JP3568471B2 - Vertical displacement difference measuring device between two points - Google Patents

Vertical displacement difference measuring device between two points Download PDF

Info

Publication number
JP3568471B2
JP3568471B2 JP2000309398A JP2000309398A JP3568471B2 JP 3568471 B2 JP3568471 B2 JP 3568471B2 JP 2000309398 A JP2000309398 A JP 2000309398A JP 2000309398 A JP2000309398 A JP 2000309398A JP 3568471 B2 JP3568471 B2 JP 3568471B2
Authority
JP
Japan
Prior art keywords
optical fiber
difference
point
pair
vertical displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000309398A
Other languages
Japanese (ja)
Other versions
JP2002116009A (en
Inventor
万寿男 門
知也 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP2000309398A priority Critical patent/JP3568471B2/en
Publication of JP2002116009A publication Critical patent/JP2002116009A/en
Application granted granted Critical
Publication of JP3568471B2 publication Critical patent/JP3568471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水平方向に離間した2点の鉛直方向の変位の差を測定する装置に関する。
【0002】
【従来の技術】
多くの部位が水平方向に大きく離間して配置されている巨大構造物の場合に、例えば、不均等な地盤沈下等によって、各部位が初期の据え付け高さ位置に対して異なる変位をすると、各部位間を連結する部材に過大な応力が作用して亀裂が入ったり、それが原因となって事故が発生したりすることがある。そこで、このような変位の差を経時的に監視することが必要である。それに対して従来は、例えば、水管式や差圧式の変位計が利用されてきた。
【0003】
【発明が解決しようとする課題】
しかしながら、これらの変位計は基準点と測定点の間に水管を通して配置することが必要であり、両点の水位の差を計測することから自動計測は難しく、長期間連続的な監視を行うには適していない。
本発明は、上記問題に鑑み、水平方向に離間した2点間の鉛直方向の変位の差を連続的に監視できる監視装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
請求項1の発明によれば、水平方向に離間した2点の鉛直方向の変位の差を測定する2点間鉛直変位差測定装置であって、
互いにヒンジ結合され第1の点と第2の点の間に配設された複数の水平方向に延伸する水平梁と、
各ヒンジ部の両側の隣り合う水平梁の各端部に配設される一対の互いに略平行に略鉛直方向に延伸する一対の鉛直梁と、
該一対の鉛直梁に異なる2つの高さで略水平方向に架橋配置される一対の光ファイバーセンサーと、
該一対の光ファイバーセンサーの内の、一方の光ファイバーセンサーの初期据え付け状態からの伸縮偏差と、他方の光ファイバーセンサーの初期据え付け状態からの伸縮偏差と、該一対の光ファイバーセンサーの高さの差から傾斜を算出し、該傾斜と水平梁の長さから各水平梁の第1の点側の端部に対する第2の点側の端部の鉛直方向の変位を算出し、各水平梁の鉛直方向の変位を合算して、第1の点に対する第2の点の鉛直変位の差を算出する演算手段と、
を具備することを特徴とする2点間鉛直変位差測定装置が提供される。
【0005】
このように構成された鉛直変位測定装置では、第1の点と第2の点が互いにヒンジ結合された複数の略水平方向に延伸する水平梁で連結され、各ヒンジ部の両側の隣り合う水平梁の各端部に互いに略平行に略鉛直方向に延伸する一対の鉛直梁が立設され、該一対の鉛直梁に異なる2つの高さに一対の光ファイバーセンサーが略水平方向に架橋配置され、演算手段が該一対の光ファイバーセンサーの内の、一方の光ファイバーセンサーの初期据え付け状態からの伸縮偏差と、他方の光ファイバーセンサーの初期据え付け状態からの伸縮偏差と、該一対の光ファイバーセンサーの高さの差から傾斜を算出し、該傾斜と水平梁の長さから各水平梁の第1の点側の端部に対する第2の点側の端部の鉛直方向の変位を算出し、各水平梁の鉛直方向の変位を合算して、第1の点に対する第2の点の鉛直変位の差を算出する。
【0006】
請求項2の発明によれば、請求項1の発明において、
水平梁の個数をn、
各水平梁のヒンジ間の長さをL
各一対の光ファイバーセンサーの上側のものが検出した伸縮変位をd
各一対の光ファイバーセンサーの下側のものが検出した伸縮変位をe
各一対の光ファイバーセンサーの高さの差をh、としたときに、
鉛直変位Sを以下の式でもとめるようにした2点間鉛直変位差測定装置が提供される、

Figure 0003568471
【0007】
請求項3の発明によれば、請求項1の発明において、演算手段の演算したデータを送信する送信手段と、
送信手段の送信したデータを遠隔地で受信して記録する監視装置を含む2点間鉛直変位差測定装置が提供される。
このように構成された装置によれば、2点間鉛直変位差を遠隔地で監視できる。
【0008】
【発明の実施の形態】
以下、添付の図面を参照して本発明の実施の形態を説明する。
第1架台10と第2架台20が離間配置され、その間には中間架台30が配設されている。第1架台10の上には第1構造物11が固定され、第2架台20の上には第2構造物21が固定されている。第1架台10、第2架台20には、それぞれ、ブラケット12、22を介して、第1蝶番部材41、第2蝶番部材42の図示しない2つの可動片の1つが取り付けられている。中間架台30にはブラケット32を介して第3蝶番部材43の図示しない3つの可動片の1つが取り付けられている。
【0009】
第1水平梁110の右端が補助部材111を介して第1蝶番部材41の他方の可動片に取り付けられており、第1水平梁110の左端が補助部材112を介して第3蝶番部材43の1つの可動片に取り付けられている。同様に、第2水平梁120の右端が補助部材121を介して第3蝶番部材43の1つの可動片に取り付けられており、第2水平梁120の左端が補助部材122を介して第2蝶番部材42の他方の可動片に取り付けられている。
また、第1鉛直梁210がブラケット12の上面に、第2鉛直梁220が第1水平梁110の右端の上面に、第3鉛直梁230が第1水平梁110の左端の上面に、第4鉛直梁240が第2水平梁120の右端の上面に立設されている。
【0010】
そして、第1鉛直梁210と第2鉛直梁220の上部の間に第1上側光ファイバーセンサー311が架橋配置され、ブラケット12と第1水平梁110の右端の間に第1下側光ファイバーセンサー312が架橋配置されており、また、第3鉛直梁230と第4鉛直梁240の上部の間に第2上側光ファイバーセンサー321が架橋配置され、第1水平梁110の左端と第2水平梁120の右端の間に第2下側光ファイバーセンサー322が架橋配置されている。
【0011】
各光ファイバーセンサーの入射端部には光入射ケーブルを介して測定ユニット400の発光器(図示せず)の発光した光が入射され、出射者端部から再び測定ユニット400の受光器(図示せず)に戻るようにされている。測定ユニット400の演算器410は入射光強度に対する出射光強度の比、すなわち、減衰比から各光ファイバーセンサーは両端の取り付け点間の初期据え付け状態からの伸縮を演算する。演算結果は、測定ユニット内の送信器420から遠隔配置された監視センタ500の受信器510へ、電話回線等の通信手段によって送られ、監視センタ500内の記録器520に記録される。
なお、図1において光入射ケーブルと光出射ケーブルはまとめて参照符号350で示されている。
【0012】
以下、図2を参照して第1構造物11と第2構造物21の、鉛直変位の測定の原理について説明する。
図2において、Pは第1蝶番部材41の回転軸中心であり、Pは第3蝶番部材43の回転軸中心であり、Pは第2蝶番部材42の回転軸中心である。
点Pの点Pに対する鉛直方向の変位Sは据え付け時のPとPの距離をL、変位後のPとPを結ぶ直線の水平線に対する傾きをθとすると近似的にはS=L×tanθである。
【0013】
前記θは第1鉛直梁210と第2鉛直梁220の挟む角度をθ’に等しい。ここで、第1上側光ファイバーセンサー311の伸びと第1下側光ファイバーセンサー312の伸びの差をΔとし、第1上側光ファイバーセンサー311と第1下側光ファイバーセンサー312の高さ方向の差をhとすると、近似的にはtanθ’=Δ/hである。そして、上側光ファイバーセンサー311の変位をd,第1下側光ファイバーセンサー312の変位をeとすると、Δ=d−eである。
したがって、tanθ=tanθ’=(d−e)/hであり、
=L×{(d−e)/h}である。
以上が、P0に対するP1の鉛直方向の変位差を求める方法である。
【0014】
上記の方法にならい、以下、最終目的である、Pに対するPの鉛直方向の変位差をもとめる。
点Pの点Pに対する鉛直方向の変位Sは、PとPの距離をLとした時に、L+Lが水平に対してθで傾いたことによる変位S02と、LがL+Lに対してθで傾いたことによる変位S12の和である。
02=(L+L)×{(d−e)/h}である。
また、S12=L×tanθであって、θはθをもとめたのと同様にして、(d−e)/hとあらわすことができるので、
12=L×(d−e)/hである。
したがって、S=S02+S12=(L+L)×{(d−e)/h}+L×(d−e)/h
である。
【0015】
上記においてLとLは既知の値であり、hの値も既知である。また、P点の第1構造物11の基準高さ位置、例えば、第1架台10の上面の高さ位置に対する高さの差も既知であり、各光ファイバーセンサーの検出した変位から第1構造物11に対する第2構造物21の鉛直変位を求めることが可能である。
【0016】
同様にして、水平梁がn個の場合の鉛直変位Sは、以下のようにあらわすことができる。
Figure 0003568471
【0017】
【発明の効果】
各請求項に記載の発明は、水平方向に離間した2点の鉛直方向の変位の差を測定する2点間鉛直変位差測定装置であるが、互いにヒンジ結合され第1の点と第2の点の間に配設された複数の水平方向に延伸する水平梁と、各ヒンジ部の両側の隣り合う水平梁の各端部に配設される一対の互いに略平行に略鉛直方向に延伸する一対の鉛直梁と、該一対の鉛直梁に異なる2つの高さで略水平方向に架橋配置される一対の光ファイバーセンサーと、該一対の光ファイバーセンサーの内の、一方の光ファイバーセンサーの初期据え付け状態からの伸縮偏差と、他方の光ファイバーセンサーの初期据え付け状態からの伸縮偏差と、該一対の光ファイバーセンサーの高さの差から傾斜を算出し、該傾斜と水平梁の長さから各水平梁の第1の点側の端部に対する第2の点側の端部の鉛直方向の変位を算出し、各水平梁の鉛直方向の変位を合算して、第1の点に対する第2の点の鉛直変位の差を算出する演算手段と、を具備している。光ファイバーセンサーを使用しているので外部環境の影響を受けにくく長期にわたり安定して計測をおこなうことができる。また、中間のヒンジ結合点の変位をもとめることもできる。
特に、請求項3のように、演算手段の演算したデータを送信する送信手段と、送信手段の送信したデータを遠隔地で受信して記録する監視装置を備えれば、2点間鉛直変位差を遠隔地で監視できる。
【図面の簡単な説明】
【図1】本発明の実施の形態の構成を説明する図である。
【図2】本発明の鉛直変位差の演算方法を説明する図である。
【符号の説明】
10…第1架台
11…第1構造物
20…第2架台
21…第2構造物
30…中間架台
41、42,43…ヒンジ部材
110…第1水平梁
120…第2水平梁
210、220、230、240…第1、2、3、4鉛直梁
311…第1上側光ファイバーセンサー
312…第1下側光ファイバーセンサー
321…第2上側光ファイバーセンサー
322…第2下側光ファイバーセンサー
400…測定ユニット[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for measuring a difference between vertical displacements of two horizontally separated points.
[0002]
[Prior art]
In the case of a huge structure in which many parts are arranged largely apart in the horizontal direction, for example, if each part is displaced differently from the initial installation height position due to uneven land subsidence, etc. Excessive stress may act on the members connecting the parts, causing cracks, or accidents resulting from the cracks. Therefore, it is necessary to monitor such a difference in displacement over time. On the other hand, conventionally, for example, a displacement meter of a water tube type or a differential pressure type has been used.
[0003]
[Problems to be solved by the invention]
However, these displacement gauges need to be placed through a water pipe between the reference point and the measurement point, and measuring the difference in water level between the two points makes automatic measurement difficult. Is not suitable.
The present invention has been made in view of the above problems, and has as its object to provide a monitoring device that can continuously monitor a difference in vertical displacement between two horizontally separated points.
[0004]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided a two-point vertical displacement difference measuring apparatus for measuring a difference in displacement in a vertical direction between two points separated in a horizontal direction,
A plurality of horizontally extending horizontal beams hinged to each other and disposed between the first point and the second point;
A pair of vertical beams extending in a substantially vertical direction substantially parallel to each other and disposed at each end of an adjacent horizontal beam on both sides of each hinge portion,
A pair of optical fiber sensors arranged in a substantially horizontal direction at two different heights on the pair of vertical beams,
Of the pair of optical fiber sensors, the inclination is calculated from the difference in expansion and contraction of one optical fiber sensor from the initial installation state, the expansion and contraction deviation of the other optical fiber sensor from the initial installation state, and the difference in height between the pair of optical fiber sensors. Calculating the vertical displacement of the second point end of the horizontal beam relative to the first point end of the horizontal beam from the inclination and the length of the horizontal beam, and calculating the vertical displacement of each horizontal beam. Computing means for calculating the difference between the first point and the vertical displacement of the second point with respect to the first point;
A vertical displacement difference measuring device between two points is provided.
[0005]
In the vertical displacement measuring device configured as described above, the first point and the second point are connected by a plurality of substantially horizontally extending horizontal beams hinged to each other, and the adjacent horizontal beams on both sides of each hinge portion are provided. At each end of the beam, a pair of vertical beams extending in a substantially vertical direction substantially in parallel to each other is erected, and a pair of optical fiber sensors are arranged in a substantially horizontal direction at two different heights on the pair of vertical beams, The calculating means calculates a difference between the expansion and contraction deviation of one of the pair of optical fiber sensors from the initial installation state, the expansion and contraction deviation of the other optical fiber sensor from the initial installation state, and the height of the pair of optical fiber sensors. Is calculated from the inclination and the length of the horizontal beam, and the vertical displacement of the second point side end of each horizontal beam with respect to the first point side end of each horizontal beam is calculated. Direction displacement Summed to, calculates the difference between the vertical displacement of the second point to the first point.
[0006]
According to the invention of claim 2, in the invention of claim 1,
The number of horizontal beams is n,
The length between the hinges of each horizontal beam is L n ,
The telescopic displacement detected by the upper one of each pair of optical fiber sensors is d n ,
The telescopic displacement ones underside of each pair of optical fiber sensor detects e n,
When the height difference between each pair of optical fiber sensors is h,
Vertical displacement S n or less between 2 and so finding an expression of point vertical displacement difference measuring device there is provided,
Figure 0003568471
[0007]
According to a third aspect of the present invention, in the first aspect of the present invention, the transmitting means for transmitting the data calculated by the calculating means,
There is provided a two-point vertical displacement difference measuring device including a monitoring device for receiving and recording data transmitted by a transmitting means at a remote place.
According to the device configured as described above, the vertical displacement difference between two points can be monitored at a remote place.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
The first gantry 10 and the second gantry 20 are spaced apart, and an intermediate gantry 30 is arranged between them. A first structure 11 is fixed on the first gantry 10, and a second structure 21 is fixed on the second gantry 20. One of two movable pieces (not shown) of a first hinge member 41 and a second hinge member 42 is attached to the first frame 10 and the second frame 20 via brackets 12 and 22, respectively. One of three movable pieces (not shown) of the third hinge member 43 is attached to the intermediate mount 30 via a bracket 32.
[0009]
The right end of the first horizontal beam 110 is attached to the other movable piece of the first hinge member 41 via the auxiliary member 111, and the left end of the first horizontal beam 110 is connected to the third hinge member 43 via the auxiliary member 112. It is attached to one movable piece. Similarly, the right end of the second horizontal beam 120 is attached to one movable piece of the third hinge member 43 via the auxiliary member 121, and the left end of the second horizontal beam 120 is connected to the second hinge via the auxiliary member 122. It is attached to the other movable piece of the member 42.
Further, the first vertical beam 210 is on the upper surface of the bracket 12, the second vertical beam 220 is on the upper surface of the right end of the first horizontal beam 110, the third vertical beam 230 is on the upper surface of the left end of the first horizontal beam 110, and the fourth A vertical beam 240 is erected on the upper surface of the right end of the second horizontal beam 120.
[0010]
A first upper optical fiber sensor 311 is bridged between the upper portions of the first vertical beam 210 and the second vertical beam 220, and a first lower optical fiber sensor 312 is provided between the bracket 12 and the right end of the first horizontal beam 110. A second upper optical fiber sensor 321 is bridged between the third vertical beam 230 and the fourth vertical beam 240, and the left end of the first horizontal beam 110 and the right end of the second horizontal beam 120. The second lower optical fiber sensor 322 is arranged in a bridge between them.
[0011]
The light emitted from the light emitting device (not shown) of the measuring unit 400 is incident on the incident end of each optical fiber sensor via a light incident cable, and the light receiving device (not shown) of the measuring unit 400 is again emitted from the end of the sender. ) Is to return to. The calculator 410 of the measuring unit 400 calculates the expansion and contraction from the initial installation state between the mounting points at both ends from the ratio of the output light intensity to the input light intensity, that is, the attenuation ratio. The calculation result is sent from the transmitter 420 in the measurement unit to the receiver 510 of the monitoring center 500 remotely located by a communication means such as a telephone line, and is recorded in the recorder 520 in the monitoring center 500.
In FIG. 1, the light input cable and the light output cable are collectively indicated by reference numeral 350.
[0012]
Hereinafter, the principle of measuring the vertical displacement of the first structure 11 and the second structure 21 will be described with reference to FIG.
In FIG. 2, P 0 is the center of the rotation axis of the first hinge member 41, P 1 is the center of the rotation axis of the third hinge member 43, and P 2 is the center of the rotation axis of the second hinge member 42.
P 0 and L 1 the distance P 1 displacement S 1 in the vertical direction with respect to point P 0 of the time of installation points P 1, approximated as the slope and theta 1 with respect to the horizontal line of a straight line connecting P 0 and P 1 after displacement Specifically, S 1 = L 1 × tan θ 1 .
[0013]
Θ 1 is equal to θ 1 ′, which is the angle between the first vertical beam 210 and the second vertical beam 220. Here, the difference between the elongation of the first upper optical fiber sensor 311 and elongation of the first lower optical fiber sensor 312 and delta 1, a first upper optical fiber sensor 311 the difference in height direction of the first lower optical fiber sensor 312 h Then, approximately, tan θ 1 ′ = Δ 1 / h. When the displacement of the upper optical fiber sensor 311 is d 1 and the displacement of the first lower optical fiber sensor 312 is e 1 , Δ 1 = d 1 −e 1 .
Therefore, tan θ 1 = tan θ 1 ′ = (d 1 −e 1 ) / h, and
S 1 = L 1 × {(d 1 −e 1 ) / h}.
The above is the method of calculating the vertical displacement difference of P1 with respect to P0.
[0014]
Following the above method, the following is the final object, obtains the displacement difference in the vertical direction P 2 relative to P 0.
Displacement S 2 in the vertical direction with respect to point P 0 of the point P 2 is the distance of P 2 and P 1 is taken as L 2, L 1 + L 2 is the displacement S 02 due to the inclined at theta 1 with respect to the horizontal is the sum of the displacement S 12 due to the L 2 is inclined at theta 2 with respect to L 1 + L 2.
S 02 = (L 1 + L 2 ) × {(d 1 −e 1 ) / h}.
In addition, S 12 = L 2 × tan θ 2 , and θ 2 can be expressed as (d 2 −e 2 ) / h in the same manner as when θ 1 is obtained.
S 12 = L 2 × (d 2 −e 2 ) / h.
Therefore, S 2 = S 02 + S 12 = (L 1 + L 2 ) × {(d 1 −e 1 ) / h} + L 2 × (d 2 −e 2 ) / h
It is.
[0015]
In the above, L 1 and L 2 are known values, and the value of h is also known. The reference height of the first structure 11 of the P 1 point, for example, the difference in height to the height position of the upper surface of the first frame 10 is also known, the first structure from the detected displacement of each optical fiber sensor The vertical displacement of the second structure 21 with respect to the object 11 can be obtained.
[0016]
Similarly, the vertical displacements S n where horizontal beams of n can be represented as follows.
Figure 0003568471
[0017]
【The invention's effect】
The invention described in each claim is a two-point vertical displacement difference measuring device for measuring a difference in vertical displacement between two points horizontally separated from each other, wherein the first point and the second point are hinged to each other. A plurality of horizontally extending horizontal beams disposed between the points and a pair of substantially parallel mutually extending substantially vertical directions disposed at respective ends of adjacent horizontal beams on both sides of each hinge portion. A pair of vertical beams, a pair of optical fiber sensors arranged in a substantially horizontal direction at two different heights on the pair of vertical beams, and an initial installation state of one optical fiber sensor of the pair of optical fiber sensors. The inclination is calculated from the expansion / contraction deviation of the other optical fiber sensor from the initial installation state of the other optical fiber sensor and the height difference between the pair of optical fiber sensors, and the first inclination of each horizontal beam is calculated from the inclination and the length of the horizontal beam. To the end on the point side of Calculating means for calculating the vertical displacement of the end on the second point side, summing the vertical displacements of the horizontal beams, and calculating the difference between the vertical displacement of the second point and the first point. And Since the optical fiber sensor is used, it is hardly affected by the external environment and can perform stable measurement for a long time. Also, the displacement of the intermediate hinge connection point can be determined.
In particular, if a transmitting means for transmitting the data calculated by the calculating means and a monitoring device for receiving and recording the data transmitted by the transmitting means at a remote location are provided, the vertical displacement difference between the two points may be provided. Can be monitored remotely.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration of an embodiment of the present invention.
FIG. 2 is a diagram illustrating a method for calculating a vertical displacement difference according to the present invention.
[Explanation of symbols]
10 First gantry 11 First structure 20 Second gantry 21 Second structure 30 Intermediate gantry 41, 42, 43 Hinge member 110 First horizontal beam 120 Second horizontal beam 210, 220 230, 240: first, second, third, fourth vertical beam 311: first upper optical fiber sensor 312: first lower optical fiber sensor 321: second upper optical fiber sensor 322: second lower optical fiber sensor 400: measuring unit

Claims (3)

水平方向に離間した2点の鉛直方向の変位の差を測定する2点間鉛直変位差測定装置であって、
互いにヒンジ結合され第1の点と第2の点の間に配設された複数の水平方向に延伸する水平梁と、
各ヒンジ部の両側の隣り合う水平梁の各端部に配設される一対の互いに略平行に略鉛直方向に延伸する一対の鉛直梁と、
該一対の鉛直梁に異なる2つの高さで略水平方向に架橋配置される一対の光ファイバーセンサーと、
該一対の光ファイバーセンサーの内の、一方の光ファイバーセンサーの初期据え付け状態からの伸縮偏差と、他方の光ファイバーセンサーの初期据え付け状態からの伸縮偏差と、該一対の光ファイバーセンサーの高さの差から隣接する水平梁の間の傾斜を算出し、該傾斜と水平梁の長さから各水平梁の第1の点側の端部に対する第2の点側の端部の鉛直方向の変位を算出し、各水平梁の鉛直方向の変位を合算して、第1の点に対する第2の点の鉛直変位の差を算出する演算手段と、
を具備することを特徴とする2点間鉛直変位差測定装置。
A two-point vertical displacement difference measuring device for measuring a difference in vertical displacement between two points horizontally separated from each other,
A plurality of horizontally extending horizontal beams hinged to each other and disposed between the first point and the second point;
A pair of vertical beams extending in a substantially vertical direction substantially parallel to each other and disposed at each end of an adjacent horizontal beam on both sides of each hinge portion,
A pair of optical fiber sensors arranged in a substantially horizontal direction at two different heights on the pair of vertical beams,
The pair of optical fiber sensors is adjacent to each other based on a difference in expansion and contraction of one optical fiber sensor from the initial installation state, a difference in expansion and contraction of the other optical fiber sensor from the initial installation state, and a difference in height of the pair of optical fiber sensors. Calculating the inclination between the horizontal beams, calculating the vertical displacement of the second point side end with respect to the first point side end of each horizontal beam from the inclination and the length of the horizontal beam, Calculating means for calculating the difference between the vertical displacement of the second point with respect to the first point by adding the vertical displacement of the horizontal beam;
A vertical displacement difference measurement device between two points, comprising:
水平梁の個数をn、
各水平梁のヒンジ間の長さをL
各一対の光ファイバーセンサーの上側のものが検出した伸縮変位をd
各一対の光ファイバーセンサーの下側のものが検出した伸縮変位をe
各一対の光ファイバーセンサーの高さの差をh、としたときに、
鉛直変位Sを以下の式でもとめることを特徴とする請求項1に記載の2点間鉛直変位差測定装置、
Figure 0003568471
The number of horizontal beams is n,
The length between the hinges of each horizontal beam is L n ,
The telescopic displacement detected by the upper one of each pair of optical fiber sensors is d n ,
The telescopic displacement ones underside of each pair of optical fiber sensor detects e n,
When the height difference between each pair of optical fiber sensors is h,
Vertical displacement difference measuring device between two points according to claim 1, characterized in that obtaining the vertical displacement S n by the following equation,
Figure 0003568471
演算手段の演算したデータを送信する送信手段と、
送信手段の送信したデータを遠隔地で受信して記録する監視装置を含むことを特徴とする請求項1に記載の2点間鉛直変位差測定装置。
Transmitting means for transmitting data calculated by the calculating means,
The two-point vertical displacement difference measuring apparatus according to claim 1, further comprising a monitoring device that receives and records the data transmitted by the transmitting means at a remote place.
JP2000309398A 2000-10-10 2000-10-10 Vertical displacement difference measuring device between two points Expired - Fee Related JP3568471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000309398A JP3568471B2 (en) 2000-10-10 2000-10-10 Vertical displacement difference measuring device between two points

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000309398A JP3568471B2 (en) 2000-10-10 2000-10-10 Vertical displacement difference measuring device between two points

Publications (2)

Publication Number Publication Date
JP2002116009A JP2002116009A (en) 2002-04-19
JP3568471B2 true JP3568471B2 (en) 2004-09-22

Family

ID=18789567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000309398A Expired - Fee Related JP3568471B2 (en) 2000-10-10 2000-10-10 Vertical displacement difference measuring device between two points

Country Status (1)

Country Link
JP (1) JP3568471B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256224A (en) * 1985-05-09 1986-11-13 Sumitomo Electric Ind Ltd Optical fiber sensor
JPH06101230A (en) * 1991-05-24 1994-04-12 Shimizu Corp Method and device for measuring accuracy of pitching of pile
JP2890151B2 (en) * 1992-04-07 1999-05-10 東急建設株式会社 Vertical setting device for box type sheet pile
JP2917751B2 (en) * 1993-06-17 1999-07-12 株式会社大林組 Column accuracy measurement system
JPH0712561A (en) * 1993-06-24 1995-01-17 Shigeki Yamazaki Vertical displacement meter
JP3553374B2 (en) * 1997-12-17 2004-08-11 三菱重工業株式会社 Structural deformation measuring device

Also Published As

Publication number Publication date
JP2002116009A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
US10627219B2 (en) Apparatus and methods for monitoring movement of physical structures by laser deflection
US5636021A (en) Sagnac/Michelson distributed sensing systems
KR100734390B1 (en) Instrument for measuring two dimensional deformation in tunnels
JP2011506222A (en) Method and apparatus for surveying elevator hoistway
JP4996498B2 (en) Structure displacement estimation system and structure displacement estimation method
KR20060136002A (en) Instrument for measuring two dimensional deformation in tunnels
KR100784985B1 (en) A sensor assembly for measuring incline of structures and the monitoring system of structure behavior using that
JP4883802B2 (en) FBG optical fiber sensor type inclinometer
CN105806262B (en) A kind of inclination measurement system and method based on low coherence interference technology
JP2015530577A (en) Real-time structural measurement (RTSM) for monitoring devices
CN105067207A (en) Simply supported beam deflection test device and method
JP3568471B2 (en) Vertical displacement difference measuring device between two points
CN2468042Y (en) Laser channel peripheral displacement real-time monitoring instrument
KR102365368B1 (en) System for monitoring displacement of slope
JP4660805B2 (en) Displacement measurement method using optical fiber sensor
KR100746938B1 (en) Wireless diagnosis device for girder bridge making use of pre-stress beam
CN116902835A (en) Landing leg leveling method, landing leg leveling device, landing leg leveling system and vehicle
KR200399594Y1 (en) Instrument for measuring two dimensional deformation in tunnels
JP2917751B2 (en) Column accuracy measurement system
KR101489482B1 (en) apparatus for measuring an inclined angle of telegraph pole
JP2590008B2 (en) Automatic displacement measurement method for structures
KR101266159B1 (en) Measuring apparatus for displacement and measuring system using the same
JP2000510234A (en) Method and device for detecting deflection and geotechnical or architectural structures equipped with such device
JPH04315005A (en) Laser displacement meter
KR101044605B1 (en) System for managing configuration of long span bridge cable using location-based system, and method for the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees