JP3569081B2 - Pneumatic radial tire - Google Patents

Pneumatic radial tire Download PDF

Info

Publication number
JP3569081B2
JP3569081B2 JP18940096A JP18940096A JP3569081B2 JP 3569081 B2 JP3569081 B2 JP 3569081B2 JP 18940096 A JP18940096 A JP 18940096A JP 18940096 A JP18940096 A JP 18940096A JP 3569081 B2 JP3569081 B2 JP 3569081B2
Authority
JP
Japan
Prior art keywords
tread
groove
tire
main groove
inclination angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18940096A
Other languages
Japanese (ja)
Other versions
JPH1035222A (en
Inventor
静雄 岩崎
英二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP18940096A priority Critical patent/JP3569081B2/en
Publication of JPH1035222A publication Critical patent/JPH1035222A/en
Application granted granted Critical
Publication of JP3569081B2 publication Critical patent/JP3569081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction

Description

【0001】
【発明の属する技術分野】
この発明は、ウエット路面走行及びドライ路面走行の何れの路面走行においても優れた操縦性を発揮する、偏平率が60%以下の偏平な空気入りラジアルタイヤに関し、特にサーキット走行において雨天時の操縦性とドライ時のコントロール性とを高度に両立させたスポーツ走行系の高性能な空気入りラジアルタイヤに関する。
【0002】
【従来の技術】
従来ウエット路面走行に際し耐ハイドロプレーニング性の点で有利とされていた踏面の円周に沿う周方向直状主溝に代わり、近年では踏面中央区域の両側から延び、タイヤ赤道面に対し小さな角度で傾斜させた主溝を交差させて矢筈状とするトレッドパターンが採用される傾向にあり、それというのはこの矢筈状主溝が形成する先端(タイヤの踏み込み側のこと、以下同じ)が鋭角の陸部の踏み込み作用により車両進行方向(前方)への水撥ねが直状主溝より大幅に抑制され、その結果転動するタイヤ踏面の下に進入する水は後方と側方へ効率良く排水されるので、より優れた耐ハイドロプレーニング性を発揮するからである。
【0003】
しかしこの矢筈状主溝を踏面に備えるタイヤのうち、サーキット走行に供するようなスポーツ走行系の高性能空気入りラジアルタイヤは、周方向直状主溝をもつタイヤに比し全ての点で優位性をもつものでなく、不利な点も合せ有することを解明した。この不利は、矢筈状交差主溝が形成する先端鋭角の陸部、それは排水性の向上を考慮して矢筈状主溝を構成するそれぞれの主溝につき周方向で互いに隣り合う主溝相互間に連通する副溝により形成される菱形乃至それに近い形状のブロックに由来する。
【0004】
このブロックは、矢筈状交差主溝のタイヤ赤道面に対する傾斜角度を、高度な耐ハイドロプレーニング性確保のため、成るべく小さな角度にすることが必要であり、傾斜角度を小さくすればするほどブロック幅は狭くなる。その結果、極限に近い旋回を必要とするサーキット走行ではタイヤ踏面に極めて大きな横力が頻繁に作用するのは当然として、その際に入力される大横力に対し幅狭のブロックは大きな変形が余儀なくされ、そのため十分なコーナリングフォースを発生させることができず、よって操縦性が不十分でコントロール性に欠けるという不利な点が見出された。
【0005】
【発明が解決しようとする課題】
そこでこの発明の請求項1に記載した発明は、トレッド部踏面に矢筈状交差主溝を備えてウエット路面走行時の十分な耐ハイドロプレーニング性を確保した上で、一般ドライ路面上での走行時はもとより、特にドライ路面のサーキット走行時に十分な操縦性を備え優れたコントロール性を発揮することができる空気入りラジアルタイヤを提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため、この発明の請求項1に記載した発明は、一対のビード部及び一対のサイドウォール部と、トレッド部とからなり、これら各部をビード部内に埋設したビードコア相互間にわたり補強する1プライ以上のラジアル配列コードのゴム被覆になるカーカスプライと、その外周でトレッド部を強化するベルトとを備え、該ベルトは2層以上のコード交差層と、該層の外周に螺旋巻回した有機繊維コ─ド層とを有する空気入りラジアルタイヤにおいて、
トレッド部踏面の中央区域の両側端部よりそれぞれタイヤ赤道面に向かって延び、該赤道面に対しそれぞれ30°以下の急傾斜角度をなす多数本の主溝を有し、これらの主溝のそれぞれは、他の二本の主溝と互いに矢筈状に交差するとともに、それぞれの主溝の、前記中央区域両側端部に位置する部分は、該赤道面に対して同じ向きに、前記急傾斜角度より大きな傾斜角度で折り曲げられて横溝状主溝部分とされ、この横溝状主溝部分は、踏面両側に設けられた直状溝のいずれか一方に連通し、
該急傾斜主溝のタイヤ断面にあらわれる壁面傾斜角度(α(度))と、トレッド部のトレッドゴムの300%モジュラス(M(kgf/cm2))との積(α×M)が、α×M>900を満たし、かつトレッドゴムの切断時伸びは420%以上であることを特徴とする、偏平率が60%以下の空気入りラジアルタイヤである。
【0007】
ここにトレッド部踏面の中央区域とは、踏面幅を4等分して区画した4区域のうちタイヤ赤道面を挟む両側の1区域、合せて2区域を指す。そしてこれら区域の外側端寄り位置からそれぞれタイヤ赤道面に向かい急傾斜角度をなして延びる主溝は、タイヤ赤道面の一方側及び他方側でそれぞれ同じ方向に向いて傾斜し、一方側の傾斜主溝と他方側の傾斜主溝とは上記中央区域にて矢筈状に交差するものであり、矢筈の向きは踏面全周にわたり同じである。これから明らかなように矢筈状交差主溝は方向性を有し、よってこの発明による空気入りラジアルタイヤは回転方向を指定するものである。また主溝の矢筈状交差箇所は1箇所とは限らず必要に応じて2箇所以上に及ぶものとする。
【0008】
矢筈状交差主溝の壁面傾斜角度α(度)は、タイヤの回転軸心を含む平面による断面にて溝縁を通る踏面の法線と壁面の線とがなす角度を用いるものとし、この点従来慣例としていた溝に直交する平面にあらわれる溝断面の傾斜角度とは異なる。この壁面傾斜角度α(度)は両壁面に適用するものである。
【0009】
【発明の実施の形態】
この発明による空気入りラジアルタイヤの実施の形態の一例を図1〜3に基づき以下詳細に説明する。
図1はタイヤの左半断面図であり、図2はタイヤ踏面に形成したトレッドパターンの平面図であり、図3は図2のタイヤ赤道面Eに直交するIII −III 線に沿う急傾斜主溝部分の断面図である。
【0010】
図1において、空気入りラジアルタイヤ1は一対のビード部2(片側のみ示す)と、一対のサイドウォール部3(片側のみ示す)と、トレッド部4とから成り、これら各部をビード部内に埋設したビードコア5相互間にわたり補強する1プライ以上(図示例は2プライ)のカーカスプライ6と、カーカスプライ6の外周でトレッド部を強化するベルト7とを備える。ベルト7はカーカスプライ6側に2層以上(図示例は2層)のコード交差層7aと、該層7aの外周に螺旋巻回した1層以上(図示例は1層)の有機繊維コ─ド層7bとを有する。コード交差層7aはスチールコード又はポリアミド繊維コードのゴム被覆により構成し、螺旋巻回層7bは6−ナイロンコード又は6,6−ナイロンコードのゴム被覆により構成する。さらに慣例に従いベルト7の外周にトレッドゴム8を配置する。
【0011】
図1、図2において、トレッド部4の踏面4tの幅Wは、図1に示すラウンドショルダの場合、踏面の両端側を形成する曲線、多くの場合は円弧の延長線とバットレスBを形成する円弧の延長線との交点P相互間の距離とする。そしてここでは踏面幅Wを4等分して区画した4区域うちのタイヤ赤道面(以下赤道面と略す)Eを挟む両側の1区域、合せて2区画を中央区域10と呼ぶ。なお図1は図2のI−I線に沿う断面図である。
【0012】
中央区域10の両側端部よりそれぞれ赤道面Eに向かって主溝11、12が、この例では赤道面Eを横切って延びる。そのとき主溝11、12はそれぞれ赤道面Eに対し30°以下、望ましくは10〜30°の範囲内の急傾斜角度θ、θをなす矢筈状配列とする。すなわち主溝11、12は赤道面Eの両側から赤道面Eに向かいV字を描くように延びる配列とするものである。
【0013】
ここに主溝11、12の赤道面Eに対する傾斜角度θ、θは、主溝11、12それぞれが赤道面E近傍で同じ溝幅のときは溝縁で測り、溝幅が変化するときは溝幅中心を連ねる線で測る。図2では後者の溝幅中心を連ねる線L、Lで傾斜角度θ、θを示した。ここで傾斜角度θ、θは、θ=θ、θ>θ、θ<θとすることを可とする。また図示の主溝11、12は直状であるが、それ以外に大きな曲率半径をもつ円弧状乃至曲状としてもよい。
【0014】
図示の主溝11、12は互いに2箇所で矢筈状に交差する例であり、何れの交差位置も赤道面E近傍である。2箇所の交差タイプであるから便宜上主溝11、12をそれぞれ主溝11a、11b部分と主溝12a、12b部分とに分け、主溝11a部分と主溝12b部分とで、また主溝11b部分と主溝12a部分とでそれぞれ先端鋭角の陸部を形成する。
【0015】
図2に示すトレッドパターンは良好な排水性を保持するため、まず踏面4t両側に直状溝13、14を設け、次に中央区域10の両側端部に位置する主溝11、12を傾斜角度θ、θよりも大きな傾斜角度で折り曲げて横溝状主溝部分11c、12cとし、この横溝状主溝部分11c、12cをそれぞれ直状溝13、14に連通させる一方、赤道面Eの主溝11、12終端部は同様に図に示すような横溝15、16をそれぞれ直状溝13、14に連通させる。
【0016】
タイヤ1が図2に矢印で示す回転方向に回転するとき、以上述べた各種溝のうち特に主溝11、12が形成する先端鋭角の陸部は水膜を、あたかも航行する船舶の舳先の動作に似た水切り動作を行い、切り分けられた水は主溝11、12内部を流れてタイヤの両側及び回転後方に効率良く排水されるので、この水切り動作が殆ど期待されないそれまでの周方向直状主溝に比し耐ハイドロプレーニング性が顕著に改善される。
【0017】
しかし先端鋭角の陸部とそれに続く幅狭陸部のブロックは、ドライ路面での急激なコーナリングで大変形を生じ易く、その結果所期のコーナリングフォースを発生し難くなるのは先に触れた通りである。そこで図3を参照して、赤道面Eと直交する平面による断面にあらわれる主溝11、12の溝壁面11w、12wと、溝縁を通る踏面4tの法線VLとがなす角度α、すなわち溝壁面11w、12wの傾斜角度α(度)及びトレッドゴム8の300%モジュラスM(kgf/cm)は、それぞれの積α×Mが900を超える必要がある。このとき溝壁面11w、12wの傾斜角度α(度)は同一主溝内、主溝相互間で必ずしも同一とは限らず、α×M>900を満たす範囲内で適当な値を選択することができる。
【0018】
ただし300%モジュラスM(kgf/cm)は、コーナリングフォース発生の点で成るべく高い値が望ましい反面、製造時の生産性及び作業性に実際上支障を生じさせない範囲に止める必要がある点、そして良好な乗り心地保持の点から140kgf/cm以下が好ましい。このことから主溝11、12の壁面傾斜角度αは約6.43度以上とするのが望ましい。また急激なコーナリング時のブロック欠けを阻止する上でトレッドゴム8の切断時伸びは420%以上であることを要す。
【0019】
上述の切断時伸びが420%以上で、上記傾斜角度α(度)と300%モジュラスM(kgf/cm)とを掛け合せたとき900を超える300%モジュラスM(kgf/cm)の値をもつトレッドゴム8と、この壁面傾斜角度α(度)をもつ主溝11、12とにより形成される先端鋭角の陸部は、たとえ陸部幅が狭くとも、車両の急激なコーナリングの際にこの陸部に作用する横力に対し十分な剛性を発揮し、その結果上記陸部の変形量を抑制し、たとえ大変形入力の下でも耐えて「へたり現象」を呈することなく十分なサイドフォース乃至コーナリングフォースを発生させることができる。さらに操舵応答性も大幅に向上するのは言うまでもない。
【0020】
先端鋭角陸部が図2に示すようなブロックであっても、また別の菱形状乃至これに近い形状をもつブロックであっても、上記の壁面傾斜角度αとトレッドゴム8の物性を満たすトレッドパターンを備えた空気入りラジアルタイヤは、トレッドゴム欠けなどの不具合を伴うことなく、ウエット路面で従来タイヤと同等な優れた耐ハイドロプレーニング性に基づく操縦性を発揮することができ、同時にドライ路面では従来タイヤより顕著に優位なコーナリングフォース特性に基づく高度なコントロール性を発揮することができ、特にサーキット走行に適合したいわば全天候タイプの高性能タイヤを提供することができる。α×M≦900ではドライ路面性能が不十分となり、この発明の目的に不適合である。
【0021】
【実施例】
乗用車用空気入りラジアルタイヤで、サイズが205/55R16であり、構成は図1〜図3に従い、カーカスプライ6は2プライのラジアル配列ポリエステルコードのゴム被覆になり、ベルト7は2層のスチールコード交差層7aと1層の6,6−ナイロンコードの螺旋巻回層7bとからなる。踏面幅Wは180mmであり、よって中央区域10の幅は45mm×2の90mmである。 トレッドゴム8はゴムAとゴムBとの2種類を準備した。これらの300%モジュラスM(kgf/cm)と切断時伸び(%)とを表1に示す。
【0022】
【表1】

Figure 0003569081
【0023】
実施例1及び比較例1、2のタイヤにつき、トレッドゴム8に適用したゴム種類、主溝11、12の壁面11w、12wの傾斜角度α(度)、傾斜角度α(度)×300%モジュラスM(kgf/cm)それぞれを表2に示す。なお比較例1、2にはトレッドゴム8を除き、他は全て実施例に合せた。これらの実施例1及び比較例1、2のタイヤをそれぞれスポーツカーの4輪に装着し、プロドライバの操縦によりドライ路面及びウエット路面をもつサーキットを5周させる実車テストを実施した。
【0024】
走行の間のコーナリング中に作用する横G(横方向加速度)をドライ路面走行時、ウエット路面走行時に分けてハンドリングの手応え(フィーリング)により評価した。評点は10点を満点としてプロドライバが採点した。テストの間のトレッドゴム欠け発生の有無も合せて観察により記録した。ウエット及びドライ操縦性の評点とトレッドゴム欠け発生の有無とを合せて表2の下段に示す。
【0025】
【表2】
Figure 0003569081
【0026】
表2のテスト評点結果より、実施例1のタイヤはウエット路面走行で従来から満足すべき耐ハイドロプレーニング性により優れた操縦性を発揮している比較例1、2タイヤと同等の性能を示す一方、従来はドライ路面のコーナリング走行で不十分なコントロール性を示すに過ぎなかった比較例1、2に対し、実施例1のタイヤはドライ路面走行でも顕著に優れたコントロール性(操縦性)を発揮することが分かる。また切断時伸びを420%以上としたトレッドゴムの欠けに対する抵抗力の向上も顕著にあらわれている。
【0027】
【発明の効果】
この発明の請求項1に記載した発明によれば、ウエット路面の高速走行時に発生し勝ちなハイドロプレーニングを十分に抑制した操縦性と、ドライ路面の急激なコーナリングに際し発生し勝ちなトレッドゴム欠けのなどの故障を伴わずに、急激なコーナリング操作に高度に対応可能な優れたコントロール性とを両立させ得る空気入りラジアルタイヤを提供することができる。
【図面の簡単な説明】
【図1】この発明による空気入りラジアルタイヤの一実施例の左半断面図である。
【図2】図1に示すタイヤの一部正面図である。
【図3】図2に示すIII − III線に沿う主溝の断面図である。
【符号の説明】
1 空気入りラジアルタイヤ
2 ビード部
3 サイドウォール部
4 トレッド部
4t 踏面
5 ビードコア
6 カーカスプライ
7 ベルト
8 トレッドゴム
10 踏面中央区域
11、12 急傾斜主溝
11w、12w 主溝壁面
13、14 直状溝
15、16 横溝
θ、θ 傾斜主溝の赤道面に対する傾斜角度
α 主溝の壁面傾斜角度
VL 主溝縁を通る踏面への法線
W 踏面幅
E 赤道面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a flat pneumatic radial tire having a flatness of 60% or less, which exhibits excellent maneuverability on both wet road running and dry road running, and particularly, on a circuit running in rainy weather. The present invention relates to a high-performance pneumatic radial tire for sports driving, which achieves a high level of balance between control and dry control.
[0002]
[Prior art]
In recent years, instead of the circumferential main straight groove along the circumference of the tread, which has been considered advantageous in terms of hydroplaning resistance when traveling on wet road surfaces, in recent years it has extended from both sides of the tread center area and has a small angle with respect to the tire equatorial plane. There is a tendency to adopt a tread pattern in which inclined main grooves cross each other to form an arrowhead shape, since the tip (the tire depression side, the same applies hereinafter) formed by the arrowhead main groove has an acute angle. Water splashing in the vehicle traveling direction (forward) is greatly suppressed by the stepping action of the land part from the straight main groove, and as a result, water entering under the rolling tire tread is efficiently drained to the rear and side. This is because it exhibits more excellent hydroplaning resistance.
[0003]
However, among the tires that have this arrow-shaped main groove on the tread surface, the high-performance pneumatic radial tire for sports driving, such as used for circuit driving, is superior in all respects to the tire with the circumferential straight main groove. It was clarified that it did not have any disadvantages but also had disadvantages. The disadvantage is that the land portion with the sharp tip formed by the arrow-shaped cross-shaped main groove is located between the main grooves adjacent to each other in the circumferential direction for each of the main grooves constituting the arrow-shaped main groove in consideration of the improvement of drainage. It is derived from a diamond-shaped or similar block formed by communicating sub-grooves.
[0004]
In this block, it is necessary to make the inclination angle of the arrow-shaped intersection main groove with respect to the tire equatorial plane as small as possible in order to ensure high hydroplaning resistance. The smaller the inclination angle, the wider the block width Becomes narrower. As a result, it is natural that extremely large lateral forces frequently act on the tire treads during circuit running that requires turning close to the limit, and narrow blocks will undergo large deformation with respect to the large lateral force input at that time. A disadvantage was found that forced cornering forces could not be generated, and therefore maneuverability was insufficient and controllability was lacking.
[0005]
[Problems to be solved by the invention]
Therefore, the invention described in claim 1 of the present invention provides a tread portion with tread-shaped cross main grooves to ensure sufficient hydroplaning resistance when running on a wet road surface, and then when running on a general dry road surface. It is another object of the present invention to provide a pneumatic radial tire that has sufficient controllability and can exhibit excellent controllability particularly when traveling on a circuit on a dry road surface.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the invention described in claim 1 of the present invention comprises a pair of bead portions, a pair of sidewall portions, and a tread portion, and these portions are reinforced between bead cores embedded in the bead portions. A carcass ply that becomes a rubber coating of at least one ply of radially arranged cords, and a belt that strengthens the tread portion at the outer periphery of the carcass ply. A pneumatic radial tire having an organic fiber code layer,
Extend toward the tire equatorial plane respectively from both ends of the central region of the tread surface, a large number to such a steep angle of 30 ° or less, respectively with respect to the equator plane has a main groove of the, these main grooves Each intersects with the other two main grooves in an arrow-like manner, and the portions of each main groove located at both ends of the central section have the steep slope in the same direction with respect to the equatorial plane. It is bent at an inclination angle larger than the angle to be a horizontal groove-shaped main groove portion, and this horizontal groove-shaped main groove portion communicates with one of the straight grooves provided on both sides of the tread surface,
The product (α × M) of the wall surface inclination angle (α (degree)) appearing in the tire section of the steeply inclined main groove and the 300% modulus (M (kgf / cm 2 )) of the tread rubber in the tread portion is α A pneumatic radial tire having a flatness of 60% or less, characterized by satisfying xM> 900 and having an elongation at break of tread rubber of 420% or more.
[0007]
Here, the central area of the tread tread refers to two areas in total, one area on both sides sandwiching the tire equatorial plane among the four areas divided into four equal tread widths. The main grooves extending at a steep inclination angle toward the tire equatorial plane from the positions near the outer ends of these areas, respectively, are inclined in the same direction on one side and the other side of the tire equatorial plane, and the main groove on one side is inclined. The groove and the inclined main groove on the other side intersect in an arrow shape in the central area, and the direction of the arrow is the same over the entire circumference of the tread surface. As is clear from the above, the arrow-shaped cross main groove has directionality, and therefore, the pneumatic radial tire according to the present invention specifies the direction of rotation. In addition, the number of intersections of the main groove is not limited to one, but may be two or more as necessary.
[0008]
The inclination angle α (degree) of the wall surface of the arrow-shaped cross main groove is defined as the angle formed by the normal of the tread surface passing through the groove edge and the line of the wall surface in a cross section of a plane including the rotation axis of the tire. This is different from the inclination angle of the groove cross section that appears on a plane orthogonal to the groove, which has been conventionally used. This wall surface inclination angle α (degree) is applied to both wall surfaces.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a pneumatic radial tire according to the present invention will be described in detail below with reference to FIGS.
1 is a left half sectional view of the tire, FIG. 2 is a plan view of a tread pattern formed on a tire tread, and FIG. 3 is a steeply inclined main line along a line III-III orthogonal to the tire equatorial plane E of FIG. It is sectional drawing of a groove part.
[0010]
In FIG. 1, a pneumatic radial tire 1 includes a pair of bead portions 2 (only one side is shown), a pair of sidewall portions 3 (only one side is shown), and a tread portion 4, and these portions are embedded in the bead portion. The carcass ply 6 includes one or more plies (two plies in the illustrated example) that reinforce the bead cores 5 and a belt 7 that reinforces a tread portion on the outer periphery of the carcass plies 6. The belt 7 has two or more layers (two layers in the illustrated example) on the carcass ply 6 side and one or more layers (one layer in the illustrated example) spirally wound around the outer periphery of the layer 7a. Layer 7b. The cord crossing layer 7a is formed by rubber coating of steel cord or polyamide fiber cord, and the spirally wound layer 7b is formed by rubber coating of 6-nylon cord or 6,6-nylon cord. Further, a tread rubber 8 is arranged on the outer periphery of the belt 7 according to a customary practice.
[0011]
In FIGS. 1 and 2, the width W of the tread surface 4t of the tread portion 4 forms a curve forming both end sides of the tread surface in the case of the round shoulder shown in FIG. The distance between the intersection points P with the extension lines of the arcs. Here, one section on both sides of the tire equatorial plane (hereinafter, abbreviated as equatorial plane) E of the four sections divided into four equal sections of the tread width W is referred to as a central section 10 in total. FIG. 1 is a sectional view taken along the line II of FIG.
[0012]
The main grooves 11, 12 extend across the equatorial plane E in this example from both ends of the central section 10 toward the equatorial plane E, respectively. At this time, the main grooves 11 and 12 are arranged in an arrow-shaped arrangement with steep inclination angles θ 1 and θ 2 within 30 ° or less, preferably 10 to 30 ° with respect to the equatorial plane E, respectively. That is, the main grooves 11, 12 are arranged so as to extend from both sides of the equatorial plane E toward the equatorial plane E so as to draw a V-shape.
[0013]
Here, the inclination angles θ 1 and θ 2 of the main grooves 11 and 12 with respect to the equatorial plane E are measured at the groove edges when the main grooves 11 and 12 have the same groove width near the equatorial plane E, and when the groove width changes. Is measured with a line connecting the center of the groove width. In FIG. 2, the inclination angles θ 1 and θ 2 are indicated by lines L 1 and L 2 connecting the center of the groove width. Here, the inclination angles θ 1 and θ 2 can be set to satisfy θ 1 = θ 2 , θ 1 > θ 2 , and θ 12 . Although the illustrated main grooves 11 and 12 are straight, they may be arcuate or curved having a large radius of curvature.
[0014]
The illustrated main grooves 11 and 12 intersect each other in an arrowhead shape at two places, and each intersection position is near the equatorial plane E. For the sake of convenience, the main grooves 11 and 12 are divided into main grooves 11a and 11b and main grooves 12a and 12b, respectively, so that the main grooves 11a and 11b and the main groove 12b and the main groove 11b are formed. And the main groove 12a form a land portion having a sharp tip.
[0015]
In order to maintain good drainage, the tread pattern shown in FIG. 2 first has straight grooves 13 and 14 on both sides of the tread 4t, and then the main grooves 11 and 12 located on both sides of the central section 10 are inclined at an angle. It is bent at an inclination angle larger than θ 1 and θ 2 to form the horizontal groove-shaped main groove portions 11c and 12c. The horizontal groove-shaped main groove portions 11c and 12c communicate with the straight grooves 13 and 14, respectively. The end portions of the grooves 11 and 12 similarly connect the lateral grooves 15 and 16 to the straight grooves 13 and 14 as shown in the figure.
[0016]
When the tire 1 rotates in the rotation direction indicated by the arrow in FIG. 2, the land portions having the sharp tips formed by the main grooves 11 and 12 among the various grooves described above move through the water film, as if a bow of a navigating ship. A draining operation similar to that described above is performed, and the separated water flows inside the main grooves 11 and 12 and is efficiently drained to both sides of the tire and to the rear of the rotation. Hydroplaning resistance is remarkably improved as compared with the main groove.
[0017]
However, the sharp land part and the narrow land part block that follows are likely to undergo large deformation due to sharp cornering on dry road surface, and as a result it is difficult to generate the expected cornering force as mentioned earlier. It is. Therefore, referring to FIG. 3, the angle α between the groove wall surfaces 11w, 12w of the main grooves 11, 12 appearing in a cross section by a plane orthogonal to the equatorial plane E and the normal VL of the tread surface 4t passing through the groove edge, that is, the groove The product α × M of the inclination angle α (degree) of the wall surfaces 11 w and 12 w and the 300% modulus M (kgf / cm 2 ) of the tread rubber 8 needs to exceed 900. At this time, the inclination angle α (degree) of the groove wall surfaces 11w and 12w is not always the same in the same main groove and between the main grooves, and an appropriate value may be selected within a range satisfying α × M> 900. it can.
[0018]
However, the 300% modulus M (kgf / cm 2 ) is desirably as high as possible in terms of generation of cornering force, but it is necessary to keep the value within a range that does not practically impair productivity and workability during production. And, from the viewpoint of maintaining good riding comfort, 140 kgf / cm 2 or less is preferable. For this reason, it is desirable that the wall inclination angle α of the main grooves 11 and 12 be about 6.43 degrees or more. Further, in order to prevent the chipping of the block at the time of sharp cornering, the elongation at the time of cutting of the tread rubber 8 needs to be 420% or more.
[0019]
In time the above elongation at break 420% or more, the inclination angle α of the value of (degree) and the 300% modulus M (kgf / cm 2) greater than 900 when the was multiplied by 300% modulus M (kgf / cm 2) The sharply land portion formed by the tread rubber 8 and the main grooves 11 and 12 having the wall surface inclination angle α (degree) has a sharp edge even when the vehicle corners sharply, even if the land portion width is narrow. Demonstrates sufficient rigidity against the lateral force acting on the land, and consequently suppresses the amount of deformation of the land, and withstands even under a large deformation input and has sufficient side force without exhibiting the "settling phenomenon". In addition, a cornering force can be generated. Needless to say, the steering response is also greatly improved.
[0020]
The tread that satisfies the wall surface inclination angle α and the physical properties of the tread rubber 8 irrespective of whether the sharp land portion is a block as shown in FIG. 2 or a block having another diamond shape or a shape similar thereto. The pneumatic radial tire with the pattern can exhibit the same excellent maneuverability based on the excellent hydroplaning resistance as the conventional tire on wet road surface without trouble such as chipping of tread rubber, and at the same time on dry road surface It is possible to exhibit a high degree of controllability based on the cornering force characteristic which is remarkably superior to conventional tires, and it is possible to provide a so-called all-weather type high-performance tire that is suitable for circuit running. When α × M ≦ 900, the dry road surface performance becomes insufficient, which is not suitable for the purpose of the present invention.
[0021]
【Example】
A pneumatic radial tire for a passenger car, having a size of 205 / 55R16. The structure is in accordance with FIGS. 1 to 3, and the carcass ply 6 is a rubber coating of a two-ply radially arranged polyester cord, and the belt 7 is a two-layer steel cord. It comprises a cross layer 7a and a single layer of spirally wound 6,6-nylon cord 7b. The tread width W is 180 mm, and thus the width of the central section 10 is 45 mm × 2, that is, 90 mm. Two types of tread rubber 8, rubber A and rubber B, were prepared. Table 1 shows these 300% modulus M (kgf / cm 2 ) and elongation at break (%).
[0022]
[Table 1]
Figure 0003569081
[0023]
For the tires of Example 1 and Comparative Examples 1 and 2, the rubber type applied to the tread rubber 8, the inclination angles α (degree) of the wall surfaces 11w and 12w of the main grooves 11, 12 and the inclination angle α (degree) × 300% modulus M (kgf / cm 2 ) is shown in Table 2. In Comparative Examples 1 and 2, except for the tread rubber 8, all the other components were the same as those in Examples. An actual vehicle test was conducted in which the tires of Example 1 and Comparative Examples 1 and 2 were mounted on four wheels of a sports car, respectively, and five tracks of a circuit having a dry road surface and a wet road surface were driven by a professional driver.
[0024]
Lateral G (lateral acceleration) acting during cornering during running was evaluated by feeling of handling separately for running on a dry road surface and running on a wet road surface. The professional driver scored a maximum of 10 points. The presence or absence of tread rubber chipping during the test was also recorded by observation. The lower part of Table 2 shows the evaluation results of wet and dry maneuverability and presence / absence of occurrence of tread rubber chipping.
[0025]
[Table 2]
Figure 0003569081
[0026]
From the test scores shown in Table 2, the tire of Example 1 shows the same performance as the tires of Comparative Examples 1 and 2, which exhibit excellent maneuverability due to hydroplaning resistance which has been conventionally satisfied on a wet road surface. On the other hand, the tire of Example 1 shows remarkably excellent controllability (maneuverability) even on a dry road surface, as compared with Comparative Examples 1 and 2, which conventionally showed only insufficient controllability on cornering on a dry road surface. You can see that In addition, the improvement in resistance to chipping of the tread rubber having an elongation at break of 420% or more is also remarkably exhibited.
[0027]
【The invention's effect】
According to the invention described in claim 1 of the present invention, the maneuverability which sufficiently suppresses the hydroplaning which is likely to occur during high-speed running on a wet road surface, and the tread rubber chip which is likely to occur when sharp cornering on a dry road surface is used. Thus, it is possible to provide a pneumatic radial tire that can achieve both excellent controllability and high controllability to abrupt cornering operation without failure such as failure.
[Brief description of the drawings]
FIG. 1 is a left half sectional view of an embodiment of a pneumatic radial tire according to the present invention.
FIG. 2 is a partial front view of the tire shown in FIG.
FIG. 3 is a cross-sectional view of the main groove taken along line III-III shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pneumatic radial tire 2 Bead part 3 Side wall part 4 Tread part 4t Tread surface 5 Bead core 6 Carcass ply 7 Belt 8 Tread rubber 10 Center surface of tread 11, 12 Steeply inclined main grooves 11w, 12w Main groove wall surfaces 13, 14 Straight grooves 15, 16 Lateral grooves θ 1 , θ 2 Inclination angle of the inclined main groove with respect to the equatorial plane α Wall inclination angle of the main groove VL Normal line W to the tread passing through the edge of the main groove Tread width E Equatorial plane

Claims (1)

一対のビード部及び一対のサイドウォール部と、トレッド部とからなり、これら各部をビード部内に埋設したビードコア相互間にわたり補強する1プライ以上のラジアル配列コードのゴム被覆になるカーカスプライと、その外周でトレッド部を強化するベルトとを備え、該ベルトは2層以上のコード交差層と、該層の外周に螺旋巻回した有機繊維コ─ド層とを有する空気入りラジアルタイヤにおいて、トレッド部踏面の中央区域の両側端部よりそれぞれタイヤ赤道面に向かって延び、該赤道面に対しそれぞれ30°以下の急傾斜角度をなす多数本の主溝を有し、これらの主溝のそれぞれは、他の二本の主溝と互いに矢筈状に交差するとともに、それぞれの主溝の、前記中央区域両側端部に位置する部分は、該赤道面に対して同じ向きに、前記急傾斜角度より大きな傾斜角度で折り曲げられて横溝状主溝部分とされ、この横溝状主溝部分は、踏面両側に設けられた直状溝のいずれか一方に連通し、
該急傾斜主溝のタイヤ断面にあらわれる壁面傾斜角度(α(度))と、トレッド部のトレッドゴムの300%モジュラス(M(kgf/cm2))との積(α×M)が、α×M>900を満たし、かつトレッドゴムの切断時伸びは420%以上であることを特徴とする、偏平率が60%以下の空気入りラジアルタイヤ。
A carcass ply comprising a pair of beads, a pair of sidewalls, and a tread portion, and a rubber cascade of one or more ply radially arranged cords for reinforcing the respective portions between bead cores embedded in the bead portion, and an outer periphery thereof A belt that strengthens the tread portion with a tread portion of a tread portion of a pneumatic radial tire having two or more cord cross layers and an organic fiber code layer spirally wound around the outer periphery of the belt. of extending toward the tire equatorial plane respectively from both ends of the central region, it has a main groove of the number to a rapid slope angle of 30 ° or less, respectively with respect to the equator plane present, each of these main grooves, The other two main grooves intersect each other in an arrow shape, and the portions of the respective main grooves located at both ends of the central area are oriented in the same direction with respect to the equatorial plane. Is a folded and the transverse groove-shaped main groove portion with greater inclination angle than the inclination angle, the lateral groove-shaped main groove portion communicates with one of the straight grooves provided in the tread surface sides,
The product (α × M) of the wall surface inclination angle (α (degree)) appearing in the tire section of the steeply inclined main groove and the 300% modulus (M (kgf / cm 2 )) of the tread rubber in the tread portion is α A pneumatic radial tire having a flatness of 60% or less, characterized by satisfying × M> 900 and having an elongation at break of tread rubber of 420% or more.
JP18940096A 1996-07-18 1996-07-18 Pneumatic radial tire Expired - Fee Related JP3569081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18940096A JP3569081B2 (en) 1996-07-18 1996-07-18 Pneumatic radial tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18940096A JP3569081B2 (en) 1996-07-18 1996-07-18 Pneumatic radial tire

Publications (2)

Publication Number Publication Date
JPH1035222A JPH1035222A (en) 1998-02-10
JP3569081B2 true JP3569081B2 (en) 2004-09-22

Family

ID=16240664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18940096A Expired - Fee Related JP3569081B2 (en) 1996-07-18 1996-07-18 Pneumatic radial tire

Country Status (1)

Country Link
JP (1) JP3569081B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213119A (en) * 2000-02-04 2001-08-07 Bridgestone Corp Pneumatic tire and its designing method
JP4255389B2 (en) * 2004-02-20 2009-04-15 住友ゴム工業株式会社 Pneumatic tire for cart
KR101292532B1 (en) 2011-09-22 2013-08-12 요코하마 고무 가부시키가이샤 Pneumatic tire
FR3020018B1 (en) * 2014-04-18 2016-05-06 Michelin & Cie TIRE TREAD FOR A VEHICLE FOR AGRICULTURAL USE
CN110239285B (en) * 2019-05-09 2021-05-25 正新橡胶(中国)有限公司 Pneumatic tire

Also Published As

Publication number Publication date
JPH1035222A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
JP3367927B2 (en) Pneumatic tire
JP3136101B2 (en) Pneumatic tire
JP5732018B2 (en) Motorcycle tires
EP2631087B1 (en) Pneumatic tire
EP1992503B1 (en) Pneumatic tire with asymmetric tread pattern
JPH01101203A (en) Pneumatic tire
JPH07108604B2 (en) Pneumatic tires for motorcycles
WO1995031345A1 (en) Pneumatic radial tire
JP2003326920A (en) Pneumatic tire
EP0916523B1 (en) Pneumatic tyre
JP3569387B2 (en) Flat radial tire with asymmetric tread pattern on asymmetric profile
JPH0655909A (en) Tire for motor-bicycle
JP3569081B2 (en) Pneumatic radial tire
JP3643152B2 (en) Pneumatic tire for motorcycle
JP3875364B2 (en) Pneumatic radial tire
WO2019159544A1 (en) Pneumatic tire
JPH07117417A (en) Tread pattern of tire
US5299612A (en) Pneumatic radial tire with high cornering and steering stability
WO2021124969A1 (en) Tire
JP2020049956A (en) tire
JP3377262B2 (en) Pneumatic tires for motorcycles
JP2934403B2 (en) Pneumatic tire
JP4215483B2 (en) Pneumatic tire
JPH11115418A (en) Pneumatic tire
JPH06191226A (en) Pneumatic tire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees