JP3566868B2 - Exhaust gas detoxification equipment and method for detoxification of electric furnace or scrap preheating device for electric furnace - Google Patents

Exhaust gas detoxification equipment and method for detoxification of electric furnace or scrap preheating device for electric furnace Download PDF

Info

Publication number
JP3566868B2
JP3566868B2 JP34517498A JP34517498A JP3566868B2 JP 3566868 B2 JP3566868 B2 JP 3566868B2 JP 34517498 A JP34517498 A JP 34517498A JP 34517498 A JP34517498 A JP 34517498A JP 3566868 B2 JP3566868 B2 JP 3566868B2
Authority
JP
Japan
Prior art keywords
exhaust gas
tower
powder
electric furnace
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34517498A
Other languages
Japanese (ja)
Other versions
JP2000171172A (en
Inventor
親司朗 内田
秀樹 五十川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Nippon Steel Corp
Original Assignee
Ebara Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Nippon Steel Corp filed Critical Ebara Corp
Priority to JP34517498A priority Critical patent/JP3566868B2/en
Publication of JP2000171172A publication Critical patent/JP2000171172A/en
Application granted granted Critical
Publication of JP3566868B2 publication Critical patent/JP3566868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属材料を溶解あるいは精練する電気炉から溶解・精練・昇温中に発生する排ガス、あるいは電気炉用スクラップを予熱する際に発生する排ガス中に含まれる有害成分を除去して排ガスを無害化する設備及び方法に関し、詳しくは、排ガスを下方から上方に流すA塔内に吹き込んだ粉体によって排ガスを無害化する設備及び方法に関する。
【0002】
【従来の技術】
金属材料を電気炉を用いて溶解又は精練する場合、あるいは電気炉用スクラップを予熱装置によって予熱する場合、排ガス中に有害成分として白煙・悪臭・芳香族塩素化合物等が発生するため、排ガス中のこれら有害成分を除去して排ガスを無害化する方法として、様々な方法が提案されている。
【0003】
例えば、特開平9−324990号公報には、排ガスを下方から上方に向かって流すようにしたA塔の下方から粉体を吹き込み、その吹き込まれた粉体にて排ガス中の有害成分を吸着し除去する方法が開示されている。A塔内の排ガス流速は、吹き込んだ粉体が排ガス中を落下する自由沈降速度と概略等しい速度とし、A塔内で粉体が浮遊するごとく調整する。粉体吹き込み量については、排ガス中の有害成分の増減にかかわらず常に有害成分を除去するに十分な量が供給される。
【0004】
【発明が解決しようとする課題】
製鋼用電気炉の排ガスは、操業の状態による変動が大きく、操業中の各期(溶解1、溶解2、昇温等)により、排ガス量、排ガス温度・排ガス成分が変動する。電気炉用スクラップ予熱装置の排ガスについても同様である。排ガス量、及び排ガス中の有害成分の含有量の変動に伴い、除去すべき有害成分の発生量も変動する。操業中のある期においては排ガス中の有害成分発生量が非常に少ないときもある。従来の方法においては、粉体の吹き込み量は排ガス中の有害物質の発生量が多い場合においても十分な吸着除去ができるような値に設定されている。
【0005】
しかしながら、このような制御方法では、排ガス中の有害物質の量が少ない時期においても排ガス中の有害物質の量が多い時期と同量の粉体の吹き込み量となるため、除去すべき有害物質の量が少量であっても多量の粉体を使用することとなる。粉体の使用量は単に粉体コストにとどまらず、吹き込み動力コスト、最終的に排出されるダスト処理コストの増大につながり、非効率的で、非経済的であるという問題がある。
【0006】
本発明は、上記のような課題を解決し、除去すべき有害物質の量に応じて粉体吹き込み量を増減する制御を行うことにより、粉体コスト、吹き込み動力コスト、ダスト処理コストの低減を図る電気炉又は電気炉用スクラップ予熱装置の排ガス無害化設備及び無害化方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
即ち、本発明の要旨とするところは、
(1)排ガスを下方から上方に流すA塔7と、A塔の後流側に連接され排ガスを上方から下方に流すB塔9と、A塔の下方からA塔内に粉体を供給するための粉体吹き込み装置(14、15)とを有する電気炉1又は電気炉用スクラップ予熱装置3の排ガス無害化設備において、前記スクラップ予熱装置3の上流及び後流又は電気炉1の後流に排ガス温度を測定する検出器20を配設し、該検出器20からの排ガス温度情報に従って前記粉体吹き込み装置の粉体吹き込み量を制御する制御装置21を配設することを特徴とする排ガス無害化設備。
(2)A塔7とB塔8と粉体吹き込み装置とからなる組み合わせを、排ガスの流路に少なくとも2段以上設け、各段のA塔入口に排ガス温度を測定するための温度計16を付設し、該温度計16の測定結果によって粉体吹き込みを実施する塔を選択する自動的選択装置を配設することを特徴とする請求項1に記載の排ガス無害化設備。
(3)A塔7において排ガスを下方から上方に流し、A塔の下方からA塔内に吹き込んだ粉体によって排ガスを無害化する電気炉1又は電気炉用スクラップ予熱装置3の排ガス無害化方法において、前記スクラップ予熱装置の上流及び後流又は電気炉の後流の排ガス温度を測定し、排ガス流量と前記排ガス温度情報に基づいて前記粉体吹き込み量を調整することを特徴とする排ガス無害化方法。
(4)前記排ガス流量情報に基づいた前記粉体吹き込み量の調整は、前記排ガス流量の増減に基づいて前記粉体吹き込み量を増減することによって行い、前記排ガス温度情報に基づいた前記粉体吹き込み量の調整は、前記排ガス温度が予め定めた温度T1よりも高いときは前記粉体吹き込み量を減少し、前記排ガス温度が予め定めた温度T2よりも低いときは前記粉体吹き込み量を減少することによって行うを特徴とする請求項3に記載の排ガス無害化方法(T1>T2)。
である。
【0008】
電気炉1あるいは電気炉用スクラップ予熱装置3の操業時における排ガス中の有害成分、特に芳香族塩素化合物の濃度は、電気炉出側排ガス温度又はスクラップ予熱装置入り側・出側排ガス温度と密接な関係があることが判明した。該排ガス温度が300℃〜600℃の範囲にあるときに排ガス中の有害成分濃度が高く、排ガス温度が上記温度範囲よりも高い場合及び低い場合には排ガス中の有害成分の濃度が低下する。排ガス中の有害成分濃度と排ガス温度との関係は、各電気炉あるいはスクラップ予熱装置毎に測定することにより正確に把握することができる。排ガス中の有害物質の量は、排ガス量と排ガス中の有害成分濃度の積に比例する。
【0009】
排ガス中の有害物質は、A塔内において吹き込まれた粉体に吸着され、除去される。単位時間に発生する有害物質の量が少ない場合は、粉体吹き込み量を減少しても有害物質の除去が可能であり、概略単位時間有害物質発生量と粉体吹き込み量を比例させることができる。
【0010】
本発明においては、電気炉出側排ガス温度又はスクラップ予熱装置入り側・出側排ガス温度を測定することにより排ガス中の有害成分濃度を推定し、排ガス量と該有害成分濃度推定値との積から単位時間有害物質発生量を推定し、有害物質発生量の多いときは粉体吹き込み量を多く、有害物質発生量の少ないときは粉体吹き込み量を少なくするように制御する。これにより、排ガス中の有害物質発生量が少ないときには粉体吹き込み量を低減することができ、さらに、粉体吹き込み用動力を低減することができる。さらに、吹き込む粉体量が少なくなることにより、回収後処理するダスト量も低減する。
【0011】
【発明の実施の形態】
本発明において、排ガスはA塔内を下方から上方に流れ、粉体はA塔7の下方に吹き込まれる。通常は、排ガスが上方から下方に流れるB塔9を配設し、A塔の上端とB塔の上端とを連接する。A塔とB塔の下端にはそれぞれダストボックス6、10を配設する。
【0012】
排ガス処理設備においては、電気炉又はスクラップ予熱装置の排ガス発生量に応じて排ガスの吸引を行うため、A塔内の排ガス速度は排ガス発生量の変動に応じて変動し、必ずしも吹き込んだ粉体がA塔内で浮遊静止する速度にはならず、吹き込んだ粉体のA塔内滞在時間も排ガス速度の変動に応じて変動する。
【0013】
A塔内において、粉体が上昇する速度は、排ガス速度から粉体の自由沈降速度を差し引いた速度となる。A塔内において、粉体は排ガスに対して粉体の自由沈降速度に等しい相対速度を有するため、粉体がA塔内に滞在する間に排ガスの有害成分が粉体に吸着される。粉体の有害成分吸着能力限度まで有害成分を吸着するに必要な時間だけ粉体がA塔内に滞在するので、粉体の有害成分吸着能力を十分に活用することができる。A塔から排ガスとともに排出された粉体は、通常はB塔内を下降し、B塔下端のダストボックス10で回収される。
【0014】
排ガス発生量が少なく、排ガス速度が低下するとともに、粉体のA塔内滞在時間が長くなる。排ガス速度が粉体の自由沈降速度よりも低い場合には、粉体は上昇せずにA塔下部のダストボックス6に回収される。A塔の高さ及び内径は、通常の排ガス流量の変動変動範囲内において、排ガス流量が多く排ガス速度が速くてもA塔内の粉体滞在時間が有害物質除去に十分な時間であり、かつ排ガス流量が少なくても排ガス速度が粉体の自由沈降速度よりも速くなるように選択する。
【0015】
吹き込み粉体としては、電気炉排ガスの集塵装置で補集される電気炉からのダストを用いることができる。その他、消石灰、活性炭、ゼオライトなどを用いてもよい。
【0016】
排ガス中の有害成分、特に芳香族塩素化合物の濃度は、スクラップ予熱装置の上流及び後流又は電気炉の後流の排ガス温度の影響を強く受け、該温度によって有害成分の濃度が異なる。より具体的には、該温度が300℃〜600℃の範囲にあるときに有害成分の濃度が高くなり、該温度が上記温度範囲よりも高いとき、あるいは低いときには有害成分の濃度が低下する。従って、予め当該温度と排ガス中の有害成分濃度との関係を測定しておけば、運転中の該温度を測定することにより、排ガス中の有害成分濃度を推定することができる。
【0017】
単位時間に発生する排ガス中の有害成分の量は、排ガス量と排ガス中の有害成分濃度の積に比例するので、A塔への粉体吹き込み量は排ガス量と前記排ガス中の有害成分濃度推定値との積に比例するように吹き込むことができる。これにより、排ガス中の有害成分発生量が多いときは確実に有害成分の除去を行い、有害成分発生量が少ないときは粉体吹き込み量を低減することができる。有害成分発生量に応じた粉体吹き込み量は、予め実験等によって定めておく。
【0018】
スクラップ予熱装置の上流及び後流又は電気炉の後流の排ガス温度の測定結果に基づく粉体吹き込み量の制御は、予め測定した当該温度と排ガス中の有害成分濃度との関係にもとづいて行うことができる。600℃付近に存在する温度T1よりも高い温度では有害成分の濃度が減少し、また300℃付近に存在する温度T2よりも低い温度では有害成分の濃度が減少する。従って、粉体吹き込み量の制御は、予め測定等によって温度T1、T2を定め、排ガス温度が予め定めた温度T1よりも高いときは前記粉体吹き込み量を減少し、前記排ガス温度が予め定めた温度T2よりも低いときは前記粉体吹き込み量を減少することによって行うことができる。例えば、排ガス温度がT1とT2の間にあるときの粉体吹き込み量を1としたとき、排ガス温度>T1、又は排ガス温度<T2のときの粉体吹き込み量を0.2とするような制御が有効である。
【0019】
粉体への有害物質の吸収能力は、粉体に有害物質を吸着させるA塔における排ガス温度の影響を受ける。排ガス温度が100℃から150℃の範囲において、粉体への有害成分の吸収能力が最大となる。電気炉又はスクラップ予熱装置出側の排ガス温度が高温である場合、本発明の排ガス無害化設備の入り側において、排ガス温度が十分に低下せず、上記適切な排ガス温度範囲より高い温度となる場合がある。本発明において、A塔とB塔の組合わせを複数直列に配置すると、A塔B塔が竪型冷却塔の機能を発揮し、少ない敷地内にも配置が可能であり、複数配置した組合わせの下流側のA塔において排ガス温度が好ましい温度に低下する。従って、各A塔入口の排ガス温度を測定し、最も好ましい排ガス温度となっている段において粉体吹き込みを実施するようにすることで、最も効率良く排ガスの無害化を行うことができる。
【0020】
【実施例】
(実施例1)
図1に、本発明の実施例1を示す。電気炉1から発生した排ガスは、水冷煙道2をとおり、スクラップ予熱装置3に導入される。その後、水冷煙道4を経由してヘッダー管5に導入され、入り側ダストボックス6を経て、本発明の排ガス無害化設備で無害化され、出側のダストボックス10を経由して、ダクト11へと流れ、ブロア12によって図示しない集塵機に導かれ、最終的には大気に放散される。電気炉1とスクラップ予熱装置3をつなぐ水冷煙道2には温度計測器19が配設され、スクラップ予熱装置3とヘッダー管5を接続する水冷煙道4には温度計測器20が配設される。温度計測器19、20は制御装置21に接続され、制御装置21は温度計測器19、20からの温度情報に基づき、粉体供給装置14の粉体供給量を制御する。
【0021】
本発明の排ガス無害化設備において、排ガスはA塔7にて下方から上方に向かって流れ、次にB塔9では排ガスは上方から下方に向けて流れる。このA塔とB塔とは180度の曲がり管8を介して連接している。A塔7の下方には粉体供給装置14が設けられており、配管15及び粉体供給口13を介し、A塔内に粉体を供給する。粉体供給装置14と配管15とによって本発明の粉体吹き込み装置が構成される。吹き込み粉体としては、電気炉発生ダストを用いた。
【0022】
粉体吹き込み量は、次式により制御した。
Z=β×α×Q
ここで、Zは粉体吹き込み量、Qは単位時間当たりの排ガス流量、αは排ガス流量当たりの標準的な粉体吹き込み量を定める比例定数、βは排ガス温度測定結果に基づいて変化させる係数である。本実施例では、排ガス温度>600℃あるいは排ガス温度<300℃の場合にはβ=0.2、その他の場合にはβ=1と設定した。
【0023】
これにより、粉体吹き込み量を排ガス温度に応じて変化させない従来例と比較し、粉体吹き込み量が約40%低減するという効果をあげることができた。
【0024】
(実施例2)
図2に本発明の実施例2を示す。実施例1と同様のA塔とB塔の組合わせを2段配置し、1段目出側と2段目入り側とを接続管18で接続している。各段のA塔入り側に温度計(16a、16b)を配置し、A塔入り側の排ガス温度を測定する。各段のA塔とB塔とは竪型冷却塔の機能を有するので、前段より後段の方が排ガス温度が低下している。従って、各段のA塔入り側の排ガス温度のうち、粉体への有害物質吸着能力が優れた温度(100℃から150℃)を有する段を選択し、その段において粉体吹き込みを実施する。
【0025】
【発明の効果】
本発明の排ガス無害化設備により、放出される排ガス中の有害成分量を低レベルに保ったまま、粉体の使用量、粉体吹き込み用動力、ダスト処理量が低減でき、排ガス無害化設備のランニングコストの低減を実現することができた。
【図面の簡単な説明】
【図1】本発明による排ガス無害化設備の実施例
【図2】本発明による排ガス無害化設備の別の実施例
【符号の説明】
1 電気炉(溶解炉)
2 水冷煙道
3 スクラップ予熱装置
4 水冷煙道
5 ヘッダー管
6 ダストボックス
7 A塔
8 曲がり管
9 B塔
10 ダストボックス
11 ダクト
12 ブロア
13 粉体供給口
14 粉体供給装置
15 配管
16 温度計
17 ケーブル
18 接続管
19 温度計測器
20 温度計測器
21 制御装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is to remove harmful components contained in exhaust gas generated during melting, scouring and heating from an electric furnace for melting or refining metallic materials or exhaust gas generated when preheating an electric furnace scrap. More specifically, the present invention relates to a facility and a method for detoxifying exhaust gas by powder blown into an tower A through which exhaust gas flows upward from below.
[0002]
[Prior art]
When melting or scouring metal materials using an electric furnace, or when preheating electric furnace scrap with a preheating device, white smoke, foul odors, aromatic chlorine compounds, etc. are generated as harmful components in the exhaust gas. Various methods have been proposed as a method of removing these harmful components to make the exhaust gas harmless.
[0003]
For example, Japanese Patent Application Laid-Open No. 9-324990 discloses that powder is blown from below a tower A in which exhaust gas flows upward from below, and harmful components in the exhaust gas are adsorbed by the blown powder. A method for removal is disclosed. The flow rate of the exhaust gas in the tower A is set to a speed substantially equal to the free sedimentation speed of the blown powder falling in the exhaust gas, and is adjusted so that the powder floats in the tower A. Regarding the blowing amount of the powder, a sufficient amount is always supplied to remove the harmful components regardless of the increase or decrease of the harmful components in the exhaust gas.
[0004]
[Problems to be solved by the invention]
Exhaust gas from a steelmaking electric furnace greatly varies depending on the operation state, and the exhaust gas amount, the exhaust gas temperature, and the exhaust gas component fluctuate during each operation period (melting 1, melting 2, heating, etc.). The same applies to the exhaust gas from the electric furnace scrap preheating device. As the amount of exhaust gas and the content of harmful components in the exhaust gas change, the amount of harmful components to be removed also changes. During certain periods of operation, the amount of harmful components generated in the exhaust gas may be very small. In the conventional method, the amount of powder blown is set to a value that allows sufficient adsorption and removal even when the amount of harmful substances generated in the exhaust gas is large.
[0005]
However, in such a control method, even when the amount of the harmful substance in the exhaust gas is small, the amount of powder to be blown is the same as that in the time when the amount of the harmful substance in the exhaust gas is large. Even if the amount is small, a large amount of powder will be used. The amount of the powder used is not limited to the powder cost, but also leads to an increase in blowing power cost and a cost for treating dust finally discharged, which is inefficient and uneconomical.
[0006]
The present invention solves the above-described problems and reduces powder cost, blowing power cost, and dust processing cost by performing control to increase or decrease the amount of powder blown in accordance with the amount of harmful substances to be removed. An object of the present invention is to provide an exhaust gas detoxification facility and a detoxification method for an electric furnace or a scrap preheating device for an electric furnace.
[0007]
[Means for Solving the Problems]
That is, the gist of the present invention is:
(1) A tower 7, which flows exhaust gas upward from below, B tower 9, which is connected to the downstream side of A tower and flows exhaust gas downward from above, and supplies powder into the A tower from below the A tower. Of the exhaust gas of the electric furnace 1 or the scrap preheating device 3 for an electric furnace having the powder blowing device (14, 15) for upstream and downstream of the scrap preheating device 3 or downstream of the electric furnace 1. A detector 20 for measuring exhaust gas temperature is provided, and a control device 21 for controlling a powder blowing amount of the powder blowing device according to the exhaust gas temperature information from the detector 20 is provided. Equipment.
(2) A combination of the tower A 7, the tower B 8, and the powder blowing device is provided in at least two or more stages in the flow path of the exhaust gas, and a thermometer 16 for measuring the temperature of the exhaust gas is provided at the inlet of the tower A at each stage. 2. The exhaust gas detoxification equipment according to claim 1, further comprising an automatic selection device provided for selecting a tower for performing powder injection according to the measurement result of the thermometer.
(3) A method for detoxifying the exhaust gas in the electric furnace 1 or the scrap preheating device 3 for the electric furnace, in which the exhaust gas is caused to flow upward from below in the A tower 7 and the exhaust gas is rendered harmless by the powder blown into the A tower from below the A tower. Measuring the exhaust gas temperature upstream and downstream of the scrap preheating device or downstream of the electric furnace, and adjusting the amount of powder blown based on the exhaust gas flow rate and the exhaust gas temperature information. Method.
(4) The adjustment of the powder blowing amount based on the exhaust gas flow rate information is performed by increasing and decreasing the powder blowing amount based on the increase and decrease of the exhaust gas flow rate, and the powder blowing amount based on the exhaust gas temperature information. The adjustment of the amount is such that when the exhaust gas temperature is higher than a predetermined temperature T1, the powder blowing amount is reduced, and when the exhaust gas temperature is lower than a predetermined temperature T2, the powder blowing amount is reduced. The method for detoxifying exhaust gas (T1> T2) according to claim 3, wherein the method is performed.
It is.
[0008]
When the electric furnace 1 or the scrap preheating device 3 for the electric furnace is operated, the concentration of harmful components in the exhaust gas, particularly the concentration of the aromatic chlorine compound, is close to the temperature of the exhaust gas at the electric furnace or the temperature of the exhaust gas at the entrance or exit of the scrap preheating device. Turns out to be relevant. When the exhaust gas temperature is in the range of 300 ° C. to 600 ° C., the concentration of harmful components in the exhaust gas is high, and when the exhaust gas temperature is higher or lower than the above temperature range, the concentration of the harmful component in the exhaust gas decreases. The relationship between the concentration of harmful components in the exhaust gas and the exhaust gas temperature can be accurately grasped by measuring each electric furnace or scrap preheating device. The amount of harmful substances in exhaust gas is proportional to the product of the amount of exhaust gas and the concentration of harmful components in the exhaust gas.
[0009]
The harmful substances in the exhaust gas are adsorbed and removed by the powder blown in the tower A. When the amount of harmful substances generated per unit time is small, harmful substances can be removed even if the amount of powder blown is reduced, and the amount of harmful substances generated per unit time and the amount of powder blown can be approximately proportional. .
[0010]
In the present invention, the concentration of harmful components in the exhaust gas is estimated by measuring the exhaust gas temperature on the exit side of the electric furnace or the exhaust gas temperature on the entrance and exit sides of the scrap preheating device, and the product of the exhaust gas amount and the harmful component concentration estimated value is used. The amount of harmful substances generated per unit time is estimated, and control is performed such that the amount of powder blown is large when the amount of harmful substances is large, and the amount of powder blown is small when the amount of harmful substances is small. Accordingly, when the amount of harmful substances generated in the exhaust gas is small, the amount of powder blown can be reduced, and the power for blowing powder can be further reduced. Further, since the amount of powder to be blown is reduced, the amount of dust to be processed after collection is also reduced.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the exhaust gas flows upward from below in the tower A, and the powder is blown below the tower A 7. Normally, a B tower 9 in which exhaust gas flows downward from above is disposed, and the upper end of the A tower and the upper end of the B tower are connected. Dust boxes 6 and 10 are provided at the lower ends of the tower A and the tower B, respectively.
[0012]
In the exhaust gas treatment equipment, the exhaust gas is sucked in accordance with the amount of exhaust gas generated by the electric furnace or the scrap preheating device. The velocity at which the powder blown in the tower A does not reach the speed at which it floats and stops, and the residence time of the blown powder in the tower A also fluctuates according to the fluctuation of the exhaust gas velocity.
[0013]
In the tower A, the speed at which the powder rises is a speed obtained by subtracting the free sedimentation speed of the powder from the exhaust gas speed. In the tower A, the powder has a relative speed to the flue gas equal to the free sedimentation speed of the powder, so that the harmful components of the flue gas are adsorbed on the powder while the powder stays in the tower A. Since the powder stays in the tower A for a time necessary for adsorbing the harmful component to the harmful component adsorption capacity limit of the powder, the harmful component adsorption capability of the powder can be sufficiently utilized. The powder discharged together with the exhaust gas from the tower A usually descends in the tower B and is collected in the dust box 10 at the lower end of the tower B.
[0014]
The amount of exhaust gas generated is small, the exhaust gas speed is reduced, and the residence time of the powder in the tower A is prolonged. When the exhaust gas speed is lower than the free sedimentation speed of the powder, the powder is recovered in the dust box 6 below the tower A without rising. The height and the inner diameter of the tower A are within the normal fluctuation range of the exhaust gas flow rate, and even if the exhaust gas flow rate is high and the exhaust gas speed is high, the powder residence time in the tower A is a time sufficient for removing harmful substances, and The exhaust gas velocity is selected to be higher than the free sedimentation velocity of the powder even if the exhaust gas flow rate is small.
[0015]
As the blown powder, dust from an electric furnace which is collected by an electric furnace exhaust gas dust collector can be used. In addition, slaked lime, activated carbon, zeolite, or the like may be used.
[0016]
The concentration of harmful components, particularly aromatic chlorine compounds, in the exhaust gas is strongly affected by the exhaust gas temperature upstream and downstream of the scrap preheating device or downstream of the electric furnace, and the concentration of the harmful component varies depending on the temperature. More specifically, when the temperature is in the range of 300 ° C. to 600 ° C., the concentration of the harmful component increases, and when the temperature is higher or lower than the above temperature range, the concentration of the harmful component decreases. Therefore, if the relationship between the temperature and the concentration of the harmful component in the exhaust gas is measured in advance, the concentration of the harmful component in the exhaust gas can be estimated by measuring the temperature during operation.
[0017]
Since the amount of harmful components in the exhaust gas generated per unit time is proportional to the product of the amount of the exhaust gas and the concentration of the harmful component in the exhaust gas, the amount of powder blown into the tower A is estimated from the amount of the exhaust gas and the concentration of the harmful component in the exhaust gas. It can be blown in proportion to the product of the values. This makes it possible to reliably remove harmful components when the amount of harmful components generated in the exhaust gas is large, and to reduce the amount of powder blown when the amount of harmful components generated is small. The powder blowing amount according to the harmful component generation amount is determined in advance by experiments or the like.
[0018]
Control of the amount of powder blown based on the measurement results of the exhaust gas temperature upstream and downstream of the scrap preheating device or downstream of the electric furnace should be performed based on the relationship between the measured temperature and the concentration of harmful components in the exhaust gas in advance. Can be. At a temperature higher than the temperature T1 near 600 ° C., the concentration of the harmful component decreases, and at a temperature lower than the temperature T2 near 300 ° C., the concentration of the harmful component decreases. Therefore, the control of the amount of powder blown is performed by determining the temperatures T1 and T2 in advance by measurement or the like. When the temperature of the exhaust gas is higher than the predetermined temperature T1, the amount of powder blown is reduced, and the temperature of the exhaust gas is set in advance. When the temperature is lower than the temperature T2, it can be performed by reducing the powder blowing amount. For example, when the amount of powder blown when the exhaust gas temperature is between T1 and T2 is 1, control is performed such that the amount of powder blown when the exhaust gas temperature> T1 or when the exhaust gas temperature <T2 is 0.2. Is valid.
[0019]
The ability of the powder to absorb harmful substances is affected by the temperature of the exhaust gas in the tower A where the harmful substances are adsorbed to the powder. When the exhaust gas temperature is in the range of 100 ° C. to 150 ° C., the ability of the powder to absorb harmful components is maximized. When the exhaust gas temperature at the exit side of the electric furnace or the scrap preheating device is high, at the entrance side of the exhaust gas detoxification facility of the present invention, the exhaust gas temperature does not sufficiently decrease and becomes higher than the appropriate exhaust gas temperature range. There is. In the present invention, when a plurality of combinations of the tower A and the tower B are arranged in series, the tower A and the tower B exhibit the function of a vertical cooling tower, and can be arranged even in a small site. The exhaust gas temperature in the tower A on the downstream side of the column falls to a desirable temperature. Therefore, the exhaust gas temperature at the inlet of each tower A is measured, and the powder is blown into the stage where the exhaust gas temperature is the most preferable, whereby the exhaust gas can be detoxified most efficiently.
[0020]
【Example】
(Example 1)
FIG. 1 shows a first embodiment of the present invention. Exhaust gas generated from the electric furnace 1 passes through a water-cooled flue 2 and is introduced into a scrap preheating device 3. Thereafter, the gas is introduced into the header pipe 5 via the water-cooled flue 4, passes through the entrance dust box 6, is rendered harmless by the exhaust gas detoxification facility of the present invention, passes through the exit dust box 10, and passes to the duct 11. The stream is led to a dust collector (not shown) by the blower 12 and is finally released to the atmosphere. A temperature measuring device 19 is provided in the water-cooled flue 2 connecting the electric furnace 1 and the scrap preheating device 3, and a temperature measuring device 20 is provided in the water-cooled flue 4 connecting the scrap preheating device 3 and the header pipe 5. You. The temperature measuring devices 19 and 20 are connected to a control device 21, and the control device 21 controls the powder supply amount of the powder supply device 14 based on the temperature information from the temperature measuring devices 19 and 20.
[0021]
In the exhaust gas detoxification facility of the present invention, the exhaust gas flows upward from below in the tower A 7, and then flows downward from above in the tower B 9. The tower A and the tower B are connected via a 180-degree bent pipe 8. A powder supply device 14 is provided below the A tower 7, and supplies powder into the A tower via a pipe 15 and a powder supply port 13. The powder supply device 14 and the pipe 15 constitute a powder blowing device of the present invention. Electric furnace generated dust was used as the blown powder.
[0022]
The amount of powder blown was controlled by the following equation.
Z = β × α × Q
Here, Z is a powder blowing amount, Q is an exhaust gas flow rate per unit time, α is a proportional constant that determines a standard powder blowing amount per exhaust gas flow rate, and β is a coefficient to be changed based on the exhaust gas temperature measurement result. is there. In the present embodiment, β = 0.2 when the exhaust gas temperature> 600 ° C. or the exhaust gas temperature <300 ° C., and β = 1 in other cases.
[0023]
As a result, the effect of reducing the amount of powder blown by about 40% compared to the conventional example in which the amount of powder blown was not changed in accordance with the exhaust gas temperature could be obtained.
[0024]
(Example 2)
FIG. 2 shows a second embodiment of the present invention. The same combination of the tower A and the tower B as in the first embodiment is arranged in two stages, and the outlet side of the first stage and the inlet side of the second stage are connected by the connecting pipe 18. A thermometer (16a, 16b) is arranged on each side of the tower A, and the temperature of the exhaust gas on the side of the tower A is measured. Since the tower A and the tower B in each stage have the function of a vertical cooling tower, the exhaust gas temperature is lower in the latter stage than in the former stage. Therefore, of the exhaust gas temperatures on the inlet side of the tower A in each stage, a stage having a temperature (100 ° C. to 150 ° C.) having an excellent ability to adsorb harmful substances to the powder is selected, and the powder is blown in that stage. .
[0025]
【The invention's effect】
The exhaust gas detoxification facility of the present invention can reduce the amount of powder used, the power for blowing powder, and the amount of dust treatment while maintaining the amount of harmful components in the released exhaust gas at a low level. The running cost can be reduced.
[Brief description of the drawings]
FIG. 1 shows an embodiment of an exhaust gas detoxification facility according to the present invention. FIG. 2 shows another embodiment of an exhaust gas detoxification facility according to the present invention.
1 electric furnace (melting furnace)
2 Water-cooled flue 3 Scrap preheater 4 Water-cooled flue 5 Header pipe 6 Dust box 7 Tower A 8 Bent pipe 9 Tower B 10 Dust box 11 Duct 12 Blower 13 Powder supply port 14 Powder supply device 15 Pipe 16 Thermometer 17 Cable 18 Connection pipe 19 Temperature measuring device 20 Temperature measuring device 21 Control device

Claims (4)

排ガスを下方から上方に流すA塔と、A塔の後流側に連接され排ガスを上方から下方に流すB塔と、A塔の下方からA塔内に粉体を供給するための粉体吹き込み装置とを有する電気炉又は電気炉用スクラップ予熱装置の排ガス無害化設備において、
前記スクラップ予熱装置の上流及び後流又は電気炉の後流に排ガス温度を測定する検出器を配設し、該検出器からの排ガス温度情報に従って前記粉体吹き込み装置の粉体吹き込み量を制御する制御装置を配設することを特徴とする排ガス無害化設備。
Tower A, which flows exhaust gas upward from below, Tower B, which is connected to the downstream side of Tower A and flows exhaust gas downward from above, and powder injection for supplying powder into Tower A from below Tower A In the exhaust gas detoxification equipment of an electric furnace or a scrap preheating device for an electric furnace having a device,
A detector for measuring the exhaust gas temperature is disposed upstream and downstream of the scrap preheating device or downstream of the electric furnace, and the amount of powder blown by the powder blowing device is controlled according to the exhaust gas temperature information from the detector. Exhaust gas detoxification equipment characterized by disposing a control device.
A塔とB塔と粉体吹き込み装置とからなる組み合わせを、排ガスの流路に少なくとも2段以上設け、各段のA塔入口に排ガス温度を測定するための温度計を付設し、該温度計の測定結果によって粉体吹き込みを実施する塔を選択する自動的選択装置を配設することを特徴とする請求項1に記載の排ガス無害化設備。At least two or more stages comprising a combination of the tower A, the tower B, and the powder blowing device are provided in the exhaust gas flow path, and a thermometer for measuring the temperature of the exhaust gas is provided at the inlet of the tower A at each stage. 2. The exhaust gas detoxification equipment according to claim 1, further comprising an automatic selection device for selecting a tower for performing the powder injection according to the measurement result. A塔において排ガスを下方から上方に流し、A塔の下方からA塔内に吹き込んだ粉体によって排ガスを無害化する電気炉又は電気炉用スクラップ予熱装置の排ガス無害化方法において、
前記スクラップ予熱装置の上流及び後流又は電気炉の後流の排ガス温度を測定し、排ガス流量と前記排ガス温度情報に基づいて前記粉体吹き込み量を調整することを特徴とする排ガス無害化方法。
An exhaust gas detoxification method for an electric furnace or a scrap preheating device for an electric furnace, in which exhaust gas is caused to flow upward from below in the tower A and the exhaust gas is rendered harmless by powder blown into the tower A from below the tower A,
An exhaust gas detoxification method characterized by measuring exhaust gas temperatures upstream and downstream of the scrap preheating device or downstream of an electric furnace, and adjusting the amount of powder blown based on the exhaust gas flow rate and the exhaust gas temperature information.
前記排ガス流量情報に基づいた前記粉体吹き込み量の調整は、前記排ガス流量の増減に基づいて前記粉体吹き込み量を増減することによって行い、前記排ガス温度情報に基づいた前記粉体吹き込み量の調整は、前記排ガス温度が予め定めた温度T1よりも高いときは前記粉体吹き込み量を減少し、前記排ガス温度が予め定めた温度T2よりも低いときは前記粉体吹き込み量を減少することによって行うを特徴とする請求項3に記載の排ガス無害化方法。
なお、T1>T2である。
The adjustment of the powder injection amount based on the exhaust gas flow rate information is performed by increasing or decreasing the powder injection amount based on the increase or decrease of the exhaust gas flow rate, and the adjustment of the powder injection amount based on the exhaust gas temperature information. Is performed by reducing the amount of powder blown when the exhaust gas temperature is higher than a predetermined temperature T1, and by reducing the amount of powder blown when the exhaust gas temperature is lower than a predetermined temperature T2. The exhaust gas detoxification method according to claim 3, characterized in that:
Note that T1> T2.
JP34517498A 1998-12-04 1998-12-04 Exhaust gas detoxification equipment and method for detoxification of electric furnace or scrap preheating device for electric furnace Expired - Fee Related JP3566868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34517498A JP3566868B2 (en) 1998-12-04 1998-12-04 Exhaust gas detoxification equipment and method for detoxification of electric furnace or scrap preheating device for electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34517498A JP3566868B2 (en) 1998-12-04 1998-12-04 Exhaust gas detoxification equipment and method for detoxification of electric furnace or scrap preheating device for electric furnace

Publications (2)

Publication Number Publication Date
JP2000171172A JP2000171172A (en) 2000-06-23
JP3566868B2 true JP3566868B2 (en) 2004-09-15

Family

ID=18374800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34517498A Expired - Fee Related JP3566868B2 (en) 1998-12-04 1998-12-04 Exhaust gas detoxification equipment and method for detoxification of electric furnace or scrap preheating device for electric furnace

Country Status (1)

Country Link
JP (1) JP3566868B2 (en)

Also Published As

Publication number Publication date
JP2000171172A (en) 2000-06-23

Similar Documents

Publication Publication Date Title
JP6124097B1 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP6194840B2 (en) Exhaust gas treatment apparatus and method
WO2001083069A3 (en) Treatment system for removing hazardous substances from a semiconductor process waste gas stream
JP4979911B2 (en) Heat purification equipment for contaminated soil
US6699440B1 (en) Device for purifying a mercury-containing flue gas
JP2007309535A (en) Exhaust gas treatment device for metal scrap melting furnace
JP3566868B2 (en) Exhaust gas detoxification equipment and method for detoxification of electric furnace or scrap preheating device for electric furnace
JPH10165752A (en) Exhaust gas treatment process for waste disposal facility
JP4617010B2 (en) Purification equipment for contaminated soil
JP2019155260A (en) Exhaust gas processing device and exhaust gas processing method
JP2001311588A (en) Exhaust gas treatment method and apparatus
JPH11114361A (en) Waste gas treatment in steel making electric furnace
JP2003054926A (en) Method for producing charcoal for adsorption
JPH10329A (en) Treatment of waste incineration waste gas
JPH11190594A (en) Method and device for treating exhaust gas of electric furnace for steel manufacture
JP3471527B2 (en) Equipment for detoxifying exhaust gas from electric furnaces or scrap preheating equipment for electric furnaces
JPH0512008B2 (en)
CA2541282A1 (en) Device and method for treatment of gases by a moving bed of particulate material
JP2018171585A (en) Exhaust gas treatment device and method
JPH10115444A (en) Air cleaning apparatus
JP3893704B2 (en) Dust collector for electric furnace
JP3855215B2 (en) Waste gas treatment facility at waste treatment facility
JP2001304537A (en) Method for exhaust-gas treatment
KR101466357B1 (en) Apparatus for refining sinter flue gas and controlling methods of the same
JPS58112023A (en) Deodorizing apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040611

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees