JP3569194B2 - Adhesive tape for semiconductor devices - Google Patents

Adhesive tape for semiconductor devices Download PDF

Info

Publication number
JP3569194B2
JP3569194B2 JP2000090654A JP2000090654A JP3569194B2 JP 3569194 B2 JP3569194 B2 JP 3569194B2 JP 2000090654 A JP2000090654 A JP 2000090654A JP 2000090654 A JP2000090654 A JP 2000090654A JP 3569194 B2 JP3569194 B2 JP 3569194B2
Authority
JP
Japan
Prior art keywords
resin
adhesive tape
semiconductor device
adhesive
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000090654A
Other languages
Japanese (ja)
Other versions
JP2001284412A (en
Inventor
庄司 青木
卓士 塩澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2000090654A priority Critical patent/JP3569194B2/en
Publication of JP2001284412A publication Critical patent/JP2001284412A/en
Application granted granted Critical
Publication of JP3569194B2 publication Critical patent/JP3569194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

【0001】
【産業上の利用分野】
本発明は、半導体デバイスの組立工程に用いられる、特にデバイスの高密度実装に適したTAB(Tape Automated Bonding)方式に用いるTAB用テープ、BGA(Ball Grid Arrey)、CSP(Chip Size Package)等のインターポーザーに好適なTCP(Tape Carrier Package)用テープ、およびリードフレーム固定用テープ、およびリードフレームとフィルムキャリアテープをワイヤーボンディングにより接続する方式に用いる半導体装置用接着テープに関し、特に面実装型半導体装置に好適な接着テープに関する。
【0002】
【従来の技術】
近年、小型、薄型、軽量で実装密度の高い半導体装置の要求が高まっている。その中でも、電子部品の中核を構成しているICパッケージはワイヤーボンディング技術を利用した周辺実装型のTAB方式から、最近では、TAB方式を利用した面実装型のテープBGA(T−BGA)が更なる高密度化が可能で放熱性にも優れるため主流になりつつある。また、同じ面実装型のCSPはBGAをさらに小型化したパッケージで、その構造から低インピーダンス、周波数応答の高速性等の優れた電気特性も有するパッケージである。この新しい方式を用いた半導体装置は主にノートパソコン、携帯電話、その他小型電化製品等に使用されており、それらの薄型化、小型化、軽量化に大きく貢献している。
【0003】
TAB方式のパッケージに用いられてきたTAB用テープは、ポリイミドフィルムに接着剤を介して金属箔を積層したもので、接着剤には十分な可とう性が要求されてきた。例えば、従来用いられてきたTAB用テープの接着剤には、可とう性を付与する弾性成分としてポリアミド樹脂が用いられ、エポキシ樹脂やフェノール樹脂等の硬化成分で構成されるのが一般的であった。すなわち、このポリアミド樹脂は、アルコール等に可溶な炭素数36の不飽和脂肪酸二量体とメチレンジアミン又はエチレンジアミンとから得られるポリアミド樹脂が用いられてきた。硬化成分としてはビスフェノールA型エポキシ樹脂などのエポキシ樹脂、ノボラックフェノール樹脂が用されていた。
一方、前述のとおり、集積回路の高密度化、回路の高電圧化が進み、半導体装置は面実装型が主流になりつつある。この面実装型半導体装置に用いられるTAB用テープの上面に形成された回路はファインピッチ化が進み、そのため接着剤層を加熱硬化する際の熱収縮の少ないTAB用テープが要求されてきている。さらにまた、電子機器の小型化にともない、機器の使用される環境も多様化し、高温高湿下でも耐えられる高度な電気的信頼性も要求されてきている。
しかしながら、前記従来によるTAB用テープはこれらの要求を満足することができず、熱収縮性が小さく、かつ高温高湿下でも耐えられる高度な電気的信頼性を克服できるTAB用テープが望まれていた。
【0004】
【発明が解決しようとする課題】
本発明は、従来のTAB用接着テープの上記課題を解決することを目的とするものであって、硬化時の熱収縮性が小さく、かつ高温高湿下でも電気的信頼性の優れた半導体装置用接着テープを提供するものである。
【0005】
【課題を解決するための手段】
本発明の半導体装置用接着テープは、絶縁性フィルムの少なくとも一面に、炭素数4以上の脂肪族ジアミンを縮合成分として用いたアミン価が異なる2種以上のポリアミド樹脂と、硬化性樹脂とを含有する接着剤層が積層されてなることを特徴とする。また、本発明の半導体装置用接着テープは、絶縁性フィルムの少なくとも一面に、炭素数4以上の脂肪族ジアミンを縮合成分として用いたポリアミド樹脂と、硬化性樹脂と、前記ポリアミド樹脂とはアミン価及び組成が異なるポリアミド樹脂とを含有する接着剤層が積層されてなることを特徴とする。
【0006】
【発明の実施の形態】
本発明を構成する接着剤層は、炭素数4以上の脂肪族ジアミンを縮合成分として用いたポリアミド樹脂と、硬化性樹脂を含有する。
まず、炭素数4以上の脂肪族ジアミンを縮合成分として用いたポリアミド樹脂について詳説する。
【0007】
本発明で特定するポリアミド樹脂は、炭素数4以上の脂肪族ジアミンとダイマー酸との縮合により合成される。この場合の炭素数4以上の脂肪族ジアミンの具体例としてはブチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミンなどがあげられ、中でも炭素数4〜18の脂肪族ジアミンが好ましく、炭素数4〜12の脂肪族ジアミンがより好ましく、さらに好ましくは炭素数6〜12の脂肪族ジアミンが用いられる。このように従来のエチレンジアミンより炭素数の長い脂肪族ジアミンを用いることで、本発明を構成する接着剤層は、高温時においても高い粘度(粘着性)を示し、かつ高接着力を示すので絶縁性フィルムと良好な密着力が得られる。さらに、該ポリアミドの極性が極めて低くなるので硬化した接着剤層は湿熱時にも優れた高絶縁性が得られるようになり、熱収縮性も低いものとなる。従って、上記したダイマー酸及び炭素数4以上の脂肪族ジアミンを用いて得られたポリアミド樹脂を接着剤層に用いた半導体装置用接着テープは、優れた電気絶縁性及び低熱収縮性を示すようになる。
なお、ダイマー酸としては炭素数36のものが好ましく使用される。また、上記ポリアミドを合成する際、上記炭素数4以上の脂肪族ジアミンとダイマー酸以外に、副成分として少量の三官能以上の酸成分、三官能以上のアミン成分を用いて分岐状ポリアミドを合成することもできる。該副成分はポリアミドの20モル%以内にすることが好ましく、10モル%以内がより好ましい。副成分が20モル%を超えて大きいと硬化後の接着剤層の可とう性が悪化する。
【0008】
該ポリアミド樹脂の重量平均分子量は500〜50,000が好ましく、より好ましくは1,000〜20,000である。重量平均分子量はゲルパーミュエーションクロマトグラフィー(GPC)法により測定される。
また、該ポリアミド樹脂のアミン価は0.5〜60が好ましく、より好ましくは5〜60である。アミン価が0.5未満では電気絶縁性が不良になり、60を超えて大きいと未反応のアミノ基が残りやすく、回路が汚染される、ボンディング不良を引き起こすなどの問題が発生する。
また、アミン価の異なる2種類のポリアミド樹脂を用いると、硬化した接着剤層の可とう性を容易に制御できる
ここでポリアミド樹脂のアミン価は、ポリアミド樹脂1gをトルエン/n−ブタノール混合溶液に溶解し、指示薬としてブロムクレゾールグリーンの0.1%メタノール溶液を用い、滴定液として0.1N塩酸を用いて行われ、当量の水酸化カリウムのmgで表示する。
【0009】
次に本発明でいう接着剤層を構成する硬化性樹脂について述べる。
当該硬化性樹脂は、熱硬化性、光硬化性など硬化性を有する樹脂であれば使用できるが、熱硬化性樹脂、特にフェノール樹脂又はエポキシ樹脂が優れた電気絶縁性及び高耐熱性が得られるので好ましい。
該フェノール樹脂としてはアルキルフェノール樹脂、p−フェニルフェノール樹脂、ビスフェノールA型フェノール樹脂等のノボラックフェノール樹脂、及びレゾールフェノール樹脂、ポリフェニルパラフェノール樹脂等公知のフェノール樹脂等があげられる。特にレゾールフェノール樹脂は高耐熱性が得られ、下記に述べるエポキシ樹脂を硬化させる機能を有するので好ましい。
【0010】
一方、エポキシ樹脂としては、エポキシ基を2個以上有する樹脂であれば使用できる。具体的にはビスフェノールA型、ビスフェノールF型、ビスフェノールS型等のビスフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、テトラグリシジルフェノールアルカン型エポキシ樹脂、ジグリシジルフェノールプロパン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂等の2官能又は多官能エポキシ樹脂があげられ、特に耐熱性に優れる多官能エポキシ樹脂が好ましく使用される。
【0011】
また、本発明を構成する接着剤層には、上記フェノール樹脂、エポキシ樹脂以外の硬化性樹脂成分を併用することもできる。さらにまた、硬化促進剤として、ポリアミン、酸無水物、イミダゾール化合物を含有してもよい。
また、本発明を構成する接着剤層は、前記ポリアミド樹脂が硬化性樹脂を含めた樹脂成分中に20〜80重量%であることが好ましく、30〜70重量%であればより好ましい。
【0012】
また、本発明を構成する接着剤層には、前記ポリアミド樹脂と硬化性樹脂に加えて、熱可塑性樹脂を含有することが好ましい。該熱可塑性樹脂を含有させることで硬化後の接着剤層に可とう性を付与することができる。該熱可塑性樹脂には、前記ポリアミド樹脂の組成とは異なるポリアミド樹脂(例えば、炭素数3以下の脂肪族ジアミンを縮合成分としたポリアミド樹脂)、カルボキシル基含有アクリロニトリル−ブタジエン共重合体、アミノ基含有アクリロニトリル−ブタジエン共重合体、グリシジル基含有アクリロニトリル−ブタジエン共重合体等のアクリロニトリル−ブタジエン共重合体、熱可塑性ポリエステル樹脂、アクリルゴム、スチレン−ブタジエン共重合体等があげられ、アミノ基、カルボキシル基、水酸基等の官能基を有する熱可塑性樹脂であれば可とう性の制御がより容易になるので好ましく用いられる。特に、前記ポリアミド樹脂(本発明の必須成分として用いられるポリアミド樹脂)の組成とは異なるポリアミド樹脂は、本発明に必須成分として用いるポリアミド樹脂との相溶性が良好になる
該熱可塑性樹脂の熱硬化性樹脂に対する架橋(反応)性は、本発明に必須成分として用いるポリアミド樹脂とは異なるものが好ましい。該熱可塑性樹脂は、該ポリアミド樹脂100重量部に対して10〜500重量部の範囲で、好ましくは20〜150重量部の範囲で用いられる。該熱可塑性樹脂が、500重量部より多いと接着性が悪化し、10重量部未満では可とう性が低下する。
【0013】
また、本発明を構成する接着剤層の他の成分として、平均粒径1μm以下のフィラーを使用することが出来る。フィラーはシリカ、酸化チタン、アルミナ、窒化ケイ素、タルク、石英粉、酸化マグネシウム等の無機フィラー、ポリシロキサン樹脂、ポリイミド樹脂、フェノール樹脂等の樹脂粉末からなる有機フィラーのいずれでも使用でき、これらの絶縁性のフィラーが好ましく使用される。該フィラーの添加量は樹脂固型分100重量部に対して、30重量部までの範囲で添加することができる。
【0014】
本発明の接着テープを作製するには、上記した接着剤層用材料を有機溶剤を用いて溶解、混合して液状の樹脂組成物とし、該組成物を塗料として絶縁性フィルムの少なくとも一面に塗布、積層、乾燥して接着剤層を形成する。この接着剤層の好ましい乾燥後の厚さは5〜100μm、より好ましくは10〜40μmである。この接着剤層は乾燥して、半硬化状態にしておくことが好ましい。この時、該組成物を絶縁性フィルムに直接塗工してもよいし、剥離性フィルム等の仮の支持体に塗工して得られた接着シートを絶縁性フィルムに貼り合わせて本発明の半導体装置用接着テープを作製してもよい。
液状の樹脂組成物の作製に好ましく用いられる有機溶剤としては、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、メチルエチルケトン(以下、MEKと略す。)、メチルイソブチルケトン、トルエン、キシレン、1,4−ジオキサン、テトラヒドロフラン、エタノール、イソプロパノール(以下、IPAと略す。)、メチルセロソルブ等があげられる。これらの有機溶剤は2種以上を併用することもできる。
【0015】
本発明の半導体装置用接着テープには絶縁性フィルムが用いられる。絶縁性フィルムとしてはポリイミド、ポリエチレンテレフタレート(以下、PETと略す。)、ポリオレフィン、ポリアミドイミド、ポリエーテルイミド、ポリフェニレンサルファイド、ポリエーテルケトン等のフィルムが使用できるが、ポリイミドフィルムが最も絶縁性に優れるので好ましい。該絶縁性フィルムは20〜200μmが好ましく、より好ましくは25〜125μmである。フィルム厚さが20μm未満では接着テープの硬さ不足によりハンドリング性が悪くなり、200μmより厚いとコンパクトな半導体装置が得られにくくなる。
ポリイミドフィルムは市販されており、東レ・デュポン社の商品名:カプトン、宇部興産社の商品名:ユーピレックス、鐘淵化学社の商品名:アピカル等が好ましく使用される。
【0016】
また、本発明を構成する接着剤層には保護フィルムを設けることが好ましく、本発明の接着テープ使用時には剥がして使用する。保護フィルムは前記した組成のフィルムが使用でき、シリコーン等で剥離処理を施して剥離性を付与したフィルムが好ましく使用される。
【0017】
【実施例】
以下、本発明を実施例によって説明する。なお以下の説明において「部」は全て溶液の「重量部」を意味し、「%」は「重量%」を意味する。
[実施例
剥離処理を施した厚さ38μmのPETフィルムからなる仮の支持体の一面に、下記組成の接着剤層形成用の塗料を乾燥後の厚さが12μmになるよう塗布し、130℃で5分間乾燥して接着フィルムを作製した。
次いで該接着フィルムに厚さ75μmのポリイミドフィルム(宇部興産社製、商品名:ユーピレックスS)からなる絶縁性フィルムを重ね合わせ、100℃、1kg/cm 2 の条件で加熱圧着して本発明の半導体装置用接着テープを作製した。

Figure 0003569194
【0018】
[実施例
接着剤層形成用塗料として下記組成のものを用いた以外は、実施例1と同様にして本発明の半導体装置用接着テープを作製した。
Figure 0003569194
【0019】[比較例1]
接着剤層形成用塗料として、下記組成のものを用いた以外は、実施例1と同様にして比較例1の比較用の接着テープを作製した。
Figure 0003569194
【0020】
[半導体装置用接着テープの評価]
(1)試験体の作製
1.熱収縮性試験用試験体の作製
前記実施例1、実施例2及び比較例1の接着テープ作製に際して使用した接着フィルムに1オンスの電解銅箔(平均厚さ38μm)に貼り合わせた後、剥離性PETフィルムを剥がして接着剤層面に前記銅箔を貼り合わせ、130℃、1kg/cm2の条件で加熱加圧処理を行った。その後さらに70℃から160℃までを8時間かけて等速昇温させ、160℃で6時間加熱し、接着剤層を硬化させた。続いて片面の銅箔をエッチングにて除去し、熱収縮性試験用試験体を得た。
【0021】
2.電気的信頼性試験用試験体の作製
実施例1、実施例2及び比較例1で半導体装置用接着テープのPETフィルムを剥離し、前記電解銅箔を130℃、1kg/cm2の条件で貼り合わせ処理を行い、銅箔貼りTAB用テープを得た。その後70℃から160℃までを8時間かけて等速昇温させ、160℃で6時間加熱し接着剤層を硬化させた。続いて、銅箔上にフォトレジスト膜を積層し、パターン露光、エッチングして、線間/線幅=50μm/100μm櫛形回路を形成し、これを電気的信頼性試験用試験体とした。
【0022】
(2)特性試験
1.熱収縮性
実施例1、実施例2および比較例1の熱収縮性試験用試験体を用いて、下記測定方法で熱収縮性を測定した。
1.前記試験体を縦40mm、横40mmに切断した。
2.切断した試験体を室温23℃、相対湿度65%の雰囲気下に48時間放置した。
3.試験体の接着剤層面を下にして平坦な板の上に凸になるよう静置し、顕微鏡にて焦点深度で凸部高さ(試験体の対角線からのカール高さ)を測定し、得られた結果を表1に示した。
【0023】
2.電気的信頼性試験
実施例1、実施例2及び比較例1の接着テープから作製した電気的信頼性試験用試験体について、下記条件にてPCBT(Pressure Cooker Biased Test)試験を行い、電気抵抗が開始時の抵抗値から102Ω低下した時間を表1に示した。
試験条件は、130℃、85%RH/2.7atm、印加電圧は100Vとした。
【0024】
【表1】
Figure 0003569194
【0025】
表1から明らかなように、本発明の半導体装置用接着テープを構成する接着剤層を用いた熱収縮性試験用試験体は、熱収縮性が小さかった。また、本発明の半導体装置用接着テープを用いたPCBTにおいても、500時間にわたって電気抵抗が低下せず、優れた電気的信頼性を有していた。それに対して比較例1の接着テープを構成する接着剤層を用いた熱収縮性試験用試験体は、熱収縮性が大きく、接着テープとして反りやすいものであった。また、比較例1の接着テープを用いた試験体はPCBTにおいて350時間で電気抵抗が102Ω以上低下し、高温高湿時の電気的信頼性に劣るものであった。
【0026】
【発明の効果】
上記したように、本発明の半導体装置用接着テープは熱収縮性が小さく、高温高湿下でも十分な電気的信頼性を有するものであった。従って、本発明の半導体装置用接着テープは、TAB技術を用いた半導体装置に好適で、ファインピッチ化の進む導体間の絶縁性に優れ、反りの少ない半導体装置用接着テープを提供できる。[0001]
[Industrial applications]
The present invention relates to a TAB (Tape Automated Bonding) type TAB tape, a BGA (Ball Grid Array), a CSP (Chip Size Package), and the like, which are used in a process of assembling a semiconductor device, and particularly suitable for a TAB (Tape Automated Bonding) method suitable for high-density mounting of the device. The present invention relates to a tape (Tape Carrier Package) tape suitable for an interposer, a tape for fixing a lead frame, and an adhesive tape for a semiconductor device used for a method of connecting a lead frame and a film carrier tape by wire bonding. To a suitable adhesive tape.
[0002]
[Prior art]
In recent years, there has been an increasing demand for small, thin, lightweight, and high-package semiconductor devices. Among them, the IC package which forms the core of electronic components has been changed from a peripheral mounting type TAB method using wire bonding technology to a surface mounting type tape BGA (T-BGA) using the TAB method recently. It is becoming mainstream because of its high density and excellent heat dissipation. The same surface mount type CSP is a package in which the BGA is further reduced in size, and has excellent electrical characteristics such as low impedance and high-speed frequency response due to its structure. Semiconductor devices using this new method are mainly used in notebook personal computers, mobile phones, and other small electric appliances and the like, and have greatly contributed to making them thinner, smaller, and lighter.
[0003]
TAB tapes that have been used for TAB-type packages are obtained by laminating a metal foil on a polyimide film via an adhesive, and the adhesive has been required to have sufficient flexibility. For example, a conventional adhesive for a TAB tape uses a polyamide resin as an elastic component for imparting flexibility, and generally comprises a curing component such as an epoxy resin or a phenol resin. Was. That is, as this polyamide resin, a polyamide resin obtained from an unsaturated fatty acid dimer having 36 carbon atoms soluble in alcohol or the like and methylenediamine or ethylenediamine has been used. Epoxy resins such as bisphenol A type epoxy resins and novolak phenol resins have been used as curing components.
On the other hand, as described above, the density of integrated circuits and the voltage of circuits have been increased, and the surface-mount type semiconductor devices are becoming mainstream. Circuits formed on the upper surface of the TAB tape used in this surface-mount type semiconductor device have become finer in pitch, and therefore, a TAB tape with less heat shrinkage when the adhesive layer is heated and cured has been required. Furthermore, with the miniaturization of electronic devices, the environment in which the devices are used has been diversified, and high electrical reliability that can withstand high temperatures and high humidity has also been required.
However, the TAB tape according to the related art cannot satisfy these requirements, and a TAB tape that has small heat shrinkage and can overcome high electrical reliability that can withstand even under high temperature and high humidity is desired. Was.
[0004]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of a conventional adhesive tape for TAB, and has a small heat shrinkage property during curing and a semiconductor device excellent in electrical reliability even under high temperature and high humidity. An adhesive tape is provided.
[0005]
[Means for Solving the Problems]
The adhesive tape for a semiconductor device of the present invention contains, on at least one surface of an insulating film, two or more polyamide resins having different amine values using an aliphatic diamine having 4 or more carbon atoms as a condensation component, and a curable resin. Characterized in that the adhesive layers are laminated. The adhesive tape for semiconductor devices of the present invention, on at least one surface of the insulating film, and a polyamide resin using 4 or more aliphatic diamines carbon as condensation component, a curable resin, the amine value and the polyamide resin and adhesive layer composition containing a different polyamide resin is characterized by comprising stacked.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The adhesive layer constituting the present invention contains a polyamide resin using an aliphatic diamine having 4 or more carbon atoms as a condensation component, and a curable resin.
First, a polyamide resin using an aliphatic diamine having 4 or more carbon atoms as a condensation component will be described in detail.
[0007]
The polyamide resin specified in the present invention is synthesized by condensation of an aliphatic diamine having 4 or more carbon atoms with dimer acid. Specific examples of the aliphatic diamine having 4 or more carbon atoms in this case include butylenediamine, pentamethylenediamine, hexamethylenediamine, octamethylenediamine, decamethylenediamine, dodecamethylenediamine, and the like. Aliphatic diamines are preferable, aliphatic diamines having 4 to 12 carbon atoms are more preferable, and aliphatic diamines having 6 to 12 carbon atoms are more preferably used. As described above, by using an aliphatic diamine having a longer carbon number than conventional ethylene diamine, the adhesive layer constituting the present invention exhibits a high viscosity (adhesiveness) even at a high temperature, and exhibits a high adhesive force, so that it is insulated. Good adhesion to the conductive film. Further, since the polarity of the polyamide becomes extremely low, the cured adhesive layer can have excellent high insulation properties even when heated and wet, and has low heat shrinkage. Therefore, the adhesive tape for a semiconductor device using the polyamide resin obtained by using the above-mentioned dimer acid and the aliphatic diamine having 4 or more carbon atoms for the adhesive layer has excellent electrical insulation properties and low heat shrinkage. Become.
As the dimer acid, those having 36 carbon atoms are preferably used. Further, when synthesizing the polyamide, a branched polyamide is synthesized using a small amount of a trifunctional or higher functional acid component and a trifunctional or higher amine component as a minor component in addition to the aliphatic diamine having 4 or more carbon atoms and dimer acid. You can also. The content of the auxiliary component is preferably within 20% by mole of the polyamide, more preferably within 10% by mole. If the amount of the subcomponent exceeds 20 mol%, the flexibility of the adhesive layer after curing is deteriorated.
[0008]
The weight average molecular weight of the polyamide resin is preferably from 500 to 50,000, more preferably from 1,000 to 20,000. The weight average molecular weight is measured by a gel permeation chromatography (GPC) method.
The amine value of the polyamide resin is preferably from 0.5 to 60, more preferably from 5 to 60. If the amine value is less than 0.5, the electrical insulation becomes poor. If the amine value exceeds 60, unreacted amino groups tend to remain, causing problems such as circuit contamination and bonding failure.
When two types of polyamide resins having different amine values are used, the flexibility of the cured adhesive layer can be easily controlled .
Here, the amine value of the polyamide resin was determined by dissolving 1 g of the polyamide resin in a toluene / n-butanol mixed solution, using a 0.1% methanol solution of bromocresol green as an indicator, and using 0.1N hydrochloric acid as a titrant. And expressed in mg of equivalent potassium hydroxide.
[0009]
Next, the curable resin constituting the adhesive layer according to the present invention will be described.
The curable resin can be used as long as it is a resin having curability such as thermosetting and photocuring.A thermosetting resin, particularly a phenol resin or an epoxy resin, provides excellent electrical insulation and high heat resistance. It is preferred.
Examples of the phenol resin include a novolak phenol resin such as an alkyl phenol resin, a p-phenyl phenol resin and a bisphenol A type phenol resin, and known phenol resins such as a resol phenol resin and a polyphenyl para phenol resin. In particular, a resol phenol resin is preferable because it has high heat resistance and has a function of curing an epoxy resin described below.
[0010]
On the other hand, as the epoxy resin, any resin having two or more epoxy groups can be used. Specifically, bisphenol type epoxy resins such as bisphenol A type, bisphenol F type and bisphenol S type, naphthalene type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, tetraglycidyl phenol alkane type epoxy resin, diglycidyl phenol Bifunctional or polyfunctional epoxy resins such as propane-type epoxy resin, glycidylamine-type epoxy resin, and trihydroxyphenylmethane-type epoxy resin are exemplified, and particularly, a polyfunctional epoxy resin having excellent heat resistance is preferably used.
[0011]
In the adhesive layer constituting the present invention, a curable resin component other than the above phenol resin and epoxy resin can be used in combination. Furthermore, a polyamine, an acid anhydride, and an imidazole compound may be contained as a curing accelerator.
In the adhesive layer constituting the present invention, the polyamide resin is preferably contained in an amount of 20 to 80% by weight, more preferably 30 to 70% by weight in the resin components including the curable resin.
[0012]
The adhesive layer constituting the present invention preferably contains a thermoplastic resin in addition to the polyamide resin and the curable resin. By including the thermoplastic resin, flexibility can be imparted to the adhesive layer after curing. The thermoplastic resin includes a polyamide resin having a composition different from that of the polyamide resin (for example, a polyamide resin having an aliphatic diamine having 3 or less carbon atoms as a condensing component), a carboxyl group-containing acrylonitrile-butadiene copolymer, and an amino group-containing copolymer. Acrylonitrile-butadiene copolymer, acrylonitrile-butadiene copolymer such as glycidyl group-containing acrylonitrile-butadiene copolymer, thermoplastic polyester resin, acrylic rubber, styrene-butadiene copolymer, and the like, amino group, carboxyl group, A thermoplastic resin having a functional group such as a hydroxyl group is preferably used because flexibility can be more easily controlled. In particular, a polyamide resin having a different composition from the polyamide resin (a polyamide resin used as an essential component of the present invention) has good compatibility with the polyamide resin used as an essential component in the present invention .
The crosslinking (reactivity) of the thermoplastic resin to the thermosetting resin is preferably different from the polyamide resin used as an essential component in the present invention. The thermoplastic resin is used in an amount of 10 to 500 parts by weight, preferably 20 to 150 parts by weight, based on 100 parts by weight of the polyamide resin. When the amount of the thermoplastic resin is more than 500 parts by weight, the adhesiveness is deteriorated.
[0013]
Further, as another component of the adhesive layer constituting the present invention, a filler having an average particle diameter of 1 μm or less can be used. The filler can be any of inorganic fillers such as silica, titanium oxide, alumina, silicon nitride, talc, quartz powder, and magnesium oxide, and organic fillers composed of resin powders such as polysiloxane resin, polyimide resin, and phenol resin. The filler of the nature is preferably used. The filler may be added in an amount up to 30 parts by weight based on 100 parts by weight of the resin solid component.
[0014]
To prepare the adhesive tape of the present invention, the above-mentioned adhesive layer material is dissolved and mixed with an organic solvent to form a liquid resin composition, and the composition is applied as a paint to at least one surface of an insulating film. Laminate and dry to form an adhesive layer. The preferred thickness of the adhesive layer after drying is 5 to 100 μm, more preferably 10 to 40 μm. It is preferable that this adhesive layer is dried and kept in a semi-cured state. At this time, the composition may be directly applied to an insulating film, or an adhesive sheet obtained by applying to a temporary support such as a releasable film may be adhered to the insulating film, and the composition of the present invention may be applied. An adhesive tape for a semiconductor device may be manufactured.
Organic solvents preferably used for preparing the liquid resin composition include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, methyl ethyl ketone (hereinafter abbreviated as MEK), and methyl isobutyl. Ketone, toluene, xylene, 1,4-dioxane, tetrahydrofuran, ethanol, isopropanol (hereinafter abbreviated as IPA), methyl cellosolve, and the like. Two or more of these organic solvents can be used in combination.
[0015]
An insulating film is used for the adhesive tape for a semiconductor device of the present invention. As the insulating film, a film of polyimide, polyethylene terephthalate (hereinafter abbreviated as PET), polyolefin, polyamide imide, polyether imide, polyphenylene sulfide, polyether ketone, or the like can be used. preferable. The thickness of the insulating film is preferably from 20 to 200 μm, more preferably from 25 to 125 μm. If the film thickness is less than 20 μm, the handling property is deteriorated due to insufficient hardness of the adhesive tape, and if the film thickness is more than 200 μm, it is difficult to obtain a compact semiconductor device.
Polyimide films are commercially available, and Toray Dupont's trade name: Kapton, Ube Industries' trade name: Upilex, Kanebuchi Chemical's trade name: Apical, etc. are preferably used.
[0016]
The adhesive layer constituting the present invention is preferably provided with a protective film. When the adhesive tape of the present invention is used, it is peeled off. As the protective film, a film having the above-described composition can be used, and a film that has been subjected to a release treatment with silicone or the like to impart releasability is preferably used.
[0017]
【Example】
Hereinafter, the present invention will be described with reference to examples. In the following description, “parts” means “parts by weight” of the solution, and “%” means “% by weight”.
[Example 1 ]
A coating for forming an adhesive layer having the following composition is applied to one surface of a temporary support made of a PET film having a thickness of 38 μm that has been subjected to a release treatment so that the thickness after drying becomes 12 μm, and the coating is performed at 130 ° C. for 5 minutes. It dried and produced the adhesive film.
Next, an insulating film made of a 75 μm-thick polyimide film (trade name: Upilex S, manufactured by Ube Industries, Ltd.) is overlaid on the adhesive film, and heated and pressed at 100 ° C. and 1 kg / cm 2 to obtain the semiconductor of the present invention. An adhesive tape for a device was prepared.
Figure 0003569194
[0018]
[Example 2 ]
An adhesive tape for a semiconductor device of the present invention was prepared in the same manner as in Example 1, except that the coating composition for forming an adhesive layer was of the following composition.
Figure 0003569194
Comparative Example 1
A comparative adhesive tape of Comparative Example 1 was prepared in the same manner as in Example 1 except that the following composition was used as the adhesive layer forming paint.
Figure 0003569194
[0020]
[Evaluation of adhesive tape for semiconductor device]
(1) Preparation of test specimen
1. Preparation of Specimen for Heat Shrinkage Test After bonding to 1 oz of electrolytic copper foil (average thickness 38 μm) on the adhesive film used in preparing the adhesive tapes of Examples 1, 2 and Comparative Example 1. Then, the peelable PET film was peeled off, and the copper foil was bonded to the adhesive layer surface, and subjected to a heat and pressure treatment at 130 ° C. and 1 kg / cm 2 . Thereafter, the temperature was further increased from 70 ° C. to 160 ° C. at a constant speed over 8 hours, and heated at 160 ° C. for 6 hours to cure the adhesive layer. Subsequently, the copper foil on one side was removed by etching to obtain a test piece for a heat shrinkage test.
[0021]
2. Preparation of Test Piece for Electrical Reliability Test In Example 1 , Example 2 and Comparative Example 1, the PET film of the adhesive tape for a semiconductor device was peeled off, and the electrolytic copper foil was subjected to the conditions of 130 ° C. and 1 kg / cm 2 . To obtain a TAB tape with copper foil. Thereafter, the temperature was raised from 70 ° C. to 160 ° C. at a constant speed over 8 hours, and heated at 160 ° C. for 6 hours to cure the adhesive layer. Subsequently, a photoresist film was laminated on the copper foil, and pattern exposure and etching were performed to form a comb-to-line / line width = 50 μm / 100 μm comb-shaped circuit, which was used as a test body for an electrical reliability test.
[0022]
(2) Characteristic test
1. Heat Shrinkability The heat shrinkability was measured by the following measurement method using the test pieces for the heat shrinkability test of Example 1 , Example 2 and Comparative Example 1.
1. The test specimen was cut into a length of 40 mm and a width of 40 mm.
2. The cut specimen was left for 48 hours in an atmosphere at a room temperature of 23 ° C. and a relative humidity of 65%.
3. The specimen is allowed to stand on a flat plate with the adhesive layer surface facing down, and the height of the convex part (the curl height from the diagonal of the specimen) is measured with a microscope at the depth of focus. The results obtained are shown in Table 1.
[0023]
2. Electrical Reliability Test A PCBT (Pressure Cooker Biased Test) test was performed on the electrical reliability test specimens prepared from the adhesive tapes of Example 1 , Example 2 and Comparative Example 1 under the following conditions. Table 1 shows the time when the resistance decreased by 10 2 Ω from the resistance value at the start.
The test conditions were 130 ° C., 85% RH / 2.7 atm, and the applied voltage was 100 V.
[0024]
[Table 1]
Figure 0003569194
[0025]
As is clear from Table 1, the heat-shrinkability test specimen using the adhesive layer constituting the adhesive tape for a semiconductor device of the present invention had low heat-shrinkability. Also, in the PCBT using the adhesive tape for a semiconductor device of the present invention, the electrical resistance did not decrease for 500 hours, and had excellent electrical reliability. On the other hand, the heat-shrinkability test specimen using the adhesive layer constituting the adhesive tape of Comparative Example 1 had a large heat-shrinkability and was easily warped as an adhesive tape. Further, the test body using an adhesive tape of Comparative Example 1 is the electrical resistance is decreased by more than 10 2 Omega 350 hours in PCBT, it was inferior in electrical reliability when high temperature and high humidity.
[0026]
【The invention's effect】
As described above, the adhesive tape for a semiconductor device of the present invention has low heat shrinkage and has sufficient electrical reliability even under high temperature and high humidity. Therefore, the adhesive tape for a semiconductor device of the present invention is suitable for a semiconductor device using the TAB technology, and can provide an adhesive tape for a semiconductor device that has excellent insulation between conductors having a finer pitch and has less warpage.

Claims (5)

絶縁性フィルムの少なくとも一面に、炭素数4以上の脂肪族ジアミンを縮合成分として用いたアミン価が異なる2種以上のポリアミド樹脂と、硬化性樹脂とを含有する接着剤層が積層されてなることを特徴とする半導体装置用接着テープ。An adhesive layer containing at least one surface of an insulating film containing two or more polyamide resins having different amine values using an aliphatic diamine having 4 or more carbon atoms as a condensing component and a curable resin. An adhesive tape for a semiconductor device, comprising: 絶縁性フィルムの少なくとも一面に、炭素数4以上の脂肪族ジアミンを縮合成分として用いたポリアミド樹脂と、硬化性樹脂と、前記ポリアミド樹脂とはアミン価及び組成が異なるポリアミド樹脂とを含有する接着剤層が積層されてなることを特徴とする半導体装置用接着テープ。An adhesive containing, on at least one surface of an insulating film, a polyamide resin using an aliphatic diamine having 4 or more carbon atoms as a condensation component, a curable resin, and a polyamide resin having an amine value and a composition different from the polyamide resin. An adhesive tape for a semiconductor device, wherein layers are laminated. 前記炭素数4以上の脂肪族ジアミンを縮合成分として用いたポリアミド樹脂のアミン価が0.5〜60であることを特徴とする請求項1又は2記載の半導体装置用接着テープ。3. The adhesive tape for a semiconductor device according to claim 1, wherein an amine value of the polyamide resin using the aliphatic diamine having 4 or more carbon atoms as a condensation component is 0.5 to 60. 4. 前記硬化性樹脂が、エポキシ樹脂又はフェノール樹脂であることを特徴とする請求項1又は2記載の半導体装置用接着テープ。3. The adhesive tape for a semiconductor device according to claim 1, wherein the curable resin is an epoxy resin or a phenol resin. 前記接着剤層が、前記ポリアミド樹脂と硬化性樹脂に加えて、熱可塑性樹脂を含有することを特徴とする請求項1又は2記載の半導体装置用接着テープ。3. The adhesive tape for a semiconductor device according to claim 1, wherein the adhesive layer contains a thermoplastic resin in addition to the polyamide resin and the curable resin.
JP2000090654A 2000-03-29 2000-03-29 Adhesive tape for semiconductor devices Expired - Fee Related JP3569194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000090654A JP3569194B2 (en) 2000-03-29 2000-03-29 Adhesive tape for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000090654A JP3569194B2 (en) 2000-03-29 2000-03-29 Adhesive tape for semiconductor devices

Publications (2)

Publication Number Publication Date
JP2001284412A JP2001284412A (en) 2001-10-12
JP3569194B2 true JP3569194B2 (en) 2004-09-22

Family

ID=18606237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000090654A Expired - Fee Related JP3569194B2 (en) 2000-03-29 2000-03-29 Adhesive tape for semiconductor devices

Country Status (1)

Country Link
JP (1) JP3569194B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181268A (en) * 2013-03-18 2014-09-29 Unitika Ltd Adhesive composition and laminate

Also Published As

Publication number Publication date
JP2001284412A (en) 2001-10-12

Similar Documents

Publication Publication Date Title
JP4691365B2 (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device
KR19990007859A (en) An adhesive sheet for a semiconductor connection board, a TAB tape with an adhesive, a wire bonding connection tape with an adhesive, a substrate for semiconductor connection and a semiconductor device
TWI674972B (en) Method for manufacturing film for component packaging
TWI500734B (en) Adhesive composition having improved reliability at high voltage condition and adhesive tape for semiconductor packaging using the same
JP3915940B2 (en) Insulating layer adhesive film
JP2001234020A (en) Resin composition, adhesive film, metallic foil-adhered adhesive film using the resin composition, circuit board and mounted structure
JP2008231287A (en) Adhesive composition for semiconductor device, adhesive sheet using the same, tape with adhesive agent for semiconductor, and copper-clad laminate
JP4053744B2 (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same
TWI452083B (en) Thermosetting resin composition
KR20130045187A (en) Thermal conductive adhesive composition, and adhesive sheet and thermal conductive dicing and die attach film using the same
JP4691401B2 (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device
JP3621337B2 (en) Adhesive composition for semiconductor device and adhesive sheet
JP4049452B2 (en) Adhesive sheet for semiconductor element and semiconductor device using the same
JP2008308675A (en) Adhesive sheet and metal-fitted adhesive sheet
JP3569194B2 (en) Adhesive tape for semiconductor devices
JP3774419B2 (en) Adhesive tape for semiconductor devices
JP2008004751A (en) Semiconductor device manufacturing method
JP6768188B2 (en) Adhesive composition for adhesive film and its manufacturing method
JP2002121520A (en) Adhesive tape for electronic part
JPWO2015107990A1 (en) Adhesive composition, adhesive film having the same, substrate with adhesive composition, semiconductor device, and manufacturing method thereof
JP3811120B2 (en) Adhesive tape for semiconductor devices
KR100727550B1 (en) Adhesive composition and adhesive sheet for semiconductor device
JP3083814B1 (en) Electronic component adhesive tape
JP2001220566A (en) Adhesive composition, its preparation process, adhesive film, printing circuit board for mounting semiconductor and semiconductor device
JP2002322457A (en) Adhesive composition for semiconductor device and adhesive sheet therefor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040129

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees