JP3567012B2 - Novel peptide and its use - Google Patents

Novel peptide and its use Download PDF

Info

Publication number
JP3567012B2
JP3567012B2 JP07015695A JP7015695A JP3567012B2 JP 3567012 B2 JP3567012 B2 JP 3567012B2 JP 07015695 A JP07015695 A JP 07015695A JP 7015695 A JP7015695 A JP 7015695A JP 3567012 B2 JP3567012 B2 JP 3567012B2
Authority
JP
Japan
Prior art keywords
peptide
inhibitory activity
amino acid
acid sequence
ace inhibitory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07015695A
Other languages
Japanese (ja)
Other versions
JPH08269088A (en
Inventor
敞敏 伊藤
忠夫 斎藤
豊 若生
俊昭 内田
清 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP07015695A priority Critical patent/JP3567012B2/en
Publication of JPH08269088A publication Critical patent/JPH08269088A/en
Application granted granted Critical
Publication of JP3567012B2 publication Critical patent/JP3567012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、新規なペプチドに関する。また、本発明は、この新規なペプチドを活性成分として含有するアンジオテンシン転換酵素阻害剤に関する。さらに、本発明は、この新規なペプチドを活性成分として含有する血圧降下剤に関する。
【0002】
【従来の技術】
アンジオテンシン転換酵素(ACE)は、血圧の調節においてレニン−アンジオテンシン系に作用する酵素である。分子量約57,000のアンジオテンシノーゲンは、腎臓から血管中に移行するレニンによりアンジオテンシンIに変換される。このアンジオテンシンIは、殆ど血管収縮作用を示さない不活性型であるが、ACEにより活性型のアンジオテンシンIIに変換される。このアンジオテンシンIIについては、動脈末梢毛細血管の収縮作用[Furchgott,R. et al., J.Pharmacol Exp.Ther., vol.108, p.129, 1953]、血管透過性増大[Gimbrone,M.A. and Alexander,R.W., Science, vol.189, p.219, 1975] 、交感神経におけるアドレナリン作動性の神経伝達促進[Bell,C., Circ.Res., vol.31, p.348, 1972] 、副腎髄質からのカテコールアミンの放出促進作用及び副腎皮質からのアルドステロンの分泌促進[Biron,P. et al., J.Clin.Invest, vol.44, p.1171, 1965]などの作用が知られており、循環血流量の増加をもたらし、血圧が上昇する。また、血管拡張作用により血圧降下作用を示すブラジキニンは、ACEにより分解されるため、結果的に血圧が上昇する。一方、ACE阻害物質は、上述したACEの作用を阻害するので、有効な血圧降下作用を有し、血圧降下剤の有効成分として有用であることが知られている。
【0003】
近年、成人病の増加や高齢化による疾患の増加により、上述したような血圧降下作用を有する物質が脚光を浴びており、医薬として提供されるに至っているものもある。しかし、高血圧に関連する疾病は食事による影響が強いと言われており、高血圧の予防効果を有する物質としては、食品素材への利用性を有するものに対して大きな期待が持たれる。
【0004】
そして、食品に含まれているACE阻害物質としては、イワシ筋肉由来のたんぱく質分解ペプチド(日本水産製) 、オキアミからイオン交換クロマトグラフィー、ゲル濾過クロマトグラフィー及び逆層クロマトグラフィーにより単離したACE阻害物質 [河村幸雄ら,微量栄養素研究, vol.7, p.37, 1990]、トウモロコシたんぱく質由来のオリゴペプチド [特開平2−240027号公報] などが知られている。
【0005】
さらに、乳たんぱく質カゼイン由来の分解物中にACE阻害物質が多く存在することが知られている。すなわち、ヒトβカゼインのアミノ酸配列39〜52残基のペプチド[Kohmura,M. et al., Agric.Biol.Chem., vol.53, p.2107, 1989] 、ヒトκカゼインのアミノ酸配列43〜52残基のペプチド[Kohmura,M. et al., Agric.Biol.Chem., vol.54, p.835, 1990]、ウシαS1カゼインのアミノ酸配列23〜34残基及び 194〜199 残基のペプチド[Maruyama,S. et al., Agric.Biol.Chem., vol.51, p.2557, 1987]、ウシβカゼインのアミノ酸配列 177〜183 残基のペプチド[Maruyama,S., Agric.Biol.Chem., vol.51, p.1581, 1987] 、カソキシンCと称するウシκカゼインのアミノ酸配列25〜34残基のペプチド [戸塚護及び上野川修一, 日本畜産学会報, vol.63, p.867, 1992]などである。また、ウシカゼインをたんぱく質分解酵素で加水分解して得られるACE阻害物質含有組成物として、ウシαカゼイン又はウシβカゼインの酵素分解物が高血圧の予防に有効であることが開示されている [特開平2−167052号公報] 。あるいは、ウシκカゼインのキモシン分解により生成するアミノ酸配列 106残基以後のペプチドであるウシκカゼイングリコマクロペプチドが血圧の上昇抑制効果を有することが開示されている [特開平6−345664号公報] 。
【0006】
【発明が解決しようとする課題】
本発明者らは、食品素材として利用可能なACE阻害活性を有する物質を見出すべく、鋭意研究を進めていたところ、チーズホエー中などに含まれているウシκカゼイングリコマクロペプチドのプロテアーゼ分解物中にACE阻害活性を有する新規なペプチドを見出した。そして、動物実験を行ったところ、このペプチドが血圧を降下する作用を有することを見出し、本発明を完成するに至った。したがって、本発明は、ACE阻害活性を有する新規なペプチドを提供することを課題とする。また、本発明は、このペプチドを活性成分として含有するACE阻害剤を提供することを課題とする。さらに、本発明は、このペプチドを活性成分として含有する血圧降下剤を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明者らは、食品素材として利用可能なACE阻害活性を有する物質を見出すべく、甘性チーズホエーから得られるκカゼイングリコマクロペプチドについてもACE阻害活性を調べたところ、κカゼイングリコマクロペプチドのたんぱく質分解酵素消化物中にACE阻害活性を有する画分を見出した。そして、このACE阻害活性を有する画分の活性本体を単離同定したところ、下記のアミノ酸配列(I)を有するペプチドであることが判明した。
Ile−Ala−Ser−Gly−Glu−Pro (I)
【0008】
このペプチドのアミノ酸配列は、κカゼイングリコマクロペプチドのアミノ酸配列20〜25残基に相当し、κカゼインのアミノ酸配列 125〜130 残基に相当するペプチドであった。
【0009】
さらに、下記のアミノ酸配列(I)を有するペプチドが、血圧降下作用を有することも確認した。
Ile−Ala−Ser−Gly−Glu−Pro (I)
【0010】
本発明のペプチドを食品、化粧品、飼料あるいは医薬品に使用する場合には、精製品を用いても良いが、純度が低くても本発明のペプチドはACE阻害活性が強いため、これらのペプチドを含む粗画分を用いても良いし、κカゼイングリコマクロペプチドのペプシン又はパパイン消化物をそのまま用いることもできる。また、化学合成により得られたものも用いることもできる。なお、ペプチドの化学合成法としては通常使用されている固相法などを用いることにより、例えば、アプライドバイオシステムズ社のペプチド合成機などで簡単にペプチドを合成することができる。さらに、本発明のペプチドのアミノ酸配列に相当する塩基配列を用いてDNAを合成し、遺伝子操作により本発明のペプチドを製造することもできる。既に、ウシκカゼインの塩基配列は公知である[Alexander,L.J. et al., Eur.J.Biochem., vol.178, p.395, 1988] 。したがって、遺伝子操作により本発明のペプチドを製造する際に使用する塩基配列としては、ATT GCT AGT GGT GAG CCT が適当である。
【0011】
次に、特に利用性の高い本発明のペプチドの製造法を説明する。
原料として有用であるκカゼイングリコマクロペプチドを得る方法としては、例えば、チーズホエーパウダーを溶解し、加熱した後、冷却し、エタノール沈澱して得られる上清を陰イオン交換樹脂により分画する方法[Saito.T. et al., J.Dairy Sci., vol.74, p.2831, 1991] 、レンネットカゼインカードを調製する際に得られる排液を原料とし、この排液のpHを酸性領域に調製して生成する沈澱を除去し、次いで得られる上澄を脱塩する方法 [特開昭 63−284199号公報] 、κカゼイングリコマクロペプチドを含有する乳質原料物質をpH4未満に調整した後、分画分子量10,000〜50,000の膜を用い、限外濾過処理をして透過液を分画分子量50,000以下の膜を用いて濃縮する方法 [特開平2−276542号公報] 、ホエー蛋白含有溶液を加熱した後、凍結して凍結物を得、更に該凍結物を解凍した後、ホエー蛋白と上清とを分離し、この上清を処理して上清を回収する方法 [特開平3−294299号公報] などにより、κカゼイングリコマクロペプチドを製造することが可能であるが、ここでは、いかなる方法で得られたκカゼイングリコマクロペプチドであっても良い。
【0012】
このκカゼイングリコマクロペプチドをたんぱく質分解酵素で加水分解する。使用するたんぱく質分解酵素としては、ペプシンが好ましいが、パパインも使用可能である。また、酸加水分解により本発明のペプチドを調製することも可能である。なお、ペプシンを使用する場合、κカゼイングリコマクロペプチドに対しペプシンを重量比1/10〜1/10000 の割合で添加すれば良い。酵素反応は通常30〜40℃で行うが、酵素活性が認められる温度域であれば構わない。酵素反応に適したpH領域は1〜5が好ましいが、pH4以上では反応にかなり時間を要するので、より好ましくはpH1〜4である。酵素反応に使用する緩衝液としてはクエン酸緩衝液、酢酸緩衝液、塩化カリウム−塩酸緩衝液、(グリシン+食塩)−塩酸緩衝液などを例示することができ、簡便的に塩酸溶液などの酸溶液でpHを調整して使用することもできる。反応時間は10分間以上であり、好ましくは1〜48時間である。反応時間が10分間未満ではACE阻害活性が20%以下であり、48時間を越えるとACE阻害活性は60%程度残存するが、反応時間が長くなると微生物汚染の問題やペプシン活性の低下などが起こり好ましくない。また、場合によっては反応途中でペプシンを再添加することもできる。酵素反応の停止は、 100℃で5分間加熱して酵素を失活させることが簡便で良いが、冷アセトンを添加して濾別する処理や水酸化ナトリウムなどの塩基性物質でpHを 7.0に調整する処理を行っても良い。得られた溶液は必要に応じて濾過して沈澱を除去し、必要に応じてさらに減圧濃縮乾固、凍結乾燥又は噴霧乾燥を行う。また、逆浸透膜、電気透析膜、薄膜下降式濃縮などにより濃縮した後、乾燥粉末としても良い。このようにして得られた本発明のペプチドを含む粗画分は、10〜 100μg/mlのオーダーでACE阻害活性を示し、食品素材などとして充分に使用可能である。なお、急性毒性試験を行ったところ、本発明のペプチドは、経口で1g/kg以上を示し、安全性の高いものであることが判明した。
【0013】
本発明のペプチドの使用形態については特に制限がなく、溶液、粉、顆粒、錠剤などとして使用でき、各種飲食品、化粧品、飼料に添加でき、医薬品の原料として使用できる。本発明のペプチドは乳中より生成したものであるため、安全に使用することができる。また、本発明のペプチドの投与量は 150μg/kg/ 日以上が好ましい。投与量が 150μg/kg/ 日以下では血圧降下作用が弱くなる。
【0014】
【参考例1】
チーズホエーパウダー150gに12%(w/v) 濃度となるようトリクロロ酢酸溶液を加え、4℃で1時間振とう抽出した後、遠心分離(9,000×g、15分間) し、上清を回収して氷冷した。この上清を1N水酸化ナトリウムで中和し、透析膜(Viskase Sales Corp.製) で蒸留水に対して透析した後、遠心分離(9,000×g、15分間) し、上清を回収して凍結乾燥した。このようにして、純度81%のκカゼイングリコマクロペプチド7gを得た。
【0015】
【試験例1】
参考例1で調製したκカゼイングリコマクロペプチドについて、5種類のたんぱく質分解酵素を用い消化試験を行った。なお、酵素と緩衝液の組合せは以下の通りである。
(1)プロティナーゼK(シグマ製)と0.01M トリス−塩酸緩衝液(pH 7.5)
(2)アクチナーゼE(ナカライテスク製)と20mM塩化カルシウム含有0.1Mトリス−塩酸緩衝液(pH 7.4)
(3)ペプシン(シグマ製)と0.2Mクエン酸緩衝液(pH 3.0)
(4)トリプシン(シグマ製)と20mM塩化カルシウム含有0.1Mトリス−塩酸緩衝液(pH 8.0)
(5)パパイン(シグマ製)と3.3mg シアン化ナトリウム及び3.3mg EDTA含有0.1Mリン酸緩衝液(pH 7.0)
【0016】
各緩衝液10mlにκカゼイングリコマクロペプチドを1mg/mlの濃度となるよう溶解し、5%(w/w) 濃度の酵素を添加して充分に撹拌した。各試料は少量のトルエン共存下、37℃で24時間静置して酵素消化した。その後、反応液に3倍量の冷アセトンを加え、−20℃で1時間放置した後、溶液を濾過し、凍結乾燥して試験試料とした。そして、各試験試料1mgを 200μl の蒸留水に溶解した後、この試験試料溶液15μl を蒸留水で 150μl に希釈してACE阻害活性を測定した。その結果を表1に示す。
【0017】
【表1】

Figure 0003567012
【0018】
なお、ACE阻害活性の測定は、以下のように行った。
まず、ACE(うさぎ肺由来、和光純薬工業製)1ユニットを50%グリセロール溶液2mlに溶解してACE酵素溶液(A)を調製した。また、馬尿酸−ヒスチジルロイシン53.688mgを1M食塩含有ホウ酸緩衝液(pH 7.8)10mlに溶解した後、水酸化ナトリウム水溶液でpH 8.3に調整した基質溶液(B)を調製した。
【0019】
中型のネジ付き試験管に被験液 150μl 、基質溶液(B) 100μl 及びACE酵素溶液(A)10μl を添加し、37℃で60分間反応させた後、反応を停止させるために各試験管に酢酸エチル 1.5mlをガラス製ピペットで加え、キャップをしてからボルテックスミキサーで15秒振とうすることにより抽出した。抽出後、1,000rpm、5分間遠心分離して得られた上層(酢酸エチル)部を他の小型ネジ付き試験管に移し、80℃、窒素ガス噴霧下で酢酸エチルを蒸発乾固させた。この蒸発乾固させた試料を80℃、10分間処理し、室温に戻した後、 0.9%食塩溶液 3.0mlを加え、15秒間ボルテックスミキサーで振とうして溶解し、直ちに 228nmの紫外部吸光度を測定した。そして、以下の式によりACE阻害活性を算出した。
ACE阻害活性(%)={(E−E)/(E−E)}×100
: 被験液 150μl を添加した試料の吸光度
: 被験液の代わりに蒸留水 150μl を添加したコントロールの吸光度
: 被験液の代わりに蒸留水 150μl を添加し、反応開始直後に反応を停止させた試料の吸光度
【0020】
表1に示したように、各種たんぱく質分解酵素消化物のACE阻害活性は、ペプシンで最も強く、パパインでもわずかに認められた。そこで、ペプシン消化物中のACE阻害活性を有する物質を探索した。
【0021】
【参考例2】
1mg/ml濃度となるようκカゼイングリコマクロペプチドを0.1N塩酸に溶解した溶液10mlに5%(w/w) 濃度のペプシンを添加し、37℃で24時間静置して消化した後、 100℃で正確に5分間加熱して酵素反応を停止した。そして、この反応液を濾過し、凍結乾燥してκカゼイングリコマクロペプチドのペプシン消化物を得、これを試料とした。
【0022】
ブチルトヨパール(東ソー製) 10mlを90%メタノールで洗浄した後、蒸留水で洗浄し、カラム(1.7×12cm) に充填した。次に、上述の試料を10mg/5ml濃度となるよう蒸留水に溶解し、カラムに添加した。そして、カラムに蒸留水 200mlを流した後、10%刻みで調製した10%〜 100%濃度のメタノール溶液各 100mlで段階溶出した。この各溶出画分について、画分中のメタノールを減圧濃縮し、凍結乾燥した後、試験例1に示した方法と同様の方法によりACE阻害活性を測定したところ、非吸着画分に70%のACE阻害活性が認められた。そこで、この非吸着画分をさらに精製した。
【0023】
【参考例3】
参考例2で得られた非吸着画分を9mg/5ml濃度となるよう蒸留水に溶解したものを試料とした。
リクロプレップRP18 (メルク製)10gを90%メタノールで洗浄した後、蒸留水で洗浄し、カラム(1.7×12cm) に充填した。次に、上述の試料をカラムに添加し、蒸留水 200mlを流した後、10%刻みで調製した10%〜 100%濃度のメタノール溶液各 100mlで段階溶出した。この各溶出画分について、画分中のメタノールを減圧濃縮し、凍結乾燥した後、試験例1に示した方法と同様の方法によりACE阻害活性を測定したところ、10%〜20%濃度のメタノール溶出画分に90%以上の強いACE阻害活性が認められた。また、30%〜60%濃度のメタノール溶出画分にも50%〜15%のACE阻害活性が認められた。そこで、10%〜60%濃度のメタノール溶出画分を回収し、ACE阻害活性粗画分とした。
【0024】
【参考例4】
参考例3で得られたACE活性粗画分を7mg/5ml濃度となるよう蒸留水に溶解し、リクロプレップRP18 (メルク製) によるリクロマトグラフィーを行った。そして、5%、10%、12%、14%、16%、18%、20%、30%及び90%濃度のメタノール溶液で段階溶出した。この各溶出画分について、画分中のメタノールを減圧濃縮し、凍結乾燥した後、試験例1に示した方法と同様の方法によりACE阻害活性を測定したところ、5%濃度のメタノール溶出画分、10%濃度のメタノール溶出画分及び12%濃度のメタノール溶出画分に強いACE阻害活性が認められた。そこで、これらの画分についてさらに精製した。
【0025】
【参考例5】
参考例4で得られた活性画分について、ODP−50 (アサヒパック製、 7.6×250mm)を用いたHPLCで精製した。カラムは、0.05%トリフルオロ酢酸含有10%アセトニトリル水溶液(A)で平衡化し、溶離液(B)として、0.05%トリフルオロ酢酸含有60%アセトニトリル水溶液を用い、30分間で溶離液(B)のアセトニトリルが50%となるようにグラジュエント溶出した。なお、流速は 0.5ml/minで行った。その結果、リテンションタイムで10分〜18分までの画分に強いACE阻害活性が認められたので、この画分を回収し、さらに精製した。
【0026】
【参考例6】
参考例5で得られた活性画分について、スペリオレックスODS(資生堂製、 4.6×150mm)を用いたHPLCで精製した。カラムは、0.05%トリフルオロ酢酸水溶液(A)でカラムを平衡化し、溶離液(B)として、0.05%トリフルオロ酢酸含有60%アセトニトリル水溶液を用い、溶離液(B)のアセトニトリルが50%となるようにグラジュエント溶出した。なお、流速は 0.5ml/minで行った。その結果、図1に示すように単一ピークが認められ、これを分取してアミノ酸配列を決定した。
【0027】
【参考例7】
参考例6で得られた単一ピークについて、アミノ酸配列を決定するために、アミノ酸シークエンサー(473A型、アプライドバイオシステムズ製)を使用し、試料1μg をPVDF膜にドットブロットして分析した。その結果、ACE阻害活性を有する物質の本体は、下記のアミノ酸配列を有するペプチドであることが判明した。
Ile−Ala−Ser−Gly−Glu−Pro
【0028】
【参考例8】
参考例7でアミノ酸配列を確認したペプチドのACE阻害活性を確認するために、ペプチドを合成した。ペプチドの化学合成は、ペプチドシンセサイザー (430A型、アプライドバイオシステムズ製) を用い、t−Moc法で行った。すなわち、 0.5mmolのBoc−l−Cln−O−CH −PAM樹脂及び2mmolの構成アミノ酸をペプチドシンセサイザーに充填して合成を行い、目的のペプチドを結合した樹脂を得た。この樹脂1.5gに結合しているペプチドをチオアニソール及びエタンジチオール存在下、トリフルオロメタンスルホン酸により切り出し、ジエチルエーテルで沈澱させた後、10%酢酸で溶解し、同じく10%酢酸で置換した強塩基性陰イオン交換樹脂(Bio−Rex MSZ 1−X8)に通して精製し、ペプチド 140mgを得た。このペプチドをさらにAquapac RP−300 (アプライドバイオシステムズ製) による逆相HPLCで、溶出液として 0.1%トリフルオロ酢酸/水及び 0.1%トリフルオロ酢酸/アセトニトリルを用い精製し、ペプチド白色粉末30mgを得た。そして、試験例1に示した方法と同様の方法によりACE阻害活性を測定した。その結果を表2に示す。なお、参考例6で精製したペプチドについてもACE阻害活性を測定した。
【0029】
【表2】
Figure 0003567012
【0030】
【試験例2】
下記のアミノ酸配列(I)を有するペプチドの血圧改善効果について、確認した。
Ile−Ala−Ser−Gly−Glu−Pro (I)
4週令の高血圧を自然発症するSHR/NCriラット(日本チャールズリバーより購入)を下記に示したような群に分け、動物実験を行った。
A群:アミノ酸配列(I)ペプチドを 300μg/日投与
B群:アミノ酸配列(I)ペプチドを30μg/日投与
C群:アミノ酸配列(I)ペプチドを3μg/日投与
D群:ペプチド未投与
【0031】
1群5匹とし、カゼインを含まないCE−2(クレア製)を飼料として6週間飼育した。各試験試料は1日2回、強制投与し、飲料水は自由摂取とした。そして、6週間後の血圧を測定した。その結果を表3に示す。
【0032】
【表3】
Figure 0003567012
数値は、平均値±標準偏差で示した。A群及びB群において、有意に血圧低下作用が認められた。
【0033】
【実施例1】
特開平2−276542号公報に記載された方法に従い、ホエーたんぱく質濃縮物(WPC)1kgからκカゼイングリコマクロペプチド 50gを得た。このκカゼイングリコマクロペプチド50g を水1,250gに溶解し、塩酸でpHを 1.5に調整した後、ペプシン (シグマ製) 0.5gを添加し、37℃で15時間酵素反応を行った。酵素反応の停止は 100℃で5分間の加熱処理により行い、濾紙(アドバンテック製) で濾過した後、凍結乾燥してκカゼイングリコマクロペプチドのペプシン消化物 37gを得た。次に、この消化物37g を蒸留水1,850gに溶解し、蒸留水で平衡化したバイオシルC18HL(バイオラッド製)5kgを充填したカラム (20cm×20cm) に添加し、蒸留水でカラムを洗浄した後、60%メタノール水溶液で溶出した。そして、この溶出画分を減圧濃縮し、凍結乾燥して活性画分 12gを得た。さらに、この活性画分 300mgを0.1 %トリフルオロ酢酸含有2%アセトニトリル水溶液1mlに溶解し、 0.1%トリフルオロ酢酸含有2%アセトニトリル水溶液で平衡化したTSKgel ODS−120T カラム (55mm×60cm、東ソー製) に添加し、 0.1%トリフルオロ酢酸含有50%アセトニトリル水溶液でグラジュエント溶出した。そして、ACE阻害活性が認められたアセトニトリル濃度10%付近の単一ピークを分取した。この操作を繰り返して分取した画分を遠心乾燥機で濃縮し、凍結乾燥してペプチド1.8gを得た。
【0034】
そして、スーペリオレックスODS (4.6mm×150mm 、資生堂製) で確認したところ、このペプチドの純度は93%であった。また、アミノ酸シークエンサーでアミノ酸分析を行ったところ、このペプチドは下記のアミノ酸配列(I)を有するペプチドであった。
Ile−Ala−Ser−Gly−Glu−Pro (I)
本発明者らは、上記のアミノ酸配列(I)を有するペプチドをκカゼイノシンと命名した。
【0035】
【実施例2】
0.5mmolのBoc−l−Cln−O−CH −PAM樹脂及び2mmolの構成アミノ酸をペプチドシンセサイザー (430A型、アプライドバイオシステムズ製) に充填して合成を行い、目的のペプチドを結合した樹脂を得た。この樹脂1.5gに結合しているペプチドをチオアニソール及びエタンジチオール存在下、トリフルオロメタンスルホン酸により切り出し、ジエチルエーテルで沈澱させた後、10%酢酸で溶解し、同じく10%酢酸で置換した強塩基性陰イオン交換樹脂(Bio−Rex MSZ 1−X8)に通して精製し、ペプチド 140mgを得た。このペプチドをさらにAquapac RP−300 (アプライドバイオシステムズ製) による逆相HPLCで、溶出液として 0.1%トリフルオロ酢酸/水及び 0.1%トリフルオロ酢酸/アセトニトリルを用い精製し、20%アセトニトリルで溶出した画分からペプチドの白色粉末30mgを得た。このペプチドについて、アミノ酸シークエンサーでアミノ酸分析を行ったところ、下記のアミノ酸配列(I)を有するペプチドであった。
Ile−Ala−Ser−Gly−Glu−Pro (I)
【0036】
【実施例3】
斉藤らの方法[J.Dairy Sci., vol.74, p.2831, 1991]に従い、チーズホエー粉1kgからκカゼイングリコマクロペプチド 13gを得た。このκカゼイングリコマクロペプチド13g をクエン酸緩衝液(pH3.0) 0.33リットルに溶解し、ペプシン (シグマ製)0.01gを添加し、32℃で48時間酵素反応を行った。酵素反応の停止は冷アセトン1.95リットルを添加することにより行った後、エバポレータで 0.5リットルとなるまで濃縮し、凍結乾燥して活性画分11g を得た。この活性画分について、試験例1に示した方法と同様の方法によりACE阻害活性を測定したところ、 100μg/mlにACE阻害活性が 100%存在した。
【0037】
【実施例4】
特開平2−276542号公報に記載された方法に従い、チーズホエー粉1kgからκカゼイングリコマクロペプチド17g を得た。このκカゼイングリコマクロペプチド17g を0.1Mトリス−塩酸緩衝液(pH 7.5)65リットルに溶解した後、パパイン (シグマ製)0.17gを添加し、37℃で20時間酵素反応を行った。酵素反応の停止は、冷アセトン1.95リットルを添加することにより行った。そして、この反応液をエバポレーターで 0.5リットルとなるまで濃縮し、凍結乾燥してκカゼイングリコマクロペプチドのパパイン消化物15g を得た。なお、このパパイン消化物について、試験例2に示した方法でACE阻害活性を測定したところ、 100μg/mlにACE阻害活性が9%存在していた。
【0038】
【実施例5】
実施例1で得られたペプチドを配合したドリンク剤を試作した。
本発明のペプチド150mg 、ショ糖3.2g、クエン酸53g 、クエン酸ナトリウム53g 、ビタミンB0.06g 、ビタミンC 0.37g、葉酸0.03g 、香料6.7g、5倍濃縮アップル果汁134g及び水3.5Kg を混合した組成物を90℃、10秒保持して加熱殺菌した後、5〜10℃に冷却して殺菌済容器中に貯蔵した。次いで、この混合液を殺菌済の 350ml容器に無菌充填し、高血圧予防用ドリンク剤を製造した。
【0039】
【実施例6】
実施例2で得られたペプチドを配合した錠剤を試作した。本発明のペプチド20mg、乳糖33.3mg、トウモロコシデンプン16.4mg、カルボキシメチルセルロースカルシウム12.8mg及びステアリン酸マグネシウム1.5mg を配合し、常法に従って高血圧抑制用錠剤を製造した。
【0040】
【実施例7】
実施例3で得られた本発明のペプチドを含む活性画分を配合した動物用飼料を試作した。本発明のペプチドを含む活性画分1g、脱脂粉乳60g 、ホエーたんぱく質濃縮物(WPC)14.3g 、脂肪17.2g 、グルコース5.0g、ビタミン2.5g及びミネラル2.5gを配合して動物用飼料を製造した。
【0041】
【実施例8】
実施例1で得られたペプチドを配合した高血圧予防用ミルクを試作した。本発明のペプチド750mg 、脱脂乳1,195g、ホエー粉263g、植物油脂119g及びビタミン・ミネラル類5gを配合した高血圧予防用粉ミルクを製造した。
【0042】
【発明の効果】
本発明のペプチドは乳由来の安全性の高いペプチドであり、注射剤、糖衣錠、タブレット、カプセルなどとして、あるいは、清涼飲料水、果汁飲料、発酵飲料、ゼリー、アイスクリームなどの各種飲食品に添加して、高血圧症治療及び予防の目的で使用できる。また、化粧品に添加して、血管拡張作用を付与することもできる。さらには、動物飼料に添加して、家畜や動物の高血圧治療及び予防の目的で使用できる。
【図面の簡単な説明】
【図1】参考例6におけるHPLCの結果を示す。[0001]
[Industrial applications]
The present invention relates to novel peptides. The present invention also relates to an angiotensin converting enzyme inhibitor comprising the novel peptide as an active ingredient. Further, the present invention relates to a hypotensive agent containing the novel peptide as an active ingredient.
[0002]
[Prior art]
Angiotensin converting enzyme (ACE) is an enzyme that acts on the renin-angiotensin system in regulating blood pressure. Angiotensinogen with a molecular weight of about 57,000 is converted to angiotensin I by renin, which migrates from the kidney into blood vessels. This angiotensin I is an inactive form having almost no vasoconstriction, but is converted into an active form of angiotensin II by ACE. This angiotensin II has a contractile action on arterial peripheral capillaries [Furchgott, R. et al. et al. , J. et al. Pharmacol Exp. Ther. , Vol. 108, p. 129, 1953], increased vascular permeability [Gimbrone, M .; A. and Alexander, R.A. W. , Science, vol. 189, p. 219, 1975], Enhanced adrenergic neurotransmission in sympathetic nerves [Bell, C. et al. , Circ. Res. , Vol. 31, p. 348, 1972], the effect of promoting the release of catecholamines from the adrenal medulla and the secretion of aldosterone from the adrenal cortex [Biron, P. et al. et al. , J. et al. Clin. Invest, vol. 44, p. 1171, 1965], which causes an increase in circulating blood flow and increases blood pressure. Further, bradykinin, which exhibits a blood pressure lowering effect by a vasodilatory effect, is decomposed by ACE, and as a result, the blood pressure increases. On the other hand, ACE inhibitors, which inhibit the above-mentioned ACE action, have an effective blood pressure lowering effect and are known to be useful as active ingredients of blood pressure lowering agents.
[0003]
In recent years, due to an increase in adult diseases and an increase in diseases due to aging, substances having the above-mentioned blood pressure lowering action have been spotlighted, and some of them have been provided as medicaments. However, it is said that diseases related to high blood pressure are strongly affected by diet, and there is great expectation for substances having a preventive effect on hypertension that have utility for food materials.
[0004]
Examples of the ACE inhibitor contained in the food include a protein-degrading peptide derived from sardine muscle (manufactured by Nippon Suisan) and an ACE inhibitor isolated from krill by ion exchange chromatography, gel filtration chromatography and reverse layer chromatography. [Yukio Kawamura et al., Micronutrient Research, vol. 7, p. 37, 1990], and a corn protein-derived oligopeptide [JP-A-2-240027].
[0005]
Furthermore, it is known that a large amount of an ACE inhibitor is present in a degradation product derived from milk protein casein. That is, a peptide of amino acid sequence 39 to 52 residues of human β casein [Kohmura, M .; et al. , Agric. Biol. Chem. , Vol. 53, p. 2107, 1989], a peptide of amino acid sequence 43-52 residues of human kappa casein [Kohmura, M .; et al. , Agric. Biol. Chem. , Vol. 54, p. 835, 1990], bovine α S1 Amino acid sequence of casein 23 to 34 residues and peptide of 194-199 residues [Maruyama, S. et al. et al. , Agric. Biol. Chem. , Vol. 51, p. 2557, 1987], a peptide of bovine β casein amino acid sequence of residues 177 to 183 [Maruyama, S .; , Agric. Biol. Chem. , Vol. 51, p. 1581, 1987], a peptide of amino acid sequence 25-34 residues of bovine kappa casein called Casoxin C [Tamotsu Totsuka and Shuichi Uenogawa, Bulletin of the Japanese Society of Animal Husbandry, vol. 63, p. 867, 1992]. Further, as an ACE inhibitor-containing composition obtained by hydrolyzing bovine casein with a protease, it is disclosed that an enzymatically decomposed product of bovine α-casein or bovine β-casein is effective in preventing hypertension. No. 2-167052]. Alternatively, it has been disclosed that bovine κ casein glycomacropeptide, which is a peptide having an amino acid sequence of 106 residues or less, produced by chymosin decomposition of bovine κ casein has an effect of suppressing an increase in blood pressure [Japanese Patent Laid-Open No. 6-345664]. .
[0006]
[Problems to be solved by the invention]
The present inventors have been conducting intensive research to find a substance having an ACE inhibitory activity that can be used as a food material, and found that the protease degradation product of bovine κ casein glycomacropeptide contained in cheese whey and the like. A novel peptide having ACE inhibitory activity was found. Then, when an animal experiment was conducted, they found that this peptide had an action of lowering blood pressure, and completed the present invention. Therefore, an object of the present invention is to provide a novel peptide having ACE inhibitory activity. Another object of the present invention is to provide an ACE inhibitor containing the peptide as an active ingredient. A further object of the present invention is to provide a hypotensive agent containing this peptide as an active ingredient.
[0007]
[Means for Solving the Problems]
The present inventors have investigated the ACE inhibitory activity of κ casein glycomacropeptide obtained from sweet cheese whey in order to find a substance having an ACE inhibitory activity that can be used as a food material. A fraction having ACE inhibitory activity was found in the proteolytic enzyme digest. Then, when the active substance of the fraction having the ACE inhibitory activity was isolated and identified, it was found to be a peptide having the following amino acid sequence (I).
Ile-Ala-Ser-Gly-Glu-Pro (I)
[0008]
The amino acid sequence of this peptide was a peptide corresponding to the amino acid sequence of 20 to 25 residues of the kappa casein glycomacropeptide, and to the amino acid sequence of 125 to 130 residues of the kappa casein.
[0009]
Furthermore, it was confirmed that a peptide having the following amino acid sequence (I) has a blood pressure lowering effect.
Ile-Ala-Ser-Gly-Glu-Pro (I)
[0010]
When the peptide of the present invention is used in foods, cosmetics, feeds or pharmaceuticals, a purified product may be used. However, even if the purity is low, the peptide of the present invention has a strong ACE inhibitory activity, and thus contains these peptides. A crude fraction may be used, or a pepsin or papain digest of κ casein glycomacropeptide may be used as it is. In addition, those obtained by chemical synthesis can also be used. The peptide can be easily synthesized by, for example, a peptide synthesizer manufactured by Applied Biosystems by using a commonly used solid phase method or the like as the chemical synthesis method of the peptide. Furthermore, the peptide of the present invention can be produced by synthesizing DNA using a base sequence corresponding to the amino acid sequence of the peptide of the present invention and performing genetic manipulation. The nucleotide sequence of bovine kappa casein is already known [Alexander, L. et al. J. et al. , Eur. J. Biochem. , Vol. 178, p. 395, 1988]. Therefore, ATT GCT AGT GGT GAG CCT is suitable as a base sequence used when producing the peptide of the present invention by genetic manipulation.
[0011]
Next, a method for producing the peptide of the present invention which is particularly useful will be described.
Examples of a method for obtaining κ casein glycomacropeptide useful as a raw material include, for example, a method in which cheese whey powder is dissolved, heated, cooled, and ethanol-precipitated, and the resulting supernatant is fractionated with an anion exchange resin. [Saito. T. et al. , J. et al. Dairy Sci. , Vol. 74, p. 2831, 1991], using the effluent obtained when preparing rennet casein curd as a raw material, adjusting the pH of the effluent to an acidic range to remove precipitates formed, and then desalting the resulting supernatant. Method [Japanese Patent Application Laid-Open No. 63-284199] After adjusting the dairy raw material containing κ casein glycomacropeptide to a pH of less than 4, using a membrane having a cut-off molecular weight of 10,000 to 50,000, ultrafiltration treatment And concentrating the permeate using a membrane having a molecular weight cut-off of 50,000 or less [JP-A-2-276542]. After heating a whey protein-containing solution, the solution is frozen to obtain a frozen product. After thawing the frozen product, the whey protein and the supernatant are separated, and the κ casein glycomacropeptide is purified by a method of treating the supernatant and collecting the supernatant [Japanese Patent Laid-Open No. 3-294299]. Although it can be produced, here, kappa casein glycomacropeptide obtained by any method may be used.
[0012]
The kappa casein glycomacropeptide is hydrolyzed by a protease. As a proteolytic enzyme to be used, pepsin is preferable, but papain can also be used. It is also possible to prepare the peptide of the present invention by acid hydrolysis. When pepsin is used, pepsin may be added at a weight ratio of 1/10 to 1/10000 with respect to the kappa casein glycomacropeptide. The enzyme reaction is usually performed at 30 to 40 ° C., but may be performed in a temperature range in which the enzyme activity is recognized. The pH range suitable for the enzymatic reaction is preferably from 1 to 5, but if the pH is 4 or more, the reaction requires a considerable amount of time. Examples of the buffer used for the enzyme reaction include a citrate buffer, an acetate buffer, a potassium chloride-hydrochloride buffer, a (glycine + salt) -hydrochloride buffer, and the like. The pH can be adjusted with a solution before use. The reaction time is 10 minutes or more, preferably 1 to 48 hours. If the reaction time is less than 10 minutes, the ACE inhibitory activity is 20% or less, and if it exceeds 48 hours, about 60% of the ACE inhibitory activity remains. However, if the reaction time is longer, problems such as microbial contamination and reduction in pepsin activity occur. Not preferred. In some cases, pepsin can be added again during the reaction. It is convenient and convenient to stop the enzyme reaction by heating at 100 ° C. for 5 minutes to inactivate the enzyme. However, the treatment is carried out by adding cold acetone and filtering, or the pH is adjusted with a basic substance such as sodium hydroxide. A process of adjusting to 0 may be performed. The obtained solution is filtered, if necessary, to remove the precipitate, and then, if necessary, concentrated under reduced pressure to dryness, freeze-dried or spray-dried. Further, after being concentrated by a reverse osmosis membrane, an electrodialysis membrane, a thin film descending concentration, or the like, a dry powder may be obtained. The thus obtained crude fraction containing the peptide of the present invention exhibits an ACE inhibitory activity on the order of 10 to 100 μg / ml and can be sufficiently used as a food material or the like. In addition, as a result of an acute toxicity test, the peptide of the present invention showed 1 g / kg or more orally and proved to be highly safe.
[0013]
The use form of the peptide of the present invention is not particularly limited, and it can be used as a solution, powder, granule, tablet, etc., can be added to various foods and drinks, cosmetics, feeds, and can be used as a raw material for pharmaceuticals. Since the peptide of the present invention is produced from milk, it can be used safely. Further, the dose of the peptide of the present invention is preferably 150 μg / kg / day or more. When the dose is 150 μg / kg / day or less, the blood pressure lowering effect is weakened.
[0014]
[Reference Example 1]
A trichloroacetic acid solution was added to 150 g of cheese whey powder to a concentration of 12% (w / v), and the mixture was extracted by shaking at 4 ° C. for 1 hour, followed by centrifugation (9,000 × g, 15 minutes). Collect and chill on ice. The supernatant was neutralized with 1N sodium hydroxide, dialyzed against distilled water with a dialysis membrane (manufactured by Viskasales Corp.), and centrifuged (9,000 × g, 15 minutes) to collect the supernatant. And lyophilized. Thus, 7 g of κ casein glycomacropeptide having a purity of 81% was obtained.
[0015]
[Test Example 1]
The digestion test was performed on the κ casein glycomacropeptide prepared in Reference Example 1 using five types of proteolytic enzymes. In addition, the combination of an enzyme and a buffer is as follows.
(1) Proteinase K (manufactured by Sigma) and 0.01 M Tris-HCl buffer (pH 7.5)
(2) Actinase E (manufactured by Nacalai Tesque) and 0.1 M Tris-HCl buffer (pH 7.4) containing 20 mM calcium chloride
(3) Pepsin (manufactured by Sigma) and 0.2 M citrate buffer (pH 3.0)
(4) Trypsin (manufactured by Sigma) and 0.1 M Tris-HCl buffer (pH 8.0) containing 20 mM calcium chloride
(5) Papain (manufactured by Sigma) and 0.1 mg phosphate buffer (pH 7.0) containing 3.3 mg sodium cyanide and 3.3 mg EDTA
[0016]
In 10 ml of each buffer, κ casein glycomacropeptide was dissolved to a concentration of 1 mg / ml, and a 5% (w / w) concentration of the enzyme was added, followed by sufficient stirring. Each sample was allowed to stand at 37 ° C. for 24 hours in the presence of a small amount of toluene for enzyme digestion. Thereafter, a three-fold amount of cold acetone was added to the reaction solution, left at -20 ° C for 1 hour, and the solution was filtered and freeze-dried to obtain a test sample. After dissolving 1 mg of each test sample in 200 μl of distilled water, 15 μl of this test sample solution was diluted to 150 μl with distilled water to measure ACE inhibitory activity. Table 1 shows the results.
[0017]
[Table 1]
Figure 0003567012
[0018]
In addition, the measurement of the ACE inhibitory activity was performed as follows.
First, 1 unit of ACE (derived from rabbit lung, manufactured by Wako Pure Chemical Industries) was dissolved in 2 ml of a 50% glycerol solution to prepare an ACE enzyme solution (A). Also, after dissolving 53.688 mg of hippuric acid-histidyl leucine in 10 ml of 1 M salt-containing borate buffer (pH 7.8), the substrate solution (B) adjusted to pH 8.3 with an aqueous sodium hydroxide solution was added. Prepared.
[0019]
150 μl of the test solution, 100 μl of the substrate solution (B) and 10 μl of the ACE enzyme solution (A) were added to a medium-sized test tube with a screw, and the reaction was carried out at 37 ° C. for 60 minutes. 1.5 ml of ethyl was added with a glass pipette, capped, and extracted by shaking with a vortex mixer for 15 seconds. After the extraction, the upper layer (ethyl acetate) obtained by centrifugation at 1,000 rpm for 5 minutes was transferred to another test tube with a small screw, and the ethyl acetate was evaporated to dryness at 80 ° C. under a nitrogen gas spray. This evaporated and dried sample was treated at 80 ° C. for 10 minutes, returned to room temperature, added with 3.0 ml of 0.9% saline solution, and dissolved by shaking with a vortex mixer for 15 seconds. External absorbance was measured. Then, the ACE inhibitory activity was calculated by the following equation.
ACE inhibitory activity (%) = {(E C -E S ) / (E C -E B )} × 100
E S : Absorbance of sample to which 150 µl of test solution was added
E C : Absorbance of control to which 150 µl of distilled water was added instead of test solution
E B : Absorbance of a sample in which 150 µl of distilled water was added instead of the test solution and the reaction was stopped immediately after the start of the reaction
[0020]
As shown in Table 1, pepsin showed the strongest ACE inhibitory activity of various proteolytic enzyme digests, and slight papain was also observed. Therefore, a substance having an ACE inhibitory activity in the pepsin digest was searched for.
[0021]
[Reference Example 2]
5% (w / w) pepsin was added to 10 ml of a solution of κ casein glycomacropeptide dissolved in 0.1 N hydrochloric acid to a concentration of 1 mg / ml, and the mixture was digested by standing at 37 ° C. for 24 hours. The enzyme reaction was stopped by heating at 100 ° C. for exactly 5 minutes. Then, the reaction solution was filtered and freeze-dried to obtain a pepsin digest of κ casein glycomacropeptide, which was used as a sample.
[0022]
10 ml of butyl toyopearl (manufactured by Tosoh Corporation) was washed with 90% methanol, then washed with distilled water, and packed in a column (1.7 × 12 cm). Next, the above-mentioned sample was dissolved in distilled water so as to have a concentration of 10 mg / 5 ml, and added to the column. After flowing 200 ml of distilled water through the column, the column was eluted stepwise with 100 ml of a 10% to 100% methanol solution prepared in 10% steps. For each of the eluted fractions, the methanol in the fractions was concentrated under reduced pressure, lyophilized, and the ACE inhibitory activity was measured in the same manner as in Test Example 1. ACE inhibitory activity was observed. Therefore, this non-adsorbed fraction was further purified.
[0023]
[Reference Example 3]
A sample was prepared by dissolving the non-adsorbed fraction obtained in Reference Example 2 in distilled water to a concentration of 9 mg / 5 ml.
10 g of Licroprep RP18 (manufactured by Merck) was washed with 90% methanol, washed with distilled water, and packed in a column (1.7 × 12 cm). Next, the above-mentioned sample was added to the column, and 200 ml of distilled water was flowed, and then stepwise eluted with 100 ml of a 10% to 100% methanol solution prepared in 10% steps. For each of the eluted fractions, the methanol in the fractions was concentrated under reduced pressure and lyophilized, and then the ACE inhibitory activity was measured by the same method as described in Test Example 1. As a result, methanol having a concentration of 10% to 20% was obtained. A strong ACE inhibitory activity of 90% or more was observed in the eluted fraction. The ACE inhibitory activity of 50% to 15% was also observed in the fraction eluted with methanol at a concentration of 30% to 60%. Therefore, a methanol eluted fraction having a concentration of 10% to 60% was collected and used as a crude ACE inhibitory activity fraction.
[0024]
[Reference Example 4]
The ACE-active crude fraction obtained in Reference Example 3 was dissolved in distilled water so as to have a concentration of 7 mg / 5 ml, and subjected to rechromatography using Licroprep RP18 (manufactured by Merck). Elution was performed stepwise with 5%, 10%, 12%, 14%, 16%, 18%, 20%, 30%, and 90% methanol solutions. For each of the eluted fractions, the methanol in the fractions was concentrated under reduced pressure and lyophilized, and then the ACE inhibitory activity was measured by the same method as shown in Test Example 1. As a result, a 5% methanol eluted fraction was obtained. A strong ACE inhibitory activity was observed in the 10% methanol eluted fraction and the 12% methanol eluted fraction. Therefore, these fractions were further purified.
[0025]
[Reference Example 5]
The active fraction obtained in Reference Example 4 was purified by HPLC using ODP-50 (manufactured by Asahi Pack, 7.6 × 250 mm). The column was equilibrated with a 10% aqueous solution of acetonitrile containing 0.05% trifluoroacetic acid (A), and the eluent (B) was a 30% aqueous solution of acetonitrile containing 0.05% trifluoroacetic acid for 30 minutes. The gradient was eluted so that the acetonitrile in B) became 50%. The flow rate was 0.5 ml / min. As a result, a fraction having a retention time of 10 minutes to 18 minutes showed strong ACE inhibitory activity. This fraction was collected and further purified.
[0026]
[Reference Example 6]
The active fraction obtained in Reference Example 5 was purified by HPLC using Superiolex ODS (manufactured by Shiseido, 4.6 × 150 mm). The column was equilibrated with a 0.05% trifluoroacetic acid aqueous solution (A), and a 60% acetonitrile aqueous solution containing 0.05% trifluoroacetic acid was used as an eluent (B). The gradient was eluted to 50%. The flow rate was 0.5 ml / min. As a result, a single peak was observed as shown in FIG. 1, and this was separated and the amino acid sequence was determined.
[0027]
[Reference Example 7]
For the single peak obtained in Reference Example 6, 1 μg of the sample was subjected to dot blot analysis on a PVDF membrane using an amino acid sequencer (type 473A, manufactured by Applied Biosystems) to determine the amino acid sequence. As a result, it was found that the substance of the substance having the ACE inhibitory activity was a peptide having the following amino acid sequence.
Ile-Ala-Ser-Gly-Glu-Pro
[0028]
[Reference Example 8]
In order to confirm the ACE inhibitory activity of the peptide whose amino acid sequence was confirmed in Reference Example 7, the peptide was synthesized. The peptide was chemically synthesized by a t-Moc method using a peptide synthesizer (Type 430A, manufactured by Applied Biosystems). That is, 0.5 mmol of Boc-l-Cln-O-CH 2 A PAM resin and 2 mmol of constituent amino acids were charged into a peptide synthesizer for synthesis to obtain a resin to which a target peptide was bound. The peptide bound to 1.5 g of this resin was cleaved with trifluoromethanesulfonic acid in the presence of thioanisole and ethanedithiol, precipitated with diethyl ether, dissolved with 10% acetic acid, and similarly replaced with 10% acetic acid. Purification through a basic anion exchange resin (Bio-Rex MSZ 1-X8) yielded 140 mg of peptide. The peptide was further purified by reverse-phase HPLC using Aquapac RP-300 (manufactured by Applied Biosystems) using 0.1% trifluoroacetic acid / water and 0.1% trifluoroacetic acid / acetonitrile as eluents. 30 mg were obtained. Then, the ACE inhibitory activity was measured by the same method as shown in Test Example 1. Table 2 shows the results. The ACE inhibitory activity of the peptide purified in Reference Example 6 was also measured.
[0029]
[Table 2]
Figure 0003567012
[0030]
[Test Example 2]
The blood pressure improving effect of the peptide having the following amino acid sequence (I) was confirmed.
Ile-Ala-Ser-Gly-Glu-Pro (I)
Four-week-old SHR / NCri rats spontaneously developing hypertension (purchased from Charles River Japan) were divided into the following groups and subjected to animal experiments.
Group A: Administration of amino acid sequence (I) peptide at 300 μg / day
Group B: Amino acid sequence (I) peptide administered at 30 μg / day
Group C: Amino acid sequence (I) peptide administered at 3 μg / day
Group D: No peptide administration
[0031]
Each group consisted of 5 animals, and reared for 6 weeks using CE-2 (Clea) without casein as a feed. Each test sample was forcibly administered twice daily and drinking water was freely available. Then, the blood pressure after 6 weeks was measured. Table 3 shows the results.
[0032]
[Table 3]
Figure 0003567012
Numerical values are shown as mean ± standard deviation. In groups A and B, a significant blood pressure lowering effect was observed.
[0033]
Embodiment 1
According to the method described in JP-A-2-276542, 50 g of kappa casein glycomacropeptide was obtained from 1 kg of whey protein concentrate (WPC). 50 g of this kappa casein glycomacropeptide was dissolved in 1,250 g of water, and the pH was adjusted to 1.5 with hydrochloric acid. . The enzyme reaction was stopped by heating at 100 ° C. for 5 minutes, filtered through a filter paper (manufactured by Advantech), and lyophilized to obtain 37 g of a pepsin digest of κ casein glycomacropeptide. Next, 37 g of this digest was dissolved in 1,850 g of distilled water, added to a column (20 cm × 20 cm) packed with 5 kg of Biosil C18HL (manufactured by Bio-Rad) equilibrated with distilled water, and the column was washed with distilled water. After that, elution was carried out with a 60% aqueous methanol solution. The eluted fraction was concentrated under reduced pressure and freeze-dried to obtain 12 g of an active fraction. Further, 300 mg of this active fraction was dissolved in 1 ml of a 2% aqueous acetonitrile solution containing 0.1% trifluoroacetic acid, and a TSKgel ODS-120T column (55 mm × 60 cm) equilibrated with a 2% aqueous acetonitrile solution containing 0.1% trifluoroacetic acid. And Tosoh Corporation) and eluted with a gradient of 50% aqueous acetonitrile containing 0.1% trifluoroacetic acid. Then, a single peak at an acetonitrile concentration of about 10% at which ACE inhibitory activity was recognized was collected. The fraction collected by repeating this operation was concentrated by a centrifugal drier and freeze-dried to obtain 1.8 g of the peptide.
[0034]
And the purity of this peptide was 93% when it was confirmed by Superior Relex ODS (4.6 mm x 150 mm, manufactured by Shiseido). Amino acid analysis by an amino acid sequencer revealed that the peptide had the following amino acid sequence (I).
Ile-Ala-Ser-Gly-Glu-Pro (I)
The present inventors have named the peptide having the above amino acid sequence (I) as κ caseinosine.
[0035]
Embodiment 2
0.5 mmol of Boc-1-Cln-O-CH 2 A PAM resin and 2 mmol of constituent amino acids were charged into a peptide synthesizer (Type 430A, manufactured by Applied Biosystems) to perform synthesis, and a resin to which a target peptide was bound was obtained. The peptide bound to 1.5 g of this resin was cleaved with trifluoromethanesulfonic acid in the presence of thioanisole and ethanedithiol, precipitated with diethyl ether, dissolved with 10% acetic acid, and similarly replaced with 10% acetic acid. Purification through a basic anion exchange resin (Bio-Rex MSZ 1-X8) yielded 140 mg of peptide. This peptide was further purified by reverse-phase HPLC using Aquapac RP-300 (manufactured by Applied Biosystems) using 0.1% trifluoroacetic acid / water and 0.1% trifluoroacetic acid / acetonitrile as eluents, and purified by 20% acetonitrile. 30 mg of a peptide white powder was obtained from the fraction eluted with. Amino acid analysis of this peptide with an amino acid sequencer revealed that the peptide had the following amino acid sequence (I).
Ile-Ala-Ser-Gly-Glu-Pro (I)
[0036]
Embodiment 3
Saito et al. [J. Dairy Sci. , Vol. 74, p. 2831, 1991], 13 g of κ casein glycomacropeptide was obtained from 1 kg of cheese whey powder. 13 g of this κ casein glycomacropeptide was dissolved in 0.33 liter of citrate buffer (pH 3.0), 0.01 g of pepsin (manufactured by Sigma) was added, and the enzyme reaction was carried out at 32 ° C. for 48 hours. The enzymatic reaction was stopped by adding 1.95 liter of cold acetone, concentrated by an evaporator until the volume became 0.5 liter, and lyophilized to obtain 11 g of an active fraction. When the ACE inhibitory activity of this active fraction was measured by the same method as that described in Test Example 1, 100% of the ACE inhibitory activity was present at 100 μg / ml.
[0037]
Embodiment 4
According to the method described in JP-A-2-276542, 17 g of κ casein glycomacropeptide was obtained from 1 kg of cheese whey powder. After dissolving 17 g of this kappa casein glycomacropeptide in 65 liters of 0.1 M Tris-HCl buffer (pH 7.5), 0.17 g of papain (manufactured by Sigma) was added, and the enzyme reaction was carried out at 37 ° C. for 20 hours. Was. The enzymatic reaction was stopped by adding 1.95 liter of cold acetone. Then, the reaction solution was concentrated to 0.5 liter with an evaporator and freeze-dried to obtain 15 g of a papain digest of κ casein glycomacropeptide. When the ACE inhibitory activity of this papain digest was measured by the method described in Test Example 2, 9% of the ACE inhibitory activity was present at 100 μg / ml.
[0038]
Embodiment 5
A drink formulation containing the peptide obtained in Example 1 was produced as a trial.
150 mg of peptide of the present invention, 3.2 g of sucrose, 53 g of citric acid, 53 g of sodium citrate, vitamin B 2 A composition obtained by mixing 0.06 g, 0.37 g of vitamin C, 0.03 g of folic acid, 6.7 g of fragrance, 134 g of 5 times concentrated apple juice and 3.5 kg of water was kept at 90 ° C. for 10 seconds and sterilized by heating. Cooled to 5-10 ° C and stored in a sterilized container. Next, this mixture was aseptically filled into a sterilized 350 ml container to produce a drink for preventing hypertension.
[0039]
Embodiment 6
A tablet containing the peptide obtained in Example 2 was produced as a trial. 20 mg of the peptide of the present invention, 33.3 mg of lactose, 16.4 mg of corn starch, 12.8 mg of calcium carboxymethylcellulose and 1.5 mg of magnesium stearate were blended to produce a tablet for suppressing hypertension according to a conventional method.
[0040]
Embodiment 7
An animal feed containing the active fraction containing the peptide of the present invention obtained in Example 3 was prepared as a trial. An animal is prepared by mixing 1 g of the active fraction containing the peptide of the present invention, 60 g of skim milk powder, 14.3 g of whey protein concentrate (WPC), 17.2 g of fat, 5.0 g of glucose, 2.5 g of vitamins and 2.5 g of minerals. Forage was produced.
[0041]
Embodiment 8
An anti-hypertensive milk containing the peptide obtained in Example 1 was produced as a trial. A powdered milk for preventing hypertension was prepared by mixing 750 mg of the peptide of the present invention, 1,195 g of skim milk, 263 g of whey powder, 119 g of vegetable oil and fat, and 5 g of vitamins and minerals.
[0042]
【The invention's effect】
The peptide of the present invention is a highly safe peptide derived from milk, added as an injection, a sugar-coated tablet, a tablet, a capsule, or the like, or added to various foods and beverages such as soft drinks, fruit juice drinks, fermented drinks, jellies, and ice creams. Thus, it can be used for the treatment and prevention of hypertension. It can also be added to cosmetics to provide a vasodilator effect. Furthermore, it can be used for the treatment and prevention of hypertension in livestock and animals by adding to animal feed.
[Brief description of the drawings]
FIG. 1 shows the results of HPLC in Reference Example 6.

Claims (3)

下記のアミノ酸配列(I)を有するペプチド。
Ile−Ala−Ser−Gly−Glu−Pro (I)
A peptide having the following amino acid sequence (I):
Ile-Ala-Ser-Gly-Glu-Pro (I)
下記のアミノ酸配列(I)を活性成分として含有するアンジオテンシン転換酵素阻害剤。
Ile−Ala−Ser−Gly−Glu−Pro (I)
An angiotensin converting enzyme inhibitor comprising the following amino acid sequence (I) as an active ingredient.
Ile-Ala-Ser-Gly-Glu-Pro (I)
下記のアミノ酸配列(I)を活性成分として含有する血圧降下剤。
Ile−Ala−Ser−Gly−Glu−Pro (I)
An antihypertensive containing the following amino acid sequence (I) as an active ingredient.
Ile-Ala-Ser-Gly-Glu-Pro (I)
JP07015695A 1995-03-28 1995-03-28 Novel peptide and its use Expired - Fee Related JP3567012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07015695A JP3567012B2 (en) 1995-03-28 1995-03-28 Novel peptide and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07015695A JP3567012B2 (en) 1995-03-28 1995-03-28 Novel peptide and its use

Publications (2)

Publication Number Publication Date
JPH08269088A JPH08269088A (en) 1996-10-15
JP3567012B2 true JP3567012B2 (en) 2004-09-15

Family

ID=13423434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07015695A Expired - Fee Related JP3567012B2 (en) 1995-03-28 1995-03-28 Novel peptide and its use

Country Status (1)

Country Link
JP (1) JP3567012B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4205227B2 (en) * 1999-01-11 2009-01-07 カルピス株式会社 Method for purifying peptide-containing solution
US6998259B1 (en) 1999-05-20 2006-02-14 Davisco Foods International Enzymatic treatment of whey proteins for the production of antihypertensive peptides and the resulting products
US6630320B1 (en) 2000-05-08 2003-10-07 Devisco Foods International, Inc. Treatment of hypertension in mammals with hydrolyzed whey proteins
TWI411441B (en) 2003-03-18 2013-10-11 Suntory Holdings Ltd Angiotensin-converting enzyme inhibitory peptides
CN103463615B (en) * 2005-02-24 2016-09-07 帝斯曼知识产权资产管理有限公司 Blood pressure from PROVON 190 reduces peptide
JP2008162931A (en) * 2006-12-27 2008-07-17 Japan Health Science Foundation Agent for prevention or treatment of osteoporosis
AU2010262763A1 (en) * 2009-06-19 2012-01-19 Oral Health Australia Pty Ltd Casein derived protease inhibitory peptides
JP4493725B1 (en) 2009-10-02 2010-06-30 株式会社 ファイナルフューチャーインターナショナル Composition having lipolysis promoting action

Also Published As

Publication number Publication date
JPH08269088A (en) 1996-10-15

Similar Documents

Publication Publication Date Title
Abubakar et al. Structural analysis of new antihypertensive peptides derived from cheese whey protein by proteinase K digestion
CN103254278B (en) Bioactive peptides identified in enzymatic hydrolyzates of milk caseins and method of obtaining same
Miguel et al. Angiotensin I–converting enzyme inhibitory activity of peptides derived from egg white proteins by enzymatic hydrolysis
Cao et al. Purification and identification of an ACE inhibitory peptide from the peptic hydrolysate of Acetes chinensis and its antihypertensive effects in spontaneously hypertensive rats
EP1851323B1 (en) Enzymatic process for producing I-P-P from kappa casein
WO2005012542A1 (en) Casein hydrolyzate, process for producing the same and use thereof
JP2010520274A (en) Methods for providing ACE inhibitory peptides from whey and the like
EP2222835A1 (en) Improved bioactive peptide production
JP3364579B2 (en) Antihypertensive agent and method for producing the same
US20060234942A1 (en) Use of at least one $g(a)62 casein peptide with angiotensin i converting enzyme inhibiting activity for preparing medicines, food products and food complements
JP3567012B2 (en) Novel peptide and its use
JP2008511317A (en) ACE-inhibited whey hydrolyzate
KR20150036167A (en) Angiotensin-converting-enzyme inhibiting dipeptide
JP3369233B2 (en) New peptides, their production methods and applications
WO2005061529A1 (en) Peptide inhibiting angiontensin converting enzyme
WO2005118619A1 (en) Dipeptide exhibiting antihypertensive action
JPH05276896A (en) Peptide mixture having high fisher ratio, its production and nutrient-supplying composition for hepatic disease patient
WO2003055901A1 (en) Novel peptide sy
JPS62169732A (en) Hypotensor
JP4934369B2 (en) Peptide having blood pressure lowering effect
US7335722B2 (en) Peptides used as angiotensin converting enzyme inhibitor and preparation process thereof
EP2571508B1 (en) Process for producing a shrimp hydrolysate using electrodialysis
JP2873327B2 (en) Angiotensin converting enzyme inhibitor
US20060040872A1 (en) Calcium channel inhibitor
JPH0458947B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees