JP3569068B2 - Injection control method and apparatus for injection molding machine - Google Patents

Injection control method and apparatus for injection molding machine Download PDF

Info

Publication number
JP3569068B2
JP3569068B2 JP09139696A JP9139696A JP3569068B2 JP 3569068 B2 JP3569068 B2 JP 3569068B2 JP 09139696 A JP09139696 A JP 09139696A JP 9139696 A JP9139696 A JP 9139696A JP 3569068 B2 JP3569068 B2 JP 3569068B2
Authority
JP
Japan
Prior art keywords
injection
cavity
pressure
resin pressure
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09139696A
Other languages
Japanese (ja)
Other versions
JPH09277325A (en
Inventor
克之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP09139696A priority Critical patent/JP3569068B2/en
Publication of JPH09277325A publication Critical patent/JPH09277325A/en
Application granted granted Critical
Publication of JP3569068B2 publication Critical patent/JP3569068B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material

Description

【0001】
【発明の属する技術分野】
本発明は、射出成形機の射出制御方法および射出制御装置に関し、特にキャビティ内樹脂圧力をフィードバック量としてキャビティ内樹脂圧力が設定値に保たれるように射出充填速度を制御する型式の射出成形機の射出制御方法および射出制御装置に関するものである。
【0002】
【従来の技術】
図8は射出成形機および従来の射出制御装置を示している。射出成形機1は、バレル3と、バレル3内に回転可能に且つ前後進可能に設けられた射出スクリュ5と、射出スクリュ5を前後進駆動する射出シリンダ装置7とを有し、射出シリンダ装置7によって射出スクリュ5が前進することにより、バレル3内の溶融材料(溶融樹脂)をノズル9よりゲート11を通して成形金型のキャビティ13内に射出充填する。
【0003】
射出制御装置は、油圧・電気式のものであり、射出シリンダ装置7に対する油圧の給排を制御して射出スクリュ5を前後進およびその移動速度(射出速度)を制御する油圧ユニット21と、油圧ユニット21に指令を与えるマイクロコンピュータによる制御装置23とを有している。
【0004】
制御装置23は、スクリュ位置検出器17より射出スクリュ5の位置情報を、成形金型に組み込まれたキャビティ樹脂圧センサ19よりキャビティ内樹脂圧力情報を入力し、充填行程中におけるスクリュ位置に応じて予め設定されているキャビティ内樹脂圧力とキャビティ樹脂圧センサ19より検出された実際のキャビティ内樹脂圧力との偏差を射出速度制御系にフィードバックし、充填速度を減速制御することによりキャビティ内樹脂圧力を設定値に制御する。
【0005】
上述のように、キャビティ内樹脂圧力をフィードバック量としてキャビティ内樹脂圧力が設定値に保たれるように射出充填速度を制御する射出制御方法においては、充填行程中におけるスクリュ位置に応じて予め設定されたキャビティ内樹脂圧力に対してキャビティ内樹脂圧力の検出値が高い場合には、演算によって充填速度を自動的に下げることが行われる。これによりキャビティ内樹脂圧力の過大な上昇を抑制することができ、金型サイズの縮小・軽量化、成形機の小型化、成形品の品質向上が図られる。
【0006】
【発明が解決しようとする課題】
上述のように、キャビティ内樹脂圧力のフィードバックによって充填速度を自動減速制御のためには、キャビティ内樹脂圧力を検出するために、成形金型に樹脂圧力センサを取付ける必要がある。
【0007】
この制御を行いたい成形金型すべてに樹脂圧力センサを取付けのための加工を行うには費用がかかり、成形品形状や金型形状によっては樹脂圧力センサを成形金型の所望位置に設けることができないことがある。
【0008】
また、既存の成形金型に一部加工を施して既存の成形金型に樹脂圧力センサを取付けるのは困難なケースが多い。
【0009】
また成形金型交換の段取作業の点でも、成形金型を機械に着脱の都度、樹脂圧力センサおよびそれのの配線を着脱する必要があり、作業時間が増える。
【0010】
この発明は、上述の如き問題点に着目してなされたものであり、成形金型に樹脂圧力センサ取付けのための加工を行う手間と費用をかけずに、また成形金型交換の段取作業も複雑にしないで、キャビティ内樹脂圧力のフィードバックによる充填速度の自動減速制御を行い、キャビティ内樹脂圧力の過大な上昇を抑制することができる射出成形機の射出制御方法および射出制御装置を提供することを目的としている。
【0011】
【課題を解決するための手段】
上述の目的を達成するために、請求項1の発明は、溶融材料を射出スクリュの移動により金型キャビティ内に射出して所要の成形品を成形する射出成形機の射出制御方法において、金型キャビティ内に射出される溶融材料の基準圧力を充填行程開始からの経過時間あるいは射出スクリュの移動距離の関数として設定し、予めキャビティ内樹脂圧力と射出スクリュの駆動圧力との関係を射出速度に応じて同定して射出スクリュの駆動圧力と射出速度とからキャビティ内樹脂圧力を推定するキャビティ内樹脂圧力推定関数を決定しておき、当該キャビティ内樹脂圧力推定関数に、成型品形状情報、樹脂情報、リアルタイムで検出した射出スクリュの駆動圧力および現在射出速度を与えてキャビティ内樹脂圧力の推定値を演算によりリアルタイムで求め、当該推定値を射出速度制御系にフィードバックしてキャビティ内樹脂圧力が指定した基準圧力となるように充填速度を自動的に減速するものである。
【0012】
請求項2の発明は、請求項1に記載の射出成形機の射出制御方法において、充填速度の修正係数として基準圧力とキャビティ内樹脂圧力推定値との比のn乗倍(nは溶融材料の非ニュートン流動における粘度特性定数)の係数を用いるものである。
【0013】
請求項3の発明は、請求項1に記載の射出成形機の射出制御方法において、キャビティ内樹脂圧力センサを設けられた成形金型による射出成形時に測定したキャビティ内樹脂圧力のデータを使用して学習機能によりキャビティ内樹脂圧力推定関数を修正するものである。
【0014】
請求項4の発明は、溶融材料を射出スクリュの移動により金型キャビティ内に射出して所要の成形品を成形する射出成形機の射出制御装置において、射出スクリュの駆動圧力を検出する駆動圧力検出手段と、射出スクリュの移動による射出速度を検出する射出速度検出手段と、金型キャビティ内に射出される溶融材料の基準圧力を充填行程開始からの経過時間あるいは射出スクリュの移動距離の関数として設定され、射出スクリュの駆動圧力と射出速度とからキャビティ内樹脂圧力を推定するキャビティ内樹脂圧力推定関数を樹脂圧力演算ルーチンに内蔵し、当該キャビティ内樹脂圧力推定関数に、成型品形状情報、樹脂情報、前記駆動圧力検出手段により検出した射出スクリュの駆動圧力および前記射出速度検出手段により検出した射出速度を与えてキャビティ内樹脂圧力の推定値を演算によりリアルタイムで求め、当該推定値を射出速度制御系にフィードバックしてキャビティ内樹脂圧力が指定した基準圧力となるように充填速度を自動的に減速する演算制御装置とを有しているものである。
【0015】
これらにおいて、射出スクリュが油圧式の射出シリンダ装置によって駆動される型式のものでは、射出スクリュの駆動圧力は射出油圧になり、駆動圧力検出手段として圧力・電気変換を行う射出油圧センサが使用される。
【0016】
射出速度検出手段は、射出スクリュの位置を検出するスクリュ位置センサと、スクリュ位置センサにより検出されるスクリュ位置を変化率(微分値)を演算する演算器により構成でき、演算器は演算制御装置により構成することができる。
【0017】
この発明による射出成形機の射出制御方法および装置の概要は、キャビティ内樹脂圧力のフィードバックによる充填速度の自動減速制御において、金型キャビティに取付けた樹脂圧センサからの樹脂圧検出値の代わりに、演算制御装置のキャビティ内樹脂圧力演算ルーチンに内蔵されたキャビティ内樹脂圧力推定関数に、成型品形状情報、樹脂情報、リアルタイムで検出した射出スクリュ駆動圧力(射出油圧)および現在射出速度を与えてキャビティ内樹脂圧力の推定値を演算によりリアルタイムで求めて射出速度制御系にフィードバックしてキャビティ内樹脂圧力を指定した基準圧力になるように充填速度の自動減速制御を行い、成形金型に樹脂圧力センサを取付けなくてもキャビティ内樹脂圧力をフィードバックして充填速度の自動減速制御により、キャビティ内樹脂圧力の過大な上昇を抑制するものである。
【0018】
【発明の実施の形態】
以下に添付の図を参照してこの発明の実施の形態を詳細に説明する。なお、以下に説明するこの発明の実施の形態において上述の従来例と同一構成の部分は、上述の従来例に付した符号と同一の符号を付してその説明を省略する。
【0019】
この発明による射出成形機の射出制御装置は、従来のものと同等の油圧ユニット21およびスクリュ位置検出器17と、射出スクリュの駆動圧力検出手段として射出油圧センサ25と、演算制御装置27とを有している。
【0020】
演算制御装置27は、マイクロコンピュータにより構成され、金型キャビティ13内に射出される溶融材料の基準圧力を充填行程開始からの経過時間あるいは射出スクリュの移動距離の関数として設定され、射出スクリュの駆動圧力と射出速度とからキャビティ内樹脂圧力を推定するキャビティ内樹脂圧力推定関数を樹脂圧力演算ルーチンに内蔵し、当該キャビティ内樹脂圧力推定関数に、成型品形状情報、樹脂情報、射出油圧センサ25により検出した射出油圧、スクリュ位置検出器17により検出されるスクリュ位置の変化率を演算することにより求められた射出速度を与えてキャビティ内樹脂圧力の推定値を演算によりリアルタイムで求め、当該推定値を射出速度制御系にフィードバックしてキャビティ内樹脂圧力が指定した基準圧力となるように充填速度を自動的に減速制御する。
【0021】
キャビティ内樹脂圧力推定関数は、キャビティ内樹脂圧力と射出スクリュ5の駆動圧力との関係を射出速度に応じて同定することにより決定することができる。
【0022】
つぎに、キャビティ内樹脂圧力推定関数に、成型品形状情報、樹脂情報、射出油圧、射出速度を与えてキャビティ内樹脂圧力の推定値を演算により求めることができることについて実証する。
【0023】
(射出油圧とバレル内樹脂圧力の関係)
射出成形機の充填行程における射出シリンダ〜射出スクリュ〜バレル〜成形金型の関係は、簡略化すると、図2のモデルで表すことができる。
【0024】
一般的に、溶融樹脂の粘度は非常に大きいから、射出スクリュ5に作用する力の釣り合いは、近似的に(1)式で表すことができる。
【0025】
Pb ={Ph ・Ah −M(dx/dt)}/Ab …(1)
ここで、Pb :バレル内樹脂圧
Ph :射出油圧
Ah :射出シリンダ面積
M :射出スクリュと共に運動する部分の質量
(dx/dt):スクリュの運動の加速度
Ab :バレル断面積
(ノズル、スプルー、ランナー、キャビティにおける溶融樹脂の圧力損失)
充填行程では、溶融樹脂は、バレル→ノズル→スプルー→ランナー→ゲート→キャビティの経路で流動する。各部分の流路の断面は円形(長方形、台形等は相当直径の円形に置換)または平行隙間に近似できる。それぞれの部分を非ニュートン流動特性を示す溶融樹脂が通過する時の区間圧力損失は(2)、(3)式で表すことができる。
【0026】

Figure 0003569068
ここで、L:流路長
R:流路直径
W:流路隙間の幅寸法
h:流路隙間の高さ寸法
Q:流量
η:溶融樹脂の粘性係数
図3に円形断面の流れのモデルを、図4に平行隙間の流れのモデルを示す。
【0027】
(キャビティ内の樹脂圧力観測点の樹脂圧力の推定)
ここでは、キャビティにおける溶融樹脂の圧力損失ΔPc を樹脂圧力観測点上流側の圧力損失ΔPcuと下流側の圧力損失ΔPclに分けて考える。
【0028】
バレルの樹脂圧は、ノズル、スプルー、ランナー、キャビティにおける溶融樹脂の圧力損失の和に等しいので(1)式より、
Figure 0003569068
ここで、ΔPn :ノズル部の圧力損失
ΔPs :スプルー部の圧力損失
ΔPt :ランナー部の圧力損失
ΔPcu:キャビティの樹脂圧力観測点上流側の圧力損失
ΔPcl:キャビティの樹脂圧力観測点下流側の圧力損失
キャビティ内の樹脂圧力観測点の樹脂圧力Pa は(5)式で表すことができる。
【0029】
Figure 0003569068
ここで、Lcl、Ln 、Lcu、Rn 、Rs 、Rr 、Wcl、Wcu、hcl、hcuは、ノズル、スプルー、ランナー、キャビティの各部寸法である。
【0030】
(実機におけるキャビティ内の樹脂圧力観測点の樹脂圧力の求め方)
上述の(5)式の右辺における[Lcl/Wcl(1/n) /hcl(n+2)/n ]/[{(n+3)/(n+2)/π/2}(1/n) ・{Ln /Rn(n+3)/n+Ls /Rs (n+3)/n +Lr /Rr (n+3)/n }+{Lcu/Wcu(1/n) /hcu(n+2)/n +Lcl/Wcl(1/n) /hcl(n+2)/n }]の項は、成形金型の形状寸法Lcl、Ln 、Lcu、Rn 、Rs 、Rr 、Wcl、Wcu、hcl、hcuにより決まり、それらの値を与えることにより計算できる。
【0031】
上述の(5)式の右辺における{Ph ・Ah −M(dx/dt)}/Ab の項は、バレル内樹脂圧力であり、射出速度が速くなると、油圧作動油や油圧配管の弾性変形の影響が加わり、射出油圧と射出スクリュの運動から求める単純計算では誤差が大きくなることが知られている。
【0032】
そこで、射出速度に応じて、予め実機の射出成形中の射出油圧とバレル樹脂圧力の関係をデータ収集してキャビティ内樹脂圧力を推定する近似数字モデル(推定関数)を求めておき、成形機に設けられた射出油圧センサからの検出値を与えることで、バレル樹脂圧力を求めることができる。
【0033】
(射出油圧のフィードバックによる充填速度の自動減速制御)
推定関数に、成型品形状情報、樹脂情報、リアルタイムで検出した射出油圧および現在射出速度を与えて演算により求めたキャビティ圧力の推定値が予め設定した樹脂圧力に対して高い場合、決められた演算によって充填速度を減速する制御を行う。
【0034】
また、充填速度の修正演算として以下に示す方法が有効である。ここでは、図5に示されているように、射出工程における射出スクリュの行程を微小区間に区切り、区間内においては充填速度は一定と考える。
【0035】
一般に、溶融樹脂の流動時の粘性特性はいわゆる非ニュートン特性を示し、その剪断応力と剪断速度との関係は(6)式で近似できる。
【0036】
τ=η・(dv/dy) …(6)
ここで、τ:溶融樹脂の流動に伴う剪断応力
n,η:樹脂の粘度特性を示す定数
(dv/dy):剪断速度
樹脂の型内流動をHele−Shaw流れと仮定すると、この粘度特性を持つ溶融樹脂が型内で図6に示すように第q区間を充填が進行する時の流動方向の流動状態は、図7のようになり、流速分布および区間圧力損失は、
Figure 0003569068
ここで、
v:位置yにおける流速
h:キャビティ厚さ
y:キャビティ厚さ方向の中心からの距離
ΔP:区間圧力損失
L:区間の流動方向距離
vo :最大流速(キャビティ厚さ方向の中心での流速)
va:平均流速
(8)、(9)式より、
ΔP={(n+2)・η/(h/2)n+1 1/n ・L・va1/n …(10)
すなわち、ある成形品のある区間iに着目すると、区間圧力損失ΔPi はその区間の平均流速vai の(1/n)乗に比例する。
【0037】
ΔPi =ki ・vai 1/n …(11)
型内の第p区間にある基準点Aにおける第q区間充填時の樹脂圧力Pq は第p区間から第q区間までの区間圧力損失を合計したものである。
【0038】
【数1】
Figure 0003569068
また、第q区間充填時の射出速度Qq と各区間の平均流速vai は比例すると考えられるので、
vai =k2i ・Qq …(13)
従って、
【数2】
Figure 0003569068
すなわち、型内の第p区間にある基準点Aにおける第q区間充填時の樹脂圧力Pq は第q区間充填時の射出速度(現在の射出速度)Qq の(1/n)乗に比例する。
【0039】
上述の要領で求めたキャビティ内樹脂圧力Pcqが基準圧力Psqを超えている場合の修正射出速度をQ′q とすると、(15)式から、
Figure 0003569068
これにより、射出油圧のフィードバックによる充填速度の自動減速制御において、現在の射出速度を基準圧力と計算圧力との比のn乗倍に修正することにより効率的な射出速度の修正を行うことができる。
【0040】
また、射出油圧とキャビティ内樹脂圧力の推定関数は機械毎の固有差や特性の経年変化により少しづつ異なると考えられる。
【0041】
このことに対して成形運転において、キャビティ内に樹脂圧力センサを設けた成形金型を使用した時に得られるキャビティ内樹脂圧力測定データを使用して学習機能によりキャビティ内樹脂圧力推定関数を修正して精度を向上させることができる。
【0042】
【発明の効果】
以上の説明から理解される如く、請求項1、4による射出成形機の射出制御方法および装置においては、キャビティ内樹脂圧力を推定することで、成形金型に樹脂圧力センサ取付けのための加工を行う手間と費用をかけずに、また、成形金型交換の段取作業も複雑にすることなく、樹脂圧力のフィードバックによる充填速度の自動減速制御を行うことができ、この制御によりキャビティ内樹脂圧力を目標値以下に抑制し、金型サイズの縮小、軽量化、成形機の小型化、形成品の品質向上ができる。
【0043】
請求項2による射出成形機の射出制御方法では、充填速度の修正係数として基準圧力とキャビティ内樹脂圧力推定値との比のn乗倍(nは溶融材料の非ニュートン流動における粘度特性定数)の係数を用いることにより、充填速度の修正を効率よく行うことができる。
【0044】
請求項3による射出成形機の射出制御方法では、キャビティ内樹脂圧力センサを設けられた成形金型による射出成形時に測定したキャビティ内樹脂圧力のデータを使用して学習機能によりキャビティ内樹脂圧力推定関数を修正することにより、キャビティ内樹脂圧力推定関数を修正して精度を向上させることができる。
【図面の簡単な説明】
【図1】本発明による射出成形機の射出制御装置の一つの実施の形態を示すブロック線図である。
【図2】射出シリンダ〜スクリュ〜バレル〜成形金型の簡略化モデルを示すモデル図である。
【図3】円形断面流路における流れを示すモデル図である。
【図4】平行隙間における流れを示すモデル図である。
【図5】ある成形品の射出行程おける射出スクリュの行程と型内の溶融樹脂の充填の進行状況の対応を示す説明図である。
【図6】キャビティ内の第q区間を充填が進行する時の状態を示す説明図である。
【図7】キャビティ内の第q区間を充填が進行する時のキャビティ断面の流動状態を示す説明図である。
【図8】従来の射出成形機の射出制御装置を示す説明図である。
【符号の説明】
1 射出成形機
3 バレル
5 射出スクリュ
7 射出シリンダ装置
9 ノズル
11 ゲート
13 キャビティ
17 スクリュ位置検出器
19 キャビティ樹脂圧センサ
21 油圧ユニット
23 制御装置
25 射出油圧センサ
27 演算制御装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an injection control method and an injection control device for an injection molding machine, and more particularly to an injection molding machine of a type that controls an injection filling speed so that a resin pressure in a cavity is maintained at a set value using a resin pressure in the cavity as a feedback amount. And an injection control device.
[0002]
[Prior art]
FIG. 8 shows an injection molding machine and a conventional injection control device. The injection molding machine 1 has a barrel 3, an injection screw 5 rotatably and forwardly and backwardly provided in the barrel 3, and an injection cylinder device 7 for driving the injection screw 5 forward and backward. As the injection screw 5 moves forward by 7, the molten material (molten resin) in the barrel 3 is injected and filled into the cavity 13 of the molding die from the nozzle 9 through the gate 11.
[0003]
The injection control device is of a hydraulic / electric type, and controls a supply / discharge of hydraulic pressure to / from the injection cylinder device 7 to control the forward / backward movement of the injection screw 5 and its moving speed (injection speed); And a control device 23 by a microcomputer for giving instructions to the unit 21.
[0004]
The control device 23 inputs the position information of the injection screw 5 from the screw position detector 17 and the resin pressure information in the cavity from the cavity resin pressure sensor 19 incorporated in the molding die, and according to the screw position during the filling process. The deviation between the preset resin pressure in the cavity and the actual resin pressure in the cavity detected by the cavity resin pressure sensor 19 is fed back to the injection speed control system, and the resin pressure in the cavity is controlled by reducing the filling speed. Control to set value.
[0005]
As described above, in the injection control method of controlling the injection filling speed such that the resin pressure in the cavity is maintained at a set value using the resin pressure in the cavity as a feedback amount, the injection control method is set in advance according to the screw position during the filling process. When the detected value of the resin pressure in the cavity is higher than the resin pressure in the cavity, the filling speed is automatically reduced by calculation. As a result, an excessive increase in the resin pressure in the cavity can be suppressed, and the size and weight of the mold can be reduced, the size of the molding machine can be reduced, and the quality of the molded product can be improved.
[0006]
[Problems to be solved by the invention]
As described above, in order to perform automatic deceleration control of the filling speed by feedback of the resin pressure in the cavity, it is necessary to attach a resin pressure sensor to the molding die in order to detect the resin pressure in the cavity.
[0007]
It is expensive to perform the process for mounting the resin pressure sensor on all the molding dies to be controlled, and depending on the shape of the molded product and the shape of the mold, it is necessary to provide the resin pressure sensor at a desired position of the molding die. There are things you can't do.
[0008]
In addition, it is often difficult to partially process an existing molding die and attach a resin pressure sensor to the existing molding die.
[0009]
Also, in terms of the setup operation for exchanging the molding die, it is necessary to attach and detach the resin pressure sensor and its wiring every time the molding die is attached to and detached from the machine, which increases the operation time.
[0010]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and does not require the labor and cost for processing for mounting a resin pressure sensor on a molding die, and also requires a setup operation for exchanging a molding die. In addition, the present invention provides an injection control method and an injection control device for an injection molding machine capable of performing automatic deceleration control of a filling speed by feedback of a resin pressure in a cavity and suppressing an excessive increase in a resin pressure in a cavity without complicating the structure. It is aimed at.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is directed to an injection control method for an injection molding machine for molding a required molded product by injecting a molten material into a mold cavity by moving an injection screw. The reference pressure of the molten material injected into the cavity is set as a function of the elapsed time from the start of the filling process or the function of the travel distance of the injection screw, and the relationship between the resin pressure in the cavity and the drive pressure of the injection screw is determined in advance according to the injection speed. A resin pressure estimation function in the cavity for estimating the resin pressure in the cavity from the drive pressure and the injection speed of the injection screw and determining the injection pressure is determined in advance, and the resin pressure estimation function in the cavity includes molded product shape information, resin information, Given the injection screw driving pressure and the current injection speed detected in real time, the estimated value of the resin pressure in the cavity is calculated in real time by calculating Because, in which by feeding back the estimate to the injection speed control system for automatically decelerating the filling rate so that the reference pressure cavity resin pressure specified.
[0012]
According to a second aspect of the present invention, in the injection control method for an injection molding machine according to the first aspect, the correction factor of the filling speed is an n-th power of the ratio between the reference pressure and the estimated value of the resin pressure in the cavity (n is the molten material). The coefficient of viscosity characteristic constant in non-Newtonian flow) is used.
[0013]
According to a third aspect of the present invention, in the injection control method for an injection molding machine according to the first aspect, data of the resin pressure in the cavity measured at the time of injection molding by a molding die provided with the resin pressure sensor in the cavity is used. The function for estimating the resin pressure in the cavity is corrected by the learning function.
[0014]
According to a fourth aspect of the present invention, in an injection control device of an injection molding machine for molding a required molded product by injecting a molten material into a mold cavity by moving an injection screw, a driving pressure detection for detecting a driving pressure of the injection screw. Means, an injection speed detecting means for detecting an injection speed due to the movement of the injection screw, and setting a reference pressure of the molten material injected into the mold cavity as a function of a time elapsed from the start of the filling process or a movement distance of the injection screw. A resin pressure estimation function in the cavity for estimating the resin pressure in the cavity from the driving pressure and the injection speed of the injection screw is incorporated in the resin pressure calculation routine, and the resin pressure estimation function in the cavity contains molded product shape information and resin information. The driving pressure of the injection screw detected by the driving pressure detecting means and the injection speed detected by the injection speed detecting means. And the estimated value of the resin pressure in the cavity is calculated in real time by calculation, and the estimated value is fed back to the injection speed control system to automatically reduce the filling speed so that the resin pressure in the cavity becomes the specified reference pressure. And an arithmetic and control unit.
[0015]
In these, in the type in which the injection screw is driven by a hydraulic injection cylinder device, the driving pressure of the injection screw becomes the injection oil pressure, and an injection oil pressure sensor that performs pressure-electric conversion is used as the drive pressure detecting means. .
[0016]
The injection speed detecting means can be constituted by a screw position sensor for detecting the position of the injection screw, and a calculator for calculating the rate of change (differential value) of the screw position detected by the screw position sensor. Can be configured.
[0017]
The outline of the injection control method and apparatus of the injection molding machine according to the present invention is that, in the automatic deceleration control of the filling speed by the feedback of the resin pressure in the cavity, instead of the resin pressure detection value from the resin pressure sensor attached to the mold cavity, The molded resin shape estimation function built into the in-cavity resin pressure calculation routine of the arithmetic and control unit is provided with molded product shape information, resin information, the injection screw driving pressure (injection oil pressure) detected in real time, and the current injection speed. An estimated value of the internal resin pressure is obtained in real time by calculation and fed back to the injection speed control system to perform automatic deceleration control of the filling speed so that the resin pressure in the cavity becomes the specified reference pressure, and a resin pressure sensor on the molding die Automatically decelerates filling speed by feeding back resin pressure in cavity without installing The control is intended to suppress the excessive rise in the cavity resin pressure.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the embodiments of the present invention described below, the same components as those of the above-described conventional example are denoted by the same reference numerals as those of the above-described conventional example, and description thereof will be omitted.
[0019]
The injection control device for an injection molding machine according to the present invention has a hydraulic unit 21 and a screw position detector 17 equivalent to those of the prior art, an injection hydraulic sensor 25 as a driving pressure detecting means for the injection screw, and a calculation control device 27. are doing.
[0020]
The arithmetic and control unit 27 is configured by a microcomputer, and sets the reference pressure of the molten material injected into the mold cavity 13 as a function of the elapsed time from the start of the filling process or a function of the moving distance of the injection screw, and drives the injection screw. The in-cavity resin pressure estimation function for estimating the in-cavity resin pressure from the pressure and the injection speed is incorporated in the resin pressure calculation routine. The in-cavity resin pressure estimation function includes molded product shape information, resin information, and an injection oil pressure sensor 25. By giving the injection speed determined by calculating the detected injection oil pressure and the change rate of the screw position detected by the screw position detector 17, an estimated value of the resin pressure in the cavity is calculated in real time, and the estimated value is calculated. Reference pressure specified by resin pressure in cavity as feedback to injection speed control system Automatically deceleration control the filling rate so.
[0021]
The intra-cavity resin pressure estimation function can be determined by identifying the relationship between the intra-cavity resin pressure and the driving pressure of the injection screw 5 according to the injection speed.
[0022]
Next, it is demonstrated that an estimated value of the resin pressure in the cavity can be obtained by calculation by giving the molded product shape information, the resin information, the injection oil pressure, and the injection speed to the intracavity resin pressure estimation function.
[0023]
(Relationship between injection oil pressure and resin pressure in barrel)
The relationship between the injection cylinder, the injection screw, the barrel, and the molding die in the filling process of the injection molding machine can be represented by a model in FIG.
[0024]
Generally, since the viscosity of the molten resin is very large, the balance of the forces acting on the injection screw 5 can be approximately expressed by the equation (1).
[0025]
Pb = {Ph · Ah−M (dx 2 / dt 2 )} / Ab (1)
Here, Pb: resin pressure in the barrel Ph: injection oil pressure Ah: injection cylinder area M: mass of a part that moves with the injection screw (dx 2 / dt 2 ): acceleration of screw movement Ab: barrel cross-sectional area (nozzle, sprue) Pressure loss of molten resin in, runner and cavity)
In the filling process, the molten resin flows through a route of a barrel, a nozzle, a sprue, a runner, a gate, and a cavity. The cross section of the flow path in each part can be approximated to a circular shape (rectangular, trapezoidal, etc. are replaced by a circle of an equivalent diameter) or a parallel gap. The section pressure loss when the molten resin having the non-Newtonian flow characteristic passes through each part can be expressed by equations (2) and (3).
[0026]
Figure 0003569068
Here, L: flow path length R: flow path diameter W: width dimension of flow path gap h: height dimension of flow path gap Q: flow rate η: viscosity coefficient of molten resin FIG. FIG. 4 shows a model of the flow in the parallel gap.
[0027]
(Estimation of resin pressure at resin pressure observation point in cavity)
Here, the pressure loss ΔPc of the molten resin in the cavity is divided into a pressure loss ΔPcu on the upstream side of the resin pressure observation point and a pressure loss ΔPcl on the downstream side.
[0028]
Since the resin pressure in the barrel is equal to the sum of the pressure loss of the molten resin in the nozzle, sprue, runner, and cavity, from equation (1),
Figure 0003569068
Here, ΔPn: pressure loss of the nozzle portion ΔPs: pressure loss of the sprue portion ΔPt: pressure loss of the runner portion ΔPcu: pressure loss on the upstream side of the resin pressure observation point of the cavity ΔPcl: pressure loss on the downstream side of the resin pressure observation point of the cavity The resin pressure Pa at the resin pressure observation point in the cavity can be expressed by equation (5).
[0029]
Figure 0003569068
Here, Lcl, Ln, Lcu, Rn, Rs, Rr, Wcl, Wcu, hcl, hcu are the dimensions of the nozzle, sprue, runner, and cavity.
[0030]
(How to find the resin pressure at the resin pressure observation point in the cavity in the actual machine)
[Lcl / Wcl (1 / n) / hcl (n + 2) / n ] / [{(n + 3) / (n + 2) / π / 2} (1 / n) {Ln / on the right side of the above equation (5) Rn ( n + 3) / n + Ls / Rs (n + 3) / n + Lr / Rr (n + 3) / n } + {Lcu / Wcu (1 / n) / hcu (n + 2) / n + Lcl / Wcl (1 / n) / hcl (N + 2) / n }] is determined by the shape dimensions Lcl, Ln, Lcu, Rn, Rs, Rr, Wcl, Wcu, hcl, and hcu of the molding die, and can be calculated by giving those values.
[0031]
The term {Ph · Ah−M (dx 2 / dt 2 )} / Ab on the right side of the above equation (5) is the resin pressure in the barrel, and when the injection speed increases, the elasticity of the hydraulic oil or the hydraulic piping increases. It is known that the influence of the deformation is increased, and the simple calculation obtained from the injection oil pressure and the movement of the injection screw increases an error.
[0032]
Therefore, an approximate numerical model (estimation function) for estimating the resin pressure in the cavity by collecting data on the relationship between the injection oil pressure and the barrel resin pressure during the injection molding of the actual machine in advance in accordance with the injection speed is obtained. The barrel resin pressure can be obtained by giving a detection value from the provided injection oil pressure sensor.
[0033]
(Automatic deceleration control of filling speed by feedback of injection oil pressure)
If the estimated value of the cavity pressure obtained by calculation by giving the molded product shape information, resin information, the injection oil pressure detected in real time and the current injection speed to the estimation function is higher than the preset resin pressure, the determined calculation Control to reduce the filling speed.
[0034]
Further, the following method is effective as a correction operation of the filling speed. Here, as shown in FIG. 5, the stroke of the injection screw in the injection step is divided into minute sections, and it is considered that the filling speed is constant in the section.
[0035]
Generally, the viscosity characteristics of a molten resin during flow show so-called non-Newtonian characteristics, and the relationship between the shear stress and the shear rate can be approximated by equation (6).
[0036]
τ n = η · (dv / dy) (6)
Here, τ: shear stress caused by the flow of the molten resin n, η: constant (dv / dy) indicating the viscosity characteristics of the resin: shear rate Assuming that the flow in the mold of the resin is a Hele-Shaw flow, the viscosity characteristics are The flow state in the flow direction when the filling of the molten resin in the mold proceeds in the q-th section in the mold as shown in FIG. 6 is as shown in FIG. 7, and the flow velocity distribution and the section pressure loss are as follows.
Figure 0003569068
here,
v: Flow velocity at the position y h: Cavity thickness y: Distance from the center in the cavity thickness direction ΔP: Section pressure loss L: Distance in the flow direction of the section vo: Maximum flow velocity (flow velocity at the center in the cavity thickness direction)
va: average flow velocity From equations (8) and (9),
ΔP = {(n + 2) · η / (h / 2) n + 1 1 / 1 / n · L · va 1 / n (10)
That is, focusing on a certain section i of a certain molded product, the section pressure loss ΔPi is proportional to the (1 / n) power of the average flow rate vai in the section.
[0037]
ΔPi = ki · vai 1 / n (11)
The resin pressure Pq at the time of filling the qth section at the reference point A in the pth section in the mold is the sum of the section pressure losses from the pth section to the qth section.
[0038]
(Equation 1)
Figure 0003569068
In addition, since the injection speed Qq at the time of filling the qth section and the average flow velocity vai in each section are considered to be proportional,
vai = k2i · Qq (13)
Therefore,
(Equation 2)
Figure 0003569068
That is, the resin pressure Pq at the time of filling the qth section at the reference point A in the pth section of the mold is proportional to the (1 / n) th power of the injection speed (current injection speed) Qq at the time of filling the qth section.
[0039]
Assuming that the corrected injection speed when the in-cavity resin pressure Pcq obtained in the above manner exceeds the reference pressure Psq is Q′q, from the equation (15),
Figure 0003569068
Thus, in the automatic deceleration control of the filling speed by the feedback of the injection oil pressure, the injection speed can be efficiently corrected by correcting the current injection speed to the nth multiple of the ratio between the reference pressure and the calculated pressure. .
[0040]
Further, it is considered that the function of estimating the injection hydraulic pressure and the resin pressure in the cavity slightly changes due to the inherent difference of each machine and the secular change of characteristics.
[0041]
On the other hand, in the molding operation, the in-cavity resin pressure estimation function is corrected by a learning function using the in-cavity resin pressure measurement data obtained when a molding die having a resin pressure sensor in the cavity is used. Accuracy can be improved.
[0042]
【The invention's effect】
As can be understood from the above description, in the injection control method and apparatus of the injection molding machine according to claims 1 and 4, the processing for mounting the resin pressure sensor on the molding die is performed by estimating the resin pressure in the cavity. It is possible to perform automatic deceleration control of the filling speed by feedback of the resin pressure without increasing the labor and cost of performing the process and without complicating the setup work for changing the molding die. Can be suppressed to a target value or less, and the mold size and weight can be reduced, the molding machine can be downsized, and the quality of the formed product can be improved.
[0043]
In the injection control method for an injection molding machine according to the second aspect, the correction factor of the filling speed is n times the ratio between the reference pressure and the estimated value of the resin pressure in the cavity (n is a viscosity characteristic constant in the non-Newtonian flow of the molten material). By using the coefficient, the filling speed can be corrected efficiently.
[0044]
In the injection control method of the injection molding machine according to the third aspect, the function of estimating the resin pressure in the cavity by the learning function using the data of the resin pressure in the cavity measured at the time of injection molding by the molding die provided with the resin pressure sensor in the cavity. Is corrected, the function of estimating the resin pressure in the cavity can be corrected to improve the accuracy.
[Brief description of the drawings]
FIG. 1 is a block diagram showing one embodiment of an injection control device of an injection molding machine according to the present invention.
FIG. 2 is a model diagram showing a simplified model of an injection cylinder, a screw, a barrel, and a molding die.
FIG. 3 is a model diagram showing a flow in a circular sectional flow path.
FIG. 4 is a model diagram showing a flow in a parallel gap.
FIG. 5 is an explanatory diagram showing a correspondence between a stroke of an injection screw and a progress of filling of a molten resin in a mold in an injection stroke of a certain molded product.
FIG. 6 is an explanatory diagram showing a state when filling progresses in a q-th section in a cavity.
FIG. 7 is an explanatory diagram showing a flow state of a cavity cross section when filling progresses in a q-th section in the cavity.
FIG. 8 is an explanatory view showing an injection control device of a conventional injection molding machine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Injection molding machine 3 Barrel 5 Injection screw 7 Injection cylinder device 9 Nozzle 11 Gate 13 Cavity 17 Screw position detector 19 Cavity resin pressure sensor 21 Hydraulic unit 23 Control device 25 Injection hydraulic sensor 27 Arithmetic control device

Claims (4)

溶融材料を射出スクリュの移動により金型キャビティ内に射出して所要の成形品を成形する射出成形機の射出制御方法において、
金型キャビティ内に射出される溶融材料の基準圧力を充填行程開始からの経過時間あるいは射出スクリュの移動距離の関数として設定し、予めキャビティ内樹脂圧力と射出スクリュの駆動圧力との関係を射出速度に応じて同定して射出スクリュの駆動圧力と射出速度とからキャビティ内樹脂圧力を推定するキャビティ内樹脂圧力推定関数を決定しておき、当該キャビティ内樹脂圧力推定関数に、成型品形状情報、樹脂情報、リアルタイムで検出した射出スクリュの駆動圧力および現在射出速度を与えてキャビティ内樹脂圧力の推定値を演算によりリアルタイムで求め、当該推定値を射出速度制御系にフィードバックしてキャビティ内樹脂圧力が指定した基準圧力となるように充填速度を自動的に減速することを特徴とする射出成形機の射出制御方法。
In an injection control method of an injection molding machine for injecting a molten material into a mold cavity by moving an injection screw to form a required molded product,
The reference pressure of the molten material injected into the mold cavity is set as a function of the elapsed time from the start of the filling process or the function of the travel distance of the injection screw, and the relationship between the resin pressure in the cavity and the drive pressure of the injection screw is determined in advance. The in-cavity resin pressure estimation function for identifying and estimating the intra-cavity resin pressure from the driving pressure and the injection speed of the injection screw is determined in accordance with the following. Given the information, the injection screw drive pressure detected in real time and the current injection speed, an estimated value of the resin pressure in the cavity is calculated in real time by calculation, and the estimated value is fed back to the injection speed control system to specify the resin pressure in the cavity. The injection control of an injection molding machine, characterized in that the filling speed is automatically reduced so as to reach the specified reference pressure. Method.
請求項1に記載の射出成形機の射出制御方法において、
充填速度の修正係数として基準圧力とキャビティ内樹脂圧力推定値との比のn乗倍(nは溶融材料の非ニュートン流動における粘度特性定数)の係数を用いることを特徴とする射出成形機の射出制御方法。
The injection control method for an injection molding machine according to claim 1,
Injection of an injection molding machine characterized by using a coefficient of the nth power (n is a viscosity characteristic constant in non-Newtonian flow of a molten material) of the ratio of the reference pressure to the estimated value of the resin pressure in the cavity as a correction coefficient of the filling speed. Control method.
請求項1に記載の射出成形機の射出制御方法において、
キャビティ内樹脂圧力センサを設けられた成形金型による射出成形時に測定したキャビティ内樹脂圧力のデータを使用して学習機能によりキャビティ内樹脂圧力推定関数を修正することを特徴とする射出成形機の射出制御方法。
The injection control method for an injection molding machine according to claim 1,
Injection of an injection molding machine, wherein a function for estimating a resin pressure in a cavity is corrected by a learning function using data of a resin pressure in a cavity measured during injection molding by a molding die provided with a resin pressure sensor in a cavity. Control method.
溶融材料を射出スクリュの移動により金型キャビティ内に射出して所要の成形品を成形する射出成形機の射出制御装置において、
射出スクリュの駆動圧力を検出する駆動圧力検出手段と、
射出スクリュの移動による射出速度を検出する射出速度検出手段と、
金型キャビティ内に射出される溶融材料の基準圧力を充填行程開始からの経過時間あるいは射出スクリュの移動距離の関数として設定され、射出スクリュの駆動圧力と射出速度とからキャビティ内樹脂圧力を推定するキャビティ内樹脂圧力推定関数を樹脂圧力演算ルーチンに内蔵し、当該キャビティ内樹脂圧力推定関数に、成型品形状情報、樹脂情報、前記駆動圧力検出手段により検出した射出スクリュの駆動圧力および前記射出速度検出手段により検出した射出速度を与えてキャビティ内樹脂圧力の推定値を演算によりリアルタイムで求め、当該推定値を射出速度制御系にフィードバックしてキャビティ内樹脂圧力が指定した基準圧力となるように充填速度を自動的に減速する演算制御装置と、
を有していることを特徴とする射出成形機の射出制御装置。
In an injection control device of an injection molding machine that injects a molten material into a mold cavity by moving an injection screw to form a required molded product,
Driving pressure detecting means for detecting a driving pressure of the injection screw,
Injection speed detecting means for detecting an injection speed due to movement of the injection screw,
The reference pressure of the molten material injected into the mold cavity is set as a function of the elapsed time from the start of the filling process or the moving distance of the injection screw, and the resin pressure in the cavity is estimated from the driving pressure and the injection speed of the injection screw. The in-cavity resin pressure estimation function is incorporated in the resin pressure calculation routine. The in-cavity resin pressure estimation function includes molded product shape information, resin information, the drive pressure of the injection screw detected by the drive pressure detection means, and the detection of the injection speed. The injection speed detected by the means is given, the estimated value of the resin pressure in the cavity is calculated in real time by calculation, and the estimated value is fed back to the injection speed control system so that the resin pressure in the cavity becomes the specified reference pressure. An arithmetic and control unit that automatically decelerates
An injection control device for an injection molding machine, comprising:
JP09139696A 1996-04-12 1996-04-12 Injection control method and apparatus for injection molding machine Expired - Lifetime JP3569068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09139696A JP3569068B2 (en) 1996-04-12 1996-04-12 Injection control method and apparatus for injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09139696A JP3569068B2 (en) 1996-04-12 1996-04-12 Injection control method and apparatus for injection molding machine

Publications (2)

Publication Number Publication Date
JPH09277325A JPH09277325A (en) 1997-10-28
JP3569068B2 true JP3569068B2 (en) 2004-09-22

Family

ID=14025230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09139696A Expired - Lifetime JP3569068B2 (en) 1996-04-12 1996-04-12 Injection control method and apparatus for injection molding machine

Country Status (1)

Country Link
JP (1) JP3569068B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9759357B2 (en) 2011-06-16 2017-09-12 Packsys Global (Switzerland) Ltd. Method for producing tubular bodies for packaging tubes, and a packaging tube

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060145379A1 (en) 2003-09-17 2006-07-06 Yoshinori Okazaki Method and device for pressure control of electric injection molding machine
JP2010247430A (en) * 2009-04-15 2010-11-04 Polyplastics Co Method for determining presence of jetting phenomenon occurrence
JP4589460B1 (en) 2009-05-18 2010-12-01 則之 赤坂 Pressure control device and pressure control method for electric injection molding machine
JP6169633B2 (en) * 2015-03-04 2017-07-26 ファナック株式会社 Pressure control device for injection molding machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9759357B2 (en) 2011-06-16 2017-09-12 Packsys Global (Switzerland) Ltd. Method for producing tubular bodies for packaging tubes, and a packaging tube

Also Published As

Publication number Publication date
JPH09277325A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
EP1612027B1 (en) Method of controlling injection molding machine
JP3794252B2 (en) Electric injection molding machine and injection control method for electric injection molding machine
JP3506800B2 (en) Injection control method and apparatus for die casting machine
EP2000281B1 (en) Injection molding machine
JPH0379325A (en) Automatic greasing method for injection molding machine
US6325954B1 (en) Method of controlling electric injection unit of injection molding machine
JPH07186231A (en) Method for automatically setting condition of injection molding velocity in injection molding machine
JP3569068B2 (en) Injection control method and apparatus for injection molding machine
JPH0911288A (en) Method for automatically setting injection molding speed condition for injection molding machine
JP2008516794A (en) Method for operating an injection molding machine
JP2001347550A (en) Method for controlling screw position in rapid injection and rapid pressure release
JP2880247B2 (en) Method and apparatus for controlling degassing of die casting mold
KR100710728B1 (en) Injection-molding machine and method of controlling injection-molding machine
JP5727536B2 (en) Control device for injection molding machine having temperature management function of force transmission part
EP2017061A1 (en) Injection molding machine with check ring closure determining means
JP3648083B2 (en) Control method of injection molding machine
JP3897397B2 (en) Injection speed control device for injection molding machine
JP4389165B2 (en) Die-casting injection speed setting method
JP4592868B2 (en) Die-casting machine injection control device and injection control method
JP2763798B2 (en) Detection method of fluctuation of injection speed in die casting machine
JPS6158286B2 (en)
JPS59111828A (en) Automatic setting method for injection speed of injection molding machine
JP3257767B2 (en) Injection speed control device for injection molding machine
JP3797785B2 (en) Injection speed control method and injection speed control device for injection molding machine
JPH04172165A (en) Method for controlling injection in die casting machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

EXPY Cancellation because of completion of term