JP2019155260A - Exhaust gas processing device and exhaust gas processing method - Google Patents

Exhaust gas processing device and exhaust gas processing method Download PDF

Info

Publication number
JP2019155260A
JP2019155260A JP2018044556A JP2018044556A JP2019155260A JP 2019155260 A JP2019155260 A JP 2019155260A JP 2018044556 A JP2018044556 A JP 2018044556A JP 2018044556 A JP2018044556 A JP 2018044556A JP 2019155260 A JP2019155260 A JP 2019155260A
Authority
JP
Japan
Prior art keywords
exhaust gas
activated carbon
concentration
mercury
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018044556A
Other languages
Japanese (ja)
Other versions
JP7047488B2 (en
Inventor
厚志 長尾
Atsushi Nagao
厚志 長尾
平山 敦
Atsushi Hirayama
敦 平山
三浦 崇
Takashi Miura
崇 三浦
祐人 臼井
Yuto Usui
祐人 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2018044556A priority Critical patent/JP7047488B2/en
Publication of JP2019155260A publication Critical patent/JP2019155260A/en
Application granted granted Critical
Publication of JP7047488B2 publication Critical patent/JP7047488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an exhaust gas processing device and an exhaust gas processing method which perform adsorption/removal processing under adequate supply amounts of active charcoal so that a mercury concentration in exhaust gas is below a set value, even if an oxygen concentration and a hydrogen chloride concentration in the exhaust gas containing mercury vary.SOLUTION: The exhaust gas processing device comprises: a dust collector 3 that performs processing for removing exhaust gas from a furnace 1; an active charcoal supply device 5 that blows active charcoal to an exhaust gas flow path A through which exhaust gas is introduced from the furnace to the dust collector; an oxygen concentration meter 7 that measures an oxygen concentration in the exhaust gas and a hydrogen chloride concentration meter 8 that measure a hydrogen chloride concentration in the exhaust gas, at a downstream side of the furnace 1 and at an upstream side of the dust collector 3; and a control device 6 that controls supply amounts of active charcoal of the active carbon supply device. The control device 6 controls the supply amounts of active carbon on the basis of a predetermined correspondence relation between the measured value of the oxygen concentration, the measured value of the hydrogen chloride concentration and the supply amounts of active carbon so that a mercury concentration in the exhaust gas at the downstream side of the dust collector 3 is below a set value on the basis of the measured value of the oxygen concentration by the oxygen concentration meter 7 and the measured value of the hydrogen chloride concentration by the hydrogen chloride concentration meter 8.SELECTED DRAWING: Figure 1

Description

本発明は、廃棄物焼却施設、セメント製造工場、火力発電所、非鉄金属製錬工場等の各種工場から排出される水銀を含む排ガスの処理装置及び排ガス処理方法に関する。   The present invention relates to a treatment apparatus and a treatment method for exhaust gas containing mercury discharged from various factories such as a waste incineration facility, a cement manufacturing factory, a thermal power plant, and a non-ferrous metal smelting factory.

セメントキルン炉、非鉄金属製錬炉から排出される排ガスや、水銀を含んだ廃棄物が廃棄物焼却炉で焼却され排出される排ガス中に水銀が含まれることがあり、そのまま大気に放出されると、大気汚染を引き起こし問題となる。そこで、排ガス中の水銀を除去することが求められている。   Mercury may be contained in exhaust gas discharged from cement kiln furnaces and non-ferrous metal smelting furnaces, and wastes containing mercury incinerated in waste incinerators, and are released directly into the atmosphere. It causes air pollution and becomes a problem. Therefore, it is required to remove mercury in the exhaust gas.

さらに、「水銀に関する水俣条約」が2013年に採択され、世界的な水銀管理強化の動きが進行している。この条約発効後、水銀排出規制対象施設に対して水銀の排出を抑制する対策が検討されている。水銀排出規制対象施設としては、石炭火力発電所、石炭焚きボイラ、非鉄金属製錬施設、廃棄物焼却施設、セメント製造施設が挙げられる。かかる状況において、これらの施設から排出される排ガス中の水銀を効率的に除去する処理方法の要望が高まっている。   Furthermore, the Minamata Convention on Mercury was adopted in 2013, and global movements to strengthen mercury management are in progress. After the convention enters into force, measures to reduce mercury emissions are being considered for facilities subject to mercury emission control. Facilities subject to mercury emission regulations include coal-fired power plants, coal-fired boilers, non-ferrous metal smelting facilities, waste incineration facilities, and cement manufacturing facilities. Under such circumstances, there is an increasing demand for a treatment method for efficiently removing mercury in exhaust gas discharged from these facilities.

例えば、廃棄物焼却炉やボイラ火炉から排出される排ガス中の水銀の一般的な除去方法としては、排ガス中のダストを除塵するバグフィルタや電気集塵機へ排ガスを導くダクト内へ、バグフィルタ等に対して上流側位置で粉粒状の活性炭を吹き込み、該活性炭に水銀を吸着させ、この水銀を吸着した活性炭をダストとともにバグフィルタ等で集塵して排ガスから除去する方法が特許文献1で知られている。   For example, as a general method for removing mercury in exhaust gas discharged from waste incinerators and boiler furnaces, bag filters that remove dust in exhaust gas, ducts that lead exhaust gas to an electric dust collector, bag filters, etc. On the other hand, Patent Document 1 discloses a method in which granular activated carbon is blown at an upstream position, mercury is adsorbed on the activated carbon, and the activated carbon adsorbed with mercury is collected together with dust by a bag filter or the like and removed from the exhaust gas. ing.

また、排ガス中の酸性ガスを中和して除去するための消石灰に活性炭を予め混合した混合粉を用意し、この混合粉をバグフィルタの上流側でダクト内の排ガスに吹き込んで、酸性ガスと消石灰の反応生成物そして水銀を吸着した活性炭をダストとともにバグフィルタ等で集塵して処理する方法が用いられることもある。かくして、排ガス中の水銀は活性炭により吸着された後、バグフィルタ等で集塵除去される。   In addition, a mixed powder prepared by previously mixing activated carbon with slaked lime to neutralize and remove the acidic gas in the exhaust gas is prepared, and this mixed powder is blown into the exhaust gas in the duct upstream of the bag filter. There is a case where a reaction product of slaked lime and activated carbon adsorbed with mercury are collected together with dust by a bag filter or the like and processed. Thus, after mercury in the exhaust gas is adsorbed by the activated carbon, it is collected and removed by a bag filter or the like.

特開2010−221085JP2010-221085

焼却炉で焼却処理される廃棄物の種類や、セメントキルン炉、非鉄金属製錬炉で製錬される原料の種類によっては、排ガス中の水銀濃度が一時的に高くなるような変動が生じる場合がある。この場合においても煙突から排出する排ガス中の水銀濃度を低く維持するためには、ダクトへ吹き込む活性炭の供給量を常時多量に吹き込む必要か、あるいは、消石灰と活性炭とが予め混合された混合粉をダクト内へ供給する際、混合粉の供給量を常時多量に吹き込む必要がある。   Depending on the type of waste incinerated in the incinerator and the type of raw material smelted in the cement kiln furnace or non-ferrous metal smelting furnace, fluctuations may occur that temporarily increase the mercury concentration in the exhaust gas. There is. In this case as well, in order to keep the mercury concentration in the exhaust gas discharged from the chimney low, it is necessary to constantly blow in a large amount of activated carbon to be blown into the duct, or mixed powder in which slaked lime and activated carbon are mixed in advance. When supplying into the duct, it is necessary to constantly blow a large amount of the mixed powder.

このように、一時的に高くなる水銀濃度を想定して活性炭又は混合粉を常時多量にダクト内へ供給すると、上記一時的な時間帯を除いた多くの時間帯で活性炭そして混合粉を過度に供給する結果となってしまい、活性炭や混合粉の使用量が多大となり、排ガス処理費用が嵩むという問題や、集塵したダスト等の量が多大となり、除塵処理費用が嵩むという問題が生じる。   Thus, if activated carbon or mixed powder is constantly supplied in a large amount into the duct assuming a temporarily high mercury concentration, the activated carbon and the mixed powder are excessively used in many time zones excluding the temporary time zone. As a result, the amount of activated carbon or mixed powder used is increased, and the exhaust gas treatment cost is increased, and the amount of collected dust is increased, resulting in an increase in the dust removal cost.

また、廃棄物焼却炉、セメントキルン炉、非鉄金属精錬炉から排出される排ガスに含まれる水銀は、主に塩化水銀と金属水銀の二種類の形態がある。活性炭の水銀に対する吸着性能は、これらの排ガス中の水銀形態や排ガス中の成分によって変化する。活性炭の水銀吸着性能に影響を与える排ガス中の成分としては酸素および塩化水素が挙げられる。   In addition, mercury contained in exhaust gas discharged from waste incinerators, cement kiln furnaces, and non-ferrous metal smelting furnaces mainly has two forms, mercury chloride and metal mercury. The adsorption performance of activated carbon for mercury varies depending on the form of mercury in these exhaust gases and the components in the exhaust gases. Oxygen and hydrogen chloride are examples of components in exhaust gas that affect the mercury adsorption performance of activated carbon.

本発明は、このような事情に鑑み、排ガス中の水銀を確実に吸着除去し、排ガス中の水銀濃度が変動してもこれに適切な活性炭量で活性炭を供給することができ、また、排ガス中の酸素濃度及び塩化水素の変動に対応して適切に活性炭による吸着除去処理を行うことができる排ガス処理装置及び排ガス処理方法を提供することを課題とする。   In view of such circumstances, the present invention reliably adsorbs and removes mercury in exhaust gas, and can supply activated carbon with an appropriate amount of activated carbon even if the mercury concentration in the exhaust gas fluctuates. It is an object of the present invention to provide an exhaust gas treatment apparatus and an exhaust gas treatment method that can appropriately perform adsorption removal treatment with activated carbon in response to fluctuations in the oxygen concentration and hydrogen chloride.

本発明によると、上述の課題は、次の排ガス処理装置さらにはその方法により解決される。   According to the present invention, the above-described problems are solved by the following exhaust gas treatment apparatus and the method thereof.

[排ガス処理装置]
本発明における排ガス処理装置は、次の第一発明、第二発明そして第三発明のごとく構成され、いずれによっても上記課題は解決される。ここで、活性炭供給量(mg/Nm)は処理排ガス流量に対する活性炭吹込み重量として定められる。
[Exhaust gas treatment equipment]
The exhaust gas treatment apparatus of the present invention is configured as in the following first invention, second invention and third invention, and the above-mentioned problems can be solved by any of them. Here, the activated carbon supply amount (mg / Nm 3 ) is determined as the activated carbon blowing weight with respect to the treated exhaust gas flow rate.

<第一発明>
炉から排出され水銀を含む排ガスを除塵処理する集塵装置と、炉から集塵装置へ排ガスを導く排ガス流路へ活性炭を吹き込む活性炭供給装置とを備える排ガス処理装置において、
炉の下流側でかつ集塵装置の上流側で、排ガス中の酸素濃度を測定する酸素濃度計と、排ガス中の塩化水素濃度を測定する塩化水素濃度計と、活性炭供給装置の活性炭供給量を制御する制御装置を備え、
制御装置は、酸素濃度計による酸素濃度測定値及び塩化水素濃度計による塩化水素濃度測定値に基づき、上記集塵装置の下流側での排ガス中の下流側水銀濃度を設定値以下とするように、酸素濃度測定値及び塩化水素濃度測定値と活性炭供給量との予め定める対応関係に基づき活性炭供給量を制御することを特徴とする排ガス処理装置。
<First invention>
In an exhaust gas treatment apparatus comprising: a dust collector that removes exhaust gas containing mercury discharged from a furnace; and an activated carbon supply device that blows activated carbon into an exhaust gas passage that guides the exhaust gas from the furnace to the dust collector.
The oxygen concentration meter that measures the oxygen concentration in the exhaust gas, the hydrogen chloride concentration meter that measures the hydrogen chloride concentration in the exhaust gas, and the activated carbon supply amount of the activated carbon supply device on the downstream side of the furnace and upstream of the dust collector A control device for controlling,
Based on the oxygen concentration measurement value by the oxygen concentration meter and the hydrogen chloride concentration measurement value by the hydrogen chloride concentration meter, the control device makes the downstream mercury concentration in the exhaust gas downstream of the dust collector less than the set value. An exhaust gas treatment apparatus that controls an activated carbon supply amount based on a predetermined correspondence relationship between an oxygen concentration measurement value, a hydrogen chloride concentration measurement value, and an activated carbon supply amount.

<第二発明>
炉から排出され水銀を含む排ガスを除塵処理する集塵装置と、炉から集塵装置へ排ガスを導く排ガス流路へ活性炭を吹き込む活性炭供給装置とを備える排ガス処理装置において、
炉の下流側でかつ集塵装置の上流側で、排ガス中の酸素濃度を測定する酸素濃度計と、排ガス中の塩化水素濃度を測定する塩化水素濃度計と、排ガス中の上流側水銀濃度を測定する上流側水銀濃度計と、活性炭供給装置の活性炭供給量を制御する制御装置を備え、
制御装置は、酸素濃度計による酸素濃度測定値と塩化水素濃度計による塩化水素濃度測定値及び上流側水銀濃度計による上流側水銀濃度測定値に基づき、上記集塵装置の下流側での排ガス中の下流側水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理装置。
<Second invention>
In an exhaust gas treatment apparatus comprising: a dust collector that removes exhaust gas containing mercury discharged from a furnace; and an activated carbon supply device that blows activated carbon into an exhaust gas passage that guides the exhaust gas from the furnace to the dust collector.
The oxygen concentration meter that measures the oxygen concentration in the exhaust gas, the hydrogen chloride concentration meter that measures the hydrogen chloride concentration in the exhaust gas, and the upstream mercury concentration in the exhaust gas at the downstream side of the furnace and the upstream side of the dust collector. Equipped with an upstream mercury concentration meter to measure and a control device to control the activated carbon supply amount of the activated carbon supply device,
Based on the oxygen concentration measurement value by the oxygen concentration meter, the hydrogen chloride concentration measurement value by the hydrogen chloride concentration meter, and the upstream mercury concentration measurement value by the upstream mercury concentration meter, the control device An exhaust gas treatment apparatus, wherein the activated carbon supply amount is controlled so that the downstream mercury concentration is lower than a set value.

<第三発明>
炉から排出され水銀を含む排ガスを除塵処理する集塵装置と、炉から集塵装置へ排ガスを導く排ガス流路へ活性炭を吹き込む活性炭供給装置とを備える排ガス処理装置において、
炉の下流側でかつ集塵装置の上流側で、排ガス中の酸素濃度を測定する酸素濃度計と、排ガス中の塩化水素濃度を測定する塩化水素濃度計と、排ガス中の上流側水銀濃度を測定する上流側水銀濃度計と、集塵装置の下流側で排ガス中の水銀濃度を測定する下流側水銀濃度計と、活性炭供給装置の活性炭供給量を制御する制御装置を備え、
制御装置は、酸素濃度計による酸素濃度測定値と塩化水素濃度計による塩化水素濃度測定値と、上流側水銀濃度計による上流側水銀濃度測定値及び下流側水銀濃度計による下流側水銀濃度測定値に基づき、上記集塵装置の下流側での排ガス中の下流側水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理装置。
<Third invention>
In an exhaust gas treatment apparatus comprising: a dust collector that removes exhaust gas containing mercury discharged from a furnace; and an activated carbon supply device that blows activated carbon into an exhaust gas passage that guides the exhaust gas from the furnace to the dust collector.
The oxygen concentration meter that measures the oxygen concentration in the exhaust gas, the hydrogen chloride concentration meter that measures the hydrogen chloride concentration in the exhaust gas, and the upstream mercury concentration in the exhaust gas at the downstream side of the furnace and the upstream side of the dust collector. Equipped with an upstream mercury concentration meter to measure, a downstream mercury concentration meter to measure the mercury concentration in the exhaust gas downstream of the dust collector, and a control device to control the activated carbon supply amount of the activated carbon supply device,
The control device consists of an oxygen concentration measurement value by an oxygen concentration meter, a hydrogen chloride concentration measurement value by a hydrogen chloride concentration meter, an upstream mercury concentration measurement value by an upstream mercury concentration meter, and a downstream mercury concentration measurement value by a downstream mercury concentration meter. And the activated carbon supply amount is controlled so that the downstream mercury concentration in the exhaust gas downstream of the dust collector is not more than a set value.

第一ないし第三発明においては、制御装置は、活性炭供給量を所定の最小値以上に維持するように制御することが好ましい。かかる制御により、集塵装置のバグフィルタには、活性炭の吸着層が常に形成されているようになるので、予め形成された上記吸着層による吸着除去作用とその際に吹き込まれる活性炭による吸着除去作用とにより水銀を速やかにかつ確実に吸着除去でき、集塵後の排ガスの水銀濃度を十分に低濃度とすることができる。また、第二又は第三発明においては、排ガス中の水銀濃度が所定値より低い場合には、活性炭供給量を所定の最小値に保つように制御することが好ましい。集塵装置のバグフィルタに活性炭の吸着層が常に形成されているようにして、上記所定値よりも高濃度の水銀を含む排ガスが排出された際にも、予め形成された上記吸着層による吸着除去作用とその際に吹き込まれる活性炭による吸着除去作用とにより水銀を速やかにかつ確実に吸着除去でき、集塵後の排ガスの水銀濃度を十分に低濃度とすることができる。   In 1st thru | or 3rd invention, it is preferable that a control apparatus controls so that activated carbon supply amount may be maintained more than predetermined minimum value. By such control, an activated carbon adsorption layer is always formed on the bag filter of the dust collector, so that the adsorption removal action by the previously formed adsorption layer and the adsorption removal action by the activated carbon blown at that time Thus, mercury can be adsorbed and removed quickly and reliably, and the mercury concentration of the exhaust gas after dust collection can be made sufficiently low. In the second or third invention, when the mercury concentration in the exhaust gas is lower than a predetermined value, it is preferable to control the supply amount of the activated carbon so as to keep the predetermined minimum value. An adsorption layer of activated carbon is always formed on the bag filter of the dust collector, and even when exhaust gas containing mercury at a concentration higher than the predetermined value is discharged, adsorption by the adsorption layer formed in advance is performed. Mercury can be adsorbed and removed quickly and reliably by the removal action and the adsorption removal action by activated carbon blown at that time, and the mercury concentration of the exhaust gas after dust collection can be made sufficiently low.

また、第二又は第三発明においては、制御装置は、上流側水銀濃度計による上流側水銀濃度測定値又は下流側水銀濃度計による下流側水銀濃度測定値が所定水銀濃度以上であるとき、活性炭供給量を所定の最大値に保つように制御することが好ましい。時間平均としてはさほど水銀濃度が高くないにも拘らず一時的に急激に水銀濃度が高くなったときに、この高い水銀濃度に合せて多量の活性炭を供給すると、その後の時間にわたり過剰に活性炭を供給してしまう結果になる。このような過剰な供給となることを、上記活性炭供給量を所定の最大値に保つように制御することにより防止できる。   In the second or third aspect of the invention, when the upstream mercury concentration measurement value by the upstream mercury concentration meter or the downstream mercury concentration measurement value by the downstream mercury concentration meter is equal to or greater than the predetermined mercury concentration, It is preferable to control the supply amount so as to maintain a predetermined maximum value. Although the mercury concentration is not so high as a time average, when the mercury concentration suddenly increases temporarily, if a large amount of activated carbon is supplied in accordance with this high mercury concentration, the activated carbon will be excessively excessive over the subsequent time. The result will be to supply. Such excessive supply can be prevented by controlling the supply amount of the activated carbon so as to keep the predetermined maximum value.

また、第二又は第三発明において、活性炭供給量の最小値から最大値へ向けた増大に関しては、制御装置は、排ガス中の水銀濃度測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値の活性炭供給量のもとに活性炭を供給し、水銀濃度測定値が上記第一の所定水銀濃度に達した後に、水銀濃度測定値の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させ、水銀濃度測定値が第二の所定水銀濃度に達したときに、活性炭供給量を所定の最大値の供給量とし、水銀濃度測定値が上記第二の所定水銀濃度に達した後には、水銀濃度測定値の増加に対してその所定の最大値で活性炭供給量を一定に保つようにすることができる。   Further, in the second or third invention, regarding the increase from the minimum value to the maximum value of the activated carbon supply amount, the control device is configured such that the mercury concentration measurement value in the exhaust gas is zero or less than a measurable minimum value. In the range until the first predetermined mercury concentration is reached, activated carbon is supplied based on the predetermined minimum activated carbon supply amount, and after the mercury concentration measurement value reaches the first predetermined mercury concentration, the mercury As the concentration measurement value increases, the activated carbon supply amount is increased linearly from the predetermined minimum value, and when the mercury concentration measurement value reaches the second predetermined mercury concentration, the activated carbon supply amount is supplied to the predetermined maximum value. After the mercury concentration measurement value reaches the second predetermined mercury concentration, the activated carbon supply amount can be kept constant at the predetermined maximum value with respect to the increase in the mercury concentration measurement value.

さらに、第二又は第三発明において、活性炭供給量の最小値から最大値に向けた増大に関しては、制御装置は、排ガス中の水銀濃度測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値で第一の供給量とする活性炭供給量のもとに活性炭を供給し、水銀濃度測定値が上記第一の所定水銀濃度に達したときに、階段状に活性炭供給量を所定の第二の供給量にまで増大させ、水銀濃度測定値が第二の所定水銀濃度に達するまでの範囲には、活性炭供給量を第二の供給量で一定に保ち、さらに、水銀濃度測定値が第二の所定水銀濃度に達したときに、活性炭供給量を所定の第三の供給量にまで増大させるように、水銀濃度測定値の増加にしたがって、階段状に活性炭供給量を増大させることを繰り返し、活性炭供給量を所定の最大値にまで増大させた後は、水銀濃度測定値の増加に対してその所定の最大値で活性炭供給量を一定に保つようにすることもできる。   Further, in the second or third invention, with respect to the increase from the minimum value to the maximum value of the activated carbon supply amount, the control device determines that the measured value of mercury concentration in the exhaust gas is zero or less than a measurable minimum value. In the range until the first predetermined mercury concentration is reached, activated carbon is supplied based on the amount of activated carbon supplied as the first supply amount at a predetermined minimum value, and the measured mercury concentration is the above-mentioned first predetermined mercury concentration. When the concentration is reached, the activated carbon supply amount is increased stepwise to the predetermined second supply amount, and the activated carbon supply amount is increased within the range until the measured mercury concentration reaches the second predetermined mercury concentration. The mercury concentration measurement so that the activated carbon supply amount is increased to the predetermined third supply amount when the mercury concentration measurement value reaches the second predetermined mercury concentration. The activated carbon supply can be increased stepwise as the Repeating, after increasing the activated carbon supply amount to a predetermined maximum value may also be to keep the activated carbon supply amount constant at its predetermined maximum value with an increase in mercury density measurements.

上記のように、排ガス中の水銀濃度測定値に基づき、活性炭供給量を最小値から最大値へ向けて増大させることにより、活性炭供給装置の供給量調整機構にとって不具合が生じることもなく、活性炭供給量を円滑に制御することができる。   As described above, by increasing the activated carbon supply amount from the minimum value to the maximum value based on the measured value of mercury concentration in the exhaust gas, the activated carbon supply can be performed without causing any trouble in the supply amount adjustment mechanism of the activated carbon supply device. The amount can be controlled smoothly.

[排ガス処理方法]
本発明における排ガス処理方法は、次の第四発明、第五発明そして第六発明のごとく構成され、いずれによっても上記課題は解決される。
[Exhaust gas treatment method]
The exhaust gas treatment method of the present invention is configured as in the following fourth, fifth and sixth inventions, and the above-described problems can be solved by any of them.

<第四発明>
炉から排出され水銀を含む排ガスを集塵装置で除塵処理し、炉から集塵装置へ排ガスを導く排ガス流路へ活性炭供給装置から活性炭を吹き込むこととする排ガス処理方法において、
炉の下流側でかつ集塵装置の上流側で排ガス中の酸素濃度を酸素濃度計で測定する酸素濃度計測工程と、炉の下流側でかつ集塵装置の上流側で排ガス中の塩化水素濃度を塩化水素濃度計で測定する塩化水素測定工程と、制御装置で活性炭供給装置の活性炭供給量を制御する制御工程を備え、
制御工程で、酸素濃度計による酸素濃度測定値及び塩化水素濃度計による塩化水素濃度測定値に基づき、上記集塵装置の下流側での排ガス中の下流側水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理方法。
<Fourth Invention>
In the exhaust gas treatment method in which the exhaust gas exhausted from the furnace is dust-removed by the dust collector, and activated carbon is blown from the activated carbon supply device to the exhaust gas passage that leads the exhaust gas from the furnace to the dust collector.
An oxygen concentration measurement process that measures the oxygen concentration in the exhaust gas with an oximeter downstream of the furnace and upstream of the dust collector, and the concentration of hydrogen chloride in the exhaust gas downstream of the furnace and upstream of the dust collector A hydrogen chloride measurement process for measuring the activated carbon supply with a hydrogen chloride concentration meter, and a control process for controlling the activated carbon supply amount of the activated carbon supply apparatus with a control device,
In the control step, the downstream mercury concentration in the exhaust gas on the downstream side of the dust collector is set to be lower than the set value based on the measured oxygen concentration value by the oxygen concentration meter and the measured hydrogen chloride concentration value by the hydrogen chloride concentration meter. An exhaust gas treatment method characterized by controlling an activated carbon supply amount.

<第五発明>
炉から排出され水銀を含む排ガスを集塵装置で除塵処理し、炉から集塵装置へ排ガスを導く排ガス流路へ活性炭供給装置から活性炭を吹き込むこととする排ガス処理方法において、
炉の下流側でかつ集塵装置の上流側で排ガス中の酸素濃度を酸素濃度計で測定する酸素濃度計測工程と、炉の下流側でかつ集塵装置の上流側で排ガス中の塩化水素濃度を塩化水素濃度計で測定する塩化水素濃度測定工程と、炉の下流側でかつ集塵装置の上流側で排ガス中の上流側水銀濃度を上流側水銀濃度計で測定する上流側水銀濃度測定工程と、制御装置で活性炭供給装置の活性炭供給量を制御する制御工程を備え、
制御工程で、酸素濃度計による酸素濃度測定値と塩化水素濃度計による塩化水素濃度測定値及び上流側水銀濃度計による上流側水銀濃度測定値に基づき、上記集塵装置の下流側での排ガス中の下流側水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理方法。
<Fifth invention>
In the exhaust gas treatment method in which the exhaust gas exhausted from the furnace is dust-removed by the dust collector, and activated carbon is blown from the activated carbon supply device to the exhaust gas passage that leads the exhaust gas from the furnace to the dust collector.
An oxygen concentration measurement process that measures the oxygen concentration in the exhaust gas with an oximeter downstream of the furnace and upstream of the dust collector, and the concentration of hydrogen chloride in the exhaust gas downstream of the furnace and upstream of the dust collector Of measuring hydrogen chloride concentration with a hydrogen chloride concentration meter and upstream mercury concentration measurement step with an upstream mercury concentration meter for measuring the upstream mercury concentration in the exhaust gas downstream of the furnace and upstream of the dust collector And a control process for controlling the activated carbon supply amount of the activated carbon supply device by the control device,
In the control process, in the exhaust gas at the downstream side of the dust collector, based on the oxygen concentration measurement value by the oxygen concentration meter, the hydrogen chloride concentration measurement value by the hydrogen chloride concentration meter, and the upstream mercury concentration measurement value by the upstream mercury concentration meter. An exhaust gas treatment method, wherein the activated carbon supply amount is controlled so that the downstream mercury concentration of the gas is not more than a set value.

<第六発明>
炉から排出され水銀を含む排ガスを集塵装置で除塵処理し、炉から集塵装置へ排ガスを導く排ガス流路へ活性炭供給装置から活性炭を吹き込むこととする排ガス処理方法において、
炉の下流側でかつ集塵装置の上流側で排ガス中の酸素濃度を酸素濃度計で測定する酸素濃度計測工程と、炉の下流側でかつ集塵装置の上流側で排ガス中の塩化水素濃度を塩化水素濃度計で測定する塩化水素濃度測定工程と、炉の下流側でかつ集塵装置の上流側で排ガス中の水銀濃度を上流側水銀濃度計で測定する上流側水銀濃度測定工程と、集塵装置の下流側で排ガス中の下流側水銀濃度を下流側水銀濃度計で測定する下流側水銀濃度測定工程と、制御装置で活性炭供給装置の活性炭供給量を制御する制御工程を備え、
制御工程で、酸素濃度計による酸素濃度測定値と塩化水素濃度計による塩化水素濃度測定値と上流側水銀濃度計による上流側水銀濃度測定値及び下流側水銀濃度計による下流側水銀濃度測定値に基づき、上記集塵装置の下流側での排ガス中の下流側水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理方法。
<Sixth Invention>
In the exhaust gas treatment method in which the exhaust gas exhausted from the furnace is dust-removed by the dust collector, and activated carbon is blown from the activated carbon supply device to the exhaust gas passage that leads the exhaust gas from the furnace to the dust collector.
An oxygen concentration measurement process that measures the oxygen concentration in the exhaust gas with an oximeter downstream of the furnace and upstream of the dust collector, and the concentration of hydrogen chloride in the exhaust gas downstream of the furnace and upstream of the dust collector A hydrogen chloride concentration measuring step for measuring the mercury concentration in the exhaust gas on the downstream side of the furnace and upstream of the dust collector, and an upstream mercury concentration measuring step for measuring the mercury concentration in the exhaust gas with an upstream mercury concentration meter; A downstream mercury concentration measurement step for measuring the downstream mercury concentration in the exhaust gas with the downstream mercury concentration meter downstream of the dust collector, and a control step for controlling the activated carbon supply amount of the activated carbon supply device with the control device,
In the control process, the oxygen concentration measurement value by the oxygen concentration meter, the hydrogen chloride concentration measurement value by the hydrogen chloride concentration meter, the upstream mercury concentration measurement value by the upstream mercury concentration meter, and the downstream mercury concentration measurement value by the downstream mercury concentration meter An exhaust gas treatment method characterized in that the activated carbon supply amount is controlled so that the downstream mercury concentration in the exhaust gas on the downstream side of the dust collector is not more than a set value.

第四ないし第六発明においては、制御工程では、活性炭供給量を所定の最小値以上に維持するように制御することが好ましい。かかる制御により、集塵装置のバグフィルタには、活性炭の吸着層が常に形成されているようになるので、予め形成された上記吸着層による吸着除去作用とその際に吹き込まれる活性炭による吸着除去作用とにより水銀を速やかにかつ確実に吸着除去でき、集塵後の排ガスの水銀濃度を十分に低濃度とすることができる。また、第五又は第六発明においては、排ガス中の水銀濃度が所定値より低い場合には、活性炭供給量を所定の最小値に保つように制御することが好ましい。集塵装置のバグフィルタに活性炭の吸着層が常に形成されているようにして、上記所定値よりも高濃度の水銀を含む排ガスが排出された際にも、予め形成された上記吸着層による吸着除去作用とその際に吹き込まれる活性炭による吸着除去作用とにより水銀を速やかにかつ確実に吸着除去でき、集塵後の排ガスの水銀濃度を十分に低濃度とすることができる。   In the fourth to sixth inventions, it is preferable that in the control step, the activated carbon supply amount is controlled to be maintained at a predetermined minimum value or more. By such control, an activated carbon adsorption layer is always formed on the bag filter of the dust collector, so that the adsorption removal action by the previously formed adsorption layer and the adsorption removal action by the activated carbon blown at that time Thus, mercury can be adsorbed and removed quickly and reliably, and the mercury concentration of the exhaust gas after dust collection can be made sufficiently low. Further, in the fifth or sixth invention, when the mercury concentration in the exhaust gas is lower than a predetermined value, it is preferable to control the activated carbon supply amount to be kept at a predetermined minimum value. An adsorption layer of activated carbon is always formed on the bag filter of the dust collector, and even when exhaust gas containing mercury at a concentration higher than the predetermined value is discharged, adsorption by the adsorption layer formed in advance is performed. Mercury can be adsorbed and removed quickly and reliably by the removal action and the adsorption removal action by activated carbon blown at that time, and the mercury concentration of the exhaust gas after dust collection can be made sufficiently low.

また、第五又は第六発明においては、制御工程では、上流側水銀濃度計又は下流側水銀濃度計による水銀濃度測定値が所定水銀濃度以上であるとき、活性炭供給量を所定の最大値に保つように制御することが好ましい。時間平均としてはさほど水銀濃度が高くないにも拘らず一時的に急激に水銀濃度が高くなったときに、この高い水銀濃度に合せて多量の活性炭を供給すると、その後の時間にわたり過剰に活性炭を供給してしまう結果になる。このような過剰な供給となることを、上記活性炭供給量を所定の最大値に保つように制御することにより防止できる。   In the fifth or sixth invention, in the control step, when the mercury concentration measured by the upstream mercury concentration meter or the downstream mercury concentration meter is equal to or higher than the predetermined mercury concentration, the activated carbon supply amount is maintained at the predetermined maximum value. It is preferable to control as described above. Although the mercury concentration is not so high as a time average, when the mercury concentration suddenly increases temporarily, if a large amount of activated carbon is supplied in accordance with this high mercury concentration, the activated carbon will be excessively excessive over the subsequent time. The result will be to supply. Such excessive supply can be prevented by controlling the supply amount of the activated carbon so as to keep the predetermined maximum value.

また、第五又は第六発明において、活性炭供給量の最小値から最大値へ向けた増大に関しては、制御工程は、排ガス中の水銀濃度測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値の活性炭供給量のもとに活性炭を供給し、水銀濃度測定値が上記第一の所定水銀濃度に達した後に、水銀濃度測定値の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させ、水銀濃度測定値が第二の所定水銀濃度に達したときに、活性炭供給量を所定の最大値の供給量とし、水銀濃度測定値が上記第二の所定水銀濃度に達した後には、水銀濃度測定値の増加に対してその所定の最大値で活性炭供給量を一定に保つようにすることができる。   In addition, in the fifth or sixth invention, regarding the increase from the minimum value to the maximum value of the activated carbon supply amount, the control process starts from a value at which the measured mercury concentration in the exhaust gas is zero or less than a measurable minimum value. In the range until the first predetermined mercury concentration is reached, activated carbon is supplied based on the predetermined minimum activated carbon supply amount, and after the mercury concentration measurement value reaches the first predetermined mercury concentration, the mercury As the concentration measurement value increases, the activated carbon supply amount is increased linearly from the predetermined minimum value, and when the mercury concentration measurement value reaches the second predetermined mercury concentration, the activated carbon supply amount is supplied to the predetermined maximum value. After the mercury concentration measurement value reaches the second predetermined mercury concentration, the activated carbon supply amount can be kept constant at the predetermined maximum value with respect to the increase in the mercury concentration measurement value.

さらに、第五又は第六発明において、活性炭供給量の最小値から最大値に向けた増大に関しては、制御工程は、排ガスの水銀濃度測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値で第一の供給量とする活性炭供給量のもとに活性炭を供給し、水銀濃度測定値が上記第一の所定水銀濃度に達したときに、階段状に活性炭供給量を所定の第二の供給量にまで増大させ、水銀濃度測定値が第二の所定水銀濃度に達するまでの範囲には、活性炭供給量を第二の供給量で一定に保ち、さらに、水銀濃度測定値が第二の所定水銀濃度に達したときに、活性炭供給量を所定の第三の供給量にまで増大させるように、水銀濃度測定値の増加にしたがって、階段状に活性炭供給量を増大させることを繰り返し、活性炭供給量を所定の最大値にまで増大させた後は、水銀濃度測定値の増加に対してその所定の最大値で活性炭供給量を一定に保つようにすることもできる。   Furthermore, in the fifth or sixth invention, regarding the increase from the minimum value to the maximum value of the activated carbon supply amount, the control process is performed from the value where the mercury concentration measurement value of the exhaust gas is zero or less than the measurable minimum value, In the range until the first predetermined mercury concentration is reached, activated carbon is supplied based on the activated carbon supply amount that is the first supply amount at a predetermined minimum value, and the measured mercury concentration value is the first predetermined mercury concentration. When the activated carbon supply amount is increased to the predetermined second supply amount in a stepwise manner, the activated carbon supply amount is increased within the range until the mercury concentration measurement value reaches the second predetermined mercury concentration. Of the mercury concentration measurement value so that the activated carbon supply amount is increased to the predetermined third supply amount when the mercury concentration measurement value reaches the second predetermined mercury concentration. Increasing the amount of activated carbon supplied in a stepped manner as the number increases Repeating, after increasing the activated carbon supply amount to a predetermined maximum value may also be to keep the activated carbon supply amount constant at its predetermined maximum value with an increase in mercury density measurements.

上記のように、排ガスの水銀濃度測定値に基づき、活性炭供給量の最小値から最大値へ向けて増大させることにより、活性炭供給装置の供給量調整機構にとって不具合が生じることもなく、活性炭供給量を円滑に制御することができる。   As described above, by increasing the activated carbon supply amount from the minimum value to the maximum value based on the mercury concentration measurement value of the exhaust gas, the activated carbon supply amount does not cause a problem for the supply amount adjustment mechanism of the activated carbon supply device. Can be controlled smoothly.

このような本発明によれば、第一発明そして第四発明では、炉の下流側でかつ集塵装置の上流側で排ガス中の酸素濃度を酸素濃度計で測定しそして塩化水素濃度を塩化水素濃度計で測定して、酸素濃度測定値及び塩化水素濃度測定値に基づき、活性炭供給量を調整することとして、排ガス中の酸素濃度そして塩化水素濃度の状況に対応して、活性炭による排ガス中の水銀の除去性能を把握し、活性炭供給量を過不足なく調整することで、集塵装置の下流側での排ガス中の水銀濃度を許容される設定値以下とすることができる。   According to this invention, in the first invention and the fourth invention, the oxygen concentration in the exhaust gas is measured with an oximeter on the downstream side of the furnace and the upstream side of the dust collector, and the hydrogen chloride concentration is measured with hydrogen chloride. Measured with a densitometer and adjusted the supply amount of activated carbon based on the measured oxygen concentration and measured hydrogen chloride concentration. In response to the oxygen concentration and hydrogen chloride concentration in the exhaust gas, By grasping the mercury removal performance and adjusting the supply amount of activated carbon without excess or deficiency, the mercury concentration in the exhaust gas on the downstream side of the dust collector can be set to an allowable set value or less.

第二発明そして第五発明では、炉よりも下流側で集塵装置よりも上流側で、排ガス中の酸素濃度を酸素濃度計で測定しそして塩化水素濃度を塩化水素濃度計で測定し、上流側水銀濃度を上流側水銀濃度計で測定し、その測定値に基づき活性炭供給量を調整して集塵装置の下流側での排ガス中の下流側水銀濃度を許容される設定値以下とする。炉からの排ガス中の酸素濃度そして塩化水素濃度が変動した場合に酸素濃度測定値そして塩化水素濃度測定値に基づき活性炭による排ガス中の水銀の除去性能を把握し、さらに、排ガス中の水銀濃度が変動した場合に、排ガスの集塵装置への流入前に上流側水銀濃度を測定しその測定値に基づき、速やかに活性炭供給量を適正量に調整することができ、水銀濃度の変動に対して遅れが生じることなく確実に煙突から排出される排ガス中の水銀濃度を許容される設定値以下とすることができる。   In the second and fifth inventions, the oxygen concentration in the exhaust gas is measured with an oxygen concentration meter and the hydrogen chloride concentration is measured with a hydrogen chloride concentration meter downstream from the furnace and upstream from the dust collector. The upstream mercury concentration is measured with an upstream mercury concentration meter, and the activated carbon supply amount is adjusted based on the measured value so that the downstream mercury concentration in the exhaust gas on the downstream side of the dust collector is not more than the allowable set value. When the oxygen concentration and hydrogen chloride concentration in the exhaust gas from the furnace fluctuate, grasp the mercury removal performance in the exhaust gas by activated carbon based on the measured oxygen concentration value and the measured hydrogen chloride concentration, and the mercury concentration in the exhaust gas In the case of fluctuations, the upstream mercury concentration can be measured before the exhaust gas flows into the dust collector, and the activated carbon supply can be quickly adjusted to an appropriate amount based on the measured value. The mercury concentration in the exhaust gas discharged from the chimney can be surely set to an allowable set value or less without causing a delay.

さらに第三発明そして第六発明では、炉よりも下流側で集塵装置より上流側で、排ガス中の酸素濃度を酸素濃度計で測定しそして塩化水素濃度を塩化水素濃度計で測定し、上流側水銀濃度を上流側水銀濃度計で測定するとともに、集塵装置の下流側でも下流側水銀濃度を下流側水銀濃度計で測定し、これらの四つの測定値に基づき活性炭供給量を調整して集塵装置の下流側での下流側水銀濃度を許容される設定値以下とする。炉からの排ガス中の酸素濃度そして塩化水素濃度が変動した場合に酸素濃度測定値そして塩化水素濃度測定値に基づき活性炭による排ガス中の水銀の除去性能を把握し、さらに、炉よりも下流側で集塵装置よりも上流側での上流側水銀濃度測定値及び集塵装置の下流側での下流側水銀濃度測定値に基づき、活性炭供給量を制御する。このようにすることにより、酸素濃度そして塩化水素濃度の変動と水銀濃度の変動に対して遅れが生じることなくより確実に煙突から排出される排ガス中の水銀濃度を許容される設定値以下にできる。   Further, in the third and sixth inventions, the oxygen concentration in the exhaust gas is measured with an oxygen concentration meter downstream of the furnace and upstream of the dust collector, and the hydrogen chloride concentration is measured with a hydrogen chloride concentration meter. Measure the side mercury concentration with the upstream mercury concentration meter, measure the downstream mercury concentration with the downstream mercury concentration meter at the downstream side of the dust collector, and adjust the amount of activated carbon based on these four measured values. The downstream mercury concentration on the downstream side of the dust collector is set to an allowable setting value or less. When the oxygen concentration and hydrogen chloride concentration in the exhaust gas from the furnace fluctuate, grasp the mercury removal performance of the exhaust gas by activated carbon based on the measured oxygen concentration value and the measured hydrogen chloride concentration, and further downstream from the furnace The amount of activated carbon supplied is controlled based on the upstream mercury concentration measurement value upstream of the dust collector and the downstream mercury concentration measurement value downstream of the dust collector. By doing in this way, the mercury concentration in the exhaust gas discharged from the chimney can be more reliably set to an allowable set value or less without causing a delay with respect to fluctuations in oxygen concentration, hydrogen chloride concentration and mercury concentration. .

第一発明そして第四発明では、酸素濃度測定値そして塩化水素濃度測定値に基づき活性炭による排ガス中の水銀の除去性能を把握し活性炭供給量を制御するが、炉からの排ガス中の水銀濃度が変動したときには、その変動に対して活性炭供給量の調整に遅れが生じることがある。一方、第二発明そして第五発明では、集塵装置よりも上流側で上流側水銀濃度を測定するので、上記変動に対しても速やかに対応できる。さらに、第三発明および第六発明では、集塵装置よりも上流側で上流側水銀濃度を測定し、さらに集塵装置の下流側で下流側水銀濃度を測定し、これらの二つの測定値に基づき活性炭供給量を調整することで、排ガス中の水銀濃度の変動に対して遅れが生じることなく、より確実に煙突から排出される排ガス中の水銀濃度を許容される設定値以下にできる。   In the first invention and the fourth invention, the mercury removal performance by the activated carbon is grasped based on the oxygen concentration measurement value and the hydrogen chloride concentration measurement value, and the activated carbon supply amount is controlled, but the mercury concentration in the exhaust gas from the furnace is When it fluctuates, the adjustment of the activated carbon supply amount may be delayed with respect to the fluctuation. On the other hand, in the second invention and the fifth invention, since the upstream mercury concentration is measured on the upstream side of the dust collector, the above fluctuation can be dealt with promptly. Furthermore, in the third and sixth inventions, the upstream mercury concentration is measured on the upstream side of the dust collector, and further, the downstream mercury concentration is measured on the downstream side of the dust collector. By adjusting the activated carbon supply amount based on this, the mercury concentration in the exhaust gas discharged from the chimney can be more reliably reduced to a set value or less without delay with respect to the fluctuation of the mercury concentration in the exhaust gas.

このように本発明によれば、排ガス中の酸素濃度そして塩化水素濃度を集塵装置の上流側の位置で測定し、あるいは集塵装置の上流側で酸素濃度そして塩化水素濃度を測定するとともに上流側水銀濃度も測定し、あるいは集塵装置の上流側で酸素濃度そして塩化水素濃度を測定するとともに集塵装置の上流側で上流側水銀濃度そして下流側で下流側水銀濃度を測定して、酸素温度測定値そして塩化水素濃度測定値に基づき活性炭による排ガス中の水銀の除去性能を把握し、吹き込む活性炭の供給量を調整するので、煙突から排出される排ガス中の水銀濃度は確実に許容される設定値以下となり、しかも活性炭は過不足なく供給されることとなり、活性炭の使用量を抑制できるとともに、排ガス処理費用の低減化を図れる。   As described above, according to the present invention, the oxygen concentration and the hydrogen chloride concentration in the exhaust gas are measured at a position upstream of the dust collector, or the oxygen concentration and the hydrogen chloride concentration are measured upstream of the dust collector and upstream. Measure the side mercury concentration, or measure the oxygen concentration and hydrogen chloride concentration upstream of the dust collector, and measure the upstream mercury concentration upstream and the downstream mercury concentration downstream of the dust collector, Based on the temperature measurement value and hydrogen chloride concentration measurement value, the mercury removal performance in the exhaust gas by activated carbon is grasped, and the supply amount of activated carbon to be blown is adjusted, so the mercury concentration in the exhaust gas discharged from the chimney is reliably allowed The activated carbon will be supplied without excess and deficiency, and the amount of activated carbon used can be suppressed, and the exhaust gas treatment cost can be reduced.

また、本発明によれば、排ガス中の酸素濃度そして塩化水素濃度もしくは排ガス中の酸素濃度として塩化水素濃度および上流側水銀濃度を集塵装置の上流側で測定し、その測定値に基づき吹き込む活性炭の供給量を調整するので、排ガス中の酸素濃度そして塩化水素濃度が低くなり、活性炭による水銀吸着効率が低下してしまった場合でも、活性炭吹込み量を制御することで、煙突から排出される排ガス中の水銀濃度を所定値以下にできる。また、水銀濃度測定値が所定水銀濃度以上であるとき、活性炭供給量を所定の最大値に保つように制御することにより、活性炭は過不足なく供給されるので、活性炭の使用量を適正にできるとともに、排ガス処理費用の低減化を図れる。   Further, according to the present invention, the activated carbon to be blown in based on the measurement of the hydrogen chloride concentration and the upstream mercury concentration on the upstream side of the dust collector as the oxygen concentration in the exhaust gas and the hydrogen chloride concentration or the oxygen concentration in the exhaust gas. Since the oxygen and hydrogen chloride concentrations in the exhaust gas are reduced and the mercury adsorption efficiency by activated carbon is reduced, the activated carbon blowing amount is controlled to control the amount of exhaust gas discharged from the chimney. The mercury concentration in the exhaust gas can be reduced to a predetermined value or less. In addition, when the mercury concentration measurement value is equal to or higher than the predetermined mercury concentration, the activated carbon is supplied without excess or deficiency by controlling the activated carbon supply amount so as to maintain the predetermined maximum value. At the same time, the cost of exhaust gas treatment can be reduced.

本発明の第一実施形態装置を示し、(A)はその概要構成図、(B)は活性炭供給装置の概要構成図である。BRIEF DESCRIPTION OF THE DRAWINGS The 1st embodiment apparatus of this invention is shown, (A) is the schematic block diagram, (B) is a schematic block diagram of activated carbon supply apparatus. 本発明の第二実施形態装置の概要構成図である。It is a schematic block diagram of the apparatus of 2nd embodiment of this invention. 本発明の第三実施形態装置の概要構成図である。It is a schematic block diagram of the apparatus of 3rd embodiment of this invention. (A)〜(H)は排ガス中の水銀濃度と活性炭供給量との関係として、採用可能な各種パターンを示している。(A)-(H) have shown the various patterns which can be employ | adopted as a relationship between the mercury concentration in waste gas, and activated carbon supply amount. 酸素濃度と塩化水素濃度と活性炭供給量との関係を示す図である。It is a figure which shows the relationship between oxygen concentration, hydrogen chloride concentration, and activated carbon supply amount.

以下、添付図面にもとづき、本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

本実施形態では、水銀を含む排ガスを排出する炉として、廃棄物を焼却する焼却炉について説明しているが、本発明は、これに限らず、セメントキルン炉、非鉄金属製錬炉等の各種炉から排出される水銀を含む排ガスの処理装置及び処理方法として用いることができる。   In the present embodiment, an incinerator that incinerates waste is described as a furnace that discharges exhaust gas containing mercury. However, the present invention is not limited to this, and various types such as a cement kiln furnace and a nonferrous metal smelting furnace are described. It can be used as a treatment apparatus and treatment method for exhaust gas containing mercury discharged from a furnace.

廃棄物を焼却する焼却炉からの排ガスに対して、集塵のために設置したバグフィルタの上流位置で排ガス流路へ活性炭を吹き込むことで、該排ガス流路に浮遊する水銀を活性炭で吸着するとともに、バグフィルタの濾過材表面に活性炭層を作成して水銀を該活性炭層で吸着して、排ガス中の水銀を吸着除去して、バグフィルタの下流側での水銀濃度を低濃度レベルに抑制することが可能であるが、従来は廃棄物の種類や量の変動により、焼却炉からの排ガス中の水銀の形態や水銀濃度が変動しバグフィルタの下流側において一時的に水銀濃度が上昇する場合に備え、活性炭を常時、多量に吹き込む必要があり、排ガス処理費用が嵩むことになっている。   For the exhaust gas from the incinerator that incinerates waste, the activated carbon is blown into the exhaust gas channel upstream of the bag filter installed for dust collection, so that the mercury floating in the exhaust gas channel is adsorbed by the activated carbon. At the same time, an activated carbon layer is created on the filter medium surface of the bag filter, and mercury is adsorbed by the activated carbon layer to absorb and remove the mercury in the exhaust gas, thereby suppressing the mercury concentration downstream of the bag filter to a low concentration level. In the past, due to changes in the type and amount of waste, the form of mercury and the mercury concentration in the exhaust gas from the incinerator fluctuate, and the mercury concentration temporarily increases downstream of the bag filter. In preparation for the case, it is necessary to always blow a large amount of activated carbon, which increases the cost of exhaust gas treatment.

そこで、本実施形態では、バグフィルタの上流側の排ガス流路で活性炭を吹き込む位置より上流側に酸素濃度計そして塩化水素濃度計もしくは酸素濃度計そして塩化水素濃度計および水銀濃度計を設置し、酸素濃度そして塩化水素濃度もしくは酸素濃度そして塩化水素濃度および水銀濃度を測定し、測定された酸素濃度そして塩化水素濃度もしくは酸素濃度そして塩化水素濃度および水銀濃度にもとづき、吹込む活性炭量を制御し、排ガス流路に吹き込んでいる。酸素濃度計そして塩化水素濃度計および水銀濃度計は、連続的に測定する形式が好ましい。   Therefore, in this embodiment, an oxygen concentration meter, a hydrogen chloride concentration meter or an oxygen concentration meter, a hydrogen chloride concentration meter, and a mercury concentration meter are installed upstream from the position where activated carbon is blown in the exhaust gas flow path upstream of the bag filter, Measure the oxygen concentration and hydrogen chloride concentration or oxygen concentration and hydrogen chloride concentration and mercury concentration, and control the amount of activated carbon to be injected based on the measured oxygen concentration and hydrogen chloride concentration or oxygen concentration and hydrogen chloride concentration and mercury concentration; Blowing into the exhaust gas flow path. The oxygen concentration meter, the hydrogen chloride concentration meter, and the mercury concentration meter are preferably continuously measured.

<第一実施形態>
本実施形態装置の概要構成を示す図1(A)において、焼却炉1からの排ガスを煙突4まで導く排ガス流路Aに、上流側からボイラ2、さらに集塵装置としてバグフィルタ3が配設されており、バグフィルタ3の上流位置で排ガス流路Aへ、排ガス中の水銀を吸着除去するための活性炭を吹き込む活性炭供給装置5とこれを制御する制御装置6が設けられており、バグフィルタ3の上流側であって、活性炭供給装置5による活性炭吹込み位置よりも上流側の位置で排ガス中の酸素濃度を測定する酸素濃度計7とその直下流側で塩化水素濃度を測定する塩化水素濃度計8が設けられ、該酸素濃度計7と塩化水素濃度計8の測定値を出力信号として上記制御装置6へ送るように、上記酸素濃度計7と塩化水素濃度計8が該制御装置6に接続されている。
<First embodiment>
In FIG. 1A showing a schematic configuration of the apparatus of the present embodiment, a boiler 2 from the upstream side and a bag filter 3 as a dust collector are disposed in an exhaust gas flow path A that guides exhaust gas from the incinerator 1 to the chimney 4. An activated carbon supply device 5 for blowing activated carbon for adsorbing and removing mercury in the exhaust gas to the exhaust gas flow path A at a position upstream of the bag filter 3 and a control device 6 for controlling the activated carbon supply device 5 are provided. 3, an oxygen concentration meter 7 that measures the oxygen concentration in the exhaust gas at a position upstream of the activated carbon blowing position by the activated carbon supply device 5, and a hydrogen chloride that measures the hydrogen chloride concentration immediately downstream thereof A concentration meter 8 is provided, and the oxygen concentration meter 7 and the hydrogen chloride concentration meter 8 transmit the measured values of the oxygen concentration meter 7 and the hydrogen chloride concentration meter 8 as output signals to the control device 6. Connected to That.

酸素濃度計7の測定値と塩化水素濃度計8の測定値は制御装置6に送られ、この測定値に基づき活性炭供給装置5が制御される。   The measured value of the oxygen concentration meter 7 and the measured value of the hydrogen chloride concentration meter 8 are sent to the control device 6, and the activated carbon supply device 5 is controlled based on the measured value.

制御装置6は、酸素濃度計7による酸素濃度測定値そして塩化水素濃度計8による塩化水素濃度測定値と活性炭供給量との予め定めた対応関係を記憶しており、この対応関係に基づき、活性炭供給量を制御するようにしてもよい。   The control device 6 stores a predetermined correspondence relationship between the oxygen concentration measurement value by the oxygen concentration meter 7 and the hydrogen chloride concentration measurement value by the hydrogen chloride concentration meter 8 and the activated carbon supply amount. Based on this correspondence relationship, the activated carbon The supply amount may be controlled.

上記活性炭供給装置5は、具体的には、図1(B)に示されるように、活性炭を収容するホッパ5Aと、該ホッパ5Aの下部出口に設けられたロータリ形式の切出し部材5Bと、さらにその下方に設けられたバルブまたはダンパ5Cとを有している。かかる活性炭供給装置5では、制御装置6からの指令信号を受けて、切出し部材5Bのロータリの回転数、バルブの開度及びダンパ5Cの開度のうち少なくとも一つが調整され活性炭が供給量を調整されて上記排ガス流路Aへ供給される。   Specifically, as shown in FIG. 1 (B), the activated carbon supply device 5 includes a hopper 5A for storing activated carbon, a rotary-type cutting member 5B provided at a lower outlet of the hopper 5A, and It has a valve or damper 5C provided below it. In the activated carbon supply device 5, upon receiving a command signal from the control device 6, at least one of the rotational speed of the cutting member 5B, the opening of the valve, and the opening of the damper 5C is adjusted, and the activated carbon adjusts the supply amount. And supplied to the exhaust gas passage A.

<酸素濃度測定値そして塩化水素濃度測定値と活性炭供給量との対応関係の説明>
酸素濃度測定値そして塩化水素濃度測定値と活性炭供給量との対応関係を定める手順を以下に示す。
<Explanation of Correspondence between Oxygen Concentration Measurement and Hydrogen Chloride Concentration Measurement and Activated Carbon Supply>
The procedure for determining the correspondence between the oxygen concentration measurement value and the hydrogen chloride concentration measurement value and the activated carbon supply amount is shown below.

図1に示す排ガス処理装置を用いて排ガス中の水銀を活性炭により吸着除去する実験を行った。バグフィルタ3よりも上流側での排ガス流路Aにおける排ガス中の上流側水銀濃度は200μg/Nm程度でほぼ一定であり、酸素濃度が4vol%以下、4〜8vol%、8vol%以上の三種の酸素濃度についてこの排ガス中の塩化水素濃度を50〜400ppmの範囲で変化させ、上記三種の酸素濃度について、種々の塩化水素濃度の場合にバグフィルタ3の下流側である煙突4内の排ガス中の下流側水銀濃度を一時間の平均値で50μg/Nm以下とするために必要な活性炭供給量を求め、排ガス中の酸素濃度と塩化水素濃度と活性炭供給量との好ましい対応関係を図5に示すように定めた。 An experiment was conducted to adsorb and remove mercury in the exhaust gas by activated carbon using the exhaust gas treatment apparatus shown in FIG. The upstream mercury concentration in the exhaust gas in the exhaust gas passage A upstream from the bag filter 3 is approximately constant at about 200 μg / Nm 3 , and the oxygen concentration is 4 vol% or less, 4 to 8 vol%, 3 types of 8 vol% or more. The oxygen chloride concentration in the exhaust gas is changed in the range of 50 to 400 ppm, and the above three kinds of oxygen concentrations in the exhaust gas in the chimney 4 on the downstream side of the bag filter 3 in the case of various hydrogen chloride concentrations. Fig. 5 shows a preferable correspondence relationship between the oxygen concentration in the exhaust gas, the hydrogen chloride concentration, and the activated carbon supply amount obtained by obtaining the activated carbon supply amount required to make the downstream-side mercury concentration of 50 µg / Nm 3 or less as an average value for one hour. It was determined as shown in

図5に示されるように、酸素濃度が8vol%以上の高い濃度の場合には、活性炭の水銀除去性能が高く水銀は十分に吸着除去されるので、活性炭供給量は酸素濃度が4〜8vol%の場合や4vol%以下の場合に比べて少ない供給量で十分に水銀を除去でき、排ガス中の水銀濃度を十分に許容される設定値以下とすることができる。一方、酸素濃度が低い場合には、活性炭による排ガス中水銀の吸着除去性能が低いため、多くの活性炭供給量が必要であり、活性炭供給量を増加して排ガス中の水銀濃度を許容される設定値以下とするようにする。すなわち、酸素濃度が低いほど必要な活性炭供給量は多くなる。   As shown in FIG. 5, when the oxygen concentration is a high concentration of 8 vol% or more, the mercury removal performance of the activated carbon is high and mercury is sufficiently adsorbed and removed, so that the activated carbon supply amount is 4 to 8 vol% oxygen concentration. As compared with the case of 4 vol% or less, mercury can be sufficiently removed with a small supply amount, and the mercury concentration in the exhaust gas can be made sufficiently lower than a set value. On the other hand, when the oxygen concentration is low, the adsorption and removal performance of mercury in the exhaust gas by activated carbon is low, so a large amount of activated carbon supply is required, and the activated carbon supply is increased to allow the mercury concentration in the exhaust gas to be allowed. Try to keep it below the value. That is, the lower the oxygen concentration, the greater the required amount of activated carbon supply.

さらに、図5に示されるように、上記三種の酸素濃度のいずれの場合も、塩化水素濃度が高い濃度の場合には、活性炭による排ガス中水銀の吸着除去性能が高く、活性炭により十分に吸着除去される。例えば、酸素濃度が8vol%以上で、塩化水素濃度が300ppm以上であると、活性炭による排ガス中水銀の吸着除去性能が高く、活性炭により十分に吸着除去されるので、活性炭供給量は排ガス流量あたり50mg/Nm程度で十分に水銀を除去でき、排ガス中の水銀濃度を十分に許容される設定値以下とすることができる。一方、塩化水素濃度が300ppmより低い場合には、活性炭による排ガス中水銀の吸着除去性能が低いため、多くの活性炭供給量が必要であり、活性炭供給量を増加して排ガス中の水銀濃度を許容される設定値以下とするようにする。すなわち、塩化水素濃度が低いほど必要な活性炭供給量は多くなる。 Further, as shown in FIG. 5, in any of the above three oxygen concentrations, when the hydrogen chloride concentration is high, the adsorption and removal performance of mercury in the exhaust gas by the activated carbon is high, and the activated carbon is sufficiently adsorbed and removed by the activated carbon. Is done. For example, when the oxygen concentration is 8 vol% or more and the hydrogen chloride concentration is 300 ppm or more, the adsorption and removal performance of mercury in the exhaust gas by the activated carbon is high, and the activated carbon is sufficiently adsorbed and removed by the activated carbon. Mercury can be sufficiently removed at about / Nm 3 , and the mercury concentration in the exhaust gas can be set to a sufficiently allowable set value or less. On the other hand, when the hydrogen chloride concentration is lower than 300 ppm, the adsorption and removal performance of mercury in exhaust gas by activated carbon is low, so a large amount of activated carbon supply is required, and the activated carbon supply is increased to allow the mercury concentration in the exhaust gas. To be less than or equal to the set value. That is, the lower the hydrogen chloride concentration, the greater the required amount of activated carbon supply.

排ガス中の水銀濃度が異なる場合にも、同様に排ガス中の酸素濃度測定値そして塩化水素濃度測定値と活性炭供給量との好ましい対応関係を定めておき、測定した酸素濃度測定値そして塩化水素濃度測定値に基づき、活性炭供給装置の活性炭供給量を制御する。   Similarly, when the mercury concentration in the exhaust gas is different, the preferred correspondence between the measured oxygen concentration value and the measured hydrogen chloride concentration in the exhaust gas and the amount of activated carbon supplied is determined, and the measured oxygen concentration measured value and the hydrogen chloride concentration are determined. Based on the measured value, the activated carbon supply amount of the activated carbon supply device is controlled.

<第二実施形態>
図2に示される第二実施形態は、既述の第一実施形態に比し、酸素濃度計7そして塩化水素濃度計8に加え、活性炭供給装置5による活性炭吹込み位置よりも上流側の位置に上流側水銀濃度計9を設置したことのみが異なり他は図1の場合と同じである。したがって、図2では、図1の第一実施形態における部位と共通な部位について同一符号を付すことで、その説明は省略する。
<Second embodiment>
The second embodiment shown in FIG. 2 is a position upstream of the activated carbon blowing position by the activated carbon supply device 5 in addition to the oxygen concentration meter 7 and the hydrogen chloride concentration meter 8 as compared with the first embodiment described above. The only difference is that the upstream mercury concentration meter 9 is installed, and the others are the same as in FIG. Therefore, in FIG. 2, the same code | symbol is attached | subjected about the site | part common in the 1st embodiment of FIG. 1, and the description is abbreviate | omitted.

本実施形態では、図2に見られるように、上流側水銀濃度計9は焼却炉1の下流側かつバグフィルタ3よりも上流側であって、活性炭供給装置5による活性炭吹込み位置よりも上流側の位置で排ガス中の上流側水銀濃度を測定するように配設されている。本実施形態では、この測定位置での酸素濃度そして塩化水素濃度、上流側水銀濃度および活性炭供給量と、バグフィルタ3よりも下流位置での下流側水銀濃度との関係が蓄積されたデータにもとづき把握されている。したがって、活性炭吹込み位置よりも上流側での酸素濃度そして塩化水素濃度および上流側水銀濃度を測定しその酸素測定値そして塩化水素濃度測定値および上流側水銀濃度測定値とその時点で供給している活性炭供給量とから、バグフィルタ3の下流での下流側水銀濃度を推定できる。すなわち、制御装置6によって上記活性炭吹込み位置よりも上流側での酸素濃度そして塩化水素濃度および上流側水銀濃度測定値に基づき、バグフィルタ3の下流側での下流側水銀濃度を推定し、その推定下流側水銀濃度を設定値以下とするために必要な活性炭供給量を求めることができ、活性炭供給装置5の活性炭供給量を制御する。その結果としてバグフィルタ3の下流側での下流側水銀濃度を設定値以下としている。制御装置6は、酸素濃度計7による酸素濃度測定値そして塩化水素濃度計8による塩化水素濃度測定値と上流側水銀濃度計9による上流側水銀濃度測定値と制御を行う時点で供給されている活性炭供給量との予め定めた対応関係に基づき、活性炭供給量を制御するようにしてもよい。   In this embodiment, as shown in FIG. 2, the upstream mercury concentration meter 9 is downstream of the incinerator 1 and upstream of the bag filter 3 and upstream of the activated carbon blowing position by the activated carbon supply device 5. It is arranged to measure the upstream mercury concentration in the exhaust gas at the position on the side. In the present embodiment, the relationship between the oxygen concentration and hydrogen chloride concentration, the upstream mercury concentration and the activated carbon supply amount at the measurement position, and the downstream mercury concentration at the downstream position from the bag filter 3 is based on accumulated data. It is grasped. Therefore, measure the oxygen concentration, hydrogen chloride concentration and upstream mercury concentration upstream of the activated carbon blowing position, supply the oxygen measurement value, hydrogen chloride concentration measurement value and upstream mercury concentration measurement value and supply at that time. From the activated carbon supply amount, the downstream mercury concentration downstream of the bag filter 3 can be estimated. That is, the control device 6 estimates the downstream mercury concentration downstream of the bag filter 3 based on the measured oxygen concentration, hydrogen chloride concentration, and upstream mercury concentration upstream of the activated carbon blowing position, The activated carbon supply amount necessary for setting the estimated downstream mercury concentration below the set value can be obtained, and the activated carbon supply amount of the activated carbon supply device 5 is controlled. As a result, the downstream mercury concentration at the downstream side of the bag filter 3 is set to a set value or less. The control device 6 is supplied at the time of controlling the oxygen concentration measurement value by the oxygen concentration meter 7, the hydrogen chloride concentration measurement value by the hydrogen chloride concentration meter 8, and the upstream mercury concentration measurement value by the upstream mercury concentration meter 9. The activated carbon supply amount may be controlled based on a predetermined correspondence relationship with the activated carbon supply amount.

かかる本実施形態では、焼却炉1からの排ガス中の酸素濃度そして塩化水素濃度や水銀濃度に変動があった場合、この酸素濃度そして塩化水素濃度や水銀濃度の変動を焼却炉1の下流側かつ活性炭供給装置5による活性炭吹込み位置よりも上流側の位置で酸素濃度計7そして塩化水素濃度計8および上流側水銀濃度計9が測定して検知し、速やかに活性炭供給量を調整する対応ができるので、タイムラグがなく、バグフィルタ3の下流側の排ガス中の水銀濃度を確実に設定値以下に維持することができる。図2に図示された例では、酸素濃度計7そして塩化水素濃度計8による酸素濃度そして塩化水素濃度の測定位置および上流側水銀濃度計9による上流側水銀濃度の測定位置は、活性炭吹込み位置よりも上流側であるが、これに限定されずに、バグフィルタ3の上流側であって、該活性炭吹込み位置よりも下流側であってもよい。   In this embodiment, when there is a change in the oxygen concentration, hydrogen chloride concentration, or mercury concentration in the exhaust gas from the incinerator 1, the oxygen concentration, hydrogen chloride concentration, or mercury concentration is changed downstream of the incinerator 1 and The oxygen concentration meter 7, the hydrogen chloride concentration meter 8, and the upstream mercury concentration meter 9 measure and detect at a position upstream of the activated carbon blowing position by the activated carbon supply device 5, and promptly adjust the activated carbon supply amount. Therefore, there is no time lag, and the mercury concentration in the exhaust gas downstream of the bag filter 3 can be reliably maintained below the set value. In the example shown in FIG. 2, the measurement position of the oxygen concentration and hydrogen chloride concentration by the oxygen concentration meter 7 and the hydrogen chloride concentration meter 8 and the measurement position of the upstream mercury concentration by the upstream mercury concentration meter 9 are the activated carbon blowing position. However, the present invention is not limited to this, and may be upstream of the bag filter 3 and downstream of the activated carbon blowing position.

水銀濃度測定値の変化に対して活性炭供給量を対応させる対応関係としては、種々の形態を適用することができる。   Various forms can be applied as a correspondence relationship in which the activated carbon supply amount corresponds to a change in the measured mercury concentration value.

測定した排ガス中の水銀濃度が零又は測定可能な限界最小値未満又は予め定めた所定値より低い場合には、活性炭の供給を行わず、排ガス中の水銀濃度が零又は測定可能な限界最小値又は予め定めた所定値より高い場合には、活性炭供給量を排ガス中の水銀濃度の増加にしたがって、次第に増加させるような対応関係の形態(形態1)にしてもよい。また、上記の形態1に付加して、水銀濃度の測定値が所定の水銀濃度に達するまでの間、水銀濃度の増加にしたがって、活性炭供給量を増大させ、水銀濃度の測定値が所定の水銀濃度以上の場合に、活性炭供給量を所定の最大値の供給量とし一定とする対応関係の形態
(形態2)としてもよい。また、形態1または形態2において、水銀濃度の増加にしたがって、活性炭供給量を増大させる際に、直線的に増大させてもよいし、ステップ状に増大させてもよい。
When the measured mercury concentration in the exhaust gas is zero or less than the minimum measurable limit value or lower than a predetermined value, activated carbon is not supplied and the mercury concentration in the exhaust gas is zero or the minimum limit value that can be measured. Alternatively, when the value is higher than a predetermined value, the form of correspondence (form 1) may be adopted in which the activated carbon supply amount is gradually increased as the mercury concentration in the exhaust gas increases. Further, in addition to the above-described form 1, the activated carbon supply amount is increased in accordance with the increase in mercury concentration until the measured value of mercury concentration reaches a predetermined mercury concentration, and the measured value of mercury concentration becomes the predetermined mercury. When the concentration is equal to or higher than the concentration, the activated carbon supply amount may be a predetermined maximum value supply amount and may be in a constant form (form 2). Moreover, in the form 1 or the form 2, when the activated carbon supply amount is increased as the mercury concentration increases, the activated carbon supply amount may be increased linearly or stepwise.

また、水銀濃度測定値の変化に対して活性炭供給量を対応させる対応関係としては、水銀濃度測定値が所定の水銀濃度以下の場合は活性炭供給量を所定の最小値とし、水銀濃度測定値が所定の水銀濃度より高い場合には水銀濃度測定値の増加にしたがって、活性炭供給量を所定の最小値から次第に増加して、さらに、水銀濃度測定値が所定の水銀濃度より高い場合には活性炭供給量を所定の最大値に維持する対応関係の形態(形態3)にしてもよい。活性炭供給量の最小値としては、焼却炉1から排ガスが排出されている運転中は排ガス中の水銀濃度が極めて低い場合にも、最低限としてこの最小値の供給量で常時活性炭を吹き込むことにより、煙突内の排ガス中の水銀濃度を設定値以下に確実に維持できるようにする活性炭供給量の値を定める。水銀濃度測定値の増加にしたがって、活性炭供給量を所定の最小値から次第に増加させることにより、排ガス中の水銀濃度に対して適正な量の活性炭を供給することができる。活性炭供給量を所定の最小値から次第に増大させる場合には、直線的に増大させてもよいし、複数段階に分けてステップ状に増大させるようにしてもよく、種々の対応関係の形態を採用できる。   In addition, as a correspondence relationship for the activated carbon supply amount to correspond to the change in the mercury concentration measurement value, when the mercury concentration measurement value is equal to or lower than the predetermined mercury concentration, the activated carbon supply amount is set to the predetermined minimum value, and the mercury concentration measurement value is When the mercury concentration is higher than the predetermined mercury concentration, the activated carbon supply amount is gradually increased from the predetermined minimum value as the mercury concentration measurement value increases, and when the mercury concentration measurement value is higher than the predetermined mercury concentration, the activated carbon supply is increased. You may make it the form (form 3) of the correspondence which maintains quantity at a predetermined maximum value. As the minimum value of the activated carbon supply amount, during operation in which the exhaust gas is discharged from the incinerator 1, even when the mercury concentration in the exhaust gas is extremely low, the activated carbon is always blown in at the minimum supply amount. A value for the amount of activated carbon that will ensure that the mercury concentration in the exhaust gas in the chimney is maintained below the set value is determined. As the mercury concentration measurement value increases, the activated carbon supply amount is gradually increased from a predetermined minimum value, whereby an appropriate amount of activated carbon can be supplied with respect to the mercury concentration in the exhaust gas. When the activated carbon supply amount is gradually increased from a predetermined minimum value, the activated carbon supply amount may be increased linearly or may be increased in steps in a plurality of stages, and various forms of correspondence are adopted. it can.

活性炭の供給量を調整する手段として、活性炭供給装置のロータリ形式切出し部材のロータリの回転数、バルブの開度及びダンパの開度などを単独で又は組み合わせて調整することを行うが、これらの調整機構の調整範囲や調整の特性(例えば供給量の増減を連続的に可能、又は段階的に可能等)に適した対応関係の形態を採用することが好ましい。   As a means of adjusting the supply amount of activated carbon, the rotary speed of the rotary type cutting member of the activated carbon supply device, the opening degree of the valve, the opening degree of the damper, etc. are adjusted alone or in combination. It is preferable to adopt a form of correspondence that is suitable for the adjustment range of the mechanism and the characteristics of adjustment (for example, the supply amount can be increased or decreased continuously or stepwise).

水銀濃度測定値と活性炭供給量との対応関係の形態のうち形態3についての各種の応用形態の例を図4に示す。   FIG. 4 shows examples of various application forms for the form 3 among the forms of the correspondence relationship between the measured mercury concentration value and the supplied amount of activated carbon.

図4(A)に示す応用形態は、排ガス中の水銀濃度の測定値が零又は測定可能な限界最小値未満の値から、予め定める所定水銀濃度までの範囲には、所定の最小値の活性炭供給量のもとに活性炭を供給し、水銀濃度の測定値が上記所定水銀濃度に達したときに、ステップ状に活性炭供給量を所定の最大値にまで増大させ、さらに、排ガス中の水銀濃度の増加に対して、活性炭供給量をその所定の最大値で一定に保つ形態である。水銀濃度の測定値が所定水銀濃度より低い場合には活性炭供給量を所定の最小値とし、所定水銀濃度より高い場合には活性炭供給量を所定の最大値とする対応関係の形態であり、簡単な制御機構で活性炭供給量を制御することができる。   In the application form shown in FIG. 4A, the activated carbon having a predetermined minimum value is in a range from a value where the measured mercury concentration in the exhaust gas is zero or less than a minimum measurable limit value to a predetermined predetermined mercury concentration. Activated carbon is supplied under the supply amount, and when the measured value of mercury concentration reaches the above specified mercury concentration, the activated carbon supply amount is increased in steps to the predetermined maximum value, and the mercury concentration in the exhaust gas is further increased. In this mode, the activated carbon supply amount is kept constant at the predetermined maximum value. When the measured value of mercury concentration is lower than the predetermined mercury concentration, the activated carbon supply amount is set to the predetermined minimum value, and when it is higher than the predetermined mercury concentration, the activated carbon supply amount is set to the predetermined maximum value. The activated carbon supply amount can be controlled by a simple control mechanism.

図4(B)に示す応用形態は、排ガス中の水銀濃度の測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値の活性炭供給量(第一の供給量)のもとに活性炭を供給し、水銀濃度の測定値が上記第一の所定水銀濃度に達したときに、ステップ状に活性炭供給量を所定の第二の供給量にまで増大させ、排ガス中の水銀濃度の増加に対して活性炭供給量を第二の供給量で一定に保ち、さらに、水銀濃度の測定値が第二の所定水銀濃度に達したときに、活性炭供給量を所定の第三の供給量にまで増大させるように、排ガス中の水銀濃度の増加にしたがって、細かい階段状で活性炭供給量を増大させることを繰り返し、活性炭供給量を所定の最大値にまで増大させた後は、排ガス中の水銀濃度の増加に対してその所定の最大値で活性炭供給量を一定に保つ形態である。排ガス中の水銀濃度の増加にしたがって、活性炭供給量を所定の最小値から所定の最大値にまで階段状で増大させることにより、排ガス中の水銀濃度に対して活性炭の供給をより適正な量で供給するように制御することができる。   In the application form shown in FIG. 4B, the range from the measured value of the mercury concentration in the exhaust gas to zero or less than the minimum measurable minimum value until the first predetermined mercury concentration is reached is a predetermined minimum. When the activated carbon is supplied based on the activated carbon supply amount (the first supply amount) and the measured value of the mercury concentration reaches the first predetermined mercury concentration, the activated carbon supply amount is set step by step. The activated carbon supply amount was kept constant at the second supply amount with respect to the increase in the mercury concentration in the exhaust gas, and the measured value of the mercury concentration reached the second predetermined mercury concentration. When the activated carbon supply amount is increased to a predetermined third supply amount, the activated carbon supply amount is repeatedly increased in small steps as the mercury concentration in the exhaust gas is increased. After increasing to the maximum value, the mercury concentration in the exhaust gas A form to maintain the activated carbon supply amount constant at its predetermined maximum value with an increase. As the mercury concentration in the exhaust gas increases, the supply of activated carbon is increased in a stepwise manner from the predetermined minimum value to the predetermined maximum value, thereby providing a more appropriate amount of activated carbon for the mercury concentration in the exhaust gas. It can be controlled to supply.

図4(C)に示す応用形態は、排ガス中の水銀濃度の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させる形態である。また、図4(D)に示す応用形態は、排ガス中の水銀濃度の測定値が所定水銀濃度に達するまでの範囲には、排ガス中の水銀濃度の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させ、水銀濃度の測定値が上記所定の排ガス中の水銀濃度に達したときに、活性炭供給量を所定の最大値の供給量とし、活性炭供給量を所定の最大値にまで増大させた後は、排ガス中の水銀濃度の増加に対してその所定の最大値で活性炭供給量を一定に保つ形態である。図4(C)、(D)に示す応用形態では、排ガス中の水銀濃度の増加にしたがって、所定の最小値から連続的に活性炭供給量を増大させることにより、排ガス中の水銀濃度に対してきめ細かく適正量で活性炭を供給するように制御することができる。   The application form shown in FIG. 4C is a form in which the activated carbon supply amount is linearly increased from a predetermined minimum value as the mercury concentration in the exhaust gas increases. In addition, in the application mode shown in FIG. 4D, in the range until the measured value of the mercury concentration in the exhaust gas reaches the predetermined mercury concentration, linearly increases from the predetermined minimum value as the mercury concentration in the exhaust gas increases. When the measured value of mercury concentration reaches the mercury concentration in the predetermined exhaust gas, the activated carbon supply amount is set to the predetermined maximum supply amount, and the activated carbon supply amount is set to the predetermined maximum value. After the increase, the activated carbon supply amount is kept constant at the predetermined maximum value with respect to the increase in the mercury concentration in the exhaust gas. In the application mode shown in FIGS. 4C and 4D, the activated carbon supply amount is continuously increased from a predetermined minimum value as the mercury concentration in the exhaust gas increases, so that the mercury concentration in the exhaust gas is increased. It can be controlled to supply activated carbon in a fine and appropriate amount.

図4(E)に示す応用形態は、排ガス中の水銀濃度の測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値の活性炭供給量のもとに活性炭を供給し、水銀濃度の測定値が上記第一の所定水銀濃度に達した後に、排ガス中の水銀濃度の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させ、水銀濃度の測定値が第二の所定水銀濃度に達したときに、活性炭供給量を所定の最大値の供給量とし、活性炭供給量を所定の最大値にまで増大させた後は、排ガス中の水銀濃度の増加に対してその所定の最大値で活性炭供給量を一定に保つ形態である。図4(E)に示す応用形態は、図4(A)と(C)に示す応用形態を組み合わせた形態であり、それぞれの形態の特徴、効果を併せもつ。   The application form shown in FIG. 4 (E) has a predetermined minimum in a range from the measured value of the mercury concentration in the exhaust gas to zero or less than the measurable minimum value to the first predetermined mercury concentration. After the activated carbon is supplied under the activated carbon supply amount and the measured value of the mercury concentration reaches the first predetermined mercury concentration, linearly increases from the predetermined minimum value as the mercury concentration in the exhaust gas increases. When the activated carbon supply amount is increased and the measured value of the mercury concentration reaches the second predetermined mercury concentration, the activated carbon supply amount is set to the predetermined maximum supply amount, and the activated carbon supply amount is increased to the predetermined maximum value. After that, the activated carbon supply amount is kept constant at the predetermined maximum value with respect to the increase in the mercury concentration in the exhaust gas. The application mode shown in FIG. 4 (E) is a combination of the application modes shown in FIGS. 4 (A) and 4 (C), and has the characteristics and effects of each mode.

図4(F)に示す応用形態は、排ガス中の水銀濃度の測定値が零又は測定可能な限界最小値未満の値から、第一の所定水銀濃度に達するまでの範囲には、所定の最小値の活性炭供給量(第一の供給量)のもとに活性炭を供給し、水銀濃度の測定値が上記第一の所定水銀濃度に達した後に、排ガス中の水銀濃度の増加にしたがって、第一の供給量から直線的に活性炭供給量を増大させ、第二の所定水銀濃度に対応する第二の供給量にまで増大させ、その後排ガス中の水銀濃度の増加に対して活性炭供給量を第二の供給量で一定に保ち、さらに、第三の所定水銀濃度に達したときに、第二の供給量から直線的に活性炭供給量を増大させ、第四の所定水銀濃度に対応する第三の供給量にまで増大させ、その後排ガス中の水銀濃度の増加に対して活性炭供給量を第三の供給量で一定に保ち、このような排ガス中の水銀濃度の増加に対して活性炭供給量を一定に保つことと増大させることを繰り返し、活性炭供給量を所定の最大値にまで増大させた後は、排ガス中の水銀濃度の増加に対してその所定の最大値で活性炭供給量を一定に保つ形態である。図4(F)に示す応用形態は、図4(B)と(D)に示す応用形態を組み合わせた形態であり、それぞれの形態の特徴、効果を併せもつ。   In the application form shown in FIG. 4 (F), there is a predetermined minimum in the range from the measured value of the mercury concentration in the exhaust gas to zero or less than the measurable minimum value to the first predetermined mercury concentration. After the activated carbon is supplied under the activated carbon supply amount (first supply amount) and the measured mercury concentration reaches the first predetermined mercury concentration, The activated carbon supply amount is increased linearly from one supply amount to a second supply amount corresponding to the second predetermined mercury concentration, and then the activated carbon supply amount is increased with respect to the increase in the mercury concentration in the exhaust gas. When the third predetermined mercury concentration is reached, the activated carbon supply amount is increased linearly from the second supply amount, and the third predetermined mercury concentration corresponding to the fourth predetermined mercury concentration is maintained. Increased to the supply amount, and then active against increasing mercury concentration in exhaust gas Keep the supply amount constant at the third supply amount, and keep increasing and increasing the activated carbon supply amount against such an increase in the mercury concentration in the exhaust gas, so that the activated carbon supply amount becomes a predetermined maximum value. After the increase, the activated carbon supply amount is kept constant at the predetermined maximum value with respect to the increase in the mercury concentration in the exhaust gas. The application mode shown in FIG. 4 (F) is a combination of the application modes shown in FIGS. 4 (B) and 4 (D), and has the characteristics and effects of each mode.

図4(G)に示す応用形態は、排ガス中の水銀濃度の測定値が所定水銀濃度に達するまでの間、排ガス中の水銀濃度の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させ、水銀濃度の測定値が上記所定水銀濃度に達したときに、ステップ状に活性炭供給量を所定の最大値にまで増大させ、活性炭供給量を所定の最大値にまで増大させた後は、排ガス中の水銀濃度の増加に対してその所定の最大値で活性炭供給量を一定に保つ形態である。排ガス中の水銀濃度の測定値が比較的中程度の所定の値より低い場合には、排ガス中水銀濃度の増加にしたがって、所定の最小値から連続的に活性炭供給量を増大させることにより、排ガス中の水銀濃度に対してきめ細かく適正量で活性炭を供給するように制御することができ、排ガス中の水銀濃度の測定値が比較的中程度の所定水銀濃度より高い場合には、活性炭供給量を所定の最大値とすることとする対応関係であり、活性炭の供給量を調整する複数の手段を有効に利用して活性炭供給量を適切量で制御することができる。   In the application mode shown in FIG. 4G, the amount of activated carbon supplied linearly from a predetermined minimum value as the mercury concentration in the exhaust gas increases until the measured value of the mercury concentration in the exhaust gas reaches the predetermined mercury concentration. After the measured value of mercury concentration reaches the above specified mercury concentration, the activated carbon supply amount is increased to the predetermined maximum value in steps, and the activated carbon supply amount is increased to the predetermined maximum value. Is a mode in which the activated carbon supply amount is kept constant at the predetermined maximum value with respect to the increase in the mercury concentration in the exhaust gas. When the measured value of mercury concentration in the exhaust gas is lower than a relatively medium predetermined value, the activated carbon supply is continuously increased from the predetermined minimum value according to the increase in the mercury concentration in the exhaust gas. The activated carbon can be controlled to be supplied in a fine and appropriate amount with respect to the mercury concentration in the exhaust gas, and if the measured value of the mercury concentration in the exhaust gas is higher than the predetermined moderate mercury concentration, This corresponds to a predetermined maximum value, and the activated carbon supply amount can be controlled with an appropriate amount by effectively using a plurality of means for adjusting the supply amount of activated carbon.

図4(H)に示す応用形態は、排ガス中の水銀濃度の測定値が第一の所定水銀濃度に達するまでの間、排ガス中の水銀濃度の増加にしたがって、所定の最小値から直線的に活性炭供給量を増大させ、水銀濃度の測定値が上記第一の所定水銀濃度に達したときに、活性炭供給量を所定の第一の供給量とし、水銀濃度の測定値が第二の所定水銀濃度に達するまでの間、活性炭供給量を所定の第一の供給量で一定に保ち、水銀濃度の測定値が上記第二の所定水銀濃度に達したときに、ステップ状に活性炭供給量を所定の最大値にまで増大させ、活性炭供給量を所定の最大値にまで増大させた後は、排ガス中の水銀濃度の増加に対してその所定の最大値で活性炭供給量を一定に保つ形態である。図4(H)に示す応用形態は、図4(G)に示す応用形態に、排ガス中の水銀濃度の測定値が比較的中程度の所定の範囲(第一の所定水銀濃度から第二の所定銀濃度までの範囲)では、活性炭供給量を第一の所定供給量で一定に保つことを組み合わせた形態であり、活性炭の供給をより適正な量で供給するように制御することができる。   In the application mode shown in FIG. 4 (H), the measured value of the mercury concentration in the exhaust gas reaches the first predetermined mercury concentration, and linearly increases from the predetermined minimum value as the mercury concentration in the exhaust gas increases. When the activated carbon supply amount is increased and the measured mercury concentration reaches the first predetermined mercury concentration, the activated carbon supply amount is set as the predetermined first supply amount, and the measured mercury concentration value is the second predetermined mercury. Until the concentration is reached, the activated carbon supply amount is kept constant at the predetermined first supply amount, and when the measured value of the mercury concentration reaches the second predetermined mercury concentration, the activated carbon supply amount is set in a stepped manner. After increasing the activated carbon supply amount to a predetermined maximum value, the activated carbon supply amount is kept constant at the predetermined maximum value with respect to the increase in the mercury concentration in the exhaust gas. . The application mode shown in FIG. 4 (H) is different from the application mode shown in FIG. 4 (G) in a predetermined range in which the measured value of the mercury concentration in the exhaust gas is relatively moderate (from the first predetermined mercury concentration to the second level). The range up to the predetermined silver concentration) is a combination of keeping the activated carbon supply amount constant at the first predetermined supply amount, and the supply of activated carbon can be controlled to be supplied in a more appropriate amount.

<第三実施形態>
図3に示される第三実施形態は、前出の第二実施形態に比し、活性炭供給装置5による活性炭吹込み位置よりも上流側に配された酸素濃度計7と塩化水素濃度計8そして第一水銀濃度計(上流側水銀濃度計)9Aに加え、バグフィルタ3の下流側であるバグフィルタ3の出口又は煙突4に排ガス中の水銀濃度を測定する第二水銀濃度計(下流側水銀濃度計)9Bも設けられている点で特徴がある。この点以外は第二実施形態と同じである。上記第二水銀濃度計9Bの測定値は、上記酸素濃度計7と塩化水素濃度計8そして第一水銀濃度計9Aの測定値とともに出力信号として制御装置6へ送られるようになっている。図3では、図2の第二実施形態における部位と共通な部位について同一符号を付すことで、その説明は省略する。
<Third embodiment>
Compared with the second embodiment described above, the third embodiment shown in FIG. 3 includes an oxygen concentration meter 7, a hydrogen chloride concentration meter 8, and an upstream side of the activated carbon blowing position by the activated carbon supply device 5. In addition to the first mercury concentration meter (upstream mercury concentration meter) 9A, the second mercury concentration meter (downstream mercury) that measures the mercury concentration in the exhaust gas at the outlet of the bag filter 3 or the chimney 4 downstream of the bag filter 3 It is characterized in that a densitometer) 9B is also provided. Except for this point, the second embodiment is the same as the second embodiment. The measurement value of the second mercury concentration meter 9B is sent to the control device 6 as an output signal together with the measurement values of the oxygen concentration meter 7, the hydrogen chloride concentration meter 8 and the first mercury concentration meter 9A. In FIG. 3, parts that are the same as the parts in the second embodiment of FIG.

本実施形態では、図3に見られるように、上述のように、水銀濃度計として、前出の第二実施形態の活性炭供給装置5による活性炭吹込み位置よりも上流側に配された第一水銀濃度計9A(上流側水銀濃度計)に加え、バグフィルタ3の出口又は煙突4に第二水銀濃度計9B(下流側水銀濃度計)が設けられている。第二実施形態と同様に活性炭供給装置5による活性炭吹込み位置よりも上流側における酸素濃度計7による酸素濃度と塩化水素濃度計8による塩化水素濃度そして第一水銀濃度計9Aによる上流側水銀濃度測定値に基づいて活性炭供給量を制御し、さらにバグフィルタ3の出口における第二水銀濃度計9Bによる下流側水銀濃度測定値に基づき、酸素濃度計7による酸素濃度そして塩化水素濃度計8による塩化水素濃度と第一水銀濃度計9Aによる上流側水銀濃度測定値に基づく制御を補完するようにして、活性炭供給量を増減するように制御する。   In this embodiment, as can be seen from FIG. 3, as described above, the mercury concentration meter is arranged on the upstream side of the activated carbon blowing position by the activated carbon supply device 5 of the second embodiment described above. In addition to the mercury concentration meter 9A (upstream mercury concentration meter), a second mercury concentration meter 9B (downstream mercury concentration meter) is provided at the outlet of the bag filter 3 or the chimney 4. As in the second embodiment, the oxygen concentration by the oxygen concentration meter 7, the hydrogen chloride concentration by the hydrogen chloride concentration meter 8, and the upstream mercury concentration by the first mercury concentration meter 9 </ b> A upstream from the activated carbon blowing position by the activated carbon supply device 5. The amount of activated carbon supplied is controlled based on the measured value, and further, the oxygen concentration by the oxygen concentration meter 7 and the chloride by the hydrogen chloride concentration meter 8 based on the downstream mercury concentration measurement value by the second mercury concentration meter 9B at the outlet of the bag filter 3. The control based on the hydrogen concentration and the upstream mercury concentration measurement value by the first mercury concentration meter 9A is complemented, and the activated carbon supply amount is controlled to increase or decrease.

バグフィルタ3の出口又は煙突4における排ガス中の水銀濃度の設定値を予め定めておき、第二水銀濃度計9Bによる下流側水銀濃度測定値が該設定値を上回った場合に、活性炭供給量をさらに増加させるように制御するようにしてもよい。   When the set value of the mercury concentration in the exhaust gas at the outlet of the bag filter 3 or the chimney 4 is determined in advance, and the downstream mercury concentration measured value by the second mercury concentration meter 9B exceeds the set value, the activated carbon supply amount is Further, the control may be performed so as to increase.

この制御を組み込むことで、第二実施形態よりもさらに確実にバグフィルタ3の出口又は煙突4における水銀濃度を設定値以下に制御することができる。   By incorporating this control, the mercury concentration at the outlet of the bag filter 3 or the chimney 4 can be controlled more reliably than the set value as compared with the second embodiment.

1 炉(焼却炉)
2 ボイラ
3 集塵装置(バグフィルタ)
4 煙突
5 活性炭供給装置
6 制御装置
7 酸素濃度計
8 塩化水素濃度計
9 水銀濃度計
9A 第一水銀濃度計(上流側水銀濃度計)
9B 第二水銀濃度計(下流側水銀濃度計)
1 furnace (incinerator)
2 Boiler 3 Dust collector (bug filter)
4 Chimney 5 Activated carbon supply device 6 Control device 7 Oxygen concentration meter 8 Hydrogen chloride concentration meter 9 Mercury concentration meter 9A First mercury concentration meter (upstream mercury concentration meter)
9B Second mercury concentration meter (downstream mercury concentration meter)

Claims (10)

炉から排出され水銀を含む排ガスを除塵処理する集塵装置と、炉から集塵装置へ排ガスを導く排ガス流路へ活性炭を吹き込む活性炭供給装置とを備える排ガス処理装置において、
炉の下流側でかつ集塵装置の上流側で排ガス中の酸素濃度を測定する酸素濃度計と、
炉の下流側でかつ集塵装置の上流側で排ガス中の塩化水素濃度を測定する塩化水素濃度計と、活性炭供給装置の活性炭供給量を制御する制御装置を備え、
制御装置は、酸素濃度計による酸素濃度測定値及び塩化水素濃度計による塩化水素濃度測定値に基づき、上記集塵装置の下流側での排ガス中の下流側水銀濃度を設定値以下とするように、酸素濃度測定値及び塩化水素濃度測定値と活性炭供給量との予め定める対応関係に基づき活性炭供給量を制御し、活性炭供給量を制御することを特徴とする排ガス処理装置。
In an exhaust gas treatment apparatus comprising: a dust collector that removes exhaust gas containing mercury discharged from a furnace; and an activated carbon supply device that blows activated carbon into an exhaust gas passage that guides the exhaust gas from the furnace to the dust collector.
An oxygen concentration meter that measures the oxygen concentration in the exhaust gas downstream of the furnace and upstream of the dust collector;
A hydrogen chloride concentration meter that measures the hydrogen chloride concentration in the exhaust gas at the downstream side of the furnace and the upstream side of the dust collector, and a control device that controls the activated carbon supply amount of the activated carbon supply device,
Based on the oxygen concentration measurement value by the oxygen concentration meter and the hydrogen chloride concentration measurement value by the hydrogen chloride concentration meter, the control device makes the downstream mercury concentration in the exhaust gas downstream of the dust collector less than the set value. An exhaust gas treatment apparatus that controls an activated carbon supply amount by controlling an activated carbon supply amount based on a predetermined correspondence relationship between an oxygen concentration measurement value and a hydrogen chloride concentration measurement value and an activated carbon supply amount.
炉から排出され水銀を含む排ガスを除塵処理する集塵装置と、炉から集塵装置へ排ガスを導く排ガス流路へ活性炭を吹き込む活性炭供給装置とを備える排ガス処理装置において、
炉の下流側でかつ集塵装置の上流側で排ガス中の酸素濃度を測定する酸素濃度計と、炉の下流側でかつ集塵装置の上流側で排ガス中の塩化水素濃度を測定する塩化水素濃度計と、排ガス中の上流側水銀濃度を測定する上流側水銀濃度計と、活性炭供給装置の活性炭供給量を制御する制御装置を備え、
制御装置は、酸素濃度計による酸素濃度測定値及び塩化水素濃度計による塩化水素濃度測定値と上流側水銀濃度計による上流側水銀濃度測定値に基づき、上記集塵装置の下流側での排ガス中の下流側水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理装置。
In an exhaust gas treatment apparatus comprising: a dust collector that removes exhaust gas containing mercury discharged from a furnace; and an activated carbon supply device that blows activated carbon into an exhaust gas passage that guides the exhaust gas from the furnace to the dust collector.
An oxygen concentration meter that measures the oxygen concentration in the exhaust gas downstream of the furnace and upstream of the dust collector, and hydrogen chloride that measures the hydrogen chloride concentration in exhaust gas downstream of the furnace and upstream of the dust collector Equipped with a concentration meter, an upstream mercury concentration meter for measuring the upstream mercury concentration in the exhaust gas, and a control device for controlling the activated carbon supply amount of the activated carbon supply device,
Based on the oxygen concentration measurement value by the oxygen concentration meter, the hydrogen chloride concentration measurement value by the hydrogen chloride concentration meter, and the upstream mercury concentration measurement value by the upstream mercury concentration meter, the control device An exhaust gas treatment apparatus, wherein the activated carbon supply amount is controlled so that the downstream mercury concentration is lower than a set value.
炉から排出され水銀を含む排ガスを除塵処理する集塵装置と、炉から集塵装置へ排ガスを導く排ガス流路へ活性炭を吹き込む活性炭供給装置とを備える排ガス処理装置において、
炉の下流側でかつ集塵装置の上流側で排ガス中の酸素濃度を測定する酸素濃度計と、炉の下流側でかつ集塵装置の上流側で排ガス中の塩化水素濃度を測定する塩化水素濃度計と、排ガス中の上流側水銀濃度を測定する上流側水銀濃度計と、集塵装置の下流側で排ガス中の水銀濃度を測定する下流側水銀濃度計と、活性炭供給装置の活性炭供給量を制御する制御装置を備え、
制御装置は、酸素濃度計による酸素濃度測定値及び塩化水素濃度計による塩化水素濃度測定値と、上流側水銀濃度計による上流側水銀濃度測定値と、下流側水銀濃度計による下流側水銀濃度測定値とに基づき、上記集塵装置の下流側での排ガス中の下流側水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理装置。
In an exhaust gas treatment apparatus comprising: a dust collector that removes exhaust gas containing mercury discharged from a furnace; and an activated carbon supply device that blows activated carbon into an exhaust gas passage that guides the exhaust gas from the furnace to the dust collector.
An oxygen concentration meter that measures the oxygen concentration in the exhaust gas downstream of the furnace and upstream of the dust collector, and hydrogen chloride that measures the hydrogen chloride concentration in exhaust gas downstream of the furnace and upstream of the dust collector A concentration meter, an upstream mercury concentration meter that measures the upstream mercury concentration in the exhaust gas, a downstream mercury concentration meter that measures the mercury concentration in the exhaust gas downstream of the dust collector, and an activated carbon supply amount of the activated carbon supply device A control device for controlling
The control device consists of an oxygen concentration measurement value by an oxygen concentration meter and a hydrogen chloride concentration measurement value by a hydrogen chloride concentration meter, an upstream mercury concentration measurement value by an upstream mercury concentration meter, and a downstream mercury concentration measurement by a downstream mercury concentration meter. Based on the value, the activated carbon supply amount is controlled so that the downstream mercury concentration in the exhaust gas downstream of the dust collector is equal to or less than a set value.
制御装置は、活性炭供給量を所定の最小値以上に維持するように制御することとする請求項1ないし請求項3のうちの一つに記載の排ガス処理装置。   The exhaust gas treatment device according to any one of claims 1 to 3, wherein the control device controls the activated carbon supply amount so as to be maintained at a predetermined minimum value or more. 制御装置は、上流側水銀濃度計による上流側水銀濃度測定値又は下流側水銀濃度計による下流側水銀濃度測定値が所定水銀濃度以上であるとき、活性炭供給量を所定の最大値に保つように制御することとする請求項2又は請求項3に記載の排ガス処理装置。   When the upstream mercury concentration measurement value by the upstream mercury concentration meter or the downstream mercury concentration measurement value by the downstream mercury concentration meter is equal to or higher than the predetermined mercury concentration, the control device keeps the activated carbon supply amount at a predetermined maximum value. The exhaust gas treatment apparatus according to claim 2 or 3 to be controlled. 炉から排出され水銀を含む排ガスを集塵装置で除塵処理し、炉から集塵装置へ排ガスを導く排ガス流路へ活性炭供給装置から活性炭を吹き込むこととする排ガス処理方法において、
炉の下流側でかつ集塵装置の上流側で排ガス中の酸素濃度を酸素濃度計で測定する酸素濃度計測工程と、炉の下流側でかつ集塵装置の上流側で排ガス中の塩化水素濃度を塩化水素濃度計で測定する塩化水素測定工程と、制御装置で活性炭供給装置の活性炭供給量を制御する制御工程を備え、
制御工程で、酸素濃度計による酸素濃度測定値及び塩化水素濃度計による塩化水素濃度測定値に基づき、上記集塵装置の下流側での排ガス中の下流側水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理方法。
In the exhaust gas treatment method in which the exhaust gas exhausted from the furnace is dust-removed by the dust collector, and activated carbon is blown from the activated carbon supply device to the exhaust gas passage that leads the exhaust gas from the furnace to the dust collector.
An oxygen concentration measurement process that measures the oxygen concentration in the exhaust gas with an oximeter downstream of the furnace and upstream of the dust collector, and the concentration of hydrogen chloride in the exhaust gas downstream of the furnace and upstream of the dust collector A hydrogen chloride measurement process for measuring the activated carbon supply with a hydrogen chloride concentration meter, and a control process for controlling the activated carbon supply amount of the activated carbon supply apparatus with a control device,
In the control step, the downstream mercury concentration in the exhaust gas on the downstream side of the dust collector is set to be lower than the set value based on the measured oxygen concentration value by the oxygen concentration meter and the measured hydrogen chloride concentration value by the hydrogen chloride concentration meter. An exhaust gas treatment method characterized by controlling an activated carbon supply amount.
炉から排出され水銀を含む排ガスを集塵装置で除塵処理し、炉から集塵装置へ排ガスを導く排ガス流路へ活性炭供給装置から活性炭を吹き込むこととする排ガス処理方法において、
炉の下流側でかつ集塵装置の上流側で排ガス中の酸素濃度を酸素濃度計で測定する酸素濃度計測工程と、炉の下流側でかつ集塵装置の上流側で排ガス中の塩化水素濃度を塩化水素濃度計で測定する塩化水素濃度測定工程と、排ガス中の上流側水銀濃度を上流側水銀濃度計で測定する上流側水銀濃度測定工程と、制御装置で活性炭供給装置の活性炭供給量を制御する制御工程を備え、
制御工程で、酸素濃度計による酸素濃度測定値及び塩化水素濃度計による塩化水素濃度測定値と上流側水銀濃度計による上流側水銀濃度測定値とに基づき、上記集塵装置の下流側での排ガス中の下流側水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理方法。
In the exhaust gas treatment method in which the exhaust gas exhausted from the furnace is dust-removed by the dust collector, and activated carbon is blown from the activated carbon supply device to the exhaust gas passage that leads the exhaust gas from the furnace to the dust collector.
An oxygen concentration measurement process that measures the oxygen concentration in the exhaust gas with an oximeter downstream of the furnace and upstream of the dust collector, and the concentration of hydrogen chloride in the exhaust gas downstream of the furnace and upstream of the dust collector The hydrogen chloride concentration measurement process that measures the amount of activated carbon in the exhaust gas, the upstream mercury concentration measurement process that measures the upstream mercury concentration in the exhaust gas with the upstream mercury concentration meter, and the activated carbon supply amount of the activated carbon supply device by the controller A control process to control,
In the control process, based on the oxygen concentration measurement value by the oxygen concentration meter, the hydrogen chloride concentration measurement value by the hydrogen chloride concentration meter, and the upstream mercury concentration measurement value by the upstream mercury concentration meter, the exhaust gas downstream of the dust collector An exhaust gas treatment method characterized by controlling the supply amount of activated carbon so that the downstream mercury concentration in the inside is not more than a set value.
炉から排出され水銀を含む排ガスを集塵装置で除塵処理し、炉から集塵装置へ排ガスを導く排ガス流路へ活性炭供給装置から活性炭供給装置から活性炭を吹き込むこととする排ガス処理方法において、
炉の下流側でかつ集塵装置の上流側で排ガス中の酸素濃度を酸素濃度計で測定する酸素濃度計測工程と、炉の下流側でかつ集塵装置の上流側で排ガス中の塩化水素濃度を塩化水素濃度計で測定する塩化水素濃度測定工程と、排ガス中の水銀濃度を上流側水銀濃度計で測定する上流側水銀濃度測定工程と、集塵装置の下流側で排ガス中の下流側水銀濃度を下流側水銀濃度計で測定する下流側水銀濃度測定工程と、制御装置で活性炭供給装置の活性炭供給量を制御する制御工程を備え、
制御工程で、酸素濃度計による酸素濃度測定値及び塩化水素濃度計による塩化水素濃度測定値と上流側水銀濃度計による上流側水銀濃度測定値と下流側水銀濃度計による下流側水銀濃度測定値とに基づき、上記集塵装置の下流側での排ガス中の下流側水銀濃度を設定値以下とするように、活性炭供給量を制御することを特徴とする排ガス処理方法。
In the exhaust gas treatment method in which activated carbon is blown from the activated carbon supply device from the activated carbon supply device to the exhaust gas flow path that guides the exhaust gas from the furnace to the dust collection device by exhausting the exhaust gas containing mercury discharged from the furnace,
An oxygen concentration measurement process that measures the oxygen concentration in the exhaust gas with an oximeter downstream of the furnace and upstream of the dust collector, and the concentration of hydrogen chloride in the exhaust gas downstream of the furnace and upstream of the dust collector A hydrogen chloride concentration measurement process that measures the concentration of mercury in the exhaust gas, an upstream mercury concentration measurement process that measures the mercury concentration in the exhaust gas with an upstream mercury concentration meter, and a downstream mercury in the exhaust gas that is downstream of the dust collector A downstream mercury concentration measurement step for measuring the concentration with a downstream mercury concentration meter, and a control step for controlling the activated carbon supply amount of the activated carbon supply device with a control device,
In the control process, the oxygen concentration measurement value by the oxygen concentration meter, the hydrogen chloride concentration measurement value by the hydrogen chloride concentration meter, the upstream mercury concentration measurement value by the upstream mercury concentration meter, and the downstream mercury concentration measurement value by the downstream mercury concentration meter And the activated carbon supply amount is controlled so that the downstream mercury concentration in the exhaust gas downstream of the dust collector is not more than a set value.
制御工程は、活性炭供給量を所定の最小値以上に維持するように制御することとする請求項6ないし請求項8のうちの一つに記載の排ガス処理方法。   The exhaust gas treatment method according to any one of claims 6 to 8, wherein in the control step, the activated carbon supply amount is controlled to be maintained at a predetermined minimum value or more. 制御工程は、上流側水銀濃度計による上流側水銀濃度測定値又は下流側水銀濃度計による下流側水銀濃度測定値が所定水銀濃度以上であるとき、活性炭供給量を所定の最大値に保つように制御することとする請求項7又は請求項8に記載の排ガス処理方法。   In the control process, when the upstream mercury concentration measurement value by the upstream mercury concentration meter or the downstream mercury concentration measurement value by the downstream mercury concentration meter is equal to or higher than the predetermined mercury concentration, the activated carbon supply amount is maintained at the predetermined maximum value. The exhaust gas treatment method according to claim 7 or claim 8 to be controlled.
JP2018044556A 2018-03-12 2018-03-12 Exhaust gas treatment equipment and exhaust gas treatment method Active JP7047488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018044556A JP7047488B2 (en) 2018-03-12 2018-03-12 Exhaust gas treatment equipment and exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018044556A JP7047488B2 (en) 2018-03-12 2018-03-12 Exhaust gas treatment equipment and exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JP2019155260A true JP2019155260A (en) 2019-09-19
JP7047488B2 JP7047488B2 (en) 2022-04-05

Family

ID=67993788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018044556A Active JP7047488B2 (en) 2018-03-12 2018-03-12 Exhaust gas treatment equipment and exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP7047488B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021166976A (en) * 2020-04-13 2021-10-21 栗田工業株式会社 Exhaust gas treatment system and exhaust gas treatment method
JP7315747B1 (en) 2022-03-29 2023-07-26 中外炉工業株式会社 Exhaust gas duct equipment for industrial furnaces

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012213744A (en) * 2011-04-01 2012-11-08 Mitsubishi Heavy Ind Ltd Apparatus and method for treating exhaust gas and coal upgrading process facility
JP2017094319A (en) * 2015-02-18 2017-06-01 Jfeエンジニアリング株式会社 Exhaust gas treatment device and exhaust gas treatment method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012213744A (en) * 2011-04-01 2012-11-08 Mitsubishi Heavy Ind Ltd Apparatus and method for treating exhaust gas and coal upgrading process facility
JP2017094319A (en) * 2015-02-18 2017-06-01 Jfeエンジニアリング株式会社 Exhaust gas treatment device and exhaust gas treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021166976A (en) * 2020-04-13 2021-10-21 栗田工業株式会社 Exhaust gas treatment system and exhaust gas treatment method
WO2021210311A1 (en) * 2020-04-13 2021-10-21 栗田工業株式会社 Exhaust gas treatment system and exhaust gas treatment method
JP7315747B1 (en) 2022-03-29 2023-07-26 中外炉工業株式会社 Exhaust gas duct equipment for industrial furnaces

Also Published As

Publication number Publication date
JP7047488B2 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
JP6070971B1 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
CA2626189C (en) Method of mercury removal in a wet flue gas desulfurization system
JP5953342B2 (en) Sulphite control to reduce mercury re-emissions
JP7047488B2 (en) Exhaust gas treatment equipment and exhaust gas treatment method
JP2015196127A (en) Exhaust gas treatment apparatus and method
AU2011332222A1 (en) System and method of managing energy utilized in a flue gas processing system
JP2016097321A (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP7047487B2 (en) Exhaust gas treatment equipment and exhaust gas treatment method
JP6439207B1 (en) Exhaust gas mercury removal system
JP6872169B2 (en) Exhaust gas treatment equipment and exhaust gas treatment method
JP6703748B2 (en) Exhaust gas treatment device and exhaust gas treatment method
JPH09276653A (en) Cleaning of process gas
US10449487B2 (en) Mercury control in a seawater flue gas desulfurization system
JP2019063765A (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP6413038B1 (en) Exhaust gas treatment system and exhaust gas treatment method
JP2020001030A (en) Exhaust gas mercury removal system
JP7299721B2 (en) Exhaust gas treatment system and exhaust gas treatment method
JP2005270722A (en) Exhaust gas treatment method and equipment therefor
JP2020179353A (en) Waste incineration system
JPH11264523A (en) Waste burning method, waste incinerating plant and air supplying device for waste incinerating plant
JPH0221852B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200910

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220307

R150 Certificate of patent or registration of utility model

Ref document number: 7047488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150