量の低下につながる。
本発明においては、セパレータ3は、軟化点以上、融点未満の加熱温度で加熱成型されるので、折り曲げられて重なり合う部分での融着することがなく、電極配置スペース4に非水電解液が移行可能な状態にある。
【0024】
一方、帯状負極1,帯状正極2は、帯状の電極集電体に、電極活物質を含有する電極合剤を塗布することで作製されるものである。
【0025】
負極活物質としては、リチウム,リチウム合金,ポリアセチレン等の導電性ポリマー,コークス等の炭素材料等を用いることができる。
【0026】
正極活物質としては、二酸化マンガン,五酸化バナジウムのような遷移金属化合物や、硫化鉄等の遷移金属カルコゲン化合物、さらにはこれらとリチウムとの複合化合物を用いることができる。
【0027】
また、電解液としては、例えばリチウム塩を電解質とし、これを有機溶媒に溶解した電解液が用いられる。
有機溶媒としては、特に限定されるものではないが、例えばプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、r−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジエキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル等の単独もしくは二種類以上の混合溶媒が使用できる。
電解質にも、従来より公知のものがいずれも使用でき、LiClO,LiAsF,LiPF,LiBF,LiB(C,LiCl,LiBr,CHSOLi,CFSOLi等がある。
【0028】
【作用】
本発明に係る円筒型非水電解質電池を構成する巻回電極体は、帯状正極と帯状負極とを間にセパレータを介して積層し、この積層体を渦巻き状に巻回することで作製される。
【0029】
このようにして巻回電極体を作製するに際して、セパレータとして帯状正極,帯状負極よりも幅が大なるものを用いて、積層体を巻回した状態で帯状正極,帯状負極よりセパレータの一部が上下にはみ出すようにし、このはみ出したセパレータの一部を加熱成型によって内側または外側に曲折するようにすると、内部短絡を招くことなく容量の大なる円筒型非水電解質二次電池が作製される。
【0030】
すなわち、積層体を巻回した状態で帯状正極,帯状負極よりはみ出したセパレータの一部を加熱成型によって内側または外側に曲折するようにすると、セパレータとセパレータの間の帯状正極あるいは帯状負極が配置されたスペースが、セパレータの曲折部によっていわば蓋をされた状態になる。したがって、帯状負極,帯状正極とが何らかの原因で上下にずれたとしても、セパレータを越えて互いに接触するといったことはなく、帯状正極,帯状負極同士の接触による内部短絡が防止される。
【0031】
また、このように帯状正極,帯状負極より上下にはみ出したセパレータが曲折されている巻回電極体では、セパレータのはみ出し分がそのまま高さ方向に延在されている巻回電極体に比べて高さが低く抑えられる。したがって、電池缶容積を低減でき、実質的な電極充填密度が大きく、容量の大なる円筒型非水電解質二次電池が獲得される。
【0032】
【実施例】
本発明の好適な実施例について実験結果に基づいて説明する。
【0033】
実施例1
本実施例で作製する円筒型非水電解質電池の縦断面図を図3に示す。このような構成の円筒型非水電解質電池を以下のようにして作製した。
【0034】
まず、帯状負極21を次のようにして作製した。
【0035】
出発原料として石油ピッチを用い、これに酸素を含む官能基を10〜20%重量導入(いわゆる酸素架橋)した後、不活性ガス気流中,温度1000℃で焼成して、ガラス状炭素に近い性質を持った炭素質材料を得た。この炭素質材料について、X線回折測定を行った結果、(002)面の面間隔は3.76Åであった。またピクノメータ法により真比重を測定したところ、1.58g/cmであった。この炭素質材料を粉砕し、平均粒径10μmの炭素質材料粉末とした。
このようにして得た炭素質材料粉末を負極活物質担持体とし、この炭素質材料粉末90重量部、結着材となるポリフッ化ビリニデン(PVDF)10重量部を混合し、負極合剤を調製した。この負極合剤を、溶剤であるN−メチルピロリドンに分散させて負極スラリー(ペースト状)とした。
【0036】
負極集電体29として厚さ10μmの帯状の銅箔を用い、この負極集電体の両面に上記負極合剤スラリーを塗布、乾燥させた後、圧縮成型して帯状負極1を作製した。なお、この帯状負極21の電極の寸法は、幅43.4mm、長さ700mmとし、成型後の合剤厚さは両面共に80μmで同一とした。
【0037】
次に、帯状正極22を以下のようにして作製した。
【0038】
炭酸リチウム0.5モルと炭酸コバルト1モルを混合し、空気中,温度900℃で5時間焼成してLiCoOを得た。LiCoOを正極活物質とし、これの91重量部、導電剤となるグラファイト6重量部及び結着剤となるポリフッ化ビリニデン3重量部を混合し、正極合剤を調製した。この正極合剤をN−メチルプロリドンに分散させて正極スラリー(ペースト状)とした。
【0039】
正極集電体30として厚さ20μmの帯状のアルミニウム箔を用い、この正極集電体30の両面に均一に上記正極合剤スラリーを塗布、乾燥させた後、圧縮成型して帯状正極22を作製した。なお、この帯状正極22の電極の寸法は、幅41.4mm、長さ650mmとし、成型後の合剤厚さは両面共に80μmで同一とした。
【0040】
以上のようにして作製された幅43.4mm,長さ700mmの帯状負極21と、幅41.4mm,長さ650mmの帯状正極22を、厚さ25μm、幅45.9mmの微多孔性ポリプロピレンフィルムをセパレータ23として、帯状負極21、セパレータ23、帯状正極22、セパレータ23の順に積層し、この積層体を幅方向が巻回体の高さ方向になるような向きで多数回巻回した。そして、最外周に位置するセパレータ最終端部を、幅40mmのテープで固定することで、直径19.6mm,高さ45.9mmの巻回電極体を作製した。この巻回体は、帯状負極21,帯状正極22よりセパレータ23が上下にはみ出しており、巻回体の全高さに対する帯状負極21の高さの割合が94.6%であった。
【0041】
次に、この巻回体の上下にはみ出した状態になっているセパレータのはみ出し部分を、内側に折り曲げ、この状態で温度150℃に加熱したアルミニウム製治具を用いて圧力3.8kg/cmで約5秒間加圧した。その結果、高さが44.0mm、全高さに対する帯状負極21の高さの割合が98.6%の巻回電極体が得られた。
【0042】
このようにして作製された巻回電極体をニッケルめっきを施した鉄製電池缶25に、巻回電極体上下両面に絶縁体板24を配置して収納した。そして、アルミニウム製正極リード32を正極集電体から導出して電池蓋27に、ニッケル製負極リード31を負極集電体から導出して電池缶25に溶接した。
【0043】
この電池缶25の中に、プロピレンカーボネートとジエチルカーボネートとの等容量混合溶媒中に、LiPFを1モル/リットルの割合で溶解した電解液を注入した。そして、アスファルトで表面を塗布した絶縁封口ガスケット26を介して電池缶25をかしめることにより、電流遮断機構を有する安全弁装置8並びに電池蓋27を固定し、電池内の気密性を保持させることで、直径20mm、高さ50mmの円筒型非水電解質電池を作製した。
【0044】
実施例2
セパレータとなる幅48.4mmの微多孔性ポリプロピレンフィルムと、実施例1と同様にして作製された幅43.4mm,長さ700mmの帯状負極と、幅41.4mm,長さ650mmの帯状正極を、帯状負極,セパレータ,帯状正極,セパレータの順に積層し、この積層体を渦巻き型に多数回巻回した。そして、最外周のセパレータ端部を、幅40mmのテープで固定して直径19.6mm,高さ48.4mmの巻回体を作製した。この巻回体は、帯状負極,帯状正極よりセパレータが上下にはみ出しており、巻回体の全高さに対する帯状負極の高さの割合は89.7%であった。
【0045】
次に、この上下にはみ出した状態になっているセパレータのはみ出し部分を、内側に折り曲げ、実施例1と同様な条件にて加圧成型した。その結果、高さが44.0mm、全高さに対する帯状負極の高さの割合が98.6%の巻回電極体が得られた。
【0046】
この巻回電極体を実施例1と同様の電池缶内に収納し、リードの溶接,電解液の注入,電池蓋の固定を行うことで、直径20mm、高さ50mmの円筒型非水電解質電池を作製した。
【0047】
実施例3
セパレータとなる幅44.4mmの微多孔性ポリプロピレンフィルムと、実施例1と同様にして作製された幅43.4mm,長さ700mmの帯状負極と、幅41.4mm,長さ650mmの帯状正極を、帯状負極,セパレータ,帯状正極,セパレータの順に積層し、この積層体を渦巻き型に多数回巻回した。そして、最外周のセパレータ端部を、幅40mmのテープで固定して直径19.6mm,高さ44.4mmの巻回体を作製した。この巻回体は、帯状負極,帯状正極よりセパレータが上下にはみ出しており、巻回体の全高さに対する帯状負極の高さの割合は97.7%であった。
【0048】
次に、この上下にはみ出した状態になっているセパレータのはみ出し部分を、内側に折り曲げ、実施例1と同様な条件にて加圧成型した。その結果、高さが44.0mm、全高さに対する帯状負極の高さの割合が98.6%の巻回電極体が得られた。
【0049】
この巻回電極体を実施例1と同様の電池缶内に収納し、リードの溶接,電解液の注入,電池蓋の固定を行うことで、直径20mm、高さ50mmの円筒型非水電解質電池を作製した。
【0050】
実施例4
セパレータとなる幅44.4mmの微多孔性ポリプロピレンフィルムと、実施例1と同様にして作製された幅43.4mm,長さ700mmの帯状負極と、幅41.4mm,長さ650mmの帯状正極を、帯状負極,セパレータ,帯状正極,セパレータの順に積層し、この積層体を渦巻き型に多数回巻回した。そして、最外周のセパレータ端部を、幅40mmのテープで固定して直径19.6mm,高さ44.4mmの巻回体を作製した。この巻回体は、帯状負極,帯状正極よりセパレータが上下にはみ出しており、巻回体の全高さに対する帯状負極の高さの割合は98.6%であった。
【0051】
次に、この巻回電極体を実施例1と同様な条件にて加圧成型した。その結果、高さが44.0mm、全高さに対する帯状負極の高さの割合が98.6%の巻回電極体が得られた。
【0052】
この巻回電極体を実施例1と同様の電池缶内に収納し、リードの溶接,電解液の注入,電池蓋の固定を行うことで、直径20mm、高さ50mmの円筒型非水電解質電池を作製した。
【0053】
比較例1
セパレータとなる幅44.4mmの微多孔性ポリプロピレンフィルムと、電極幅をそれぞれ41.5mm,39.5mmに設定すること以外は実施例1と同様にして作製された帯状負極,帯状正極を、帯状負極,セパレータ,帯状正極,セパレータの順に積層し、この積層体を渦巻き型に多数回巻回した。そして、最外周のセパレータ端部を、幅40mmのテープで固定して直径19.6mm,高さ44.4mmの巻回体を作製した。この巻回体は、帯状負極,帯状正極より上下にセパレータがはみ出しており、巻回体の全高さに対する帯状負極の高さの割合は94.3%であった。
【0054】
この巻回体を加熱成型せずに、実施例1と同様の電池缶内に収納し、リードの溶接,電解液の注入,電池蓋の固定を行うことで、直径20mm、高さ50mmの円筒型非水電解質電池を作製した。
【0055】
以上、実施例1〜実施例4及び比較例1に準じた方法で各々合計100本の電池を作製し、それぞれについて上限電圧4.2V,電流300mAの条件で定電流充電を8時間行い、この充電状態のまま温度23℃条件下、1ヵ月間保存した。そして、上限電圧4.2V,電流1Aの条件で定電流充電を2.5時間行った後、電流400mA,終止電圧2.75Vの条件で放電を行うといった充放電サイクルを2回繰り返し、この2サイクル目の放電容量を測定した。
【0056】
表1に、各電池について、加熱成型前後における巻回電極体の全高さに対する電極の高さの割合,電極はみ出し不良数及び2サイクル目の放電容量を示す。
【0057】
【表1】

Figure 0003569936
【0058】
表1からわかるように、セパレータを加熱成型して巻回電極体の高さを低くした実施例1〜実施例4の電池は、セパレータを加熱成型していない比較例1の電池と比較して、電池缶内に収納する電極充填密度を高く設計でき、これを反映して高い放電容量が得られている。
【0059】
このことから、セパレータを加熱成型して巻回電極体全体の高さを低くすることは、電池の体積当たりの放電容量の増大を図る上で有効であることがわかる。
【0060】
なお、セパレータを加熱成型した実施例1〜実施例4の電池について、電極はみ出し不良数を比較すると、電極はみ出し不良数は、加熱成型されていない状態での、巻回体の全高さに対する電極の高さの割合に大きく関与していることがわかる。
【0061】
加熱成型されていない状態の巻回体での、全高さに対する電極高さの割合が小さい場合、すなわち、電極よりはみ出すセパレータのはみ出し長さが小さい場合(例えば実施例3,実施例4)には、加熱成型した状態で電極の端部が、セパレータ曲折部と、それと隣合うセパレータの僅かな隙間から露出し、これが原因して内部短絡が多発する。
【0062】
このような電極のはみ出し不良は、実施例1,実施例2のように、電極からのセパレータのはみ出し量が大きくなる程、確実に抑えられるようになる。
【0063】
すなわち、加熱成型していない状態での巻回体全体の高さと電極の高さの割合は80〜100%以内、好ましくは90〜98%以内が適当であり、加熱成型した状態での、巻回電極体全体の高さと電極の高さの割合は94〜99%以内の範囲が適当である。
【0064】
但し、以上の例ではいずれもセパレータの加熱成型温度を150℃に設定しているが、この加熱温度を175℃に設定して実施例1と同様に電池を作製すると、780mAhと放電容量が小さい電池しか得られない。これは加熱成型温度が高過ぎるために、セパレータと隣合うセパレータとが融着して一体化する,セパレータの空孔の一部が埋まり、電極に電解液が含浸し難い状態になるからである。したがって、セパレータの加熱成型温度は、セパレータを軟化させ且つ溶融させない温度,すなわちセパレータの軟化点以上,融点未満に設定することが望ましい。
【0065】
【発明の効果】
上述したように、本発明は、セパレータとして帯状正極、帯状負極よりも幅が大なるものを用い、これらの積層体を巻回した状態で帯状正極と帯状負極の上端部、下端部からセパレータの一部がはみ出すようにし、この帯状正極と帯状負極からはみ出したセパレータの一部を融着させることがない温度で加熱成型して内側または外側に曲折して巻回電極体を形成しているので、セパレータから帯状正極、帯状負極とがはみ出して互いに接触するといったことがなく、且つ、電極の実質的な充填量を増大することができ、容量の大なる円筒型非水電解質電池を得ることができる。
【図面の簡単な説明】
【図1】加熱成型していない状態の巻回電極体を示す模式図である。
【図2】加熱成型した状態の巻回電極体を示す模式図である。
【図3】本発明の製造方法で製造された円筒型非水電解質電池を示す概略縦断面図である。
【符号の説明】
1・・・帯状負極
2・・・帯状正極
3・・・セパレータ[0001]
[Industrial applications]
The present invention relates to a cylindrical nonaqueous electrolyte battery in which a wound electrode body is housed in a cylindrical battery can.
[0002]
[Prior art]
2. Description of the Related Art In recent years, remarkable progress in electronic technology has realized a reduction in size and weight of electronic devices one after another. Along with this, batteries that are smaller and lighter and have higher energy densities are increasingly demanded for batteries as mobile power supplies.
[0003]
Conventionally, aqueous secondary batteries such as lead batteries and nickel-cadmium batteries have been the mainstream as secondary batteries for general use. However, although these aqueous batteries are excellent in cycle characteristics, they cannot be said to be sufficiently satisfactory in terms of battery weight and energy density.
[0004]
Therefore, recently, non-aqueous electrolysis using a lithium composite oxide such as a lithium cobalt composite oxide as a positive electrode, using a substance capable of doping and undoping lithium ions, such as lithium, a lithium alloy, or a carbon material, as a negative electrode. Research and development of liquid secondary batteries are being conducted. This battery has a high battery voltage and a high energy density.
[0005]
By the way, these non-aqueous electrolyte secondary batteries are used for the supply of portable electronic devices with relatively large current consumption, such as video cameras and laptops, taking advantage of the fact that high energy density can be obtained. Power supply is assumed.
[0006]
When a battery is used as a power supply for an electronic device that consumes a relatively large amount of current, it is desirable to use a wound electrode body as an electrode. The wound electrode body is manufactured by laminating a band-shaped positive electrode and a band-shaped negative electrode with a separator interposed therebetween, and winding the laminated body in a spiral shape. Can withstand.
[0007]
Here, in such a wound electrode body, if the width of the separator and the band-shaped positive electrode and the band-shaped negative electrode are made completely the same, when the band-shaped positive electrode and the band-shaped negative electrode are displaced in the height direction in the manufacturing process, the band-shaped electrode is shifted from the separator. A part of the positive electrode and the strip-shaped negative electrode may protrude and come into contact with each other to cause an internal short circuit.
[0008]
Therefore, a separator having a width larger than that of the band-shaped positive electrode or the band-shaped negative electrode is used, and a part of the separator is protruded above and below the band-shaped positive electrode or the band-shaped negative electrode in a state where the laminate is wound. In general, the positive electrode is designed to have a sufficient margin so that even if the positive electrode slightly shifts up and down, the positive electrode does not contact beyond the separator.
[0009]
[Problems to be solved by the invention]
However, if the design is such that a part of the separator protrudes above and below the strip-shaped positive electrode and the strip-shaped negative electrode, it is naturally necessary to secure an extra volume in the battery can corresponding to the protrusion of the separator. Come.
[0010]
In a non-aqueous electrolyte secondary battery using a spirally wound electrode body, it is necessary to secure an extra space that does not contribute to the battery capacity, so that a substantial increase in the filling amount of the electrode is limited, and energy per volume is limited. The fact is that it is not possible to raise the value sufficiently.
[0011]
The present invention has been proposed in view of such a conventional situation, and the band-shaped positive electrode and the band-shaped negative electrode do not protrude from the separator to cause an internal short circuit, and the substantial filling amount of the electrode is reduced. It is an object to provide a cylindrical nonaqueous electrolyte battery which can be increased and has a high capacity.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a separator between a belt-shaped positive electrode formed by molding an active material on both surfaces of a current collector and a band-shaped negative electrode formed by molding an active material containing a carbonaceous material on both surfaces of the current collector. Is a non-aqueous electrolyte battery containing a spirally wound spirally wound electrode body in a battery can into which a non-aqueous electrolytic solution has been injected. A separator having a width larger than the band-shaped negative electrode protrudes above and below the band-shaped negative electrode and the band-shaped positive electrode and is wound, and a portion of the separator protruding above and below the band-shaped negative electrode and the band-shaped positive electrode is heated and molded. The strip-shaped positive electrode and the strip-shaped negative electrode are bent inward or outward of the wound electrode body so as to cover the upper and lower portions, respectively, and the bent portion of the separator is overlapped in a state where the nonaqueous electrolyte can be transferred. It has been Align.
[0013]
The band-shaped positive electrode constituting the spirally wound electrode body of the cylindrical nonaqueous electrolyte battery according to the present invention uses a composite compound of a transition metal and lithium as an active material, and a metal foil as a current collector.
[0014]
As the wound electrode body constituting the cylindrical nonaqueous electrolyte battery according to the present invention, as shown in FIG. 1, a separator 3 having a width larger than the band-shaped positive electrode 2 and the band-shaped negative electrode 1 is used. The wound electrode body is formed by winding a laminate in which a separator 3 is interposed between a strip-shaped positive electrode 2 and a strip-shaped negative electrode 3. At this time, the wound electrode body is wound so that a part of the separator 3 protrudes above and below the strip-shaped positive electrode 2 and the strip-shaped negative electrode 3. As shown in FIG. 2, the portion of the separator 3 protruding above and below the strip-shaped positive electrode 2 and the strip-shaped negative electrode 3 is bent toward the inside of the wound electrode body so as to cover the strip-shaped positive electrode 2 and the strip-shaped negative electrode 3. This bending is performed by heating and molding the protruding portion of the separator 3. The portions of the separator 3 protruding above and below the strip-shaped positive electrode 2 and the strip-shaped negative electrode 3 may be bent toward the outside of the wound electrode body.
[0015]
When a part of the separator 3 protruding from the band-shaped positive electrode 2 and the band-shaped negative electrode 1 is bent inward or outward by heat molding in a state where the laminate is wound, the band-shaped positive electrode between the separators 3 is formed. The space 4 where the negative electrode 2 or the strip-shaped negative electrode 1 is arranged is covered with the bent portion of the separator. Therefore, even if the strip-shaped negative electrode 1 and the strip-shaped positive electrode 2 are vertically displaced for some reason, the strip-shaped negative electrode 1 and the strip-shaped negative electrode 1 do not come into contact with each other beyond the separator, and an internal short circuit due to the contact between the strip-shaped positive electrode 2 and the strip-shaped negative electrode 1 is prevented. .
[0016]
Further, in the wound electrode body in which the separator 3 protruding above and below the band-shaped positive electrode 2 and the band-shaped negative electrode 1 is bent, the wound electrode body in which the protruding portion of the separator 3 is directly extended in the height direction. The height can be kept low compared to. Therefore,
As a result, a cylindrical nonaqueous electrolyte secondary battery having a large battery capacity, a substantial electrode packing density, and a large capacity can be obtained.
[0017]
In order to reliably prevent the internal short circuit of the battery, the balance between the height of the whole wound electrode body and the heights of the strip-shaped negative electrode 1 and the strip-shaped positive electrode 2 is important.
[0018]
That is, as shown in FIG. 1, the height of the separator 3 in a state where it is not heat-formed is h 1 , the height of the longer electrode 1 is h 2, and the heating is performed as shown in FIG. 2. When the height of the whole wound electrode body in the molded state is H 1 and the height of the longer electrode 1 among the electrodes is H 2 , h 1 and h 2 are 0.8h 1 ≦ h. 2h preferably from 1 satisfies 0.9h 1 h 2 ≦ 0.98h 1 becomes conditions, H 1 and H 2 is preferably from 0.94H 1 ≦ H 2 ≦ H 1 , 0.95H 1 ≦ H it is desirable 2 ≦ 0.99H 1 becomes satisfying.
[0019]
When the height of the strip electrodes 1 and 2 exceeds the above range, there is no room between the bent portion of the separator 3 serving as a lid and the end portions of the strip electrodes 1 and 2 in the electrode arrangement space 4 in a state of being heat molded. Then, the ends of the strip-shaped electrodes 1 and 2 are exposed from a slight gap between the bent portion and the separator 3 adjacent thereto, which causes an internal short circuit.
[0020]
Conversely, if the height of the strip electrodes 1 and 2 is less than the above range, it means that the use area of the separator 3 per wound electrode body increases, which is not preferable in terms of material cost.
[0021]
As the separator 3, any one usually used in non-aqueous electrolyte batteries can be used, and polyolefin resins such as polypropylene, polyethylene, and polybutylene, nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, A microporous film made of polyvinylidene fluoride or the like is used.
[0022]
The method of heating and molding these separators 3 is not particularly limited, but a hot air blowing method in which hot air is blown onto the separators 3, a heating and pressing method in which pressure is applied from above and below by a heating jig, and the like. Can be adopted.
[0023]
However, the heating temperature at the time of heat molding is desirably set to a temperature at which the separator 3 is softened and not melted, that is, a temperature equal to or higher than the softening point of the separator 3 and lower than the melting point. When the heating temperature is set to be equal to or higher than the melting point of the separator 3, the separator 3 is melted to partially fill the pores, and the melted separator 3 and the adjacent separator 3 are fused and integrated. The situation is such that the non-aqueous electrolyte does not easily migrate to the electrode arrangement space 4. As a result, the amount of electrolyte impregnated in the electrodes 1 and 2 becomes insufficient, which leads to a decrease in discharge capacity.
In the present invention, since the separator 3 is heat-molded at a heating temperature equal to or higher than the softening point and lower than the melting point, the non-aqueous electrolyte moves to the electrode arrangement space 4 without being fused at the overlapping and overlapping portions. It is possible.
[0024]
On the other hand, the strip-shaped negative electrode 1 and the strip-shaped positive electrode 2 are manufactured by applying an electrode mixture containing an electrode active material to a strip-shaped electrode current collector.
[0025]
As the negative electrode active material, a conductive polymer such as lithium, lithium alloy, and polyacetylene, and a carbon material such as coke can be used.
[0026]
As the positive electrode active material, a transition metal compound such as manganese dioxide or vanadium pentoxide, a transition metal chalcogen compound such as iron sulfide, or a composite compound of these and lithium can be used.
[0027]
As the electrolytic solution, for example, an electrolytic solution in which a lithium salt is used as an electrolyte and this is dissolved in an organic solvent is used.
The organic solvent is not particularly limited, but for example, propylene carbonate, ethylene carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, r-butyrolactone, tetrahydrofuran, 1,3-dioxolane , 4-methyl-1,3-diexolan, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile and the like, or a mixture of two or more solvents.
Any known electrolyte can be used as the electrolyte. LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li and the like.
[0028]
[Action]
The wound electrode body constituting the cylindrical nonaqueous electrolyte battery according to the present invention is manufactured by laminating a band-shaped positive electrode and a band-shaped negative electrode with a separator interposed therebetween, and spirally winding the laminated body. .
[0029]
In producing the wound electrode body in this manner, a separator having a width larger than that of the band-shaped positive electrode and the band-shaped negative electrode is used, and a part of the separator is wound from the band-shaped positive electrode and the band-shaped negative electrode in a state where the laminate is wound. When the protruding separator is bent inward or outward by heat molding so as to protrude up and down, a cylindrical nonaqueous electrolyte secondary battery having a large capacity without causing an internal short circuit is produced.
[0030]
That is, when a part of the separator protruding from the band-shaped positive electrode and the band-shaped negative electrode is bent inward or outward by heat molding in a state where the laminate is wound, the band-shaped positive electrode or the band-shaped negative electrode is arranged between the separators. The space thus formed is in a state of being covered, so to speak, by the bent portion of the separator. Therefore, even if the strip-shaped negative electrode and the strip-shaped positive electrode are displaced up and down for some reason, they do not contact each other beyond the separator, and an internal short circuit due to the contact between the strip-shaped positive electrode and the strip-shaped negative electrode is prevented.
[0031]
Further, in the wound electrode body in which the separator protruding above and below the band-shaped positive electrode and the band-shaped negative electrode is bent, the protruding portion of the separator is higher in height than the wound electrode body extending in the height direction. Is kept low. Therefore, it is possible to obtain a cylindrical nonaqueous electrolyte secondary battery in which the capacity of the battery can can be reduced, the substantial electrode packing density is large, and the capacity is large.
[0032]
【Example】
Preferred embodiments of the present invention will be described based on experimental results.
[0033]
Example 1
FIG. 3 shows a vertical cross-sectional view of the cylindrical nonaqueous electrolyte battery manufactured in this example. A cylindrical nonaqueous electrolyte battery having such a configuration was manufactured as follows.
[0034]
First, the strip-shaped negative electrode 21 was manufactured as follows.
[0035]
A petroleum pitch is used as a starting material, and a functional group containing oxygen is introduced by 10 to 20% by weight (so-called oxygen cross-linking), and then calcined at a temperature of 1000 ° C. in an inert gas stream to obtain a property close to glassy carbon. Was obtained. X-ray diffraction measurement of this carbonaceous material showed that the (002) plane spacing was 3.76 °. Further, the true specific gravity was measured by a pycnometer method and found to be 1.58 g / cm 3 . This carbonaceous material was pulverized to obtain a carbonaceous material powder having an average particle size of 10 μm.
The carbonaceous material powder thus obtained was used as a negative electrode active material carrier, and 90 parts by weight of the carbonaceous material powder and 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder were mixed to prepare a negative electrode mixture. did. This negative electrode mixture was dispersed in N-methylpyrrolidone as a solvent to obtain a negative electrode slurry (paste).
[0036]
A 10 μm-thick strip-shaped copper foil was used as the negative electrode current collector 29. The negative electrode mixture slurry was applied to both surfaces of the negative electrode current collector, dried, and then compression-molded to produce the strip-shaped negative electrode 1. The dimensions of the electrodes of the strip-shaped negative electrode 21 were 43.4 mm in width and 700 mm in length, and the thickness of the mixture after molding was 80 μm on both sides and was the same.
[0037]
Next, the belt-shaped positive electrode 22 was produced as follows.
[0038]
0.5 mol of lithium carbonate and 1 mol of cobalt carbonate were mixed and calcined in air at 900 ° C. for 5 hours to obtain LiCoO 2 . LiCoO 2 was used as a positive electrode active material, and 91 parts by weight thereof, 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture. This positive electrode mixture was dispersed in N-methylprolidone to form a positive electrode slurry (paste).
[0039]
A 20 μm-thick strip-shaped aluminum foil is used as the positive electrode current collector 30, and the positive electrode mixture slurry is uniformly applied to both surfaces of the positive electrode current collector 30, dried, and then compression-molded to form the strip-shaped positive electrode 22. did. The dimensions of the electrodes of the strip-shaped positive electrode 22 were 41.4 mm in width and 650 mm in length, and the thickness of the mixture after molding was 80 μm on both sides and was the same.
[0040]
A band-shaped negative electrode 21 having a width of 43.4 mm and a length of 700 mm and a band-shaped positive electrode 22 having a width of 41.4 mm and a length of 650 mm were microporous polypropylene film having a thickness of 25 μm and a width of 45.9 mm. As a separator 23, a band-shaped negative electrode 21, a separator 23, a band-shaped positive electrode 22, and a separator 23 were laminated in this order, and the laminate was wound many times in such a direction that the width direction became the height direction of the wound body. Then, the final end of the separator located at the outermost periphery was fixed with a tape having a width of 40 mm, thereby producing a wound electrode body having a diameter of 19.6 mm and a height of 45.9 mm. In this wound body, the separator 23 protruded vertically from the strip-shaped negative electrode 21 and the strip-shaped positive electrode 22, and the ratio of the height of the strip-shaped negative electrode 21 to the total height of the wound body was 94.6%.
[0041]
Next, the protruding portion of the separator protruding above and below the wound body is bent inward, and a pressure of 3.8 kg / cm 2 is applied using an aluminum jig heated to a temperature of 150 ° C. in this state. For about 5 seconds. As a result, a wound electrode body having a height of 44.0 mm and a ratio of the height of the strip-shaped negative electrode 21 to the total height of 98.6% was obtained.
[0042]
The wound electrode body produced in this way was placed in an iron battery can 25 plated with nickel, and the insulator plates 24 were placed on the upper and lower surfaces of the wound electrode body and stored. Then, the aluminum positive electrode lead 32 was led out of the positive electrode current collector and was welded to the battery lid 27, and the nickel negative electrode lead 31 was led out of the negative electrode current collector and welded to the battery can 25.
[0043]
An electrolytic solution obtained by dissolving LiPF 6 at a rate of 1 mol / liter in a mixed solvent of propylene carbonate and diethyl carbonate in the same volume was injected into the battery can 25. Then, by caulking the battery can 25 via an insulating sealing gasket 26 coated on the surface with asphalt, the safety valve device 8 having the current interrupting mechanism and the battery lid 27 are fixed, and the airtightness in the battery is maintained. A cylindrical nonaqueous electrolyte battery having a diameter of 20 mm and a height of 50 mm was produced.
[0044]
Example 2
A microporous polypropylene film having a width of 48.4 mm serving as a separator, a band-shaped negative electrode having a width of 43.4 mm and a length of 700 mm produced in the same manner as in Example 1, and a band-shaped positive electrode having a width of 41.4 mm and a length of 650 mm were prepared. Then, a band-shaped negative electrode, a separator, a band-shaped positive electrode, and a separator were stacked in this order, and the stacked body was spirally wound many times. Then, the end of the outermost separator was fixed with a tape having a width of 40 mm to prepare a wound body having a diameter of 19.6 mm and a height of 48.4 mm. In this wound body, the separator protruded up and down from the strip-shaped negative electrode and the strip-shaped positive electrode, and the ratio of the height of the strip-shaped negative electrode to the entire height of the wound body was 89.7%.
[0045]
Next, the protruding portion of the separator protruding upward and downward was bent inward, and pressure-molded under the same conditions as in Example 1. As a result, a wound electrode body having a height of 44.0 mm and a ratio of the height of the strip-shaped negative electrode to the total height of 98.6% was obtained.
[0046]
This wound electrode body was housed in the same battery can as in Example 1, and the welding of the lead, the injection of the electrolyte solution, and the fixing of the battery cover were performed to obtain a cylindrical nonaqueous electrolyte battery having a diameter of 20 mm and a height of 50 mm. Was prepared.
[0047]
Example 3
A microporous polypropylene film having a width of 44.4 mm serving as a separator, a band-shaped negative electrode having a width of 43.4 mm and a length of 700 mm produced in the same manner as in Example 1, and a band-shaped positive electrode having a width of 41.4 mm and a length of 650 mm were prepared. Then, a band-shaped negative electrode, a separator, a band-shaped positive electrode, and a separator were stacked in this order, and the stacked body was spirally wound many times. Then, the outermost end of the separator was fixed with a tape having a width of 40 mm to produce a wound body having a diameter of 19.6 mm and a height of 44.4 mm. In this wound body, the separator protruded above and below the strip-shaped negative electrode and the strip-shaped positive electrode, and the ratio of the height of the strip-shaped negative electrode to the total height of the wound body was 97.7%.
[0048]
Next, the protruding portion of the separator protruding upward and downward was bent inward, and pressure-molded under the same conditions as in Example 1. As a result, a wound electrode body having a height of 44.0 mm and a ratio of the height of the strip-shaped negative electrode to the total height of 98.6% was obtained.
[0049]
This wound electrode body was housed in the same battery can as in Example 1, and the welding of the lead, the injection of the electrolyte solution, and the fixing of the battery cover were performed to obtain a cylindrical nonaqueous electrolyte battery having a diameter of 20 mm and a height of 50 mm. Was prepared.
[0050]
Example 4
A microporous polypropylene film having a width of 44.4 mm serving as a separator, a band-shaped negative electrode having a width of 43.4 mm and a length of 700 mm produced in the same manner as in Example 1, and a band-shaped positive electrode having a width of 41.4 mm and a length of 650 mm were prepared. Then, a band-shaped negative electrode, a separator, a band-shaped positive electrode, and a separator were stacked in this order, and the stacked body was spirally wound many times. Then, the outermost end of the separator was fixed with a tape having a width of 40 mm to produce a wound body having a diameter of 19.6 mm and a height of 44.4 mm. In this wound body, the separator protruded above and below the strip-shaped negative electrode and the strip-shaped positive electrode, and the ratio of the height of the strip-shaped negative electrode to the entire height of the wound body was 98.6%.
[0051]
Next, this wound electrode body was pressure-molded under the same conditions as in Example 1. As a result, a wound electrode body having a height of 44.0 mm and a ratio of the height of the strip-shaped negative electrode to the total height of 98.6% was obtained.
[0052]
This wound electrode body was housed in the same battery can as in Example 1, and the welding of the lead, the injection of the electrolyte solution, and the fixing of the battery cover were performed to obtain a cylindrical nonaqueous electrolyte battery having a diameter of 20 mm and a height of 50 mm. Was prepared.
[0053]
Comparative Example 1
A microporous polypropylene film having a width of 44.4 mm serving as a separator, and a strip-shaped negative electrode and a strip-shaped positive electrode produced in the same manner as in Example 1 except that the electrode width was set to 41.5 mm and 39.5 mm, respectively, A negative electrode, a separator, a strip-shaped positive electrode, and a separator were laminated in this order, and the laminated body was spirally wound many times. Then, the outermost end of the separator was fixed with a tape having a width of 40 mm to produce a wound body having a diameter of 19.6 mm and a height of 44.4 mm. In this wound body, the separator protruded above and below the band-shaped negative electrode and the band-shaped positive electrode, and the ratio of the height of the band-shaped negative electrode to the entire height of the wound body was 94.3%.
[0054]
This rolled body was housed in the same battery can as in Example 1 without heat molding, and the lead was welded, the electrolyte was injected, and the battery lid was fixed, so that a cylinder having a diameter of 20 mm and a height of 50 mm was obtained. A non-aqueous electrolyte battery was fabricated.
[0055]
As described above, a total of 100 batteries were manufactured by the method according to Examples 1 to 4 and Comparative Example 1, and constant current charging was performed for 8 hours under the conditions of an upper limit voltage of 4.2 V and a current of 300 mA, respectively. The battery was stored for one month under the condition of a temperature of 23 ° C. in a charged state. After a constant current charge of 2.5 hours under the condition of an upper limit voltage of 4.2 V and a current of 1 A, a charge / discharge cycle of repeating discharge twice under a condition of a current of 400 mA and a cutoff voltage of 2.75 V is repeated twice. The discharge capacity at the cycle was measured.
[0056]
Table 1 shows, for each battery, the ratio of the electrode height to the total height of the wound electrode body before and after the heat molding, the number of electrode protrusion failures, and the discharge capacity at the second cycle.
[0057]
[Table 1]
Figure 0003569936
[0058]
As can be seen from Table 1, the batteries of Examples 1 to 4 in which the height of the wound electrode body was reduced by heating and molding the separator were compared with the batteries of Comparative Example 1 in which the separator was not heated and molded. In addition, the packing density of the electrodes housed in the battery can can be designed to be high, and a high discharge capacity is obtained reflecting this.
[0059]
From this, it can be seen that it is effective to reduce the height of the whole wound electrode body by heating and molding the separator in order to increase the discharge capacity per volume of the battery.
[0060]
For the batteries of Examples 1 to 4 in which the separator was heat-molded, when comparing the number of electrode protrusion failures, the number of electrode protrusion failures was in the state where the electrode was not heat-molded, and the electrode height relative to the total height of the wound body. It can be seen that it is greatly related to the height ratio.
[0061]
In the case where the ratio of the electrode height to the total height of the wound body in a state in which the molding is not heat-formed is small, that is, when the protrusion length of the separator protruding from the electrode is small (for example, Example 3 and Example 4), In the state where the electrode is heated and formed, the end of the electrode is exposed from the bent portion of the separator and a slight gap between the separator and the separator adjacent thereto, which causes internal short circuit frequently.
[0062]
Such an electrode protruding failure can be more reliably suppressed as the amount of protruding separator from the electrode increases as in the first and second embodiments.
[0063]
That is, the ratio between the height of the whole wound body and the height of the electrode in a state where the heat molding is not performed is suitably within 80 to 100%, and preferably within 90 to 98%. The ratio between the height of the entire electrode body and the height of the electrode is suitably in the range of 94 to 99%.
[0064]
However, in each of the above examples, the heat molding temperature of the separator is set to 150 ° C., but when this heating temperature is set to 175 ° C. and a battery is manufactured in the same manner as in Example 1, the discharge capacity is 780 mAh, which is small. Only batteries can be obtained. This is because the heat molding temperature is too high, the separator and the adjacent separator are fused and integrated, a part of the pores of the separator are filled, and the electrode is hardly impregnated with the electrolyte. . Therefore, it is desirable to set the heat molding temperature of the separator to a temperature at which the separator is softened and not melted, that is, a temperature equal to or higher than the softening point of the separator and lower than the melting point.
[0065]
【The invention's effect】
As described above, the present invention uses a band-shaped positive electrode as the separator, the one having a width larger than that of the band-shaped negative electrode, and the upper end of the band-shaped positive electrode and the band-shaped negative electrode in a state where these laminates are wound; Since a part of the separator protrudes, the part of the separator protruding from the band-shaped positive electrode and the band-shaped negative electrode is heated and molded at a temperature that does not cause fusion, and bent inward or outward to form a wound electrode body . Thus, the strip-shaped positive electrode and the strip-shaped negative electrode do not protrude from the separator and come into contact with each other, and the substantial filling amount of the electrode can be increased, so that a cylindrical nonaqueous electrolyte battery having a large capacity can be obtained. it can.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a spirally wound electrode body in a state where it is not subjected to heat molding.
FIG. 2 is a schematic diagram showing a spirally wound electrode body in a state of being heated and molded;
FIG. 3 is a schematic longitudinal sectional view showing a cylindrical nonaqueous electrolyte battery manufactured by the manufacturing method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Strip negative electrode 2 ... Strip positive electrode 3 ... Separator

Claims (2)

集電体の両面に活物質を成型した帯状正極と集電体の両面に炭素質材料を含む活物質を成型した帯状負極との間にセパレータを介在させて渦巻状に巻回した巻回電極体を、非水電解液が注入された電池缶に収納した非水電解質電池において、
上記巻回電極体は、
上記帯状正極及び上記帯状負極よりも幅が大なるセパレータが上記帯状負極及び上記帯状正極の上下にはみ出して巻回されるとともに、
上記セパレータの上記帯状負極及び上記帯状正極の上下にはみ出した部分が、加熱成型によって上記帯状正極及び上記帯状負極の上下をそれぞれ覆うように当該巻回電極体の内側又は外側に折り曲げられ、
且つ、上記セパレータの折り曲げられた部分が上記非水電解液の移行を可能とする状態で重ね合わせられている
ことを特徴とする円筒型非水電解質電池。
A spiral electrode wound spirally with a separator interposed between a band-shaped positive electrode with active material molded on both sides of the current collector and a band-shaped negative electrode with active material containing carbonaceous material molded on both surfaces of the current collector In a non-aqueous electrolyte battery containing the body in a battery can into which a non-aqueous electrolyte has been injected,
The wound electrode body,
A separator having a width larger than that of the band-shaped positive electrode and the band-shaped negative electrode is wound up and down above and below the band-shaped negative electrode and the band-shaped positive electrode, and is wound.
The portion of the separator protruding above and below the strip-shaped negative electrode and the strip-shaped positive electrode is bent inside or outside the wound electrode body so as to respectively cover the upper and lower portions of the strip-shaped positive electrode and the strip-shaped negative electrode by heat molding ,
A cylindrical nonaqueous electrolyte battery wherein the bent portions of the separator are overlapped with each other so as to allow the transfer of the nonaqueous electrolyte.
上記帯状正極は、上記活物質が遷移金属とリチウムとの複合化合物であり、上記集電体が金属箔であることを特徴とする請求項1記載の円筒型非水電解質電池。2. The cylindrical nonaqueous electrolyte battery according to claim 1, wherein the band-like positive electrode has a configuration in which the active material is a composite compound of a transition metal and lithium, and the current collector is a metal foil. 3.
JP30052493A 1993-11-30 1993-11-30 Cylindrical non-aqueous electrolyte battery Expired - Lifetime JP3569936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30052493A JP3569936B2 (en) 1993-11-30 1993-11-30 Cylindrical non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30052493A JP3569936B2 (en) 1993-11-30 1993-11-30 Cylindrical non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH07153488A JPH07153488A (en) 1995-06-16
JP3569936B2 true JP3569936B2 (en) 2004-09-29

Family

ID=17885859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30052493A Expired - Lifetime JP3569936B2 (en) 1993-11-30 1993-11-30 Cylindrical non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3569936B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3805452B2 (en) * 1996-12-27 2006-08-02 日立マクセル株式会社 Method for producing non-aqueous electrolyte secondary battery
KR100603270B1 (en) * 2000-02-03 2006-07-20 삼성에스디아이 주식회사 Lithium secondary battery having a pouch case and a jelly-roll type electrode assembly
JP4558279B2 (en) * 2003-02-21 2010-10-06 パナソニック株式会社 Square battery and method for manufacturing the same
KR100853619B1 (en) * 2006-01-04 2008-08-25 주식회사 엘지화학 Battery Assembly Employed with Separator of Sealed Top Portion and Secondary Battery Comprising the Same
KR100890329B1 (en) 2006-12-21 2009-03-26 삼성에스디아이 주식회사 Lithium rechargeable battery
CN102318122B (en) * 2009-02-09 2015-08-19 瓦尔达微电池有限责任公司 Button cell and the method for generation of this button cell
DE102009060800A1 (en) 2009-06-18 2011-06-09 Varta Microbattery Gmbh Button cell with winding electrode and method for its production
KR101107075B1 (en) 2009-10-28 2012-01-20 삼성에스디아이 주식회사 Rechargeable battery
JP5304626B2 (en) * 2009-12-16 2013-10-02 トヨタ自動車株式会社 Lithium ion secondary battery, vehicle and battery-equipped equipment
KR101507229B1 (en) * 2013-06-24 2015-03-30 세방전지(주) Lithum battery stacking device with safty increasing structure and methode thereof
JP2017059507A (en) 2015-09-18 2017-03-23 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG Power storage device
CN106450479A (en) * 2016-12-01 2017-02-22 佛山市实达科技有限公司 Flexible lithium ion battery and making method thereof
CN113632281A (en) * 2019-03-29 2021-11-09 株式会社村田制作所 Battery with a battery cell
CN111162237A (en) * 2020-01-21 2020-05-15 惠州亿纬锂能股份有限公司 Winding type lithium ion battery and manufacturing method thereof

Also Published As

Publication number Publication date
JPH07153488A (en) 1995-06-16

Similar Documents

Publication Publication Date Title
JP7329803B2 (en) lithium secondary battery
JP3077218B2 (en) Non-aqueous electrolyte secondary battery
JP3371301B2 (en) Non-aqueous electrolyte secondary battery
KR100414631B1 (en) Non-aqueous Electrolyte Secondary Battery
JPH02265167A (en) Nonaqueous electrolyte secondary battery
JP4649113B2 (en) Nonaqueous electrolyte secondary battery
JP3569936B2 (en) Cylindrical non-aqueous electrolyte battery
JPH08171917A (en) Cell
CA2249935C (en) Lithium secondary battery
JP3131976B2 (en) Non-aqueous electrolyte secondary battery
JPH11219731A (en) Organic electrolyte secondary battery
JPH04249073A (en) Non-aqueous electrolyte secondary battery
JP3466631B2 (en) Non-aqueous electrolyte secondary battery
JP2002279956A (en) Nonaqueous electrolyte battery
JPH1074502A (en) Nonaqueous electrolyte secondary battery
JP4351858B2 (en) Nonaqueous electrolyte secondary battery
JPH11273738A (en) Nonaqueous electrolyte secondary battery
JPH11273743A (en) Cylindrical nonaqueous electrolyte secondary battery
JP3444302B2 (en) Non-aqueous electrolyte secondary battery
JP3153922B2 (en) Non-aqueous electrolyte secondary battery
JP3018482B2 (en) Battery and manufacturing method thereof
JP3246553B2 (en) Non-aqueous electrolyte secondary battery
JP3501365B2 (en) Non-aqueous electrolyte secondary battery
JPH06163030A (en) Nonaqueous electrolyte secondary battery
JP2503541Y2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term