JP3568239B2 - Powder dry ice manufacturing equipment - Google Patents

Powder dry ice manufacturing equipment Download PDF

Info

Publication number
JP3568239B2
JP3568239B2 JP16751094A JP16751094A JP3568239B2 JP 3568239 B2 JP3568239 B2 JP 3568239B2 JP 16751094 A JP16751094 A JP 16751094A JP 16751094 A JP16751094 A JP 16751094A JP 3568239 B2 JP3568239 B2 JP 3568239B2
Authority
JP
Japan
Prior art keywords
nozzles
main body
horn
nozzle
dry ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16751094A
Other languages
Japanese (ja)
Other versions
JPH0771871A (en
Inventor
靖高 林
嘉之 和田
Original Assignee
コ−ルド技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コ−ルド技研株式会社 filed Critical コ−ルド技研株式会社
Priority to JP16751094A priority Critical patent/JP3568239B2/en
Publication of JPH0771871A publication Critical patent/JPH0771871A/en
Application granted granted Critical
Publication of JP3568239B2 publication Critical patent/JP3568239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、生鮮食料品や冷凍食品や加工食料品等の鮮度を保持するために使用する粉末ドライアイスの製造装置に関するものである。
【0002】
【従来の技術】
従来、粉末ドライアイスを製造する液化炭酸ガスの製造装置は、例えば、図1に示すように、断面が方形または円形をした通路1の水平部2の基端に設けたノズル3から通路内部に噴出する液化炭酸ガスは、先広がり状のテーパー室4内に噴出し、該テーパー室4に連続した水平部2の先端に形成した弧状部6の中間部の外側に切欠状の開口部7を形成し、該弧状部の先端に排出口8を設けてある。即ち、配管(図示せず)から供給された液化炭酸ガスがノズル3を通ってテーパー室4内に噴出すると、急激な圧力変化による断熱膨張によって温度が急激に低下して炭酸ガスと粉末ドライアイスとに分離する。このテ−パ−室4内をガスが前進するに従って容積が拡大するため圧力が緩やかに低下し、その結果、ドライアイスの粉末の粒が大きく成長し、経時的にゆっくり圧力が減少することによってノズル3と開口部7との距離が比較的短いにもかかわらず、効率的に粉末ドライアイスを製造している。
【0003】
また、従来の再液化ノズルの形状は、図2に示す如く、パイプ1aの先端を蓋部9で閉鎖してあり、壁面に一定間隔毎に多数の穴8aを有して直径が6.35mmのものや9.52mmのもの、さらには12.7mmのものがあり、液化窒素(LN2)を貯蔵する5リットル、10リットル、20リットルなどの容積の異なるコンテナ容器(図示せず)内に再液化ノズル3aを挿入し、コンテナ内部の液体窒素等の液化ガスを取り出しているが、吐出圧が高いため液体窒素がパイプ1a内にあまり留まらず、取り出すのに多くの時間を必要としていた。
図3は、図2を改良したもので、パイプ1bの先端に取付けて該パイブを閉鎖した焼結金属9aの壁面には多数の小穴を有した再液化ノズル3bであり、図2のものより一段と液化窒素ガスの取り出し性能を向上させることはできるが吐出圧はまだ高いため、液化ガスを取り出すのに多くの時間を必要としていた。
【0004】
【発明が解決しようとする課題】
従来の粉末ドライアイスの生成において、ホ−ン内に位置したノズルから噴出する液化炭酸ガス(LCO2)は、一次的な圧力傾斜の状態で大気側に放出され、各ノズルより放出された時点で三重点を通過してドライアイスとなる。しかし、ガスの流速が早く断熱膨張時の気化による損失が多くて粉末ドライアイスの生成効率はよくなかった。
また、従来の液化ガスの生成において、ホ−ン内に位置したノズルより噴出する液化ガスは、一次的な圧力傾斜の状態で大気側に放出される。しかし、この時点でのガス流速が速いため断熱膨張時の気化による損失が多く、貯蔵タンク圧下より大気圧下への変換効率がよくならなかった。その上、粉末ドライアイスの生成量を多くすると騒音が比例して大きくなってしまい問題であった。
【0005】
本発明は、ガスの噴出部分であるノズルおよびホ−ン部分を改良し、筒状をした本体の小径部の両側に位置した斜面部にノズルを向かい合わせに設け、該ノズルから遠心方向に噴出させた液化ガスをホ−ン内において互いに衝突させて形成する圧力隔壁状の膜によって、ホ−ン内を複数に区画して貯蔵圧力下より大気圧下に於ける粉末ドライアイスの生成効率をよくすることを目的とするものである。
【0006】
【課題を解決するための手段】
請求項1の発明は、本体30の内部に一端から盲状孔32を設け、該本体の外周面に設けた小径部34の両側に連続して夫々45度の斜面部35、35を対称的に向かい合せに形成し、各斜面部に直交して形成した複数のノズル37、37を円周方向に等間隔に設け、先端を開口させた円筒状のホ−ン41を前記本体の外側に空間45を設けて設置し、向かい合う各ノズル37、37から噴出するガスを前記小径部34の周囲で衝突させて遠心方向に形成した圧力隔壁状の膜19を、下端が大気に連通する開口部46を有した前記ホーン内に設けて大気と区画して急激な圧力低下を防止することを特徴とする。
請求項2の発明は、内部に盲状孔11を有した本体10の外周面に複数の小径部13、13を一定間隔毎に設け、各小径部の両側に夫々連続して45度の斜面部15、15を対称的に向かい合せに形成し、各斜面部に直交して設けたノズル17を円周方向に夫々対をなして等間隔に複数形成し、先端に開口部23を設けて内部に空室20を形成した円筒状のホ−ン21を本体11の外側に設けて設置し、向かい合う各ノズル17、17から噴出するガスを互いに衝突させて遠心方向に形成した圧力隔壁状の膜19を該ホ−ン内に複数設けて大気と区画して急激な圧力低下を防止することを特徴とする。
【0007】
【作用】
本体内に設けた盲状孔に連通して該本体の外周に設けた1又は複数の小径部の両側に夫々対称的に斜面部を形成し、該斜面部には円周方向に一定間隔毎に複数のノズルを設け、該斜面部に設けたノズルから噴出するガスを各小径部の周囲で衝突させることにより、互いに断熱膨張時の潜熱を有効に利用することによって気化損失を理論値に近づける。また、互いに対向して設けたノズルから噴出したガスを衝突させることにより遠心方向に形成した圧力隔壁状の膜によって、ホーン内に1又は複数の区画室を形成し、急激な圧力損失を最少にして粉末ドライアイスの生成率を高めるものである。
0008
【実施例】
請求項1の発明の実施例を図7〜10に基いて説明すると、頭部に締付部31を有した本体30の内部に一端から略他端部分まで盲状孔32を形成し、この本体30の上部外周面に雄ねじ33を形成してある。この本体30の中間部外周に小径部34を形成し、小径部34の両側に夫々連続させて約45度の斜面をなす斜面部35、35を対称的に向かい合わせに形成し、各斜面部35の中間部には斜面に対して直交して設けた小径のノズル37を該斜面部の円周方向に等間隔に複数(本実施例では8ケ)穿ってあるが、小径部の左右に3ケづつ一組とする場合も可能である。さらに、ノズル形は0.4mm〜1.0mmの大きさに形成し、好ましくは0.6mmの大きさであり、同一円周上に設けたノズル数は4〜16ケ、好ましくは4ケである。このノズル37の一端は前記盲状孔32に連通し、他端は本体30の外部に連通し、本体30の外周には円筒状のホ−ン41を装着してある。このホ−ン41の上部両側にはスパナ(図示せず)等を掛止させる平坦面43を形成し、上部中央には前記本体30の雄ねじ33が螺合する雌ねじ44を形成し、この雌ねじの下方には内側に空室45を設けると共に、下端に設けた開口部46で大気に連通している。なお、48は盲状孔32の上端に形成したパイプ(図示せず)を連結させるための雌孔部である。
0009
この本体30の周囲には内径が135mmと、150mmと、165mmのホ−ンを用いて測定したところ、135mmと150mmが良好に液化ガスを生成したが、165mmの場合は内径が大きすぎるため液化ガスの生成率はばらついた。また、本体30の周囲にある周壁面とホ−ン41内に形成した空室45が1ケのみの場合における周壁面の距離は、ホ−ン径80〜100mm付近で粉末ドライアイスの生成効率が最高となった。
0010
次に、請求項2の発明に係る実施例を図面に基づいて説明すると、図4において、棒状の本体10の内部に、一端から略他端部分まで盲状孔11を形成し、該本体10の外周面には一定間隔毎に複数の小径部13、13をそれぞれ形成してある。各小径部13の両側には夫々連続させて約45度の斜面をなす斜面部15、15を対称的に向かい合わせに形成し、各斜面部15の中間部には斜面に対して直交して小径のノズル17を該斜面部の円周方向に等間隔に複数(本実施例では8ケ)穿ってある。このノズル17の一端は前記盲状孔11に連通し、他端は本体10の外部に連通し、該本体10の外周に円筒状のホ−ン21を装着し、このホ−ン21の下端に設けた開口部23から大気側に連通している。
0011
19は向かい合うノズル17、17の中心を通る直線18の延長上で、且つ、該本体10の外周に位置させたホ−ン21内を区画するように円盤状に形成した圧力隔壁状の膜で、該ホ−ン21内を1又は複数段に区画して急激な圧力低下を防止している。20は本体10の外周で、且つ、ホ−ン21内に形成する空室で、該ホ−ン21内を奥部側から第1室25、第2室26、第3室27そして大気に連通する開口部23を有した第4室28を夫々形成してある。
0012
本実施例の本体10は、例えば、外径が17mmで全長が100mmの長さを有しており、10mmの内径をした盲状孔11を一端から設けてある。また該本体10の外周に1ケまたは等間隔に2〜6ケ形成した各小径部13、13の間には、各斜面部15の上端同士の間は約25mmであって孔部11に対して約45度の角度に形成してある。この斜面部15の中間部分に円周方向に等間隔に設けたノズル17の口径は0.4〜2.0mmに形成し、好ましくは0.7mmに形成してある。また、ノズルの数は小径部の左右3ケづつ一組としてもよい。即ち、同一円周上にノズルは6〜24ケ設けることが可能である。
0013】
この本体10の周囲には内径が、135mmと、150mmと、165mmのホ−ンを用いて測定したところ、135mmと150mmとが良好に粉末ドライアイスを生成したが、165mmの場合は内径が大きすぎるため害粉末ドライアイスの生成率はばらついた。また、本体10の周囲にある周壁面とホ−ン21内に形成した空室に対しても下記に示すように最適値を有するものである。
第1室25と第2室26の場合における周壁面の距離は、ホ−ン径120〜140mm付近で粉末ドライアイスの生成効率が最高となった。
また、第1室25と第2室26と第3室27の場合における周壁面の距離は、ホ−ン径140〜170mm付近で粉末ドライアイスの生成効率が最高となった。
さらに、第1室25と第2室26と第3室27と第4室28の場合における周壁面の距離は、ホ−ン径150〜200mm付近で粉末ドライアイスの生成効率が最高となった。
【0014】
次に、本実施例の作用について説明すると、例えば、液化炭酸ガスを20kg/cm2の圧力で充填しているタンク(図示せず)内の液体温度は−18℃〜−20℃であり、このタンクから勢いよく噴出したガスは、配管(図示せず)を通って本体10の盲状孔11内に図4の矢印で示すように供給される。該盲状孔11内に圧入したガスは、該盲状孔の内壁面に半径方向に等間隔毎に設けてある複数(本実施例では8個)のノズル17は各斜面部15の中間部分に直交して開口し、各斜面部15は小径部13の両側に夫々設けてある。ここで液化ガスとは、液化窒素ガス、液化酸素ガス、液化アルゴンガス等をいう。
【0015】
この小径のノズル17、17からホ−ン21内の空室20に放出されたガスは、一次的な圧力傾斜の状態で該ホ−ン21内に放出されるが、該ガスは断熱膨張により体積を急激に膨張させることによって温度を低下させて各小径部13の周囲に円盤状をした圧力隔壁状の膜19、19をそれぞれ形成する。この円盤状をした圧力隔壁状の膜19によって本体10に長さ方向にホ−ン21内を内側から第1室25、該2室26、第3室27にさらに開口部23に連通した開放室28を形成してあるが、この本体10の下端に位置したノズル17aから放出するガスは一次的には開放室28の開口部23から大気に放出される。しかし、それ以外のノズル17から噴出するガスの殆どは、圧力隔壁状の膜19によって区画されたホ−ン21内に噴出されるため直接に大気側に放出されることなく、第3室27を経てから開放室28に放出したり、第2室26及び第3室27を経てから開放室28に放出したり、さらに、第1室25と第2室26と第3室27を経てから開放室28に噴出するため、液化ガスは各室を経ることにより数回に分けて圧力変化させて圧力変化に伴う損失を最少にし、粉末ドライアイス等の液化ガスの生成量を一段と向上させることができる。
【0016】
粉末ドライアイスの生成についてノズルの数および口径さらには小径部の数を変えて実験したところ以下のような結果を得た。
実験例1.
ノズル数 左右8ケづつ1組 16個
ノズル径 1.0mm
同一円周上の数 8個
粉末ドライアイスの生成率 41%
【0017】
上記実験例1のノズルの数、径および同一円周上の数は上記に限らず、ノズル数は左右3ケ〜12ケづつを1組としても良い。また、ノズル径は、0.4〜2.0mmの大きさであって、さらに同一円周上にはノズルを6〜24ケ設けることも可能である。
【0018】
実験例2.
ノズル数 左右8ケづつ2組 32個
ノズル径 0.8mm
同一円周上の数 8個
粉末ドライアイス生成効率 42%
【0019】
上記実験例2のノズルの数、径および同一円周上の数は上記に限らず、ノズル数は左右3ケ〜12ケづつを1組としてもよい。また、ノズル径は、0.4〜2.0mmの大きさであって、さらに同一円周上にはノズルを6〜24ケ設けることも可能である。
【0020】
実験例3.
ノズル数 左右8ケづつ3組 48個
ノズル径 0.7mm
同一円周上の数 8個
粉末ドライアイス生成効率 43%
【0021】
上記実施例3のノズルの数、径および同一円周上の数は上記に限らず、ノズル数は左右3ケ〜12ケづつを1組としてもよい。また、ノズル径は、0.4〜2.0mmの大きさであって、さらに同一円周上にはノズルを6〜24ケ設けることも可能である。
【0022】
実験例4.
ノズル数 左右8ケづつ4組 64個
ノズル径 0.6mm
同一円周上の数 8個
粉末ドライアイス生成効率 44%
【0023】
上記実施例4のノズルの数、径および同一円周上の数は上記に限らず、ノズル数は左右3ケ〜12ケづつを1組としても良い。またノズル径は、0.4〜2.0mmの大きさであって、さらに同一円周上2はノズルを6〜24ケ設けることも可能である。
【0024】
次に、液体窒素やアルゴンや酸素等の液化ガスの生成について実験したところ以下のような結果を得た。
実験例5. 小容量の液化ガスを連続取り出した場合(数10cc/分)
ノズル数 左右4ケづつ1組 8個
ノズル径 0.6mm
同一円周上の数 4個
生成効率 50〜60%
ノズルと液面間隔10cmにおいて液面に凹みがない。
【0025】
上記実験例5のノズルの数、径および同一円周上の数は上記に限らず、ノズル数は左右3ケ〜8ケづつを1組としてもよい。またノズル径は、0.4〜1.0mmの大きさであって、さらに、同一円周上2はノズルを6〜24ケ設けることも可能である。上記実験例5は請求項1の発明の実施例のもので、本体30の外周に設けた小径部34が1ケであり、該小径部の両側に設けた斜面部35に夫々向かい合わせに8ケのノズル37を設けたもので、1分間に数10ccの流量で連続的に液化ガスを取り出す場合に最適である。この場合、小径部が1ケであるから長さが短くなり、小型のため取扱いが便利である。
【0026】
実験例6. 中容量の液化ガスを連続取り出した場合(〜3 /分)
ノズル数 左右8ケづつ1組16個
ノズル径 1.0mm
同一円周上の数 8個
生成効率 60〜70%
ノズルと液面間隔30cmにおいて液面に凹みがない。
【0027】
上記実験例6のノズルの数、径および同一円周上の数は上記に限らず、ノズル数は左右3ケ〜12ケづつを1組としても良い。また、ノズル径は、0.4〜2.0mmの大きさであって、さらに同一円周上2はノズルを6〜24ケ設けることも可能である。
【0028】
実験例7. 大容量の液化ガスを連続取り出した場合(〜20 /分)
ノズル数 左右8ケづつ4組64個
ノズル径 1.0mm
同一円周上の数 8個
生成効率 60〜70%
ノズルと液面間隔30cmにおいて液面に凹みがない。
【0029】
上記実験例7のノズルの数、径および同一円周上の数は上記に限らず、ノズル数は左右3ケ〜12ケづつを1組としても良い。また、ノズル径は、0.4〜2.0mmの大きさであって、さらに同一円周上2はノズルを6〜24ケ設けることも可能である。
【0030】
上記実験例6〜7は請求項2の発明の実施例のもので、本体10の外周に設けた小径部13が2ケの場合と、4ケの場合であり、該小径部の両側に設けた斜面部15に夫々向かい合わせに16ケのノズル17を設けた場合と、64ケ設けた場合の実験であって、1分間に約1〜3リットルの場合と、3〜20リットルの流量であって連続的に液化ガスを取り出す場合に最適である。この場合、小径部が複数あるため本体の長さが長くなるが、ホ−ン内に空室を複数形成することができるため圧力を急激に降下させず、数回に分けて順次圧力を降下させるため粉末ドライアイスの生成率が向上するものである。
【0031】
【発明の効果】
請求項1の発明は、本体内に設けた盲状孔内に圧入したガスが、該盲状孔の内壁面に複数設けて斜面部の中間部分に開口し、各斜面部は小径部の両端に連続して円周方向に対称的に設けたノズルから放出した液化ガスが衝突することにより生じた圧力隔壁状の膜によってホ−ン内を外部から区画し、急激な圧力降下を防止して大気中に放出する粉末ドライアイスの生成率を向上させるもので、特に小容量の粉末ドライアイスの連続取り出しに便利である。さらに、圧力隔壁状の膜によって騒音レベルを従来のものよりかなり低下させることができる。
請求項2の発明は、本体の外部に複数形成した小径部の両側に向かい合わせに設けた斜面部に夫々形成したノズルから噴出するガスを衝突させることにより形成した円盤状の圧力隔壁状の膜ホ−ン内に複数形成して該ホ−ン内を複数に区画し、区画された各室を順次経ながらガスを放出させるため急激な圧力変化による損失を最少にしながら圧力低下するので、粉末ドライアイスの生成量を一段と向上させると共に生成率を安定させる。また、生成した粉末ドライアイスは一様性を有していて固まり等が混入することがなく、さらに、圧力隔壁状の膜によって騒音レベルを従来のものよりかなり低下させることができる。
【図面の簡単な説明】
【図1】従来のドライアイス製造装置のノズル部分の要部を示す正面図である。
【図2】他の従来例におけるノズルの要部を示した正面図である。
【図3】さらに他の従来例を示したノズルの要部を示す正面図である。
【図4】請求項2の発明の実施例を示した正面図である。
【図5】図4のA−A線断面図である。
【図6】ノズル部分を拡大した断面図である。
【図7】請求項1の発明の実施例を示した本体の平面図である。
【図8】図7のB−B線断面図である。
【図9】同じく本体をホ−ンに取り付けた状態の平面図である。
【図10】ホ−ンの正面図である。
【符号の説明】
10 本体
11 盲状孔
13 小径部
15 斜面部
17 ノズル
19 圧力隔壁状の膜
20 空室
21 ホ−ン
23 開口部
30 本体
32 盲状孔
34 小径部
35 斜面部
37 ノズル
41 ホ−ン
45 空室
46 開口部
[0001]
[Industrial applications]
The present invention relates to an apparatus for producing powdered dry ice used for maintaining freshness of fresh food, frozen food, processed food, and the like.
[0002]
[Prior art]
Conventionally, an apparatus for producing liquefied carbon dioxide gas for producing powdered dry ice, for example, as shown in FIG. 1, has a nozzle 3 provided at the base end of a horizontal portion 2 of a passage 1 having a rectangular or circular cross section, into a passage inside the passage. The liquefied carbon dioxide gas to be ejected is ejected into the tapered chamber 4 having a tapered shape, and a notch-shaped opening 7 is formed outside a middle portion of the arc-shaped portion 6 formed at the tip of the horizontal portion 2 continuous with the tapered chamber 4. A discharge port 8 is provided at the tip of the arc-shaped portion. That is, when the liquefied carbon dioxide gas supplied from a pipe (not shown) is jetted into the tapered chamber 4 through the nozzle 3, the temperature is rapidly lowered due to adiabatic expansion due to a rapid pressure change, and the carbon dioxide gas and the powder dry ice are reduced. And separated into The pressure gradually decreases because the volume increases as the gas advances in the taper chamber 4. As a result, the particles of the dry ice powder grow large, and the pressure gradually decreases over time. Although the distance between the nozzle 3 and the opening 7 is relatively short, powder dry ice is manufactured efficiently.
[0003]
Further, as shown in FIG. 2, the shape of the conventional reliquefaction nozzle is such that the tip of a pipe 1a is closed by a lid portion 9, a large number of holes 8a are provided at regular intervals in a wall surface, and the diameter is 6.35 mm. And 9.52 mm, and even 12.7 mm in different container volumes (not shown) such as 5 liters, 10 liters and 20 liters for storing liquefied nitrogen (LN2). The liquefaction nozzle 3a is inserted to take out liquefied gas such as liquid nitrogen inside the container. However, since the discharge pressure is high, liquid nitrogen does not stay in the pipe 1a much, and it takes much time to take out.
FIG. 3 shows a reliquefaction nozzle 3b which is a modification of FIG. 2 and has a large number of small holes on the wall surface of the sintered metal 9a which is attached to the end of the pipe 1b and closes the pipe. Although the performance of taking out liquefied nitrogen gas can be further improved, since the discharge pressure is still high, much time is required to take out liquefied gas.
[0004]
[Problems to be solved by the invention]
In the conventional production of powder dry ice, liquefied carbon dioxide (LCO2) ejected from a nozzle located in a horn is released to the atmosphere side in a state of a primary pressure gradient, and at the time when it is released from each nozzle. Dry ice passes through the triple point. However, the gas flow rate was high and the loss due to vaporization during adiabatic expansion was large, resulting in poor dry ice powder generation efficiency.
In the conventional generation of liquefied gas, liquefied gas ejected from a nozzle located in the horn is discharged to the atmosphere with a primary pressure gradient. However, since the gas flow rate at this time is high, there is a large loss due to vaporization during adiabatic expansion, and the conversion efficiency from the storage tank pressure to the atmospheric pressure is not improved. In addition, when the amount of dry ice powder is increased, the noise increases in proportion to the problem.
[0005]
According to the present invention, a nozzle and a horn portion, which are gas jetting portions, are improved, and nozzles are provided facing each other on slopes located on both sides of a small-diameter portion of a cylindrical main body, and jetted in a centrifugal direction from the nozzles. The liquefied gas is caused to collide with each other in the horn to form a pressure partition wall-like film, and the horn is divided into a plurality of sections to improve the efficiency of producing powder dry ice under the atmospheric pressure rather than the storage pressure. It is intended to improve.
[0006]
[Means for Solving the Problems]
According to the first aspect of the present invention , a blind hole 32 is provided inside the main body 30 from one end, and 45-degree slope portions 35, 35 are continuously formed on both sides of a small diameter portion 34 provided on the outer peripheral surface of the main body. A plurality of nozzles 37, 37 formed at right angles to each slope, are provided at equal intervals in the circumferential direction, and a cylindrical horn 41 having an open end is provided outside the main body. A space 45 is provided and installed, and the gas ejected from each of the nozzles 37 facing each other is made to collide around the small diameter portion 34 to form a pressure partition-like membrane 19 formed in the centrifugal direction. The horn is provided in the horn having 46 so as to be separated from the atmosphere to prevent a sudden pressure drop.
The invention according to claim 2 is characterized in that a plurality of small-diameter portions 13, 13 are provided at regular intervals on an outer peripheral surface of a main body 10 having a blind hole 11 therein, and a 45-degree slope is continuously provided on both sides of each small-diameter portion. The parts 15, 15 are formed symmetrically facing each other, a plurality of nozzles 17 provided at right angles to each slope are formed in pairs at equal intervals in the circumferential direction, and an opening 23 is provided at the tip. A cylindrical horn 21 having an empty space 20 formed therein is provided outside of the main body 11 and installed, and gas ejected from each of the opposed nozzles 17 is collided with each other to form a pressure partition wall formed in a centrifugal direction. A plurality of membranes 19 are provided in the horn so as to be separated from the atmosphere to prevent a sudden pressure drop.
[0007]
[Action]
Slope portions are formed symmetrically on both sides of one or a plurality of small diameter portions provided on the outer periphery of the main body in communication with the blind holes provided in the main body, and the slope portions are formed at regular intervals in the circumferential direction. A plurality of nozzles are provided, and the gas ejected from the nozzles provided on the slope portion is caused to collide around each small diameter portion, thereby effectively utilizing the latent heat during adiabatic expansion to bring the vaporization loss close to the theoretical value. . In addition, one or a plurality of compartments are formed in the horn by a pressure partition-like membrane formed in the centrifugal direction by colliding gas ejected from nozzles provided opposite to each other to minimize a sudden pressure loss. To increase the production rate of powder dry ice .
[ 0008 ]
【Example】
The embodiment of the first aspect of the present invention will be described with reference to FIGS. 7 to 10. A blind hole 32 is formed from one end to substantially the other end inside a main body 30 having a fastening portion 31 on a head. A male screw 33 is formed on the upper outer peripheral surface of the main body 30. A small diameter portion 34 is formed on the outer periphery of the middle portion of the main body 30, and slope portions 35, 35 forming slopes of about 45 degrees are formed continuously on both sides of the small diameter portion 34 so as to face each other symmetrically. A plurality of small-diameter nozzles 37 (eight in this embodiment) are provided at equal intervals in the circumferential direction of the slope in the middle of the small-diameter slope. It is also possible to form a set of three. Further, the nozzle shape is formed in a size of 0.4 mm to 1.0 mm, preferably 0.6 mm, and the number of nozzles provided on the same circumference is 4 to 16, preferably 4 is there. One end of the nozzle 37 communicates with the blind hole 32, the other end communicates with the outside of the main body 30, and a cylindrical horn 41 is mounted on the outer periphery of the main body 30. A flat surface 43 for engaging a wrench (not shown) or the like is formed on both upper sides of the horn 41, and a female screw 44 with which the male screw 33 of the main body 30 is screwed is formed at the center of the upper part. A space 45 is provided on the inside below, and an opening 46 provided at the lower end communicates with the atmosphere. Reference numeral 48 denotes a female hole for connecting a pipe (not shown) formed at the upper end of the blind hole 32.
[ 0009 ]
When measuring using a horn having an inner diameter of 135 mm, 150 mm, or 165 mm around the main body 30, 135 mm and 150 mm produced liquefied gas favorably. Gas production rates varied. The distance between the peripheral wall surface around the main body 30 and the peripheral wall surface in the case where only one vacant chamber 45 is formed in the horn 41 is about 80 to 100 mm in horn diameter, and the powder dry ice generation efficiency Was the best.
[ 0010 ]
Next, an embodiment according to the second aspect of the present invention will be described with reference to the drawings. Referring to FIG. 4, a blind hole 11 is formed inside a rod-shaped main body 10 from one end to substantially the other end. A plurality of small diameter portions 13, 13 are formed at regular intervals on the outer peripheral surface of. On both sides of each small-diameter portion 13, slopes 15, 15, which form a slope of about 45 degrees, are formed so as to face each other symmetrically, and a middle part of each slope 15 is perpendicular to the slope. A plurality (eight in this embodiment) of small diameter nozzles 17 are bored at equal intervals in the circumferential direction of the slope. One end of the nozzle 17 communicates with the blind hole 11, and the other end communicates with the outside of the main body 10. A cylindrical horn 21 is mounted on the outer periphery of the main body 10. Communicates with the atmosphere side through an opening 23 provided in the air conditioner.
[ 0011 ]
Reference numeral 19 denotes a pressure partition-like membrane formed in a disk shape so as to partition the inside of a horn 21 located on the outer periphery of the main body 10 on the extension of the straight line 18 passing through the centers of the opposed nozzles 17 and 17. The horn 21 is divided into one or a plurality of stages to prevent a sharp pressure drop. Reference numeral 20 denotes an empty space formed on the outer periphery of the main body 10 and in the horn 21. The interior of the horn 21 is exposed from the back side to the first chamber 25, the second chamber 26, the third chamber 27 and the atmosphere. Fourth chambers 28 each having an opening 23 communicating therewith are formed.
[ 0012 ]
The main body 10 of this embodiment has, for example, an outer diameter of 17 mm and a total length of 100 mm, and is provided with a blind hole 11 having an inner diameter of 10 mm from one end. In addition, between the small-diameter portions 13, 13 formed at one or at equal intervals on the outer periphery of the main body 10, the distance between the upper ends of the slope portions 15 is about 25 mm, and Formed at an angle of about 45 degrees. The diameter of the nozzles 17 provided at equal intervals in the circumferential direction at the intermediate portion of the slope 15 is formed in a range of 0.4 to 2.0 mm, preferably 0.7 mm. Also, the number of nozzles may be a set of three on the left and right sides of the small diameter portion. That is, it is possible to provide 6 to 24 nozzles on the same circumference.
[ 0013]
When measured using a horn having an inner diameter of 135 mm, 150 mm, or 165 mm around the main body 10, 135 mm and 150 mm produced powder dry ice well, but in the case of 165 mm, the inner diameter was large. The production rate of the harmful powder dry ice varied due to too much. Also, as shown below, the peripheral wall around the main body 10 and the vacant space formed in the horn 21 also have optimum values.
When the distance between the peripheral wall surfaces in the case of the first chamber 25 and the second chamber 26 was around a horn diameter of 120 to 140 mm, the generation efficiency of the powder dry ice was highest.
In addition, the distance between the peripheral wall surfaces in the case of the first chamber 25, the second chamber 26, and the third chamber 27 was around the horn diameter of 140 to 170 mm, and the powder dry ice generation efficiency was highest.
Further, the distance between the peripheral wall surfaces in the case of the first chamber 25, the second chamber 26, the third chamber 27, and the fourth chamber 28 was about 150 to 200 mm in horn diameter, and the powder dry ice generation efficiency was the highest. .
[0014]
Next, the operation of this embodiment will be described. For example, the liquid temperature in a tank (not shown) filled with liquefied carbon dioxide gas at a pressure of 20 kg / cm 2 is −18 ° C. to −20 ° C. The gas vigorously ejected from the tank is supplied into the blind hole 11 of the main body 10 through a pipe (not shown) as shown by an arrow in FIG. A plurality of (eight in this embodiment) nozzles 17 provided at equal intervals in the radial direction on the inner wall surface of the blind hole 11 The inclined surface 15 is provided on both sides of the small-diameter portion 13. Here, the liquefied gas refers to liquefied nitrogen gas, liquefied oxygen gas, liquefied argon gas and the like.
[0015]
The gas released from the small-diameter nozzles 17 and 17 into the empty space 20 in the horn 21 is released into the horn 21 in a state of a primary pressure gradient, but the gas is adiabatically expanded. The temperature is lowered by abruptly expanding the volume, and disc-shaped pressure-barrier membranes 19, 19 are formed around each small-diameter portion 13, respectively. The disc-shaped pressure partition membrane 19 opens the horn 21 from the inside to the first chamber 25, the second chamber 26, and the third chamber 27 in the longitudinal direction of the main body 10 and further communicates with the opening 23. Although the chamber 28 is formed, the gas released from the nozzle 17 a located at the lower end of the main body 10 is first released to the atmosphere from the opening 23 of the open chamber 28. However, most of the other gas ejected from the nozzle 17 is ejected into the horn 21 defined by the pressure partition wall-like film 19, so that the gas is not directly emitted to the atmosphere side, and the third chamber 27 is not ejected. And then to the open chamber 28, or to the open chamber 28 after passing through the second and third chambers 26 and 27, and further through the first chamber 25, the second chamber 26 and the third chamber 27 Since the liquefied gas passes through each chamber and changes its pressure in several times to be ejected to the open chamber 28, the loss due to the pressure change is minimized, and the amount of liquefied gas such as dry ice powder is further improved. Can be.
[0016]
Experiments on the generation of powdered dry ice were carried out by changing the number of nozzles, the diameter of the nozzle, and the number of the small diameter portions, and the following results were obtained.
Experimental Example 1
Number of nozzles 1 set of 8 left and right 16 nozzle diameter 1.0mm
Number 8 on the same circumference Powder dry ice generation rate 41%
[0017]
The number, diameter, and number on the same circumference of the nozzle of Experimental Example 1 are not limited to the above, and the number of nozzles may be one set of three to twelve on the left and right. Further, the nozzle diameter is 0.4 to 2.0 mm, and it is also possible to provide 6 to 24 nozzles on the same circumference.
[0018]
Experimental example 2.
Nozzle number 2 sets of 8 left and right 32 nozzle diameter 0.8mm
Number 8 on the same circumference Powder dry ice generation efficiency 42%
[0019]
The number, diameter, and number on the same circumference of the nozzles in Experimental Example 2 are not limited to the above, and the number of nozzles may be one set of 3 to 12 nozzles on each side. Further, the nozzle diameter is 0.4 to 2.0 mm, and it is also possible to provide 6 to 24 nozzles on the same circumference.
[0020]
Experimental example 3.
Nozzle number 3 sets of 8 left and right 48 nozzle diameter 0.7mm
Number 8 on the same circumference Powder dry ice generation efficiency 43%
[0021]
The number, diameter, and number on the same circumference of the nozzle of the third embodiment are not limited to the above, and the number of nozzles may be one set of three to twelve on the left and right. Further, the nozzle diameter is 0.4 to 2.0 mm, and it is also possible to provide 6 to 24 nozzles on the same circumference.
[0022]
Experimental example 4.
Nozzle number 4 sets of 8 left and right 64 nozzle diameter 0.6mm
Number 8 on the same circumference Powder dry ice generation efficiency 44%
[0023]
The number, diameter, and number on the same circumference of the nozzle of the fourth embodiment are not limited to the above, and the number of nozzles may be one set of three to twelve on the left and right. The nozzle diameter is 0.4 to 2.0 mm, and 6 to 24 nozzles can be provided on the same circumference 2.
[0024]
Next, an experiment was conducted on the generation of a liquefied gas such as liquid nitrogen, argon, or oxygen, and the following results were obtained.
Experimental example 5 When small volumes of liquefied gas are continuously taken out (several tens of cc / min)
Number of nozzles One set of 4 left and right 8 nozzle diameter 0.6mm
Number 4 on the same circumference Generation efficiency 50-60%
There is no dent in the liquid surface when the distance between the nozzle and the liquid surface is 10 cm.
[0025]
The number, diameter, and number on the same circumference of the nozzles in Experimental Example 5 are not limited to the above, and the number of nozzles may be one set of three to eight on the left and right. The nozzle diameter is 0.4 to 1.0 mm, and 6 to 24 nozzles can be provided on the same circumference 2. Experimental Example 5 is an embodiment of the first aspect of the present invention, in which the number of the small-diameter portions 34 provided on the outer periphery of the main body 30 is one, and each of the small-diameter portions 34 faces the slope portions 35 provided on both sides of the small-diameter portion. It is provided with two nozzles 37 and is most suitable for continuously extracting liquefied gas at a flow rate of several tens of cc per minute. In this case, since there is only one small-diameter portion, the length is short, and handling is convenient because of the small size.
[0026]
Experimental example 6. When medium volume liquefied gas is continuously taken out (~ 3 / min)
The number of nozzles One set of 16 nozzles on each side, 8 nozzle diameters 1.0mm
Number 8 on the same circumference Generation efficiency 60-70%
There is no dent in the liquid surface when the distance between the nozzle and the liquid surface is 30 cm.
[0027]
The number, diameter, and number on the same circumference of the nozzle of Experimental Example 6 are not limited to the above, and the number of nozzles may be one set of three to twelve on the left and right. The nozzle diameter is 0.4 to 2.0 mm, and 6 to 24 nozzles can be provided on the same circumference 2.
[0028]
Experimental example 7. When a large volume of liquefied gas is continuously taken out (~ 20 / min)
Number of nozzles 4 sets of 8 nozzles on each side 64 nozzle diameter 1.0mm
Number 8 on the same circumference Generation efficiency 60-70%
There is no dent in the liquid surface when the distance between the nozzle and the liquid surface is 30 cm.
[0029]
The number, diameter, and number on the same circumference of the nozzle of Experimental Example 7 are not limited to the above, and the number of nozzles may be one set of three to twelve on the left and right. The nozzle diameter is 0.4 to 2.0 mm, and 6 to 24 nozzles can be provided on the same circumference 2.
[0030]
The experimental examples 6 and 7 relate to the embodiment of the second aspect of the present invention, in which the number of the small-diameter portions 13 provided on the outer periphery of the main body 10 is two or four, and the small-diameter portions 13 are provided on both sides of the small-diameter portion. The experiment was conducted in a case where 16 nozzles 17 were provided facing each other on the inclined surface 15 and a case where 64 nozzles 17 were provided. It is most suitable for taking out liquefied gas continuously. In this case, the length of the main body becomes longer because there are a plurality of small-diameter portions. However, since a plurality of vacancies can be formed in the horn, the pressure does not drop suddenly, and the pressure drops sequentially in several steps. Therefore, the production rate of dry ice powder is improved.
[0031]
【The invention's effect】
According to the first aspect of the present invention , a plurality of gases press-fitted into a blind hole provided in the main body are provided on an inner wall surface of the blind hole and open to an intermediate portion of a slope portion, and each slope portion has both ends of a small diameter portion. The inside of the horn is partitioned from the outside by a pressure-barrier-like film generated by collision of liquefied gas discharged from nozzles provided symmetrically in the circumferential direction continuously from the outside to prevent a sharp pressure drop. It improves the rate of production of powdered dry ice released into the atmosphere, and is particularly useful for continuous removal of small-volume powdered dry ice. Furthermore, the noise level can be considerably reduced by the pressure-septum-like membrane compared with the conventional one.
The invention according to claim 2 is a disk-shaped pressure partition membrane formed by impinging gas ejected from nozzles respectively formed on inclined surfaces provided on both sides of a plurality of small diameter parts formed outside the main body. A plurality of horns are formed in the horn to divide the inside of the horn into a plurality of sections, and the gas is released while passing through the partitioned chambers sequentially. The production amount of dry ice is further improved and the production rate is stabilized. In addition, the generated powder dry ice has uniformity, so that no clumps or the like are mixed therein, and further, the noise level can be considerably reduced by the pressure partition wall-like film as compared with the conventional one.
[Brief description of the drawings]
FIG. 1 is a front view showing a main part of a nozzle portion of a conventional dry ice manufacturing device.
FIG. 2 is a front view showing a main part of a nozzle in another conventional example.
FIG. 3 is a front view showing a main part of a nozzle showing still another conventional example.
FIG. 4 is a front view showing an embodiment of the invention of claim 2;
FIG. 5 is a sectional view taken along line AA of FIG. 4;
FIG. 6 is an enlarged sectional view of a nozzle portion.
FIG. 7 is a plan view of the main body showing the embodiment of the first invention.
FIG. 8 is a sectional view taken along line BB of FIG. 7;
FIG. 9 is a plan view showing a state in which the main body is attached to a horn.
FIG. 10 is a front view of a horn.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Main body 11 Blind hole 13 Small diameter section 15 Slope section 17 Nozzle 19 Pressure barrier membrane 20 Vacancy 21 Horn 23 Opening 30 Main body 32 Blind hole 34 Small diameter section 35 Slope section 37 Nozzle 41 Horn 45 Empty Chamber 46 opening

Claims (2)

本体(30)の内部に一端から盲状孔(32)を設け、該本体の外周面に設けた小径部(34)の両側に夫々連続して45度の斜面部(35、35)を対称的に向かい合せに形成し、各斜面部に直交して形成した複数のノズル(37、37)を円周方向に等間隔に設け、先端を開口させた円筒状のホ−ン(41)を前記本体の外側に空間(45)を設けて設置し、
向かい合う各ノズル(37、37)から噴出するガスを前記小径部(34)の周囲で衝突させて遠心方向に形成した圧力隔壁状の膜(19)を、下端が大気に連通する開口部(46)を有した前記ホーン内に設けて大気と区画して急激な圧力低下を防止することを特徴とする粉末ドライアイスの製造装置。
A blind hole (32) is provided from one end inside the main body (30), and a 45-degree slope portion (35, 35) is continuously symmetrical on both sides of the small diameter portion (34) provided on the outer peripheral surface of the main body. A plurality of nozzles (37, 37) formed opposite to each other at right angles to each slope are provided at equal intervals in the circumferential direction, and a cylindrical horn (41) having an open end is provided. A space (45) is provided outside the main body and installed.
Opening collide at ambient pressure bulkhead-like film formed in the centrifugal direction (19), the lower end communicates with the atmosphere of the nozzle the small diameter portion of the gas ejected from the (37, 37) (34) facing (46 ) powder dry ice manufacturing apparatus characterized by preventing a rapid pressure drop is partitioned with the air provided within said horn having a.
内部に盲状孔(11)を有した本体(10)の外周面に複数の小径部(13、13)を一定間隔毎に設け、各小径部の両側に夫々連続して45度の斜面部(15、15)を対称的に向かい合せに形成し、各斜面部に直交して設けたノズル(17)を円周方向に夫々対をなして等間隔に複数形成し、先端に開口部(23)を設けた円筒状のホ−ン(21)を本体(10)の外側に空間(20)を設けて設置し、
向かい合う各ノズル(17、17)から噴出するガスを前記小径部(13、13)の周囲で衝突させて遠心方向に形成した圧力隔壁状の膜(19)を該ホ−ン内に複数設けて大気と区画して急激な圧力低下を防止することを特徴とする粉末ドライアイスの製造装置。
A plurality of small-diameter portions (13, 13) are provided at regular intervals on the outer peripheral surface of a main body (10) having a blind hole (11) therein, and a 45-degree slope portion is continuously provided on both sides of each small-diameter portion. (15, 15) are formed symmetrically facing each other, and a plurality of nozzles (17) provided orthogonally to the respective slopes are formed at equal intervals in pairs in the circumferential direction, and an opening ( A cylindrical horn (21) provided with ( 23) is provided with a space (20) provided outside the body (10),
A plurality of pressure partition-like membranes (19) formed in the centrifugal direction by impinging gas ejected from the opposed nozzles (17, 17) around the small diameter portions (13, 13) are provided in the horn. An apparatus for producing dry ice powder, wherein the apparatus is separated from the atmosphere to prevent a rapid pressure drop .
JP16751094A 1993-06-28 1994-06-28 Powder dry ice manufacturing equipment Expired - Fee Related JP3568239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16751094A JP3568239B2 (en) 1993-06-28 1994-06-28 Powder dry ice manufacturing equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3941193 1993-06-28
JP5-39411 1993-06-28
JP16751094A JP3568239B2 (en) 1993-06-28 1994-06-28 Powder dry ice manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH0771871A JPH0771871A (en) 1995-03-17
JP3568239B2 true JP3568239B2 (en) 2004-09-22

Family

ID=26378789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16751094A Expired - Fee Related JP3568239B2 (en) 1993-06-28 1994-06-28 Powder dry ice manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3568239B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6482111B2 (en) * 2014-11-05 2019-03-13 有限会社クールテクノス Cleaning device

Also Published As

Publication number Publication date
JPH0771871A (en) 1995-03-17

Similar Documents

Publication Publication Date Title
US4932168A (en) Processing apparatus for semiconductor wafers
US4640460A (en) CO2 snow forming header with triple point feature
US3922878A (en) Portable cooling unit
JP3568239B2 (en) Powder dry ice manufacturing equipment
CN100545548C (en) The gas-liquid separator that is used for the injector circulation
CA2015646C (en) Snow making, multiple nozzle assembly
US4622209A (en) Process and apparatus for reducing the chances of ignition and explosion due to the decomposition of high-pressure industrial process gases
WO1989010522A1 (en) Method and device for producing ice balls and application to the projection of such ice balls for surface treatments
EP1042056B1 (en) Method and apparatus for forming granulate from a melt of chemical products
US4688724A (en) Low pressure misting jet
JPH089582Y2 (en) Frozen grain production equipment
US10138108B2 (en) Gas-liquid mixing device of beverage
RU2016268C1 (en) Ejector plant
JPH10281609A (en) Distributing equipment of liquefied gas
JP2761645B2 (en) Method and apparatus for generating white smoke
JP2009068048A (en) Metal powder manufacturing apparatus, and metal powder
JP3562822B2 (en) Method and apparatus for producing block-shaped dry ice
WO1989007228A1 (en) Improvements to ice making apparatus
JP3047065B2 (en) Liquefied gas jet nozzle
JP4166847B2 (en) Dry ice production equipment
GB1502877A (en) Method of producing vacuum in a receptacle and a vacuum pump for effecting same
JPH02271909A (en) Apparatus and method for producing carbon dioxide snow
JPH06298513A (en) Snow horn for producing snow-like dry ice
US1885769A (en) Using and storing dry-ice
CN210001832U (en) liquid fuel puffing and cracking device capable of refrigerating

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees