JP4166847B2 - Dry ice production equipment - Google Patents

Dry ice production equipment Download PDF

Info

Publication number
JP4166847B2
JP4166847B2 JP21961297A JP21961297A JP4166847B2 JP 4166847 B2 JP4166847 B2 JP 4166847B2 JP 21961297 A JP21961297 A JP 21961297A JP 21961297 A JP21961297 A JP 21961297A JP 4166847 B2 JP4166847 B2 JP 4166847B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
liquid
pipe
dry ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21961297A
Other languages
Japanese (ja)
Other versions
JPH1160226A (en
Inventor
章司 関原
三郎 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP21961297A priority Critical patent/JP4166847B2/en
Priority to US08/997,882 priority patent/US5961041A/en
Publication of JPH1160226A publication Critical patent/JPH1160226A/en
Application granted granted Critical
Publication of JP4166847B2 publication Critical patent/JP4166847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ドライアイスの製造装置に関し、詳しくは、液化炭酸ガスを断熱膨張させることによってドライアイスを製造装置に関する。
【0002】
【従来の技術】
ドライアイスは、液化炭酸ガスをノズルから噴出させて断熱膨張させることによって製造されているが、液化炭酸ガス供給源(液化炭酸ガス貯槽(ボンベ))から供給される液化炭酸ガスは、配管途中で一部が気化して気液混合状態になっており、これをそのままノズルに供給すると、ドライアイスの生成効率や安定性が低下するため、ノズルに供給する前に気液分離を行い、分離した液状炭酸ガスのみをノズルに供給するようにしている。すなわち、ドライアイスの製造装置は、一般に、ノズルの上流側に気液分離器を備えており、該気液分離器でガス状炭酸ガスを分離した液状炭酸ガスをノズルに供給し、該ノズルからスノーホーンと呼ばれる下端が開口した筒体内に噴出させて液状炭酸ガスを断熱膨張させることにより、ドライアイスを製造している。
【0003】
従来のドライアイス製造装置に用いられている前記気液分離器は、例えば、特開平4−87927号公報や特開平6−293508号公報等に記載されているように、タンク形状のものであって、気液分離した液状炭酸ガスは、タンク底部から抜出し、ガス状炭酸ガスをタンク上部から抜出している。
【0004】
【発明が解決しようとする課題】
しかし、タンク形状の気液分離器では、タンク内の貯液量が少なくなり、液面が低く(液深が浅く)なると、液化炭酸ガス供給源からの液化炭酸ガスの流入により、その液面が波立ってガス状炭酸ガスが液状炭酸ガス中に巻込まれ、液状炭酸ガスにガス状炭酸ガスが混ざった状態で気液分離器から流出してノズルに供給されてしまうことがあり、ドライアイスの安定した生産に悪影響を与えることがあった。
【0005】
そこで本発明は、液化炭酸ガス供給源から供給される液化炭酸ガスの気液分離を確実に行うことができ、ノズルから液状炭酸ガスのみを噴出することにより、安定して効率よくドライアイスを製造することができるドライアイスの製造装置を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明のドライアイスの製造装置は、下端が開口した筒体と、該筒体内に液化炭酸ガスを噴出させて断熱膨張させるノズルとを備えたドライアイスの製造装置において、前記筒体の外周に傾斜管を螺旋状に設け、液化炭酸ガス供給源から液化炭酸ガスを供給する液化炭酸ガス供給管に前記傾斜管を接続し、該傾斜管の上部に、傾斜管内で気液分離したガス状炭酸ガスの抜出し部を設けるとともに、傾斜管の下部に、気液分離した液状炭酸ガスを前記ノズルに供給する液状炭酸ガス供給管を接続したことを特徴としている。
【0008】
さらに、本発明では、前記傾斜管は、該傾斜管と液化炭酸ガス供給源とを接続する液化炭酸ガス供給管より大径であること、また、前記傾斜管が、前記筒体の外周に螺旋状に設けられていることを特徴としている。
【0009】
【発明の実施の形態】
図1乃至図3は、本発明のドライアイス製造装置の一形態例を示すもので、図1はドライアイス製造装置の概略図、図2は傾斜管における気液分離状態を示す模式図、図3は傾斜管と液化炭酸ガス供給管との接続状態の一例を示す断面平面図である。
【0010】
ドライアイス製造装置は、液状炭酸ガスを噴出するノズル1を備えたスノーホーン2と、前記ノズル1に供給する液状炭酸ガスを得るために気液分離を行う傾斜管3と、原料となる液化炭酸ガスを供給する液化炭酸ガス貯槽4と、この液化炭酸ガス貯槽4内の液化炭酸ガスを前記傾斜管3に供給する液化炭酸ガス供給管5と、傾斜管3内で分離したガス状炭酸ガスを抜出すためのガス状炭酸ガス排気管6と、傾斜管3内で分離した液状炭酸ガスを前記ノズル1に供給するための液状炭酸ガス供給管7と、傾斜管3内の液面を検出するための差圧式液面計8と、ノズル1への液状炭酸ガスの供給を制御するための自動弁9と、ガス状炭酸ガスの排気量を制御するための自動弁10及び保圧弁11とにより形成されている。
【0011】
前記スノーホーン2は、円筒状の筒体2aと略半球状の頭部2bとからなるもので、筒体2aの軸線を鉛直方向として開口が下向きになるように配設され、頭部2bに、前記ノズル1が設けられている。なお、液状炭酸ガスを噴出するノズル1の設置数や配置位置、その噴出方向は任意に設定することができ、筒体2a部分に設けてもよい。また、スノーホーン2の形状,径,長さ等は、所要のドライアイス製造能力に応じて適宜設定すればよい。
【0012】
前記傾斜管3は、液化炭酸ガス貯槽4から液化炭酸ガス供給管5を介して供給される液化炭酸ガスの一部が、液化炭酸ガス供給管5への熱侵入により蒸発して発生したガス状炭酸ガスを分離するためのものであって、液化炭酸ガス供給管5より大径の配管で形成され、スノーホーン2の外周を所定の傾斜角で螺旋状に取巻くように設置されている。この傾斜管3の配管径及び傾斜角は、該傾斜管3内に流入した気液混合状態の炭酸ガスが層流状態で流れ、図2に示すように、分離した液状炭酸ガスLが配管下部を下方に向かって流れるとともに、ガス状炭酸ガスGが配管上部を上方に向かって流れる状態になるように、気液混合状態の炭酸ガスの供給量等によって設定する。
【0013】
例えば、気液混合状態の炭酸ガスの流量が多い場合は、傾斜管3内における気液分離を十分な時間をかけて行えるように、該傾斜管3の径を大きくして管内での流速を低くしたり、傾斜角を小さくしたり、長さを長くしたりすればよい。
【0014】
傾斜管3の形態は、液化炭酸ガスの供給量によって異なるが、通常は、液化炭酸ガス供給管5に対して1.5〜2倍程度の大径の配管、例えば液化炭酸ガス供給管5の呼び径が20Aの場合は32A程度の配管を使用し、傾斜角を水平面に対して30度以下、好ましくは3〜10度程度、長さを4000〜5000mm程度とし、液面(液深)が300〜400mm程度になるようにすればよい。これらの寸法等は、相互に関連するものであり、例えば傾斜管3の傾斜角を大きくし過ぎると、傾斜管3内に流入した液化炭酸ガスの流速が高くなって液面が波立つことがあるため、ガス状炭酸ガスが液状炭酸ガス中に巻き込まれて十分な気液分離が困難になるときがあり、逆に傾斜角を小さくし過ぎると、液状炭酸ガス中のガス状炭酸ガスが液面に浮上する速度が遅くなるため、この場合も十分な気液分離が困難になるときがある。いずれの場合も、液状炭酸ガスの流速とガス状炭酸ガスの浮上速度とを考慮すると、傾斜管3内の液状炭酸ガスの流速が毎秒0.3m以下、特に、毎秒30〜100mm程度になるように配管の径や傾斜角を設定することが好ましい。
【0015】
さらに、傾斜管3における気液混合状態の炭酸ガスの流入部は、図3に示すように、液化炭酸ガスが泡立つことなくスムーズに傾斜管3内に流入できるように、液化炭酸ガス供給管5との間に傾斜管3と同径の流入管3aを介在させ、この流入管3aを傾斜管3の接線方向に接続することが好ましい。また、流入管3aの設置位置は、傾斜管3内の液相部に気液混合状態の炭酸ガスが直接流入することがなく、ガス状炭酸ガス排気管6から液状炭酸ガスが流出することがないように、傾斜管3の中間部より若干上方に設定することが好ましい。
【0016】
なお、液化炭酸ガス貯槽4からスノーホーン2までの水平方向の距離が十分にある場合は、傾斜管3の一部又は全部を直線状に配置することも可能である。また、傾斜管3は全長にわたって全て同じ径である必要はなく異径配管が混在していてもよい。さらに、全てを同じ傾斜角にする必要もなく、一部を水平あるは鉛直方向にすることもできる。
【0017】
上述のような傾斜管3を用いて液化炭酸ガスの気液分離を行うことにより、液化炭酸ガス供給管5から傾斜管3内に流入した液化炭酸ガス(気液混合状態の炭酸ガス)は、傾斜管3の傾斜に沿って下方に流れながら気液分離が行われ、分離した液状炭酸ガスは、比較的緩やかな流れで傾斜管3内に貯留されている液状炭酸ガスに流入するので、液面を波立たせることがなく、ガス状炭酸ガスが液状炭酸ガス中に巻込まれることがなくなる。万一、ガス状炭酸ガスが液状炭酸ガス中に巻込まれたとしても、液面部分から液状炭酸ガス供給管7の接続部までの距離を十分に長くしておくことができるので、その途中でガス状炭酸ガスを確実に分離でき、ノズル1にガス状炭酸ガスが混入した状態で供給されることがなくなる。
【0018】
さらに、傾斜管3の上部と下部とにパイロット管8a,8bを接続し、傾斜管3内に溜まる液状炭酸ガスの液ヘッドが加わる傾斜管3の下部圧力と、傾斜管3の上部のガス部分の圧力との差圧から傾斜管3内の液面を検出する差圧式液面計8を設け、その検出液面によって自動弁10を開閉制御することにより、傾斜管3内の液面を所定の範囲内に維持することができるので、ガス状炭酸ガスが混入した状態の液状炭酸ガスがノズル1に供給されることを確実に防止できる。
【0019】
上記装置を使用してドライアイスを製造する際には、まず、配管内でドライアイスが生成して配管が閉塞されることを防止するため、液化炭酸ガス貯槽4に設けられているガス取出弁4aを開き、貯槽内のガス状炭酸ガスを、液化炭酸ガス供給管5から気液分離用の傾斜管3や液状炭酸ガス供給管7等の各経路に供給し、これらを加圧するとともに冷却する。
【0020】
各経路内が所定圧力になったら、液化炭酸ガス貯槽4のガス取出弁4aを閉じて液取出弁4bを開き、液化炭酸ガスの供給を開始するとともに、傾斜管3内からガス状炭酸ガスを排気するために自動弁10を開く。これにより、傾斜管3では、ガス状炭酸ガスが排気されながら液化炭酸ガス(気液混合状態の炭酸ガス)が流入する状態となり、気液分離された液状炭酸ガスが傾斜管3の下部に次第に貯留されてくる。
【0021】
そして、傾斜管3内の液面が所定高さになったら自動弁9を開き、傾斜管3の下部から、ガス状炭酸ガスを含まない液状炭酸ガスを液状炭酸ガス供給管7を介してノズル1に供給し、スノーホーン2内に噴出させる。スノーホーン2内に噴出した液状炭酸ガスは、断熱膨張してドライアイスを生成し、生成したドライアイスは、スノーホーン2の下端開口から落下する。
【0022】
また、差圧式液面計8の検出液面が所定高さになったら自動弁10を閉じて排気を止め、検出液面が所定高さより低くなったら自動弁10を開いて傾斜管3の上部のガス状炭酸ガスの排気、即ち傾斜管3内への貯液を行う。ドライアイスの製造運転中は、この動作を繰返すことにより、安定した状態で液状炭酸ガスをノズル1に供給することができる。
【0023】
このように、傾斜管3で気液分離を行うことにより、ガス状炭酸ガスが混入していない十分に気液分離された液状炭酸ガスをノズル1へ供給できるので、常に安定した状態でドライアイスを製造することができる。また、傾斜管3をスノーホーン2の外周を取巻くように螺旋状に設置することにより、設置スペースの削減が図れ、タンク形状の気液分離器を設置する場合に比べて装置の大幅な小型化が図れる。
【0024】
【実施例】
図1に示す構造の装置を使用してドライアイスを製造する実験を行った。装置各部の大きさなどは以下の通りである。
スノーホーン:全長500mm,外径139.8mm
液状炭酸ガス噴出ノズル:頭部頂点を中心とした円周上に等間隔で4個
ノズル孔径:0.1mm
供給圧力:20kgf/cm
供給量:3kg/min
液化炭酸ガス供給管:呼び径20A
気液分離用の傾斜管:呼び径32A
螺旋部高さ:585mm
傾斜角:水平面に対して5度
液状炭酸ガス供給管:呼び径10A
その結果、安定した状態で運転を継続することができ、良好なドライアイスを連続的に得ることができた。
【0025】
【発明の効果】
以上説明したように、本発明によれば、所定の傾斜角を有する傾斜管によって効率よく気液分離を行うことができ、スノーホーン内に噴出させる液状炭酸ガスにガス状炭酸ガスが混入することを防止することができるので、安定した状態でドライアイスを製造することができる。また、傾斜管を螺旋状に配設することにより、タンク形状の気液分離器を使用した装置と比較して小型化することができる。
【図面の簡単な説明】
【図1】 本発明のドライアイス製造装置の一形態例を示す概略図である。
【図2】 傾斜管内の気液分離状態を示す模式図である。
【図3】 傾斜管と液化炭酸ガス供給管との接続状態の一例を示す一部断面平面図である。
【符号の説明】
1…ノズル、2…スノーホーン、3…傾斜管、4…液化炭酸ガス貯槽、5…液化炭酸ガス供給管、6…ガス状炭酸ガス排気管、7…液状炭酸ガス供給管、8…差圧式液面計、9,10…自動弁、11…保圧弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing ZoSo location of dry ice and, more particularly, to manufacturing ZoSo place the dry ice by adiabatic expansion of liquefied carbon dioxide.
[0002]
[Prior art]
Dry ice is manufactured by ejecting liquefied carbon dioxide from a nozzle and adiabatic expansion, but liquefied carbon dioxide supplied from a liquefied carbon dioxide supply source (liquefied carbon dioxide storage tank (cylinder)) Some are vaporized and in a gas-liquid mixed state. If this is supplied to the nozzle as it is, the generation efficiency and stability of dry ice will be reduced. Only liquid carbon dioxide gas is supplied to the nozzle. That is, the dry ice production apparatus generally includes a gas-liquid separator on the upstream side of the nozzle, and supplies the carbon dioxide gas separated from the gaseous carbon dioxide gas by the gas-liquid separator to the nozzle. Dry ice is manufactured by adiabatic expansion of liquid carbon dioxide gas by spraying into a cylinder whose lower end is called a snow horn.
[0003]
The gas-liquid separator used in the conventional dry ice production apparatus has a tank shape as described in, for example, JP-A-4-87927 and JP-A-6-293508. The gas-liquid separated liquid carbon dioxide is extracted from the bottom of the tank, and gaseous carbon dioxide is extracted from the top of the tank.
[0004]
[Problems to be solved by the invention]
However, in the tank-shaped gas-liquid separator, when the amount of liquid stored in the tank decreases and the liquid level becomes low (the liquid depth is shallow), the liquid level is reduced by the inflow of liquefied carbon dioxide from the liquefied carbon dioxide supply source. When the carbon dioxide gas is entrained in the liquid carbon dioxide and the gaseous carbon dioxide is mixed with the liquid carbon dioxide, it may flow out of the gas-liquid separator and be supplied to the nozzle. Could adversely affect the stable production.
[0005]
Thus, the present invention can reliably perform gas-liquid separation of the liquefied carbon dioxide gas supplied from the liquefied carbon dioxide gas supply source, and stably and efficiently produce dry ice by ejecting only the liquid carbon dioxide gas from the nozzle. is an object of the present invention to provide a manufacturing ZoSo location of dry ice that can be.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a dry ice production apparatus of the present invention is a dry ice production apparatus comprising: a cylindrical body having an open lower end; and a nozzle for adiabatic expansion by ejecting liquefied carbon dioxide into the cylindrical body. An inclined pipe is provided in a spiral shape on the outer periphery of the cylindrical body, and the inclined pipe is connected to a liquefied carbon dioxide supply pipe for supplying liquefied carbon dioxide gas from a liquefied carbon dioxide supply source. A gas carbon-liquid separated extraction section is provided, and a liquid carbon dioxide supply pipe for supplying gas-liquid separated liquid carbon dioxide to the nozzle is connected to the lower portion of the inclined pipe .
[0008]
Furthermore, in the present invention, the pre-Symbol inclined tube, that it is a larger diameter than the liquefied carbon dioxide supply pipe connecting the said inclined pipe liquefied carbon dioxide supply source, it was or, wherein the inclined tubes, the tubular body It is characterized by being provided in a spiral shape on the outer periphery.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIGS. 1 to 3 show an embodiment of the dry ice production apparatus of the present invention. FIG. 1 is a schematic view of the dry ice production apparatus, and FIG. 2 is a schematic view showing a gas-liquid separation state in an inclined pipe. 3 is a cross-sectional plan view showing an example of a connection state between the inclined pipe and the liquefied carbon dioxide supply pipe.
[0010]
The dry ice production apparatus includes a snow horn 2 provided with a nozzle 1 for ejecting liquid carbon dioxide, an inclined pipe 3 that performs gas-liquid separation to obtain the liquid carbon dioxide supplied to the nozzle 1, and liquefied carbon dioxide as a raw material. A liquefied carbon dioxide gas storage tank 4 for supplying gas, a liquefied carbon dioxide gas supply pipe 5 for supplying the liquefied carbon dioxide gas in the liquefied carbon dioxide gas storage tank 4 to the inclined pipe 3, and a gaseous carbon dioxide gas separated in the inclined pipe 3 A gaseous carbon dioxide exhaust pipe 6 for extraction, a liquid carbon dioxide supply pipe 7 for supplying the liquid carbon dioxide separated in the inclined pipe 3 to the nozzle 1, and a liquid level in the inclined pipe 3 are detected. A differential pressure type liquid level gauge 8, an automatic valve 9 for controlling the supply of liquid carbon dioxide to the nozzle 1, and an automatic valve 10 and a pressure holding valve 11 for controlling the amount of gaseous carbon dioxide discharged. Is formed.
[0011]
The snow horn 2 is composed of a cylindrical cylindrical body 2a and a substantially hemispherical head 2b. The snow horn 2 is arranged so that the opening is downward with the axis of the cylindrical body 2a as a vertical direction. The nozzle 1 is provided. In addition, the installation number and arrangement position of the nozzle 1 which ejects liquid carbon dioxide gas, and the ejection direction can be arbitrarily set, and may be provided in the cylindrical body 2a. Moreover, what is necessary is just to set suitably the shape of a snow horn 2, a diameter, length, etc. according to required dry ice manufacturing capability.
[0012]
The inclined pipe 3 is a gas generated by evaporating a part of the liquefied carbon dioxide supplied from the liquefied carbon dioxide storage tank 4 via the liquefied carbon dioxide supply pipe 5 by heat intrusion into the liquefied carbon dioxide supply pipe 5. It is for separating carbon dioxide, and is formed by a pipe having a diameter larger than that of the liquefied carbon dioxide supply pipe 5, and is installed so as to surround the outer periphery of the snow horn 2 in a spiral shape with a predetermined inclination angle. The pipe diameter and inclination angle of the inclined pipe 3 are such that the gas-liquid mixed carbon dioxide flowing into the inclined pipe 3 flows in a laminar flow state, and as shown in FIG. And the amount of carbon dioxide G in the gas-liquid mixed state is set so that the gaseous carbon dioxide G flows upward in the upper part of the pipe.
[0013]
For example, when the flow rate of carbon dioxide gas in a gas-liquid mixed state is large, the diameter of the inclined tube 3 is increased so that the gas-liquid separation in the inclined tube 3 can be performed for a sufficient time to increase the flow rate in the tube. What is necessary is just to make low, to make inclination-angle small, or to lengthen length.
[0014]
The form of the inclined pipe 3 varies depending on the supply amount of the liquefied carbon dioxide gas, but is usually a pipe having a large diameter of about 1.5 to 2 times the liquefied carbon dioxide supply pipe 5, for example, the liquefied carbon dioxide supply pipe 5. When the nominal diameter is 20A, a pipe of about 32A is used, the inclination angle is 30 degrees or less with respect to the horizontal plane, preferably about 3 to 10 degrees, the length is about 4000 to 5000 mm, and the liquid level (liquid depth) is What is necessary is just to make it about 300-400 mm. These dimensions and the like are related to each other. For example, if the inclination angle of the inclined tube 3 is increased too much, the flow rate of the liquefied carbon dioxide gas flowing into the inclined tube 3 is increased, and the liquid surface may be waved. Therefore, there are cases where gaseous carbon dioxide is entrained in liquid carbon dioxide and sufficient gas-liquid separation becomes difficult. Conversely, if the inclination angle is too small, the gaseous carbon dioxide in the liquid carbon dioxide will be liquid. In this case, sufficient gas-liquid separation may be difficult because the speed of rising to the surface becomes slow. In any case, considering the flow rate of the liquid carbon dioxide gas and the rising speed of the gaseous carbon dioxide gas, the flow rate of the liquid carbon dioxide gas in the inclined pipe 3 is 0.3 m or less per second, particularly about 30 to 100 mm per second. It is preferable to set the diameter and inclination angle of the pipe.
[0015]
Further, the inflow portion of the carbon dioxide gas in the gas-liquid mixed state in the inclined pipe 3 is liquefied carbon dioxide supply pipe 5 so that the liquefied carbon dioxide gas can smoothly flow into the inclined pipe 3 without foaming as shown in FIG. It is preferable that an inflow pipe 3a having the same diameter as that of the inclined pipe 3 is interposed between the inflow pipe 3a and the inflow pipe 3a. In addition, the installation position of the inflow pipe 3a is that the gas-liquid mixed carbon dioxide gas does not directly flow into the liquid phase portion in the inclined pipe 3, but the liquid carbon dioxide gas flows out from the gaseous carbon dioxide exhaust pipe 6. It is preferable to set it slightly above the middle part of the inclined tube 3 so as not to be present.
[0016]
In addition, when there is a sufficient distance in the horizontal direction from the liquefied carbon dioxide storage tank 4 to the snow horn 2, a part or all of the inclined tube 3 can be arranged linearly. Further, the inclined pipes 3 do not have to have the same diameter over the entire length, and different diameter pipes may be mixed. Furthermore, it is not necessary that all have the same inclination angle, and some can be horizontal or vertical.
[0017]
By performing gas-liquid separation of the liquefied carbon dioxide gas using the inclined pipe 3 as described above, the liquefied carbon dioxide gas (the carbon dioxide gas in a gas-liquid mixed state) flowing into the inclined pipe 3 from the liquefied carbon dioxide supply pipe 5 is Gas-liquid separation is performed while flowing downward along the inclination of the inclined pipe 3, and the separated liquid carbon dioxide gas flows into the liquid carbon dioxide gas stored in the inclined pipe 3 with a relatively gentle flow. The surface is not undulated and the gaseous carbon dioxide is not caught in the liquid carbon dioxide. Even if gaseous carbon dioxide is entrained in the liquid carbon dioxide, the distance from the liquid surface portion to the connecting portion of the liquid carbon dioxide supply pipe 7 can be made sufficiently long. Gaseous carbon dioxide can be reliably separated, and the nozzle 1 is not supplied with gaseous carbon dioxide mixed therein.
[0018]
Further, pilot pipes 8 a and 8 b are connected to the upper and lower parts of the inclined pipe 3, and the lower pressure of the inclined pipe 3 to which the liquid carbon dioxide liquid head accumulated in the inclined pipe 3 is applied, and the gas portion at the upper part of the inclined pipe 3. A differential pressure type liquid level gauge 8 for detecting the liquid level in the inclined pipe 3 from the differential pressure with respect to the pressure is provided, and the automatic valve 10 is controlled to open and close by the detected liquid level, whereby the liquid level in the inclined pipe 3 is predetermined. Therefore, liquid carbon dioxide mixed with gaseous carbon dioxide can be reliably prevented from being supplied to the nozzle 1.
[0019]
When producing dry ice using the above apparatus, first, a gas take-off valve provided in the liquefied carbon dioxide gas storage tank 4 in order to prevent dry ice from being generated in the pipe and blocking the pipe. 4a is opened, and the gaseous carbon dioxide in the storage tank is supplied from the liquefied carbon dioxide supply pipe 5 to each path such as the inclined pipe 3 for gas-liquid separation, the liquid carbon dioxide supply pipe 7, etc., and these are pressurized and cooled. .
[0020]
When the pressure in each passage reaches a predetermined pressure, the gas extraction valve 4a of the liquefied carbon dioxide storage tank 4 is closed and the liquid extraction valve 4b is opened to start supplying the liquefied carbon dioxide gas. The automatic valve 10 is opened to evacuate. As a result, the inclined pipe 3 enters a state in which liquefied carbon dioxide gas (gas-liquid mixed carbon dioxide) flows in while the gaseous carbon dioxide is exhausted, and the liquid carbon gas that has been gas-liquid separated gradually enters the lower part of the inclined pipe 3. It will be stored.
[0021]
When the liquid level in the inclined pipe 3 reaches a predetermined height, the automatic valve 9 is opened, and liquid carbon dioxide that does not contain gaseous carbon dioxide gas is discharged from the lower part of the inclined pipe 3 through the liquid carbon dioxide supply pipe 7. 1 and is ejected into the snow horn 2. The liquid carbon dioxide jetted into the snow horn 2 adiabatically expands to generate dry ice, and the generated dry ice falls from the lower end opening of the snow horn 2.
[0022]
When the detection liquid level of the differential pressure type liquid level gauge 8 reaches a predetermined height, the automatic valve 10 is closed to stop the exhaust, and when the detection liquid level becomes lower than the predetermined height, the automatic valve 10 is opened and the upper portion of the inclined pipe 3 is opened. The gaseous carbon dioxide is exhausted, that is, stored in the inclined pipe 3. By repeating this operation during the dry ice production operation, the liquid carbon dioxide gas can be supplied to the nozzle 1 in a stable state.
[0023]
In this way, by performing gas-liquid separation with the inclined pipe 3, it is possible to supply the liquid carbon dioxide gas, which is sufficiently gas-liquid separated and not mixed with gaseous carbon dioxide gas, to the nozzle 1, so that the dry ice is always in a stable state. Can be manufactured. In addition, the installation space can be reduced by installing the inclined tube 3 in a spiral shape so as to surround the outer periphery of the snow horn 2, and the apparatus can be greatly reduced in size compared with the case where a tank-shaped gas-liquid separator is installed. Can be planned.
[0024]
【Example】
An experiment for producing dry ice was performed using the apparatus having the structure shown in FIG. The size of each part of the apparatus is as follows.
Snow horn: total length 500mm, outer diameter 139.8mm
Liquid carbon dioxide injection nozzle: 4 nozzles at regular intervals on the circumference centered on the top of the head Nozzle hole diameter: 0.1 mm
Supply pressure: 20 kgf / cm 2
Supply amount: 3kg / min
Liquefied carbon dioxide supply pipe: Nominal diameter 20A
Inclined tube for gas-liquid separation: Nominal diameter 32A
Spiral height: 585mm
Inclination angle: 5 degrees with respect to the horizontal plane Carbon dioxide supply pipe: Nominal diameter 10A
As a result, the operation could be continued in a stable state, and good dry ice could be obtained continuously.
[0025]
【The invention's effect】
As described above, according to the present invention, gas-liquid separation can be efficiently performed by the inclined tube having a predetermined inclination angle, and gaseous carbon dioxide gas is mixed into the liquid carbon dioxide gas injected into the snow horn. Therefore, dry ice can be produced in a stable state. Further, by arranging the inclined pipe in a spiral shape, it is possible to reduce the size as compared with an apparatus using a tank-shaped gas-liquid separator.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of an embodiment of the dry ice production apparatus of the present invention.
FIG. 2 is a schematic diagram showing a gas-liquid separation state in an inclined pipe.
FIG. 3 is a partial cross-sectional plan view showing an example of a connection state between an inclined pipe and a liquefied carbon dioxide supply pipe.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Nozzle, 2 ... Snow horn, 3 ... Inclined pipe, 4 ... Liquefied carbon dioxide storage tank, 5 ... Liquefied carbon dioxide supply pipe, 6 ... Gaseous carbon dioxide exhaust pipe, 7 ... Liquid carbon dioxide supply pipe, 8 ... Differential pressure type Level gauge, 9, 10 ... Automatic valve, 11 ... Holding pressure valve

Claims (2)

下端が開口した筒体と、該筒体内に液化炭酸ガスを噴出させて断熱膨張させるノズルとを備えたドライアイスの製造装置において、前記筒体の外周に傾斜管を螺旋状に設け、液化炭酸ガス供給源から液化炭酸ガスを供給する液化炭酸ガス供給管に前記傾斜管を接続し、該傾斜管の上部に、傾斜管内で気液分離したガス状炭酸ガスの抜出し部を設けるとともに、傾斜管の下部に、気液分離した液状炭酸ガスを前記ノズルに供給する液状炭酸ガス供給管を接続したことを特徴とするドライアイスの製造装置。  In a dry ice manufacturing apparatus provided with a cylindrical body having an open lower end and a nozzle for adiabatic expansion by ejecting liquefied carbon dioxide gas into the cylindrical body, an inclined pipe is provided on the outer periphery of the cylindrical body, The inclined pipe is connected to a liquefied carbon dioxide supply pipe for supplying liquefied carbon dioxide gas from a gas supply source, and an outlet for gaseous carbon dioxide separated in the inclined pipe is provided at the upper part of the inclined pipe. An apparatus for producing dry ice, characterized in that a liquid carbon dioxide supply pipe for supplying liquid carbon dioxide separated into gas and liquid to the nozzle is connected to the lower part of the apparatus. 前記傾斜管は、該傾斜管と液化炭酸ガス供給源とを接続する液化炭酸ガス供給管より大径であることを特徴とする請求項1記載のドライアイスの製造装置。  The apparatus for producing dry ice according to claim 1, wherein the inclined pipe has a larger diameter than a liquefied carbon dioxide supply pipe connecting the inclined pipe and a liquefied carbon dioxide supply source.
JP21961297A 1996-12-25 1997-08-14 Dry ice production equipment Expired - Fee Related JP4166847B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21961297A JP4166847B2 (en) 1997-08-14 1997-08-14 Dry ice production equipment
US08/997,882 US5961041A (en) 1996-12-25 1997-12-24 Method and apparatus for making carbon dioxide snow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21961297A JP4166847B2 (en) 1997-08-14 1997-08-14 Dry ice production equipment

Publications (2)

Publication Number Publication Date
JPH1160226A JPH1160226A (en) 1999-03-02
JP4166847B2 true JP4166847B2 (en) 2008-10-15

Family

ID=16738266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21961297A Expired - Fee Related JP4166847B2 (en) 1996-12-25 1997-08-14 Dry ice production equipment

Country Status (1)

Country Link
JP (1) JP4166847B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160244A (en) * 2005-12-15 2007-06-28 Itec Co Ltd Dry ice spraying apparatus
JP2008184345A (en) * 2007-01-29 2008-08-14 Iwatani Internatl Corp Snow-like solid carbon dioxide production apparatus
CN109279604B (en) * 2018-11-30 2020-04-10 厦门理工学院 High-density carbon dioxide forming equipment
CN114956080B (en) * 2022-02-10 2024-02-06 厦门金瑞镒工贸有限公司 Dry ice preparation device, exhaust structure of dry ice preparation device and exhaust method

Also Published As

Publication number Publication date
JPH1160226A (en) 1999-03-02

Similar Documents

Publication Publication Date Title
US20050115273A1 (en) Multistage fluid separation assembly and method
JP4166847B2 (en) Dry ice production equipment
US3823872A (en) Nozzle for use in hot liquid ejector pumps, and related process
JP2557383Y2 (en) Dry ice blast injection gun
JP2009226290A (en) Cleaning apparatus
JP2006177577A (en) Spraying system for lowering temperature
JP2004076573A (en) Injection head of fluid
JP7238819B2 (en) steam injector
KR860007530A (en) Jet jet
KR101957413B1 (en) Jet ejecter for bag-filter of dust collector
JP2663329B2 (en) Excess gas separation type gas-liquid pressurized reactor
CN201094940Y (en) Circumferential seam jet apparatus
JP4247982B2 (en) Snow making equipment
US6657021B2 (en) Liquid nozzle with variable liquid level
JP2004237258A (en) Wet type flue gas desulfurization equipment
JPH0811687B2 (en) Snow horn for producing snow-like dry ice
US5961041A (en) Method and apparatus for making carbon dioxide snow
CN211609289U (en) Carbon dioxide charging connector device
CN205974439U (en) Novel coal gas removes dust device
CN110438868A (en) The foaming method of foamed asphalt
JPH07196391A (en) Apparatus for generating white smoke ring and method for forming white smoke ring
JP2019098519A (en) Dry ice injection device
JP7264080B2 (en) steam injector
EP0467650A1 (en) Liquid supply nozzle
JP7447775B2 (en) steam injector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees