JP3567308B2 - Eggshell membrane fine powder blended paper, and various functional papers using eggshell membrane fine powder - Google Patents

Eggshell membrane fine powder blended paper, and various functional papers using eggshell membrane fine powder Download PDF

Info

Publication number
JP3567308B2
JP3567308B2 JP35012095A JP35012095A JP3567308B2 JP 3567308 B2 JP3567308 B2 JP 3567308B2 JP 35012095 A JP35012095 A JP 35012095A JP 35012095 A JP35012095 A JP 35012095A JP 3567308 B2 JP3567308 B2 JP 3567308B2
Authority
JP
Japan
Prior art keywords
fine powder
eggshell membrane
paper
membrane fine
eggshell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35012095A
Other languages
Japanese (ja)
Other versions
JPH09176998A (en
Inventor
芳広 川口
博志 横田
哲則 国武
明徳 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QP Corp
Original Assignee
QP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QP Corp filed Critical QP Corp
Priority to JP35012095A priority Critical patent/JP3567308B2/en
Publication of JPH09176998A publication Critical patent/JPH09176998A/en
Application granted granted Critical
Publication of JP3567308B2 publication Critical patent/JP3567308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は卵殻膜微細粉末配合紙、並びに卵殻膜微細粉末を利用した各種機能紙に関し、卵殻膜の性状を損なわずに有効に保持した実用性の高い卵殻膜微細粉末の配合紙を提供するとともに、この卵殻膜微細粉末配合紙を調湿、吸油、皮脂除去などの新たな用途を備えた各種機能紙として提供しようとするものである。
【0002】
【発明の背景】
近年、地球環境や生態系の保護の観点から、生物を含めた資源の省力化や有効利用が強く要請されているが、鳥卵の卵殻膜(特に、鶏卵など)はタンパク質を主成分とする天然素材であり、皮膚疾患の治療への適用が従来から試みられている程度で、その多くが利用されないまま廃棄されているのが現状である。
【0003】
【従来の技術】
特開昭63―309273号公報には、卵殻膜を利用したシートが開示されている。即ち、生の卵殻膜に加熱乾燥、或は凍結乾燥などを施し、ハンマーミル、スパイラルミル等で乾式粉砕して粉末化し、この乾式粉砕処理方式の卵殻膜粉末を主材としてシートを製造して、皮膚疾患や創傷の治療材、同補助材、或は化粧品補助材に使用できることが述べられている。
【0004】
【発明が解決しようとする課題】
上記従来技術では、概略的な手抄き方式の卵殻膜シートの実施例などが記載されているだけで(同公報第3頁左上欄参照)、シートの実用性が強度などの点で必ずしも充分ではないうえ、シートの用途が生体適合性などを中心とした創傷治療的なものに限定されている。
【0005】
本発明は、卵殻膜の性状を損なわずにうまく引き出した実用性の高い卵殻膜微細粉末の配合紙を開発するとともに、この配合紙を従来からの創傷治療的な使途以外の全く新しい用途を備えた各種機能紙として開拓することにより、有機天然物資源である卵殻膜の効率的な活用と資源の省力化を図ることを技術的課題とする。
【0006】
【課題を解決するための手段】
本発明者らは、卵殻膜並びにその粉末化の技術を継続的に鋭意研究した結果、卵殻膜を所定の湿式粉砕処理方式により粉末化すると、卵殻膜を構成するタンパク質の性状を損なわずにその活性をうまく引き出せること、並びに、この卵殻膜微細粉末の配合紙が優れた吸湿、或は吸油機能などを発揮することを新たに発見して、調湿紙、吸油紙、皮脂除去紙などの各種機能紙への利用を図った。
【0007】
即ち、本発明1は、卵殻膜を水及びアルコール系溶媒の少なくともいずれかに浸漬し、石臼式回転磨砕及びボールミル式粉砕の少なくともいずれかを施して卵殻膜の湿式粉砕粉末を製造し、この卵殻膜微細粉末の繊維構造を絡み合わせてシート形態に加工することを特徴とする卵殻膜微細粉末配合紙である。
【0008】
本発明2は、上記本発明1において、4級アンモニウム塩類などのカチオン系界面活性剤により卵殻膜微細粉末と繊維組成物を水に分散させて紙料を調製し、湿式抄紙することを特徴とする卵殻膜微細粉末配合紙である。
【0009】
本発明3は、上記本発明1又は2の卵殻膜微細粉末配合紙を湿度環境に接触させて、環境中の湿気の吸収と放出により湿度調節可能にすることを特徴とする卵殻膜微細粉末を利用した調湿紙である。
【0010】
本発明4は、上記本発明1又は2に記載の卵殻膜微細粉末配合紙を被処理物に接触させて、有効主成分である卵殻膜により被処理物の油分を吸収除去可能にすることを特徴とする卵殻膜微細粉末を利用した吸油紙である。
【0011】
本発明5は、上記本発明1又は2に記載の卵殻膜微細粉末配合紙を被処理物に接触させて、被処理物中の貴金属、重金属などの金属を吸着可能にすることを特徴とする卵殻膜微細粉末を利用した金属捕集紙である。
【0012】
上記卵殻膜微細粉末は、卵殻膜を水及び/又はアルコール系溶媒(即ち、水とアルコール系溶媒の混合系か、アルコール系溶媒、或は水単独)の中で湿式粉砕して製造する。
当該粉砕処理は石臼式回転磨砕又はボールミル式粉砕を夫々単独で施しても良いが、例えば、卵殻膜に石臼式回転磨砕を施した後に、連続してボールミル式粉砕を施しても良く、この両方式の粉砕を複数回繰り返しても差し支えない。
因みに、上記卵殻膜微細粉末は、生の卵殻膜を予備洗浄し、微粉砕化し、濾過洗浄と乾燥処理で製造するのが好ましい。
当該予備洗浄では、水洗してからアルコール系溶媒で洗浄し、卵殻膜に付着する油脂分を溶解除去することもでき、卵殻膜を次工程での湿式粉砕処理に適した浸漬物にする。
【0013】
上記アルコール洗浄を選択した場合の利点は、水洗後の水分の残存を問題にせず、アルコールへの完全置換を必要としない点にもある。このアルコール洗浄から次の磨砕、粉砕までの一貫した工程におけるアルコールの濃度は、0.01〜99.99%とすることができるが、実用上は、卵殻膜の殺菌消毒効果を同時に発揮できる30〜70%のものが好ましい。
使用するアルコールは、飽和、不飽和の脂肪族及び芳香族のモノ、ジ、そして多価アルコールなどの広範なものを使用できるが、エタノール、イソプロパノールが好ましく、さらには、日本薬局方収載のものを70%エタノール、30%、50%イソプロパノールとして用いることができる。
【0014】
上記微粉砕では、卵殻膜の前記アルコール浸漬物(或は、水への浸漬物など)を石臼式回転磨砕とボールミル式粉砕を繰り返して粉砕物懸濁液を得る。当該石臼式磨砕機は上下2枚の特殊グラインダーによって構成され、固定側の上部グラインダーと回転側の下部グラインダーの間に生じる衝撃、剪断、圧縮、ころがり摩擦等の力により原料を粉砕するものである。用いるグラインダーには、従来通りのものも使用できるが、最近開発された無気孔で割れない特性を有するセラミックスのものが適している。
投入する卵殻膜のアルコール浸漬物(又は水への浸漬物など)は、その浸漬比率が1:0.5(固体:分散媒(V/V))以上であれば良く、実際には1:1から1:10までの範囲の使用が好ましい。運転に際して、一度磨砕されたものを繰り返し磨砕機に投入する連続磨砕処理も効果的である。さらに、連続磨砕処理の間に分散媒を交換すると、洗浄効果を一層促進できる。
【0015】
石臼式磨砕を終えた磨砕物は、そのままボールミル式粉砕機に投入される。ボールミル式粉砕には、円筒の中に被粉砕物と粉砕媒体(例えば、ジルコニアボール)を入れて、円筒内の回転軸の動きにより回転粉砕するか、円筒を振動させて粉砕する方法を利用することができる。本工程においても、被粉砕物である卵殻膜粉末のアルコール浸漬比率は前の工程と同様のものとする。
本工程からの粉砕物の分離回収には、粉砕媒体のボールの直径より小さい枡目のふるいを通してボールを捕捉しておき、下段に設けたマイクロフィルターで粉砕物懸濁液を濾過することにより行う。
ボールの洗浄と濾集粉砕物は、アルコール又は他の揮発性有機溶媒により、卵殻膜由来の残存油脂分を洗浄除去後、乾燥して卵殻膜微細粉末(最小粒子径で数ミクロン程度)とされる。
この最終段階の洗浄では、元の卵殻膜の容積が小さくなっており、また逆に表面積が大きくなっているので、効果的に油脂分を溶解除去できる。
尚、洗浄溶媒は各々単用若しくは併用できるが、アセトン、エーテルを使用することも可能である。
【0016】
上記卵殻膜微細粉末は、前述のように、水及び/又はアルコール系溶媒中で石臼式回転磨砕又はボールミル式粉砕を施す湿式粉砕粉末であり、卵殻膜微細粉末の粒子径としては、ミクロン単位を中心とした種々の大きさに調製するのが一般的であるが、数十μm〜数μm程度に調製すると、卵殻膜が本来的に保有する有機構造に由来する比較的マクロな繊維構造を保持できる。
また、上記卵殻膜微細粉末は、乳酸、尿素、チオグリコール酸などで適宜処理しても良い。
【0017】
上記卵殻膜微細粉末配合紙は、卵殻膜微細粉末の繊維構造が絡み合ったシート形態のものを意味し、一般的には、卵殻膜微細粉末と繊維組成物を混合した分散スラリーを紙料として調製し、この紙料を湿式抄紙した繊維間自己接着性による抄造紙を基本とするが、次の(1)〜(3)の紙なども包含される。
(1)卵殻膜微細粉末のみをラテックスなどの結合剤の添加、或は無添加の条件下で湿式抄紙した紙。卵殻膜微細粉末は比較的マクロな繊維構造を有するため、他の繊維組成物を配合しなくても、湿式抄紙できる。
(2)卵殻膜微細粉末の分散液を結合剤の添加、或は無添加の条件下で基材上に均一に塗布して乾燥するキャスティング方式などで製造した紙。
(3)紙の片面、又は両面に卵殻膜微細粉末の塗膜を上記(2)の方式などで固着した積層紙。また、紙同士の間に卵殻膜微細粉末の塗膜を介在させた積層紙など。
【0018】
上記繊維組成物は、製紙用として普通に使用できるNBKP・LBKP等の木材パルプ、脱墨パルプ(DIP)のほか、リンターパルプ・麻・バガス・ケナフ・エスパルト草・ワラなどの非木材繊維パルプでも良い。また、ポリエチレン・ポリプロピレン・ポリビニルアルコール・ポリエステル・ポリアクリルニトリル系等の合成繊維、レーヨン・キュプラ・アセテート等の再生又は半合成繊維、ロックウール・ガラス繊維・炭素繊維等の無機繊維などでも差し支えない。
さらに、アルギン酸(及びその塩)は生体親和性が良いので、これを繊維化したアルギン酸繊維を当該繊維組成物に選択又は併用することもできる。
尚、上記繊維組成物は用途に応じて適宜配合率を変化させれば良く、パルプは未晒パルプ、晒パルプ(染色されたものでも可)を単用、或は併用することができる。
【0019】
上記湿式抄紙の場合、機械漉き、手漉きを問わないが、機械漉きでは、一般に、円網、短網、長網、サクションホーマー等の抄紙機を使用する。例えば、本発明2では、分散スラリーは卵殻膜微細粉末の懸濁液であるが、JIS−P−8209等の方式に基づけば、容易に抄紙できる。
【0020】
上記湿式抄紙における紙料の調製は、卵殻膜微細粉末を水に分散した液と繊維組成物の分散液を別々に整えてから混合処理する2液方式でも良いし、卵殻膜微細粉末と繊維組成物を同時に分散する1液方式でも差し支えないが、卵殻膜微細粉末と繊維組成物の配合割合を容易に選択できる点で、2液混合方式が便利である。
【0021】
上記卵殻膜微細粉末は、例えば、同じケラチンタンパク質で構成される羽毛微細粉末(本出願人が特開平4−312534号公報などで先に開示)に比べて表面疎水性は高くはないため(後述の試験例参照)、水になじんで比較的分散し易いが、湿式抄紙に際しては、通常、カチオン系、ノニオン系、或は両性などの各種界面活性剤で水中に分散する。
この場合、上記カチオン系界面活性剤は、特に、卵殻膜微細粉末の分散能力に優れており、具体的には、下記の▲1▼〜▲4▼などの4級アンモニウム塩類が好適である。
▲1▼脂肪族アンモニウム塩類
▲2▼芳香族アンモニウム塩類
▲3▼ピリジニウム塩系、イミダゾリニウム塩系等の複素環アンモニウム塩類
▲4▼セルロース系或は▲1▼〜▲3▼のポリオキシアルキレンの付加物
【0022】
上記▲1▼の脂肪族アンモニウム塩類としては、モノアルキルトリメチル、或はジアルキルジメチルアンモニウム塩類、脂肪族アミド・ポリアミン類などが挙げられ、具体的には、ジアルキル・ジメチルアンモニウムクロライド(アーカード2HT−75;ライオン製等)、ラウリル・トリメチルアンモニウムクロライド(カチオーゲンTML;第一工業薬品製等)、セチル・トリメチルアンモニウムクロライド(カチオーゲンTMP;第一工業薬品製等)、ステアリル・トリメチルアンモニウムクロライド(カチオーゲンTMS;第一工業薬品製等)、ジステアリル・ジメチルアンモニウムクロライドなどが挙げられる。
上記▲2▼の芳香族アンモニウム塩類としては、ベンザルコニウム塩類、ベンゼトニウム塩類などが挙げられ、具体的には、塩化ベンザルコニウム(カチオンG−50及びカチオンM;三洋化成製、ニッカノンBZ;日華化学製等、より具体的には、ステアリル・ジメチル・ベンジルアンモニウムクロライド;スワノールCA−1485;日本サーファクタント製等)などが挙げられる。
上記▲3▼の複素環アンモニウム塩類としては、セチル・ピリジニウムクロライドなどが挙げられる。
【0023】
上記4級アンモニウム塩類は紙料に加えた場合に泡立ちがないか、少ないため、その配合率は0.01〜0.05重量%程度が一般的である。
【0024】
また、上記抄紙工程においては、下記に示すように、通常の湿式抄紙で使用する各種薬剤を始め、種々の処理剤を配合できる。
(1)湿潤紙力増強剤としては、ポリアミドアミンエピクロルヒドリン系樹脂、ホルムアルデヒド縮合物やポリエチレンイミン等のカチオン系ポリマーがあり、アニオン系ポリマーを併用するのが一般的である。当該アニオン系ポリマーには、アニオン系ポリアクリルアミドなどが挙げられる。
但し、卵殻膜微細粉末の湿式抄紙では、各種の繊維や填料に自己定着性がある両性イオンラテックス系のバインダーを用いると、送りや地合が円滑化されて、抄紙に好適である。
【0025】
(2)乾燥紙力増強剤としては、澱粉、酸化澱粉・カルボキシメチル澱粉・カチオン化澱粉などの変性澱粉、グアーガム・キサンタンガムなどの植物ガム、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、ポリアクリルアミド(アニオン性・カチオン性・両性)などを配合でき、これらの添加により、卵殻膜微細粉末の脱落を円滑に防止する。
【0026】
(3)紙に柔軟性や平滑性を付与するため、クレー、タルクなどの各種填料を使用できる。
(4)内部サイジングとして、ロジン系の酸性サイズ剤、或は、アルキルケテンダイマー・アルケニル無水コハク酸などの中性サイズ剤を使用できる。
(5)ポリエチレンオキシド(PEO)などの粘剤などを添加しても良い。
【0027】
(6)例えば、卵殻膜微細粉末配合紙を調湿紙に供する場合、シリカゲル、アルミナゲル、(天然・合成)ゼオライトなどの他の無機系の調湿剤を補填することを妨げない。また、塩化コバルトなどを漉き込んで、吸湿・放湿に伴い、淡紅色と青色間で色変化させるなど、調湿紙に色変を起こすように工夫しても良い。
【0028】
上記配合紙では、繊維総重量に対する卵殻膜微細粉末の配合比率は0.1〜100重量%であるが、湿式抄造する場合、卵殻膜微細粉末による各種機能の促進や、脱水・目詰まり防止などにより抄紙の円滑化を図る見地から、卵殻膜微細粉末の配合率は20〜80重量%が好ましく、より好ましくは50〜70重量%である。
上記卵殻膜微細粉末の粒子径は一般に3mm〜数μm程度であり、実際的には数十μm程度のものが適当である。
また、当該配合紙は、紙厚としては薄紙から板紙までを含む概念である。
【0029】
上記金属捕集紙による捕集方法としては、金属捕集紙を積層した容器内に金属含有液を通す濾過方式が一般的であるが、金属含有液の中に多数枚の金属捕集紙を浸漬するなどして、金属含有液と接触させても差し支えない。
【0030】
【作用】
湿式粉砕処理した本卵殻膜微細粉末は比較的マクロな繊維構造を有しており、繊維間自己接着性があるうえ、他の繊維組成物とも絡み易いため、湿式抄紙に適している。因みに、実際に卵殻膜微細粉末配合紙を顕微鏡で観察すると、図8に示すように、卵殻膜の繊維構造が絡み合っている様子が確認できる。
また、後述の試験例にも示すように、卵殻膜微細粉末は羽毛微細粉末に比べても表面疎水性は高くはなく、模式的には、親水性的な殻で覆われた繊維状疎水物の性質を帯びるため、水に分散し易く、この点でも湿式抄紙に有利である。そのうえ、卵殻膜微細粉末の懸濁水に4級アンモニウム塩類を使用すると、卵殻膜微細粉末の分散性がより向上するため、抄造紙の地合が良くなる。
【0031】
この卵殻膜微細粉末配合紙は、従来の創傷被覆的な機能とは別に、水分或は油分に対する鋭敏な活性を示す。
例えば、卵殻膜微細粉末は油分の吸着能力が高く、食品などの油吸収、皮膚面の皮脂除去、制汗、或は、創傷面の体液吸収などに好適である。また、卵殻膜微細粉末は湿気を吸着するだけではなく、吸着後の放出も可能であって、湿気を呼吸して吸湿と放湿を可逆的に行うので、簡略な操作で湿度環境を調節できる。
【0032】
また、卵殻膜微細粉末の繊維間自己接着性を利用した配合紙、或は、卵殻膜微細粉末を他の繊維組成物の繊維間に漉き込んだ配合紙は、図8に示すように、卵殻膜の繊維構造が均質に広く分布して外気との接触面積が増大するため、卵殻膜微細粉末の有する吸湿、吸油などの上記活性作用を大きく展開できる。
【0033】
【発明の効果】
(1)多くが廃棄処分にされている卵殻膜を微細化し、この微細粉末を紙に加工するとともに、調湿紙、吸油紙などの新たな用途を備えた各種機能紙として広く活用できるため、廃材の有効利用と資源の省力化を同時に図れる。
また、天然物の卵殻膜タンパクの特性を活かした微粉末の配合紙であるため、その利用に際しても、環境汚染の危険がなく、生体への影響もない安全なエコロジー商品となる。
【0034】
(2)卵殻膜をアルコール系溶媒により石臼式回転磨砕などの所定の方式で湿式粉砕処理した微粉末なので、卵殻膜が有機天然物として本来的に備えていた比較的マクロな繊維構造を損なうことがない。
このため、本発明1及び2の卵殻膜配合紙は、図8に示すように、卵殻膜の繊維同士が良好に絡み合った紙であり、冒述の従来技術の卵殻膜シートなどとは異なり、強度などの点で実用性が高い。
また、卵殻膜微細粉末は羽毛微細粉末に比べて表面疎水性が高くはないため、比較的水に分散し易く、この点でも湿式抄紙に適している。
【0035】
(3)卵殻膜微細粉末配合紙は、下述のように、前記従来技術の創傷治療的な使途とは全く別の調湿や吸油などの新たな機能に着目したものであり、調湿紙や吸油紙などの新規な用途を備えた各種機能紙として市場に提供できる。
【0036】
また、卵殻膜微細粉末を繊維間に漉き込んで紙に加工することで、卵殻膜の繊維構造が均質に広く分布して外気との接触面積が増大するため、卵殻膜微細粉末の有する上記機能を有効に引き出せる。
そのうえ、卵殻膜を微細粉末から紙に加工することで、被処理物への接触、貼着、擦り付けなどが容易になり、使用の利便性が高まる。
【0037】
(4)卵殻膜微細粉末配合紙は卵殻膜微細粉末を原材料とするため、暖かみのある独特の風合を保有し、この点でも今までにない種類の紙を市場に提供できる。
【0038】
(5)卵殻膜微細粉末配合紙は、後述の試験例にも示すように、湿気の吸着と吸着後の放出に優れ、湿気を呼吸して吸湿と放湿を可逆的に行えるため、湿度環境を有効に保全でき、湿度調節の機能紙、即ち、調湿紙として優れている。特に、紙形態である調湿紙では、上述のように、折り畳みや変形が容易で、使用の利便性が高い。
以下、本調湿紙の具体的用途を示す。
【0039】
▲1▼書籍類、美術品、工芸品などの収蔵や運搬。この場合には、本棚や収蔵庫などの壁面に貼る。
▲2▼空調用のハニカム濾紙用に用いて、結露防止を図る。
▲3▼屋内の壁紙に用いて結露防止を図る。
▲4▼野菜などを包装して冷蔵庫に保存する。特に、葉菜類等が冷蔵庫内で乾燥してパサつくのを防止する。
▲5▼タンスや押し入れの中敷き、或は、和服や毛皮などの収納。包装紙として、単独、或は和紙などと混用する。また、カーペットの下敷きなどに利用する。
▲6▼エレクトロニクス製品、フィルムなどの湿気に敏感な機器や物品の保全。
▲7▼衣類、寝装具(例えば、枕カバーやシーツなど)の湿気の除去に利用する。
▲8▼テニスラケット、バット、ゴルフ用品等を始めとするスポーツ用品などのグリップ部のテープに用いる。
▲9▼研究用薬品類の保管。従来では、シリカゲルや塩化カルシウムなどを入れたデシケータを保管容器としていたが、これらの乾燥剤の代替品として用いる。
【0040】
(6)卵殻膜微細粉末配合紙は後述の試験例に示すように吸油能力に優れ、吸油紙として好適である。
以下、本吸油紙の具体的用途を示す。
▲1▼食品用の包材。全部包装、或は一部包装に用いる。
例えば、ケーキ、菓子などの下部を包むレースペーパーや、フライや油揚げなどの揚げ物の敷紙に使用すると、余剰の油分を吸い取れる。また、上記レースペーパーに供すると、前述の水分調節機能により、ケーキなどの食品の水分保持機能も発揮できる。
さらに、本吸油紙をパウンドケーキなどを焼く場合の焼き型の離型紙に適用すると、焼き上がったケーキを型からスムーズに抜き外せる。
【0041】
▲2▼油捕集紙。
油汚染した機械類、家庭やレストランの食器、或は湯垢の付いた湯舟などの汚染表面に紙を擦り付けると、油分や湯垢を良好に除去して速やかに表面を清浄にできる。
また、工場廃油、河川や海洋の浮上油、或は流出油なども当該捕集紙で速やかに吸収除去して、環境を良好に保全できる。
【0042】
▲3▼皮脂除去紙や制汗紙などの化粧用機能紙。
この機能紙を皮膚面に接触させると、その吸油能力により皮膚面の皮脂分や老廃物などを有効に除去できる。また、脇の下や掌などに付着させると、速やかに制汗できる。さらには、施設の手摺やノブ、事務機器や机、或はスポーツ用品等のグリップ部などの皮膚が触れる箇所にこの機能紙を張り付けると、接触部に指紋や皮脂が付かず、表面をサラッとした感触と美観に良好に保持できる。
因みに、この化粧用機能紙を化粧パックに適用すると、顔面などの皮脂を除去できるうえ、逆に、皮膚面に卵殻膜タンパクなどの栄養分を補給することも期待できる。
尚、上記調湿紙などとの境界に属すると思われるが、ベビー或は老人のおむつ交換時の汗分除去用に本化粧用機能紙を適用することもできる。
【0043】
▲4▼医薬用機能紙。
卵殻膜微細粉末配合紙は、そのままの形態で創傷部などの被覆に利用できる。当該配合紙を皮膚面の創傷部に被覆すると、創傷部から浸出する体液や膿などを円滑に吸収除去できるとともに、上記(5)に示す吸湿性により被覆部のムレを防止できる。
尚、卵殻膜微細粉末と繊維組成物から湿式抄紙する場合、繊維組成物として通常のパルプ等に替えて生体親和性が良い前記アルギン酸繊維を(或は、アルギン酸繊維に加え、他の繊維組成物を併せて)用いることもできる。
【0044】
(7)湿式抄紙の場合、卵殻膜微細粉末に4級アンモニウム塩類などのカチオン系界面活性剤を併用すると、卵殻膜微細粉末の分散性が向上するため、繊維の粗密が解消されて均一化し、抄造紙の地合いが良くなる。
また、分散性が良い分、紙料を水で希釈して分散性を高める必要がなくなるため、抄紙の際の節水効率が上がる。
【0045】
(8)卵殻膜微細粉末は、作用の項目でも述べたように、卵殻膜を所定の湿式粉砕処理で調製した微細粉末なので、粉末の表面に多くの吸着サイトが露出すると推定でき、この粉末の配合紙は、後述の試験例に示すように、鉛、鉄、銅、亜鉛等の重金属を初めとして、パラジウム、銀等を代表とする貴金属などを有効に吸着できる。
因みに、特開昭58−150433号公報には、生の卵殻膜に加熱乾燥、或は凍結乾燥などを施し、ハンマーミル、スパイラルミル等で粉砕して製造した乾式粉砕処理方式の卵殻膜粉末が、鉛、銅、水銀などの有害金属の除去に効果があることが記載されているが、本発明の卵殻膜微細粉末配合紙は、紙形態で各種の重金属を吸着できるだけではなく、パラジウムなどの貴金属を吸着できる点で、当該公報の技術とは異なる。
このため、卵殻膜微細粉末を配合した本金属捕集紙は、各種の産業廃水や海水などから重金属、貴金属などを効率的に回収するのに好適である。
【0046】
【実施例】
以下、卵殻膜微細粉末(ESMP;Egg Shell Membrane Powder)の製造実施例、当該粉末の表面疎水性と分散性の試験例、並びに卵殻膜微細粉末の配合紙の製造実施例を述べるとともに、卵殻膜微細粉末とその配合紙の各吸湿・放湿試験例、卵殻膜微細粉末配合紙の評価並びに吸油試験例、卵殻膜微細粉末とその配合紙の各金属吸着試験例などを順次説明する。
但し、本発明は下記の実施例に拘束されるものではない。
【0047】
《卵殻膜微細粉末の製造実施例》
鶏卵から得た生の卵殻膜を水洗し、水に浸漬した。そして、この卵殻膜の浸漬物を石臼式磨砕機(マスコロイダーMKZA6―5;増幸産業製)により3回循環させて磨砕処理した後、濾過、水洗、再び濾過処理をして第一段磨砕物を得た。
この第一段磨砕物を乾燥して、繊維形状を保有した平均粒子径30〜40μm程度(実際には、粒子径に幅がある)の卵殻膜微細粉末ESMP−Aを得た。
【0048】
一方、卵殻膜をより細かく微細化して、例えば、繊維組成物の細孔に充填する場合には、前述したように、上記第一段磨砕処理に引き続いて、振動ボールミル粉砕機又は遊星ボールミル磨砕機を用いたボールミル式粉砕処理を追加しても良い。
この場合、上記第一段磨砕物に分級処理を施して、粗粉末と微粉末を同時に調製すると、異なる粒子径の卵殻膜微細粉末を配合した調湿或は吸油などの様々な性状を備えた機能紙を簡便に作り分けられる。
即ち、分級処理で微粉末を調製する場合には、先ず、第一段磨砕物の一部を解砕機(カレントジェットCJ25;日清エンジニアリング社製)で気流粉砕したのち、分級機(ターボクラシファイヤーTC−25N;日清エンジニアリング社製)にかけて空気分級し、繊維形状を含む平均粒子径約30〜40μmの粗砕画分とともに、10μm以下の微砕画分を得るのである。この場合、例えば、3kg/hrの処理速度では、平均粒子径6.03μmの微砕画分が11.7%程度の収率で得られる。
【0049】
《卵殻膜微細粉末による吸湿・放湿試験例》
上記製造実施例で得られた卵殻膜微細粉末ESMP−Aについて、相対湿度を変化させた場合の吸湿経時曲線、並びに吸湿後の放湿経時曲線を調べた。
即ち、上記卵殻膜微細粉末ESMP−Aをデシケータに収容し、相対湿度79.3%、52%及び20%の異なる湿度環境に夫々静置して、卵殻膜微細粉末の吸湿経時変化を測定した。また、デシケータの底部に水を収容し、相対湿度100%の測定条件とした。
次いで、上記吸着試験終了後、湿度環境の異なる各試料を塩化カルシウムで脱湿した乾燥デシケータ内に移して湿気の放出経時変化を測定した。
【0050】
一方、本出願人は、先に、特開平7−209165号公報で、羽毛微細粉末が水分に対して高い吸着及び放出能力を有することを開示したが、この羽毛微細粉末を卵殻膜微細粉末に替えて配合した紙を本吸湿・放湿試験の参照例とした。
上記羽毛微細粉末は、卵殻膜微細粉末と同様の湿式粉砕処理により製造したものであり、粒子径を39.93μm程度に整えた粉末を参照例1とし、粒子径5.36μm程度の粉末を参照例2とした。但し、当該羽毛微細粉末では、相対湿度79.3%の環境での吸湿と、その後の放湿の挙動のみを測定した。
【0051】
図1Aは卵殻膜微細粉末ESMP−A並びに参照例の吸湿経時曲線、図1Bはこれらの放湿経時曲線を夫々示す。
20%の低湿度環境を含めた全ての湿気環境で、卵殻膜微細粉末ESMP−Aは最初の略5〜10時間の範囲で高い吸湿速度及び放湿速度を示した。
従って、卵殻膜微細粉末は、低湿度から高湿度(20〜100%)までの種々の湿度環境で高い吸湿及び放湿の応答速度を示し、調湿効果が高いことが判った。しかも、湿気の吸着と放出の平衡に達するまでの時間が短いので、速やかに調湿効果を発揮できる。
一方、羽毛微細粉末(参照例1及び2)は、卵殻膜微細粉末ESMP−Aと同様に、吸湿開始後の最初の略5〜10時間の範囲で高い吸湿及び放湿速度を示したが、図1Aに示すように、平衡状態の吸湿量は卵殻膜微細粉末ESMP−Aの方が羽毛微細粉末より30%程度大きかった。
【0052】
《卵殻膜微細粉末の表面疎水性試験例》
卵殻膜微細粉末の表面疎水性環境の程度(表面の疎水基の量)を8−アニリノナフタレンスルホン酸(ANS)を蛍光プローブとして用いて測定した。
即ち、卵殻膜微細粉末の1mg/ml水懸濁液中に、ANS−Na塩を終濃度10−5Mになるように調整し、励起波長377nm、蛍光波長463nmにおける相対蛍光強度を測定した。
一方、比較例として、卵殻膜と同様の天然タンパク質である羽毛の微細粉末の表面疎水性を測定した。
尚、上記卵殻膜微細粉末は粒子径27μm程度のものを用いた。また、羽毛微細粉末は羽毛を卵殻膜微細粉末と同様の湿式粉砕処理方式で製造したもので、粒子径を変化させた各種粉末について表面疎水性を測定した。
【0053】
図2はその結果であり、同図では相対蛍光強度が高いほど表面疎水性が高いことを示す。この測定結果によると、卵殻膜微細粉末は羽毛微細粉末に比べて表面疎水性の程度はあまり高くなく、比較的親水性であり、水に分散し易いことが認められた。
そこで、界面活性剤の存在下に、卵殻膜微細粉末の懸濁水がどのような分散性を示すかを試験した。
【0054】
《卵殻膜微細粉末の分散性試験例》
水の中に前記卵殻膜微細粉末ESMP−Aを入れ、種々の界面活性剤により懸濁水を調製し、当該懸濁水における卵殻膜微細粉末の分散、或は膨潤の度合を試験した。分散条件は、卵殻膜微細粉末を2重量%、界面活性剤を0.002〜0.6重量%の所定割合で加え、残りを精製水で調整して100重量%とし、ホモミキサーで6000rpm、3分間撹拌した。
【0055】
使用した界面活性剤は、下記の通り、(1)〜(6)のカチオン系界面活性剤(具体的には、4級アンモニウム塩類)と(7)〜(12)のノニオン系界面活性剤である。
(1)塩化ベンザルコニウム(関東化学製)
(2)塩化ベンゼトニウム(関東化学製)
(3)ジアルキルジメチルアンモニウムクロライド
(アーカード2HT−75;ライオン製)
(4)塩化ラウリルトリメチルアンモニウム
(カチオーゲンTML;第一工業薬品製)
(5)塩化セチルトリメチルアンモニウム
(カチオーゲンTMP;第一工業薬品製)
(6)塩化ステアリルトリメチルアンモニウム
(カチオーゲンTMS;第一工業薬品製)
(7)ポリオキシエチレンノニルフェニルエーテル
(ノイゲンEA−170;第一工業薬品製)
(8)ポリオキシエチレンドデシルフェニルエーテル
(ノイゲンEA−73;第一工業薬品製)
(9)ポリオキシエチレンラウリルエーテル
(ノイゲンET−170;第一工業薬品製)
(10)ポリオキシエチレンオレイルエーテル
(ノイゲンET−80;第一工業薬品製)
(11)ポリオキシエチレン(EO6)ソルビタンモノオレエート
(ニッコーTS−106;日光ケミカルズ社製)
(12)ポリオキシエチレン(EO20)ソルビタンモノオレエート
(ニッコーTS−10;日光ケミカルズ社製)
【0056】
その結果、上記4級アンモニウム塩類(1)〜(6)では、配合率0.2%以上でほとんどが上層にケーク層を形成したが、0.1%以下ではノニオン系(7)〜(12)との比較で、いずれも沈殿物の形成界面が明瞭でなく、上部からわずかづつ水層が見られる程度であった。
即ち、4級アンモニウム塩類の配合により、卵殻膜微細粉末はきわめて高い膨潤状態を示し、良好な分散性が観察された。
尚、上記4級アンモニウム塩類(1)〜(6)の適正濃度は次の通りであった。
(1)〜(2)=0.01%
(3) =0.05%
(4)〜(6)=0.02%
そこで、上記4級アンモニウム塩類の存在下で、卵殻膜微細粉末と繊維組成物を水に分散して紙料を調製し、これを湿式抄紙する卵殻膜微細粉末配合紙の製造例を述べる。
【0057】
《卵殻膜微細粉末配合紙の製造実施例》
一方のタンクに水と前記卵殻膜微細粉末ESMP−Aを加え、4級アンモニウム塩類(具体的には、前記カチオーゲンTMP使用)を繊維総重量に対して0.02重量%の条件下で配合して、ESMP−Aの分散液を製造した。
また、他方のタンクにカナディアン標準濾水度(CSF;JIS−P−8121に準拠するパルプの濾水度試験方法)650mlに叩解されたNBKPの分散液を収容し、卵殻膜微細粉末と木材パルプの二つの分散液をビーターにて下記の組成で混合するとともに、同一粒子表面に4級アルキルアミン基とカルボキシル基を併せ持つ両性イオンラテックス系紙力増強剤(アコスターC−122;三井サイテック社製)を添加し、解離機で充分に撹拌・解離して、均一な紙料を調製した。但し、当該紙力増強剤は、繊維総重量に対して3.0重量%の条件で添加した。
上記紙料をJIS−P−8209に従って湿式抄紙し、約110℃で乾燥し、卵殻膜微細粉末配合紙を夫々得て、これらを試料1〜3とした。
【0058】
上記試料1〜3における卵殻膜微細粉末ESMP−AとNBKPの配合率は次の通りである。
(1)試料1
卵殻膜微細粉末:NBKP=60重量%:40重量%
(2)試料2
卵殻膜微細粉末:NBKP=40重量%:60重量%
(3)試料3
卵殻膜微細粉末:NBKP=20重量%:80重量%
一方、湿式抄紙の条件を上記製造実施例と同様に設定して、NBKPの配合率を100重量%にし、卵殻膜微細粉末を省略したものを比較例とした。
【0059】
尚、上記4級アンモニウム塩類は、前述したように、0.01〜0.05重量%程度の幅で配合可能である。また、パルプ(NBKP)の標準濾水度は用途によって異なり、ビーターによって適正に濾水度を下げても良い。さらには、卵殻膜微細粉末ESMP−Aとパルプは1液方式により、ビーターに同時に混合しても差し支えない。
そこで、この卵殻膜微細粉末配合紙により、吸湿並びに放湿試験を行った。
【0060】
《卵殻膜微細粉末配合紙による吸湿・放湿試験例》
前記試料1〜3の卵殻膜微細粉末配合紙について、比較例と対比しながら、吸湿及び放湿試験を行った。
即ち、50mm×50mmの矩形に整えた試料1〜試料3並びに比較例を、JIS−P−8127(紙及び板紙の水分試験方法)に準拠して、充分に乾燥して前処理を行った後、温度20℃、相対湿度93%に保持したデシケータ内に静置して、96時間経過するまでの間、各試験片の吸湿量の経時変化を測定した。
但し、上記吸湿量は、下式のように、乾燥処理前・後の重量差に基づいて、測定試験片の含水率として表した。
〔(試験片の乾燥前の測定重量)−(絶乾重量)/(測定重量)〕×100
【0061】
また、上記96時間経過後、直ちに、温度20℃、塩化カルシウムで脱湿したデシケータ内に移して静置し、10時間経過するまでの間、各試験片の放湿量の経時変化を測定した。
但し、当該放湿量も、前記吸湿量と同様に、試験片の含水率として表した。
【0062】
図3Aは卵殻膜微細粉末配合紙の吸湿試験結果、図3Bはその放湿試験結果、図4Aは吸湿経時曲線、図4Bは放湿経時曲線(但し、図4では試料2を省略)を各々示す。
図3〜図4によると、試料1〜3の吸湿及び放湿量は比較例に比べて大きく、特に、吸湿開始から10時間以内の範囲で吸湿量が大幅に増え、大きな吸湿応答速度を示した。その一方、湿気の吸着後、直ちにその放出が行われ、特に、吸湿終了後の初期段階での放湿速度(放湿開始後2〜4時間以内の応答速度)がきわめて大きかった。
即ち、卵殻膜微細粉末配合紙は吸湿と放湿が可逆的で(高い復元力を示して)、湿度環境の調節機能を有効に果すことが判る。
【0063】
また、図3〜図4に示すように、当該配合紙の吸湿量及び放湿量に関して、卵殻膜微細粉末を60重量%配合した試料1の方が、20重量%配合した試料2より多く、卵殻膜微細粉末の配合率の増加に伴って吸・放湿の度合は増大した。
但し、卵殻膜微細粉末の配合率が20重量%程度の場合でも、比較例との差異は明白であり、充分に実用性のある調湿結果を示した。
そこで、この卵殻膜微細粉末配合紙の各種項目別の評価試験を行うとともに、吸油並びに金属吸着の試験例を述べる。
【0064】
《卵殻膜微細粉末配合紙の評価並びに吸油の試験例》
先ず、卵殻膜微細粉末の配合率を10〜70重量%の範囲で10重量%ごとに変化させた7種類の配合紙(パルプにはNBKPを使用)を用意し、各試料1〜7とした。各試料と配合率の関係は次の通りである。
試料n:卵殻膜微細粉末の配合率n×10重量%(n=1、2…7)
そして、当該試料1〜7に関し、秤量、紙厚、密度、引張り強度(伸び)、裂断長、引裂の各項目の評価試験を、温度20℃、相対湿度65%の条件下で、比較例と対比しながら行った。
但し、秤量はJIS−P−8124に、紙厚・密度の評価方式はJIS−P−8118に、裂断長はJIS−P−8113に、比引裂度はJIS−P−8116に各々準拠した。また、引張り強度の項目の伸びは、引張った紙が裂けた時点での伸び率を示す。
【0065】
図5はその結果を示し、各試料は、比較例に比べて、7割弱〜5割弱の密度であり、軽量で、使い勝手が良いうえ、卵殻膜特有の暖かみのある風合が備わっていた。
また、各試料の裂断長は、配合率が最大の試料7で1.54を示したが、これは、例えば、ティッシュペーパーの示す数値(1.0程度)より大きいことなどから、実用性に全く問題はない。
引張り強度や引裂に関しては、(例えば、ティッシュペーパーの引張り強度は25mm幅で400gf程度であることから)試料における卵殻膜微細粉末の配合率が高い場合でも、紙として充分に実用に足る数値を示した。
尚、当該裂断長、引裂などの紙の強度は、抄造時に混入した両性イオンラテックスバインダーが相乗的に寄与しているものと推定できる。
【0066】
一方、上記各試料の吸油速度、並びに吸油倍率を下記(1)〜(2)の手法で、比較例と対比しながら試験した。
(1)吸油速度
各試料に軽油(1号軽油)を注射針(H5号)を通して1滴(約4mg)滴下し、各試料が軽油の吸収を完了して、反射による光沢がなくなるまでの時間(秒数)を測定した。
(2)吸油倍率
各試料を大豆油に15秒間浸漬したのち、油中から取り出し、手で10秒間保持した時点での各試料の重量増加率を測定した。
【0067】
図5はその結果を示し、図6は吸油速度の結果をグラフ化したものである。
図5及び図6によると、卵殻膜微細粉末の配合率が増すのに伴い吸油速度は増大し、例えば、試料7は比較例より表・裏ともに略6倍速かった。
また、図5によると、吸油倍率でも、各試料1〜7は比較例より略1.25〜1.65倍大きかった。
【0068】
《卵殻膜微細粉末による金属吸着試験例》
各種の重金属塩を混合した疑似廃液を調製し、前記製造実施例で得られた卵殻膜微細粉末ESMP−Aを試料として、当該試料を10g/lの割合で疑似廃液中に加え、pH2、室温の条件下で17時間撹拌を続けて濾過した後、疑似廃液中の重金属の各濃度を測定した。
下記に示す表は、疑似廃液に含まれる各種重金属の初期濃度と、卵殻膜微細粉末を接触させた後の残液の各濃度である(尚、濃度は、ppmで示す)。
【0069】

Figure 0003567308
【0070】
上表によると、疑似廃液に卵殻膜微細粉末を接触させると、Fe2+やCu2+を円滑に除去できるうえ、特に、各種の重金属が競合する中で、微量含有されているPb2+を完全に除去することができた。
【0071】
因みに、前記特開昭58−150433号公報では、卵殻膜を凍結乾燥後、ハンマーミルで粉砕して40メッシュの篩通しをした乾式粉砕の卵殻膜粉末を用いて、当該粉末0.5gを硝酸鉛溶液(Pbとして10、50及び100ppm)50mlに加えて撹拌し、4、8及び24時間後に各5mlづつをサンプリングし、これらを濾紙で濾過したのち、濾液の鉛濃度(ppm)を測定した試験結果を次のように記載している(同公報の試験方法、試験結果及び第1表参照)。
Figure 0003567308
【0072】
また、卵殻膜を各種条件で恒温器或はマッフル炉で加熱乾燥、又は凍結乾燥したのち、各乾燥品をスパイラルミルで粉砕して篩通しをした乾式粉砕の卵殻膜粉末を用いて、当該9種類の粉末を硝酸鉛溶液(Pbとして100ppm)に加えて撹拌し、1、2、3、4時間後に夫々サンプリングして、上記試験方法に従って液の鉛濃度(ppm)を測定した試験結果(比較例は除く)を次のように記載している(同公報の実施例及び第2表参照)。
1時間後:35.6〜0.4ppm
2時間後:24.8〜0.6ppm
3時間後:12.3〜0.5ppm
4時間後: 5.8〜0.4ppm
即ち、同公報の技術では、鉛1種類の含有溶液に乾式粉砕処理の卵殻膜を接触させて、その除去効率を調べたことが記載されているだけで、本試験例のように、他の重金属が競合する溶液での鉛の除去試験は全く行われていない。
また、本試験例の試料溶液の鉛濃度が1ppmと微量であるのに対して、同公報の鉛の含有濃度は10ppm〜100ppmとオーダーが大きい。
しかも、本試験例では競合重金属の存在下で、17時間後の鉛の濃度が0ppmであったのに対して、同公報(例えば、前記第1表)では、10ppmの鉛溶液の濃度は24時間後でも0.1ppmに止まった。
【0073】
従って、本発明の卵殻膜微細粉末を重金属の捕集剤として使用すると、多くの重金属が競合する廃液でも、水質汚濁防止の見地から特に規制の厳しい鉛を有効に吸着して捕集できる。このため、当該卵殻膜微細粉末を主成分とする金属捕集剤は、例えば、ハンダメッキ液を始め、その他の金属メッキ液や種々の重金属を含む廃液の除害処理に好適である。
そこで、前記製造実施例で示した卵殻膜微細粉末の配合紙に関し、パラジウムを代表とする貴金属に対する捕集作用を試験した。
【0074】
《卵殻膜微細粉末配合紙の貴金属吸着試験例》
先ず、卵殻膜微細粉末の配合率(パルプにはNBKPを使用)を下記のように変化させた3種類の卵殻膜微細粉末配合紙を用意し、各試料1〜3とした。当該配合紙の製法は前記製造実施例の手法を基本とした。
(1)試料1:卵殻膜微細粉末の配合率は20重量%
(2)試料2:同40重量%
(3)試料3:同70重量%
次いで、濃度1000ppmに調整したパラジウム標準液10mlをシャーレーに入れ、上記試料1〜3をこの標準液に所定時間だけ夫々浸漬して、その残液のパラジウム濃度を原子吸光分析又はプラズマ発光分光分析(ICP)法で測定して、標準液の初期濃度との差異により、各試料1〜3のパラジウム吸着量を算出した。
但し、試料1と2に関しては、パラジウム標準液への浸漬時間を3時間と8時間の2通りに設定して、浸漬時間と吸着量との関係を調べた。
【0075】
図7はその結果であり、例えば、試料3を1時間に亘り浸漬した場合、パラジウム標準液の濃度は725ppm(=mg/l)を示したので、当該標準液の初期濃度が1000ppmであることから、試料3のパラジウム吸着量は、次の通りであった。
(1−0.725)mg/ml×10ml=2.75mg
従って、試料3の重量は0.126gなので、試料3の単位重量当たりのパラジウム吸着量(以下、単に吸着量という)は、
2.75mg/0.126g=21.8mg/gとなった。
【0076】
この1時間浸漬での試料3の吸着量21.8mg/gは、8時間浸漬での試料1の吸着量17.2mg/gや試料2の同吸着量17.6mg/gより多いことから、卵殻膜微細粉末の配合率が増すのに比例して、パラジウムの吸着量も増し、吸着時間も短縮できることが判る。
また、試料の種類を固定して浸漬時間と吸着量の関係を調べると、試料1では、浸漬時間が3時間から8時間に長くなっても吸着量に差異がほとんどなく、試料2でも、3時間から8時間に増すと、吸着量が若干増えている程度である。
このため、20〜40重量%の範囲の卵殻膜微細粉末配合紙では、パラジウム吸着の応答速度が速く、浸漬時間を長くしなくてもパラジウムを有効に吸着できることが判る。
【0077】
即ち、本実施例の卵殻膜微細粉末配合紙は、例えば、前記特開昭58−150433号公報には全く記載、或は示唆のないパラジウムを代表とする貴金属を吸着できる点で、新規の用途を期待できる。
【図面の簡単な説明】
【図1】卵殻膜微細粉末の吸湿並びに放湿挙動を示し、図1Aは同粉末の吸湿経時曲線図、図1Bは同粉末の放湿経時曲線図である。
【図2】卵殻膜微細粉末と羽毛微細粉末の表面疎水性の試験結果を示す図である。
【図3】卵殻膜微細粉末配合紙の吸湿並びに放湿挙動を示し、図3Aは配合紙の吸湿試験結果、図3Bは配合紙の放湿試験結果を各々示す図表である。
【図4】図4Aは上記卵殻膜微細粉末配合紙の吸湿経時曲線図、図4Bは同配合紙の放湿経時曲線図である。
【図5】上記卵殻膜微細粉末配合紙の評価、並びに吸油試験結果を示す図表である。
【図6】卵殻膜微細粉末の配合率と吸油速度の関係図である。
【図7】卵殻膜微細粉末配合紙のパラジウム吸着試験結果を示す図表である。
【図8】図8Aは卵殻膜微細粉末配合紙の倍率300倍での顕微鏡写真、図8Bは同1000倍の顕微鏡写真である。[0001]
[Industrial applications]
The present invention relates to paper containing a fine powder of eggshell membranes, and various functional papers using the fine powder of eggshell membranes, and provides a highly practical paper containing a fine powder of eggshell membranes which is effectively retained without impairing the properties of the eggshell membranes. It is an object of the present invention to provide this eggshell membrane fine powder blended paper as various functional papers having new uses such as humidity control, oil absorption, and sebum removal.
[0002]
BACKGROUND OF THE INVENTION
In recent years, from the viewpoint of protection of the global environment and ecosystems, there has been a strong demand for labor-saving and effective use of resources including living organisms. However, eggshell membranes of bird eggs (especially chicken eggs) mainly contain proteins. At present, it is a natural material, and its application to the treatment of skin diseases has only been attempted in the past, and most of it is discarded without being used.
[0003]
[Prior art]
JP-A-63-309273 discloses a sheet utilizing an eggshell membrane. That is, the raw eggshell membrane is subjected to heat drying, or freeze drying, and is dry-pulverized into powder by a hammer mill, a spiral mill, or the like, and a sheet is manufactured by using the eggshell membrane powder of the dry pulverization method as a main material. It can be used as a material for treating skin diseases and wounds, an auxiliary material thereof, or an auxiliary material for cosmetics.
[0004]
[Problems to be solved by the invention]
In the above prior art, only a rough example of a hand-made egg shell membrane sheet and the like are described (see the upper left column on page 3 of the publication), and the practicality of the sheet is not necessarily sufficient in terms of strength and the like. In addition, the use of the sheet is limited to a wound treatment mainly for biocompatibility.
[0005]
The present invention develops a highly practical blended paper of eggshell membrane fine powder that has been successfully drawn out without impairing the properties of the eggshell membrane, and provides this blended paper with a completely new use other than the conventional use for wound treatment. The technical task is to make efficient use of eggshell membranes, which is an organic natural product resource, and to save resources by developing it as various functional papers.
[0006]
[Means for Solving the Problems]
The present inventors have intensively studied the technology of eggshell membranes and powdering thereof, and as a result, when the eggshell membranes are powdered by a predetermined wet grinding method, the properties of the proteins constituting the eggshell membranes are not impaired. It has been discovered that the active ingredient can be effectively extracted, and that the paper containing the eggshell membrane fine powder exhibits excellent moisture absorption or oil absorption functions. The use for functional paper was attempted.
[0007]
That is, in the present invention 1, the eggshell membrane is immersed in at least one of water and an alcohol-based solvent and subjected to at least one of millstone-type rotary grinding and ball mill-type grinding to produce a wet-milled powder of the eggshell membrane. An eggshell membrane fine powder blended paper characterized in that the fiber structure of the eggshell membrane fine powder is entangled and processed into a sheet form.
[0008]
The present invention 2 is characterized in that in the above-mentioned present invention 1, the eggshell membrane fine powder and the fiber composition are dispersed in water with a cationic surfactant such as a quaternary ammonium salt to prepare a paper stock, and wet papermaking is performed. Eggshell membrane fine powder blended paper.
[0009]
The present invention 3 provides an eggshell membrane fine powder characterized in that the eggshell membrane fine powder-containing paper of the present invention 1 or 2 is brought into contact with a humid environment so that the humidity can be adjusted by absorbing and releasing moisture in the environment. This is a humidity control paper used.
[0010]
The present invention 4 relates to the method wherein the eggshell membrane fine powder-containing paper according to the present invention 1 or 2 is brought into contact with the article to be treated, so that the eggshell membrane as an effective main component can absorb and remove the oil content of the article. It is an oil-absorbing paper that uses a characteristic powder of eggshell membranes.
[0011]
A fifth aspect of the present invention is characterized in that the eggshell membrane fine powder-containing paper according to the first or second aspect of the present invention is brought into contact with an object to be treated so that metals such as noble metals and heavy metals in the object to be treated can be adsorbed. It is a metal collecting paper using eggshell membrane fine powder.
[0012]
The eggshell membrane fine powder is produced by wet-grinding the eggshell membrane in water and / or an alcohol-based solvent (that is, a mixture of water and an alcohol-based solvent, or an alcohol-based solvent, or water alone).
The grinding treatment may be performed independently by milling-type rotary grinding or ball mill-type grinding, for example, after performing millstone-type rotary grinding on the eggshell membranes, may be continuously performed ball mill-type grinding, These two types of pulverization may be repeated a plurality of times.
Incidentally, the eggshell membrane fine powder is preferably produced by pre-washing a raw eggshell membrane, pulverizing the eggshell membrane, filtering, washing and drying.
In the preliminary washing, the eggshell membranes can be washed with water and then with an alcoholic solvent to dissolve and remove oils and fats adhering to the eggshell membranes, and the eggshell membranes are made into a dipped material suitable for wet grinding in the next step.
[0013]
The advantage of selecting the above-mentioned alcohol washing is that the remaining of water after washing with water is not a problem, and complete replacement with alcohol is not required. The concentration of alcohol in the integrated process from the alcohol washing to the next grinding and grinding can be 0.01 to 99.99%, but in practice, it can simultaneously exert the sterilizing and disinfecting effect of the eggshell membrane. Those having 30 to 70% are preferred.
As the alcohol to be used, a wide range of alcohols such as saturated and unsaturated aliphatic and aromatic mono-, di-, and polyhydric alcohols can be used.Ethanol and isopropanol are preferable, and those described in the Japanese Pharmacopoeia can be used. It can be used as 70% ethanol, 30%, 50% isopropanol.
[0014]
In the above-mentioned pulverization, the above-mentioned alcohol-soaked egg shell membrane (or an immersion in water, etc.) is subjected to milling-type rotary grinding and ball mill-type grinding repeatedly to obtain a ground product suspension. The stone mill type grinding machine is composed of upper and lower special grinders, and crushes the raw material by the force such as impact, shear, compression, and rolling friction generated between the upper grinder on the fixed side and the lower grinder on the rotating side. . As the grinder to be used, a conventional grinder can be used, but a recently developed ceramic having non-porous and non-crackable properties is suitable.
The alcohol immersion (or immersion in water, etc.) of the eggshell membrane to be introduced may have an immersion ratio of 1: 0.5 (solid: dispersion medium (V / V)) or more. Use in the range from 1 to 1:10 is preferred. At the time of operation, continuous grinding treatment in which the material that has been ground once is repeatedly fed into the grinder is also effective. Further, when the dispersion medium is exchanged during the continuous grinding process, the cleaning effect can be further promoted.
[0015]
The milled material after millstone milling is directly input into a ball mill mill. In ball mill pulverization, a method in which an object to be pulverized and a pulverizing medium (for example, zirconia balls) are put into a cylinder and pulverized by rotation of a rotating shaft in the cylinder or pulverized by vibrating the cylinder is used. be able to. Also in this step, the alcohol immersion ratio of the eggshell membrane powder to be crushed is the same as in the previous step.
The separation and recovery of the pulverized material from this step is performed by trapping the ball through a sieve having a mesh smaller than the diameter of the ball of the pulverization medium, and filtering the pulverized material suspension with a microfilter provided in a lower stage. .
Washing of the ball and filtration and pulverization are carried out by removing residual oils and fats derived from the eggshell membrane with an alcohol or other volatile organic solvent, and then dried to form eggshell membrane fine powder (minimum particle diameter of several microns). You.
In the final washing, the volume of the original eggshell membrane is reduced, and conversely, the surface area is increased, so that the oils and fats can be effectively dissolved and removed.
The washing solvent can be used alone or in combination, but acetone and ether can also be used.
[0016]
As described above, the eggshell membrane fine powder is a wet milled powder obtained by milling in a water and / or alcohol-based solvent or a ball mill, and the particle diameter of the eggshell membrane fine powder is in microns. It is common to prepare various sizes around the center, but when it is prepared to several tens μm to several μm, a relatively macroscopic fiber structure derived from the organic structure originally possessed by the eggshell membrane is obtained. Can hold.
The eggshell membrane fine powder may be appropriately treated with lactic acid, urea, thioglycolic acid, or the like.
[0017]
The above-mentioned eggshell membrane fine powder blended paper means a sheet form in which the fiber structure of the eggshell membrane fine powder is intertwined, and generally, a dispersion slurry in which the eggshell membrane fine powder and the fiber composition are mixed is prepared as a stock. The paper is based on papermaking by self-adhesion between fibers obtained by wet-making the stock, but also includes the following papers (1) to (3).
(1) Paper obtained by wet papermaking only eggshell membrane fine powder under the condition of adding or not adding a binder such as latex. Since the eggshell membrane fine powder has a relatively macroscopic fiber structure, wet papermaking can be performed without blending another fiber composition.
(2) Paper manufactured by a casting method or the like in which a dispersion liquid of eggshell membrane fine powder is uniformly applied to a substrate under the condition of adding or not adding a binder and then dried.
(3) Laminated paper in which a coating of eggshell membrane fine powder is adhered to one or both sides of paper by the method of (2) or the like. Also, such as laminated paper in which a coating of eggshell membrane fine powder is interposed between papers.
[0018]
The above fiber composition may be used in wood pulp such as NBKP / LBKP and the like, and deinked pulp (DIP) which can be commonly used for papermaking, as well as non-wood fiber pulp such as linter pulp, hemp, bagasse, kenaf, esparto grass and straw. good. In addition, synthetic fibers such as polyethylene, polypropylene, polyvinyl alcohol, polyester, and polyacrylonitrile, recycled or semi-synthetic fibers such as rayon, cupra, and acetate, and inorganic fibers such as rock wool, glass fiber, and carbon fiber may be used.
Further, alginic acid (and salts thereof) have good biocompatibility, so that alginic acid fibers obtained by fibrillating the same can be selected or used in combination in the fiber composition.
The blending ratio of the above fiber composition may be appropriately changed according to the application. As the pulp, unbleached pulp or bleached pulp (dyed one) may be used alone or in combination.
[0019]
In the case of the above-mentioned wet papermaking, it does not matter whether it is machine-made or hand-made. In the machine-making, generally, a paper machine such as a circular net, a short net, a long net, and a suction homer is used. For example, in the present invention 2, the dispersion slurry is a suspension of eggshell membrane fine powder, but paper can be easily formed based on a method such as JIS-P-8209.
[0020]
The preparation of the stock in the wet papermaking may be a two-pack system in which a liquid in which the eggshell membrane fine powder is dispersed in water and a dispersion of the fiber composition are separately prepared and then mixed, or the eggshell membrane fine powder and the fiber composition may be mixed. A one-pack system in which the ingredients are simultaneously dispersed may be used, but a two-pack mixing system is convenient in that the mixing ratio of the eggshell membrane fine powder and the fiber composition can be easily selected.
[0021]
The above-mentioned eggshell membrane fine powder does not have a high surface hydrophobicity compared to, for example, feather fine powder composed of the same keratin protein (disclosed earlier by the present applicant in Japanese Patent Application Laid-Open No. 4-322534) (described later). ), But it is relatively easy to disperse in water, but in wet papermaking, it is usually dispersed in water with various surfactants such as cationic, nonionic or amphoteric.
In this case, the cationic surfactant is particularly excellent in the ability to disperse the fine powder of the eggshell membrane, and specifically, quaternary ammonium salts such as the following (1) to (4) are suitable.
(1) Aliphatic ammonium salts
(2) Aromatic ammonium salts
(3) Heterocyclic ammonium salts such as pyridinium salts and imidazolinium salts
(4) Cellulosic or polyoxyalkylene adduct of (1) to (3)
[0022]
Examples of the aliphatic ammonium salts of the above (1) include monoalkyltrimethyl or dialkyldimethylammonium salts, aliphatic amides and polyamines, and more specifically, dialkyldimethylammonium chloride (Arcade 2HT-75; Lion, etc.), lauryl trimethylammonium chloride (Katiogen TML; manufactured by Daiichi Kogyo Chemical), cetyl trimethylammonium chloride (Kachiogen TMP, manufactured by Daiichi Kogyo Chemical), stearyl trimethylammonium chloride (Kachiogen TMS; Daiichi Kogyo) Industrial chemicals), distearyl / dimethylammonium chloride and the like.
Examples of the aromatic ammonium salts of the above (2) include benzalkonium salts, benzethonium salts, and the like. Specifically, benzalkonium chloride (cation G-50 and cation M; manufactured by Sanyo Chemical Co., Nicanon BZ; Manufactured by Hua Kagaku, and more specifically, stearyl dimethyl benzyl ammonium chloride; Swanol CA-1485; manufactured by Nippon Surfactant, and the like.
Examples of the heterocyclic ammonium salts of the above (3) include cetyl / pyridinium chloride.
[0023]
Since the above quaternary ammonium salts have no or little foaming when added to paper stock, the compounding ratio is generally about 0.01 to 0.05% by weight.
[0024]
In the papermaking step, as shown below, various treatment agents including various chemicals used in ordinary wet papermaking can be blended.
(1) Examples of the wet paper strength enhancer include a polyamidoamine epichlorohydrin-based resin, a cationic polymer such as formaldehyde condensate and polyethyleneimine, and an anionic polymer is generally used in combination. Examples of the anionic polymer include anionic polyacrylamide.
However, in wet papermaking of eggshell membrane fine powder, use of a zwitterionic latex-based binder having self-fixing properties to various fibers and fillers facilitates feeding and formation and is suitable for papermaking.
[0025]
(2) Dry paper strength enhancers include starch, modified starch such as oxidized starch, carboxymethyl starch, and cationized starch; plant gums such as guar gum and xanthan gum; polyvinyl alcohol (PVA); carboxymethyl cellulose (CMC); (Anionic, cationic, amphoteric) and the like can be blended, and the addition thereof smoothly prevents the eggshell membrane fine powder from falling off.
[0026]
(3) Various fillers such as clay and talc can be used to impart flexibility and smoothness to paper.
(4) As the internal sizing, a rosin-based acidic sizing agent or a neutral sizing agent such as alkyl ketene dimer / alkenyl succinic anhydride can be used.
(5) A thickener such as polyethylene oxide (PEO) may be added.
[0027]
(6) For example, when the paper containing the fine powder of eggshell membranes is used as a humidifying paper, it does not prevent supplementation with other inorganic humectants such as silica gel, alumina gel and (natural / synthetic) zeolite. Alternatively, it may be devised so as to cause color change on the humidity control paper, for example, by adding cobalt chloride or the like and changing the color between light red and blue as moisture is absorbed and released.
[0028]
In the above-mentioned compounded paper, the compounding ratio of the eggshell membrane fine powder to the total fiber weight is 0.1 to 100% by weight. However, in the case of wet papermaking, various functions are promoted by the eggshell membrane fine powder, and dehydration and clogging are prevented. From the viewpoint of smoothing papermaking, the compounding ratio of the eggshell membrane fine powder is preferably 20 to 80% by weight, more preferably 50 to 70% by weight.
The particle diameter of the eggshell membrane fine powder is generally about 3 mm to several μm, and in practice, about several tens μm is appropriate.
In addition, the compounded paper is a concept including a thickness from thin paper to paperboard.
[0029]
As a collecting method using the metal collecting paper, a filtration method in which a metal-containing liquid is passed through a container in which the metal collecting paper is laminated is generally used. Contact with the metal-containing liquid by dipping or the like may be performed.
[0030]
[Action]
The wet-pulverized eggshell membrane fine powder has a relatively macroscopic fiber structure, has self-adhesion between fibers, and is easily entangled with other fiber compositions, and thus is suitable for wet papermaking. Incidentally, when the paper containing the eggshell membrane fine powder is actually observed with a microscope, it can be confirmed that the fiber structure of the eggshell membrane is intertwined as shown in FIG.
In addition, as shown in the test examples described below, the eggshell membrane fine powder does not have a high surface hydrophobicity compared to the feather fine powder. , It is easily dispersed in water, and this is also advantageous for wet papermaking. In addition, when quaternary ammonium salts are used in the suspension water of the eggshell membrane fine powder, the dispersibility of the eggshell membrane fine powder is further improved, and the formation of the paper is improved.
[0031]
The eggshell membrane fine powder-containing paper exhibits a sensitive activity to moisture or oil apart from the conventional wound covering function.
For example, eggshell membrane fine powder has a high oil-absorbing ability and is suitable for oil absorption of foods and the like, removal of sebum on skin surface, antiperspiration, or body fluid absorption on wound surface. In addition, the eggshell membrane fine powder can not only adsorb moisture but also release after adsorption, and breathe moisture to reversibly absorb and release moisture, so the humidity environment can be adjusted with a simple operation .
[0032]
Further, as shown in FIG. 8, a mixed paper utilizing the self-adhesiveness between the fibers of the eggshell membrane fine powder or a mixed paper in which the eggshell membrane fine powder is squeezed between fibers of another fiber composition, Since the fiber structure of the membrane is homogeneously and widely distributed and the contact area with the outside air is increased, the above-mentioned activating action of the fine powder of the eggshell membrane, such as moisture absorption and oil absorption, can be largely developed.
[0033]
【The invention's effect】
(1) Eggshell membranes, which are mostly discarded, are made finer, and this fine powder is processed into paper, and can be widely used as various functional papers with new applications such as humidity control paper and oil-absorbing paper. Effective utilization of waste materials and resource saving can be achieved at the same time.
In addition, since it is a fine-powder blended paper that utilizes the properties of natural eggshell membrane proteins, it can be used as a safe ecological product with no danger of environmental pollution and no impact on living organisms.
[0034]
(2) Since the eggshell membrane is a fine powder obtained by wet-pulverizing the eggshell membrane with an alcohol-based solvent by a predetermined method such as milling-type rotary grinding, the eggshell membrane impairs the relatively macroscopic fiber structure originally provided as an organic natural product. Nothing.
For this reason, the eggshell membrane-containing papers of the present inventions 1 and 2 are papers in which the fibers of the eggshell membranes are well entangled with each other as shown in FIG. High practicality in terms of strength and the like.
In addition, since the eggshell membrane fine powder does not have high surface hydrophobicity as compared with the feather fine powder, it is relatively easy to disperse in water, and this point is also suitable for wet papermaking.
[0035]
(3) As described below, eggshell membrane fine powder-containing paper focuses on new functions such as humidity control and oil absorption, which are completely different from the above-mentioned conventional uses for wound treatment. And various functional papers with new applications such as oil-absorbing paper.
[0036]
In addition, the fine powder of eggshell membranes is processed into paper by skewing the fine powder of eggshell membranes into fibers, and the fiber structure of the eggshell membranes is uniformly and widely distributed to increase the contact area with the outside air. Can be effectively extracted.
In addition, by processing the eggshell membrane from fine powder into paper, it becomes easy to contact, stick, rub, etc. on the object to be treated, and the convenience of use is enhanced.
[0037]
(4) The paper containing the fine powder of eggshell membranes uses the fine powder of eggshell membranes as a raw material, so that the paper has a warm and unique feel, and in this respect, it is possible to provide an unprecedented type of paper to the market.
[0038]
(5) As shown in the test examples described below, the eggshell membrane fine powder blended paper is excellent in absorbing and releasing moisture, and can reversibly absorb and release moisture by breathing moisture. Can be effectively preserved, and is excellent as a humidity control paper, that is, a humidity control paper. In particular, as described above, the humidity control paper in the form of paper is easily folded and deformed, and is highly convenient to use.
Hereinafter, specific uses of the present wet paper are shown.
[0039]
(1) Collection and transportation of books, arts, and crafts. In this case, it is stuck on a wall surface such as a bookshelf or a storage.
(2) Used for honeycomb filter paper for air conditioning to prevent condensation.
(3) Use it for indoor wallpaper to prevent condensation.
(4) Pack vegetables and store in the refrigerator. In particular, it prevents leafy vegetables and the like from drying and getting dry in the refrigerator.
▲ 5 ▼ Closet or closet insole, or storage of Japanese clothes or fur. As the wrapping paper, it is used alone or mixed with Japanese paper. It is also used for underlaying carpets.
6) Preservation of moisture-sensitive equipment and articles such as electronic products and films.
{Circle around (7)} Used to remove moisture from clothes and bedding (for example, pillowcases and sheets).
(8) Used as a tape for grip parts of sports equipment such as tennis rackets, bats, golf equipment and the like.
(9) Storage of research chemicals. Conventionally, a desiccator containing silica gel, calcium chloride, or the like has been used as a storage container, but is used as a substitute for these desiccants.
[0040]
(6) The paper containing the eggshell membrane fine powder is excellent in oil absorbing ability as shown in the test examples described below, and is suitable as an oil absorbing paper.
Hereinafter, specific uses of the present oil-absorbing paper are shown.
(1) Packaging material for food. Used for whole packaging or partial packaging.
For example, when used for lace paper wrapping the lower part of cakes, confectionery, and the like, and when used as fry or oil fried paper, the surplus oil can be absorbed. Further, when provided with the above-mentioned race paper, the moisture control function described above can also exert a moisture retention function for foods such as cakes.
Further, when the present oil-absorbing paper is applied to a release paper of a baking mold for baking a pound cake or the like, the baked cake can be smoothly removed from the mold.
[0041]
(2) Oil collecting paper.
When paper is rubbed against contaminated surfaces, such as oil-contaminated machinery, tableware in homes and restaurants, and descaling baths, oil and scale can be removed well and the surface can be quickly cleaned.
In addition, factory waste oil, river or ocean floating oil, or spilled oil can be quickly absorbed and removed by the collection paper, and the environment can be satisfactorily preserved.
[0042]
(3) Functional cosmetic paper such as sebum removal paper and antiperspirant paper.
When this functional paper is brought into contact with the skin surface, sebum and waste products on the skin surface can be effectively removed by its oil absorbing ability. In addition, when attached to the armpits or palms, it is possible to quickly control sweat. Furthermore, if this functional paper is stuck to places where the skin touches, such as the handrails and knobs of facilities, grips of office equipment and desks, and sports equipment, etc., the contact areas will not have fingerprints or sebum, and the surface will be smooth. Satisfactorily good feeling and aesthetic appearance can be maintained.
Incidentally, when this cosmetic functional paper is applied to a cosmetic pack, sebum on the face and the like can be removed, and conversely, it can be expected to supply nutrients such as eggshell membrane proteins to the skin.
In addition, although it seems to belong to the boundary with the above-mentioned humidity control paper, this functional paper for makeup can also be applied to remove sweat from a baby or an elderly person when changing diapers.
[0043]
(4) Functional pharmaceutical paper.
The paper containing the eggshell membrane fine powder can be used as it is for covering wounds and the like. When the compounded paper is applied to the wound on the skin surface, body fluid and pus etc. exuding from the wound can be smoothly absorbed and removed, and the covered portion can be prevented from being moist due to the hygroscopicity shown in the above (5).
When wet papermaking is performed from the eggshell membrane fine powder and the fiber composition, the alginate fiber having good biocompatibility is used instead of ordinary pulp or the like as the fiber composition (or, in addition to the alginate fiber, another fiber composition is added). Can also be used).
[0044]
(7) In the case of wet papermaking, when a cationic surfactant such as a quaternary ammonium salt is used in combination with the eggshell membrane fine powder, the dispersibility of the eggshell membrane fine powder is improved. The formation of papermaking is improved.
In addition, since the dispersibility is good, there is no need to dilute the stock with water to increase the dispersibility, and thus the water saving efficiency in papermaking is increased.
[0045]
(8) As described in the item of action, the eggshell membrane fine powder is a fine powder prepared by subjecting the eggshell membrane to a predetermined wet pulverization process. Therefore, it can be estimated that many adsorption sites are exposed on the surface of the powder. The compounded paper can effectively adsorb heavy metals such as lead, iron, copper and zinc as well as precious metals such as palladium and silver as shown in the test examples described later.
JP-A-58-150433 discloses a dry-pulverized eggshell membrane powder produced by subjecting a raw eggshell membrane to heat drying or freeze drying and pulverizing it with a hammer mill, spiral mill or the like. Although it is described that it is effective in removing harmful metals such as lead, copper and mercury, the eggshell membrane fine powder blended paper of the present invention can not only adsorb various heavy metals in paper form, but also palladium and the like. It differs from the technology of this publication in that it can adsorb noble metals.
For this reason, the present metal collection paper containing the eggshell membrane fine powder is suitable for efficiently recovering heavy metals, precious metals, and the like from various types of industrial wastewater, seawater, and the like.
[0046]
【Example】
Hereinafter, a production example of eggshell membrane fine powder (ESMP; Egg Shell Membrane Powder), a test example of surface hydrophobicity and dispersibility of the powder, and a production example of a mixed paper of eggshell membrane fine powder are described. Each moisture absorption / desorption test example of the fine powder and its blended paper, the evaluation of the eggshell membrane fine powder blended paper, the oil absorption test example, and the metal adsorption test examples of the eggshell membrane fine powder and the blended paper will be sequentially described.
However, the present invention is not limited to the following examples.
[0047]
<< Example of production of eggshell membrane fine powder >>
Raw eggshell membranes obtained from chicken eggs were washed with water and immersed in water. The immersion of the eggshell membrane is circulated three times by a millstone-type grinder (Mascoloider MKZA6-5; manufactured by Masuyuki Sangyo Co., Ltd.), and then subjected to filtration, water washing, filtration again, and first-stage polishing. A crushed product was obtained.
The first-stage ground material was dried to obtain a fine ESMP-A eggshell membrane powder having a fiber shape and having an average particle diameter of about 30 to 40 μm (actually, the particle diameter varies).
[0048]
On the other hand, when the eggshell membrane is finer and finer, for example, when filling the pores of the fiber composition, as described above, following the first-stage grinding treatment, a vibration ball mill grinder or a planetary ball mill grinder is used. A ball mill type pulverizing process using a pulverizer may be added.
In this case, if the first-stage ground material is subjected to a classification treatment to prepare a coarse powder and a fine powder at the same time, various properties such as humidity control or oil absorption prepared by mixing eggshell membrane fine powders having different particle diameters are provided. Functional paper can be made easily and separately.
That is, when preparing a fine powder by classification, first, a part of the first-stage ground material is pulverized in a stream with a crusher (CurrentJet CJ25; manufactured by Nisshin Engineering Co., Ltd.), and then classified using a classifier (turbo classifier). (TC-25N; manufactured by Nisshin Engineering Co., Ltd.) to obtain a finely crushed fraction of 10 μm or less together with a coarsely crushed fraction having an average particle diameter of about 30 to 40 μm including a fiber shape. In this case, for example, at a processing rate of 3 kg / hr, a finely divided fraction having an average particle diameter of 6.03 μm can be obtained at a yield of about 11.7%.
[0049]
《Example of moisture absorption / desorption test using eggshell membrane fine powder》
With respect to the eggshell membrane fine powder ESMP-A obtained in the above production example, the time curve of moisture absorption when the relative humidity was changed, and the time curve of moisture release after moisture absorption were examined.
That is, the above-mentioned eggshell membrane fine powder ESMP-A was accommodated in a desiccator and allowed to stand still in different humidity environments of 79.3%, 52% and 20% relative humidity, respectively, and the change over time of moisture absorption of the eggshell membrane fine powder was measured. . In addition, water was stored at the bottom of the desiccator, and the measurement was performed at a relative humidity of 100%.
Next, after the end of the adsorption test, each sample having a different humidity environment was transferred into a dry desiccator dehumidified with calcium chloride, and the time-dependent change in moisture release was measured.
[0050]
On the other hand, the present applicant has previously disclosed in Japanese Patent Application Laid-Open No. Hei 7-209165 that feather fine powder has a high adsorption and release ability with respect to moisture, but this feather fine powder is converted into eggshell membrane fine powder. The paper mixed and used as a reference example of the present moisture absorption / desorption test.
The feather fine powder is manufactured by the same wet pulverization treatment as the eggshell membrane fine powder. A powder whose particle diameter is adjusted to about 39.93 μm is referred to as Reference Example 1, and a powder having a particle diameter of about 5.36 μm is referred to. Example 2 was used. However, with the feather fine powder, only the behavior of moisture absorption in an environment with a relative humidity of 79.3% and subsequent moisture release were measured.
[0051]
FIG. 1A shows the moisture absorption time curve of the eggshell membrane fine powder ESMP-A and the reference example, and FIG. 1B shows these moisture release time curves.
In all humid environments, including a low humidity environment of 20%, the eggshell membrane fine powder ESMP-A showed high moisture absorption and desorption rates in the first approximately 5 to 10 hours.
Therefore, it was found that the eggshell membrane fine powder exhibited a high moisture absorption and desorption response speed in various humidity environments from low humidity to high humidity (20 to 100%), and had a high humidity control effect. In addition, since the time until the equilibrium between the adsorption and the release of the moisture is reached is short, the humidity control effect can be quickly exhibited.
On the other hand, the feather fine powder (Reference Examples 1 and 2) showed high moisture absorption and moisture release rates in the first approximately 5 to 10 hours after the start of moisture absorption, similarly to the eggshell membrane fine powder ESMP-A. As shown in FIG. 1A, the moisture absorption in the equilibrium state was about 30% greater for the eggshell membrane fine powder ESMP-A than for the feather fine powder.
[0052]
《Example of surface hydrophobicity test of eggshell membrane fine powder》
The degree of the surface hydrophobic environment (the amount of hydrophobic groups on the surface) of the eggshell membrane fine powder was measured using 8-anilinonaphthalenesulfonic acid (ANS) as a fluorescent probe.
That is, ANS-Na salt was added to a final concentration of 10 mg / ml in an aqueous suspension of eggshell membrane fine powder at 1 mg / ml. -5 M, and the relative fluorescence intensity at an excitation wavelength of 377 nm and a fluorescence wavelength of 463 nm was measured.
On the other hand, as a comparative example, the surface hydrophobicity of feather fine powder, which is a natural protein similar to the eggshell membrane, was measured.
The eggshell membrane fine powder used had a particle size of about 27 μm. The feather fine powder was prepared by the same wet pulverization treatment method as the eggshell membrane fine powder, and the surface hydrophobicity of various powders having different particle diameters was measured.
[0053]
FIG. 2 shows the results. In FIG. 2, the higher the relative fluorescence intensity, the higher the surface hydrophobicity. According to the measurement results, it was confirmed that the eggshell membrane fine powder did not have much higher surface hydrophobicity than the feather fine powder, was relatively hydrophilic, and was easily dispersed in water.
Then, what kind of dispersibility the suspension water of the eggshell membrane fine powder shows in the presence of the surfactant was examined.
[0054]
<< Example of dispersibility test of eggshell membrane fine powder >>
The eggshell membrane fine powder ESMP-A was placed in water, suspension water was prepared with various surfactants, and the degree of dispersion or swelling of the eggshell membrane fine powder in the suspension water was tested. Dispersion conditions were as follows: eggshell membrane fine powder was added at a predetermined ratio of 2% by weight, a surfactant was added at a predetermined ratio of 0.002 to 0.6% by weight, and the remainder was adjusted to 100% by weight with purified water. Stir for 3 minutes.
[0055]
The surfactants used were, as described below, cationic surfactants (1) to (6) (specifically, quaternary ammonium salts) and nonionic surfactants (7) to (12). is there.
(1) Benzalkonium chloride (Kanto Chemical)
(2) Benzethonium chloride (Kanto Chemical)
(3) dialkyl dimethyl ammonium chloride
(Arcade 2HT-75; made by Lion)
(4) Lauryl trimethyl ammonium chloride
(Katiogen TML; manufactured by Daiichi Kogyo Chemical)
(5) Cetyltrimethylammonium chloride
(Katiogen TMP; manufactured by Daiichi Kogyo)
(6) Stearyl trimethyl ammonium chloride
(Katiogen TMS; manufactured by Daiichi Kogyo)
(7) Polyoxyethylene nonyl phenyl ether
(Neugen EA-170; manufactured by Daiichi Kogyo)
(8) Polyoxyethylene dodecyl phenyl ether
(Neugen EA-73; manufactured by Daiichi Kogyo)
(9) Polyoxyethylene lauryl ether
(Neugen ET-170; manufactured by Daiichi Kogyo)
(10) Polyoxyethylene oleyl ether
(Neugen ET-80; manufactured by Daiichi Kogyo Chemical)
(11) Polyoxyethylene (EO6) sorbitan monooleate
(Nikko TS-106; Nikko Chemicals)
(12) Polyoxyethylene (EO20) sorbitan monooleate
(Nikko TS-10; Nikko Chemicals)
[0056]
As a result, in the above quaternary ammonium salts (1) to (6), the cake layer was mostly formed in the upper layer when the blending ratio was 0.2% or more, but when it was 0.1% or less, the nonionic system (7) to (12) In each case, the formation interface of the precipitate was not clear, and only a little water layer was seen from above.
That is, due to the addition of the quaternary ammonium salts, the eggshell membrane fine powder showed an extremely high swelling state and good dispersibility was observed.
The appropriate concentrations of the quaternary ammonium salts (1) to (6) were as follows.
(1)-(2) = 0.01%
(3) = 0.05%
(4)-(6) = 0.02%
Accordingly, a production example of eggshell membrane fine powder blended paper in which the fine powder of eggshell membrane and the fiber composition are dispersed in water in the presence of the above quaternary ammonium salts to prepare a paper stock, and the paper material is wet-processed, is described.
[0057]
<< Example of manufacture of eggshell membrane fine powder-containing paper >>
Water and the eggshell membrane fine powder ESMP-A are added to one of the tanks, and quaternary ammonium salts (specifically, using the cationogen TMP) are blended under the condition of 0.02% by weight based on the total weight of the fibers. Thus, a dispersion of ESMP-A was produced.
The other tank contains a dispersion of NBKP beaten to 650 ml of Canadian standard freeness (CSF; pulp freeness test method in accordance with JIS-P-8121), and eggshell membrane fine powder and wood pulp are stored. The above two dispersions are mixed in a beater with the following composition, and an amphoteric ion latex-based paper strength enhancer having a quaternary alkylamine group and a carboxyl group on the same particle surface (Acostar C-122; manufactured by Mitsui Cytec Co., Ltd.) Was added, and the mixture was sufficiently stirred and dissociated with a dissociator to prepare a uniform stock. However, the paper strength agent was added under the condition of 3.0% by weight based on the total weight of the fibers.
The above-mentioned stock was subjected to wet papermaking in accordance with JIS-P-8209 and dried at about 110 ° C to obtain eggshell membrane fine powder blended papers, which were designated as samples 1 to 3, respectively.
[0058]
The compounding ratio of the eggshell membrane fine powder ESMP-A and NBKP in the samples 1 to 3 is as follows.
(1) Sample 1
Eggshell membrane fine powder: NBKP = 60% by weight: 40% by weight
(2) Sample 2
Eggshell membrane fine powder: NBKP = 40% by weight: 60% by weight
(3) Sample 3
Eggshell membrane fine powder: NBKP = 20% by weight: 80% by weight
On the other hand, the conditions for wet papermaking were set in the same manner as in the above-mentioned production example, the blending ratio of NBKP was 100% by weight, and the egg shell membrane fine powder was omitted.
[0059]
The quaternary ammonium salts can be blended in a range of about 0.01 to 0.05% by weight as described above. The standard freeness of pulp (NBKP) differs depending on the application, and the freeness may be appropriately reduced by a beater. Further, the eggshell membrane fine powder ESMP-A and the pulp may be simultaneously mixed in a beater by a one-liquid system.
Then, moisture absorption and moisture release tests were performed using the eggshell membrane fine powder blended paper.
[0060]
《Example of moisture absorption / desorption test using paper containing fine powder of eggshell membrane》
The moisture absorption and desorption tests were performed on the eggshell membrane fine powder-containing papers of Samples 1 to 3 in comparison with Comparative Examples.
That is, after the sample 1 to sample 3 and the comparative example prepared in a rectangle of 50 mm × 50 mm were sufficiently dried and subjected to pretreatment in accordance with JIS-P-8127 (moisture test method for paper and paperboard). The sample was allowed to stand still in a desiccator maintained at a temperature of 20 ° C. and a relative humidity of 93%, and a change with time of the moisture absorption of each test piece was measured until 96 hours passed.
However, the above-mentioned moisture absorption was expressed as the water content of the measurement test piece based on the difference in weight before and after the drying treatment as in the following formula.
[(Measured weight of test piece before drying)-(absolute dry weight) / (measured weight)] × 100
[0061]
Immediately after the elapse of 96 hours, the sample was transferred to a desiccator dehumidified with calcium chloride at a temperature of 20 ° C. and allowed to stand, and until 10 hours had elapsed, the time-dependent change in the amount of moisture released from each test piece was measured. .
However, the amount of released moisture was also expressed as the moisture content of the test piece, similarly to the amount of absorbed moisture.
[0062]
3A shows the results of the moisture absorption test of the eggshell membrane fine powder-containing paper, FIG. 3B shows the results of the moisture release test, FIG. 4A shows the time curve of the moisture absorption, and FIG. 4B shows the time curve of the moisture release (however, sample 2 is omitted in FIG. 4). Show.
According to FIGS. 3 and 4, the amount of moisture absorption and desorption of samples 1 to 3 is larger than that of the comparative example. In particular, the amount of moisture absorption greatly increases within 10 hours from the start of moisture absorption, and shows a large moisture absorption response speed. Was. On the other hand, the moisture was released immediately after the adsorption of the moisture, and in particular, the moisture release rate in the initial stage after the end of the moisture absorption (response rate within 2 to 4 hours after the start of moisture release) was extremely large.
In other words, it can be seen that the paper containing the eggshell membrane fine powder is reversible in moisture absorption and release (having a high restoring force), and effectively performs the function of regulating the humidity environment.
[0063]
As shown in FIGS. 3 and 4, with respect to the amount of moisture absorption and the amount of moisture release of the compounded paper, Sample 1 containing 60% by weight of eggshell membrane fine powder was larger than Sample 2 containing 20% by weight, The degree of moisture absorption and desorption increased with the increase in the mixing ratio of eggshell membrane fine powder.
However, even when the compounding ratio of the eggshell membrane fine powder was about 20% by weight, the difference from the comparative example was obvious, and the humidity control result was sufficiently practical.
Therefore, an evaluation test for each item of the eggshell membrane fine powder blended paper is performed, and test examples of oil absorption and metal adsorption are described.
[0064]
《Evaluation of paper containing fine powder of eggshell membrane and test example of oil absorption》
First, seven kinds of blended papers (using NBKP for pulp) were prepared in which the blending ratio of the eggshell membrane fine powder was changed every 10 wt. . The relationship between each sample and the mixing ratio is as follows.
Sample n: Compounding ratio of eggshell membrane fine powder n × 10% by weight (n = 1, 2,... 7)
Then, regarding the samples 1 to 7, evaluation tests of items such as weighing, paper thickness, density, tensile strength (elongation), tear length, and tear were performed at a temperature of 20 ° C. and a relative humidity of 65%. We went while comparing with.
However, the weighing was based on JIS-P-8124, the evaluation method of paper thickness and density was based on JIS-P-8118, the tear length was based on JIS-P-8113, and the specific tearing degree was based on JIS-P-8116. . Further, the elongation in the item of the tensile strength indicates the elongation at the time when the pulled paper is torn.
[0065]
FIG. 5 shows the results. Each sample has a density of slightly less than 70% to slightly less than 50% as compared with the comparative example, is lightweight, easy to use, and has a warm feeling unique to eggshell membranes. Was.
In addition, the breaking length of each sample was 1.54 in Sample 7, which had the largest blending ratio, but this was, for example, larger than the numerical value (about 1.0) indicated by the tissue paper. There is no problem at all.
Regarding the tensile strength and the tear (for example, since the tensile strength of a tissue paper is about 400 gf in a width of 25 mm), even when the mixing ratio of the fine powder of the eggshell membrane in the sample is high, it shows a numerical value sufficient for practical use as paper. Was.
The strength of the paper, such as the tear length and tear, can be estimated to be due to the synergistic contribution of the zwitterionic latex binder mixed during papermaking.
[0066]
On the other hand, the oil absorption rate and the oil absorption ratio of each of the above samples were tested by the following methods (1) and (2) while comparing them with comparative examples.
(1) Oil absorption speed
One drop (approximately 4 mg) of light oil (No. 1 light oil) was dropped on each sample through an injection needle (H5), and the time (number of seconds) required for each sample to complete absorption of light oil and lose gloss due to reflection was measured. It was measured.
(2) Oil absorption ratio
After immersing each sample in soybean oil for 15 seconds, the sample was taken out of the oil and held by hand for 10 seconds, and the weight increase rate of each sample was measured.
[0067]
FIG. 5 shows the results, and FIG. 6 is a graph showing the results of the oil absorption rate.
According to FIGS. 5 and 6, the oil absorption rate increased with an increase in the blending ratio of the eggshell membrane fine powder. For example, Sample 7 was approximately 6 times faster in both front and back than the Comparative Example.
According to FIG. 5, the oil absorption ratio of each of the samples 1 to 7 was approximately 1.25 to 1.65 times larger than that of the comparative example.
[0068]
<< Example of metal adsorption test using eggshell membrane fine powder >>
A pseudo waste liquid prepared by mixing various heavy metal salts was prepared, and the eggshell membrane fine powder ESMP-A obtained in the above production example was used as a sample, and the sample was added to the pseudo waste liquid at a rate of 10 g / l at pH 2, room temperature. After stirring for 17 hours under the conditions described in (1) and filtration, the concentrations of heavy metals in the pseudo waste liquid were measured.
The following table shows the initial concentrations of various heavy metals contained in the simulated waste liquid and the concentrations of the remaining liquid after contacting the eggshell membrane fine powder (the concentrations are shown in ppm).
[0069]
Figure 0003567308
[0070]
According to the above table, when the eggshell membrane fine powder is brought into contact with the pseudo waste liquid, Fe 2+ And Cu 2+ Can be removed smoothly, and in particular, in the presence of various heavy metals competing, a small amount of Pb is contained. 2+ Could be completely removed.
[0071]
Incidentally, in the above-mentioned Japanese Patent Application Laid-Open No. 58-150433, after the eggshell membrane is freeze-dried, it is pulverized by a hammer mill and sieved through a 40-mesh, and 0.5 g of the powder is subjected to nitric acid by using a dry pulverized eggshell membrane powder. The solution was added to 50 ml of a lead solution (10, 50 and 100 ppm as Pb) and stirred. After 4, 8 and 24 hours, 5 ml of each sample was sampled and filtered with filter paper, and the lead concentration (ppm) of the filtrate was measured. The test results are described as follows (see the test methods, test results and Table 1 in the publication).
Figure 0003567308
[0072]
Further, the eggshell membranes were heated and dried in a thermostat or a muffle furnace under various conditions, or freeze-dried, and then each dried product was crushed by a spiral mill and sieved using a dry crushed eggshell membrane powder to obtain the above 9 Each type of powder was added to a lead nitrate solution (100 ppm as Pb), stirred, sampled after 1, 2, 3, and 4 hours, respectively, and tested for the lead concentration (ppm) of the solution according to the above test method (comparison) (Excluding examples) are described as follows (see Examples of the publication and Table 2).
After 1 hour: 35.6 to 0.4 ppm
After 2 hours: 24.8 to 0.6 ppm
After 3 hours: 12.3 to 0.5 ppm
After 4 hours: 5.8-0.4 ppm
That is, the technique of the same publication only describes that the eggshell membrane of a dry pulverization treatment was brought into contact with a solution containing one kind of lead and the removal efficiency was examined. No lead removal tests have been performed on solutions that compete with heavy metals.
Further, while the lead concentration of the sample solution of this test example is as small as 1 ppm, the lead content of the publication is as large as 10 ppm to 100 ppm.
Moreover, in this test example, the concentration of lead after 17 hours was 0 ppm in the presence of a competing heavy metal, whereas in the same publication (for example, Table 1 above), the concentration of a 10 ppm lead solution was 24 ppm. Even after an hour, it remained at 0.1 ppm.
[0073]
Therefore, when the fine powder of eggshell membranes of the present invention is used as a heavy metal collecting agent, even a waste liquid in which many heavy metals compete can effectively adsorb and collect lead, which is particularly restricted from the viewpoint of preventing water pollution. Therefore, the metal trapping agent containing the eggshell membrane fine powder as a main component is suitable for, for example, detoxification treatment of a solder plating liquid, other metal plating liquids, and waste liquids containing various heavy metals.
Therefore, the paper-mixed paper of the eggshell membrane fine powder shown in the above-mentioned production examples was tested for its collecting effect on precious metals such as palladium.
[0074]
《Example of noble metal adsorption test of eggshell membrane fine powder blended paper》
First, three kinds of eggshell membrane fine powder blended paper were prepared in which the blending ratio of the eggshell membrane fine powder (using NBKP for pulp) was changed as described below, and these were designated as samples 1 to 3, respectively. The method of producing the compounded paper was based on the method of the above-mentioned production example.
(1) Sample 1: The mixing ratio of eggshell membrane fine powder is 20% by weight.
(2) Sample 2: 40% by weight
(3) Sample 3: 70% by weight
Next, 10 ml of a palladium standard solution adjusted to a concentration of 1000 ppm is placed in a petri dish, and each of the above samples 1 to 3 is immersed in this standard solution for a predetermined time, and the palladium concentration of the remaining solution is determined by atomic absorption analysis or plasma emission spectroscopy ( The amount of palladium adsorbed on each of the samples 1 to 3 was calculated from the difference from the initial concentration of the standard solution measured by the ICP) method.
However, with respect to Samples 1 and 2, the relationship between the immersion time and the amount of adsorption was examined by setting the immersion time in the palladium standard solution in two ways, 3 hours and 8 hours.
[0075]
FIG. 7 shows the results. For example, when the sample 3 was immersed for one hour, the concentration of the palladium standard solution was 725 ppm (= mg / l), and the initial concentration of the standard solution was 1000 ppm. Therefore, the amount of palladium adsorbed on Sample 3 was as follows.
(1-0.725) mg / ml × 10 ml = 2.75 mg
Therefore, since the weight of the sample 3 is 0.126 g, the adsorption amount of palladium per unit weight of the sample 3 (hereinafter, simply referred to as the adsorption amount) is
2.75 mg / 0.126 g = 21.8 mg / g.
[0076]
Since the amount of adsorption of sample 3 in the one-hour immersion is 21.8 mg / g, the amount of adsorption of sample 1 in the eight-hour immersion is 17.2 mg / g and that of sample 2 is 17.6 mg / g. It can be seen that the amount of palladium adsorbed increases and the adsorption time can be shortened in proportion to the increase in the mixing ratio of the eggshell membrane fine powder.
Further, when the relationship between the immersion time and the amount of adsorption was examined while fixing the type of the sample, the sample 1 showed almost no difference in the amount of adsorption even when the immersion time was increased from 3 hours to 8 hours. From 8 hours to 8 hours, the amount of adsorption slightly increases.
Therefore, it can be seen that the response time of palladium adsorption is fast in the paper containing the eggshell membrane fine powder in the range of 20 to 40% by weight, and palladium can be effectively adsorbed without extending the immersion time.
[0077]
That is, the paper containing the fine powder of eggshell membranes of the present example has a novel use in that it can adsorb a noble metal represented by palladium, which is not described in JP-A-58-150433, or which is not suggested. Can be expected.
[Brief description of the drawings]
1 shows the behavior of moisture absorption and moisture release of eggshell membrane fine powder, FIG. 1A is a curve of moisture absorption over time of the powder, and FIG. 1B is a curve of moisture absorption over time of the powder.
FIG. 2 is a view showing a test result of surface hydrophobicity of eggshell membrane fine powder and feather fine powder.
3 shows the moisture absorption and moisture release behavior of the paper containing the eggshell membrane fine powder, FIG. 3A is a table showing the results of the moisture absorption test of the paper blend, and FIG. 3B is a table showing the results of the moisture release test of the paper blend.
FIG. 4A is a graph showing the time curve of moisture absorption of the paper containing the eggshell membrane fine powder, and FIG. 4B is a graph showing the time curve of moisture release of the paper containing the same.
FIG. 5 is a table showing the evaluation of the eggshell membrane fine powder-containing paper and the results of an oil absorption test.
FIG. 6 is a graph showing the relationship between the mixing ratio of eggshell membrane fine powder and the oil absorption rate.
FIG. 7 is a table showing the results of a palladium adsorption test of eggshell membrane fine powder-containing paper.
FIG. 8A is a photomicrograph at 300 times magnification of eggshell membrane fine powder blended paper, and FIG. 8B is a photomicrograph at 1000 times magnification.

Claims (5)

卵殻膜を水及びアルコール系溶媒の少なくともいずれかに浸漬し、石臼式回転磨砕及びボールミル式粉砕の少なくともいずれかを施して卵殻膜の湿式粉砕粉末を製造し、この卵殻膜微細粉末の繊維構造を絡み合わせてシート形態に加工することを特徴とする卵殻膜微細粉末配合紙。The eggshell membrane is immersed in at least one of water and an alcohol-based solvent, and subjected to at least one of millstone-type rotary grinding and ball mill-type grinding to produce a wet-milled powder of the eggshell membrane. Characterized in that it is processed into a sheet form by entanglement. 4級アンモニウム塩類などのカチオン系界面活性剤により卵殻膜微細粉末と繊維組成物を水に分散させて紙料を調製し、湿式抄紙することを特徴とする請求項1に記載の卵殻膜微細粉末配合紙。2. The eggshell membrane fine powder according to claim 1, wherein the eggshell membrane fine powder and the fiber composition are dispersed in water with a cationic surfactant such as a quaternary ammonium salt to prepare a paper stock, and wet papermaking is performed. Combined paper. 請求項1又は2に記載の卵殻膜微細粉末配合紙を湿度環境に接触させて、環境中の湿気の吸収と放出により湿度調節可能にすることを特徴とする卵殻膜微細粉末を利用した調湿紙。A humidity control using eggshell membrane fine powder, wherein the paper containing the eggshell membrane fine powder according to claim 1 or 2 is brought into contact with a humid environment to adjust the humidity by absorbing and releasing moisture in the environment. paper. 請求項1又は2に記載の卵殻膜微細粉末配合紙を被処理物に接触させて、有効主成分である卵殻膜により被処理物の油分を吸収除去可能にすることを特徴とする卵殻膜微細粉末を利用した吸油紙。3. The eggshell membrane microparticles characterized in that the eggshell membrane fine powder-containing paper according to claim 1 or 2 is brought into contact with a substance to be treated, so that the eggshell membrane as an effective main component can absorb and remove the oil content of the substance to be treated. Oil absorbing paper using powder. 請求項1又は2に記載の卵殻膜微細粉末配合紙を被処理物に接触させて、被処理物中の貴金属、重金属などの金属を吸着可能にすることを特徴とする卵殻膜微細粉末を利用した金属捕集紙。Utilizing the eggshell membrane fine powder characterized in that the paper containing the eggshell membrane fine powder according to claim 1 or 2 is brought into contact with an object to be treated, so that metals such as noble metals and heavy metals in the object can be adsorbed. Metal collecting paper.
JP35012095A 1995-12-22 1995-12-22 Eggshell membrane fine powder blended paper, and various functional papers using eggshell membrane fine powder Expired - Fee Related JP3567308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35012095A JP3567308B2 (en) 1995-12-22 1995-12-22 Eggshell membrane fine powder blended paper, and various functional papers using eggshell membrane fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35012095A JP3567308B2 (en) 1995-12-22 1995-12-22 Eggshell membrane fine powder blended paper, and various functional papers using eggshell membrane fine powder

Publications (2)

Publication Number Publication Date
JPH09176998A JPH09176998A (en) 1997-07-08
JP3567308B2 true JP3567308B2 (en) 2004-09-22

Family

ID=18408376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35012095A Expired - Fee Related JP3567308B2 (en) 1995-12-22 1995-12-22 Eggshell membrane fine powder blended paper, and various functional papers using eggshell membrane fine powder

Country Status (1)

Country Link
JP (1) JP3567308B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003281313A1 (en) * 2002-07-05 2004-01-23 Idemitsu Technofine Co., Ltd. Fiber processing agent and fiber processed with the fiber processing agent
JP5132919B2 (en) * 2006-11-17 2013-01-30 国立大学法人九州大学 Silver recovery method
JP4748252B2 (en) 2009-05-21 2011-08-17 ダイキン工業株式会社 Heat exchanger and manufacturing method thereof
JP7336128B2 (en) * 2019-04-26 2023-08-31 株式会社Samurai Trading paper manufacturing method
JP6667841B1 (en) * 2019-08-21 2020-03-18 株式会社Samurai Trading Manufacturing method of fiber molded product, fiber molded product
JP6747686B1 (en) * 2020-02-13 2020-08-26 株式会社Samurai Trading Paper manufacturing method, pulp mold manufacturing method, paper, pulp mold
CN115970067B (en) * 2023-01-17 2023-10-17 中山大学附属口腔医院 Intelligent guiding bone tissue regeneration membrane and preparation method and application thereof

Also Published As

Publication number Publication date
JPH09176998A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
KR20180038574A (en) Articles of manufacture releasing an active ingredient
JPS60500124A (en) Cosmetic tools that moisturize the skin and provide deodorizing effects
JP4953582B2 (en) House dust treatment agent
JP3567308B2 (en) Eggshell membrane fine powder blended paper, and various functional papers using eggshell membrane fine powder
CN105434269A (en) Scrub anti-allergy facial cleanser containing nanometer carbon crystal and preparation method thereof
JP2019507162A (en) Biocellulose fine fiber water dispersion network composition
JP2002114617A (en) Natural deodorizing antimicrobial agent, deodorizing antimicrobial product using the same and deodorizing antimicrobial method using the same
JP4020282B2 (en) Skin oil / dirt paper products
JP3040891U (en) Activated carbon powder impregnation
JP4078344B2 (en) Method for producing cocoon grass sheet
JP3870382B2 (en) Humidity paper containing fine feather powder
JP5336254B2 (en) Deodorant composition
RU2696879C1 (en) Cosmetic face mask for skin care
JP3338316B2 (en) Sizing agent, antibacterial processed product of textile product using the sizing agent, and processing method thereof
EP3650082B1 (en) Dispersion including glitters for the preparation of humidifying wipes
JPH10266053A (en) Nonwoven fabric interlocked with feather fiber, its production and heat-insulation material and moisture-controlling material produced by using the nonwoven fabric
CN101513197B (en) Sterilization and disinfection solution for cleaning tissues and method for preparing sterilization and disinfection cleaning tissues
KR101792747B1 (en) Composition for hair spray containing salt
RU2591614C1 (en) Napkin for cleaning and rehabilitation of care of apparel-fancy articles made from natural leather and fur or method of producing napkin for cleaning and rehabilitation care of apparel-fancy articles made from natural fur or leather
JP2012107253A (en) Allergen deactivating agent
JP7382643B2 (en) Magnesium hydroxide suspension, manufacturing method thereof, manufacturing method of magnesium hydroxide saturated aqueous solution, pH increasing agent, bath salts, cosmetics, pharmaceuticals, quasi-drugs, disinfectants, antifungal agents, and manufacturing methods thereof
JP2021195369A (en) Porous composite powder for adsorption of floating particulates and method for manufacturing the same
CN101385689B (en) Attapulgite hair conditioner
JP2011037733A (en) Functional substance made of micronized allophane and composition thereof
JP2003096664A (en) Fibrous structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040601

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees