JP3566346B2 - Transdermal drug delivery device - Google Patents

Transdermal drug delivery device Download PDF

Info

Publication number
JP3566346B2
JP3566346B2 JP22019394A JP22019394A JP3566346B2 JP 3566346 B2 JP3566346 B2 JP 3566346B2 JP 22019394 A JP22019394 A JP 22019394A JP 22019394 A JP22019394 A JP 22019394A JP 3566346 B2 JP3566346 B2 JP 3566346B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
oxide
positive electrode
skin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22019394A
Other languages
Japanese (ja)
Other versions
JPH0880354A (en
Inventor
政久 室木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polytronics Inc
Original Assignee
Polytronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polytronics Inc filed Critical Polytronics Inc
Priority to JP22019394A priority Critical patent/JP3566346B2/en
Publication of JPH0880354A publication Critical patent/JPH0880354A/en
Application granted granted Critical
Publication of JP3566346B2 publication Critical patent/JP3566346B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、イオントフォレーゼの作用を利用した経皮投薬素子に関する。
【0002】
【従来の技術】
経皮投薬法は、生体の所定位置に一定濃度の薬剤を搬送する手段(Drug Delibery System;DDS)としてすぐれた投薬方法である。即ち、静脈注射や経口投与に比べて薬剤が血流に乗って全身に廻る割合が小さく、従って薬剤の副作用や投与量が少なくて済むという特徴がある。このために経皮投薬は、消炎鎮痛などの他に、病気の種類と程度によっては日常生活を営みながらの慢性疾患の治療を可能にするものである。その実用化例には、筋骨格系及び結合組織の慢性疾患の治療、狭心症の発作予防、気管支炎の沈静化、神経性疾患の治療などがある。
【0003】
通常経皮投薬は、有効成分を含むマトリクス(これは回路デバイスでの格子状との意味ではなく、有効成分を含む素材であるとの意味である。以下、同じ)をプラスターに塗布して所定部位に皮接し、濃度拡散を利用して一定濃度の薬剤を皮接部位から皮下組織に浸透させることで行われる。しかし、疾患の治療に有効な被浸透薬剤は、一般に高分子化合物でありまた複雑な立体構造を持つので、単純な濃度拡散現象だけに頼っていては患部に必要濃度の薬剤が到達せず、充分な治療効果が得られない場合が多い。即ち、人体皮膚は複雑な多層構造を有し、対外からの異物の浸透を防げる機能を持つため、高分子薬剤が皮膚のバリアを突破して体内に侵入することは容易でない。
そこで、経皮投薬法による有効浸透率を高める手段として、近年イオントフォレーゼの利用や吸収促進剤の併用が注目されるに至った。
【0004】
前者は、被浸透薬剤の有効成分をイオン化し、皮膚を通電路として二ケ所に配設した電極の一方(活性電極)の下に薬剤を塗沫すると共に、他方の電極(不関電極)との間に外部電源から通電してその電気的反発力によって皮膚通電路内に前記有効成分イオンを強制的に泳動せしめるものである。また後者は、皮脂の分子結合力を弱めて、角質層を薬剤が浸透しやすくする物質、例えばリモネンなどを被浸透薬剤と共にマトリクスに配合した物である。
これらの方法は、一部実用化されているが、なお開発途上にあるといえる。即ち、前者では主に電源の問題があり、後者では有効性に問題が残る。
【0005】
イオントフォレーゼにおける外部電源は、皮膚通電路が高抵抗(10〜100MΩ/cm)のため、病院等では、医師の監視の下で固定式の100V級直流電源が用いられることが多い。ところが、これでは患者が日常生活中に利用できないため、一般には携帯用の小型電源(電池)が用いられる。しかし、電池は一定時間使用すると、起電力が急激に低下するために電気泳動による薬剤浸透の効果が低下したり、或は皮接面の状況変化、例えば発汗等によって皮膚抵抗が急激に低下し大電流が流れて皮膚面が損傷するなどの問題がある。
【0006】
これを防ぐ方策として、イオン化傾向の異なる二種類の金属を導電接続し、皮接時に形成される電気的閉回路を利用して起電力を発生させ、陽極金属と同じ種類の金属塩を用いたイオン性薬剤を陽極の皮接面に塗布して用いるイオントフォレーゼが提案されている(特開昭60−203270号公報)。この方法は外部電源(電池)を用いていた上記従来技術に比べて、いわば電池の内部反応(電極間の酸化還元反応)を利用する試みである。しかし、この方法には大きな欠点がある。皮接して電気的閉回路が形成された時、まずイオン化傾向の大きな陰極から電子が陽極へ流れ、電子のぬけた(酸化された)陰極は化学的に活性な状態になる。陰極には水分子に囲まれた状態にあるため、生体皮膚内から陰イオンを引き寄せる前に、
Me2++2OH→Me(OH)→MeO+H
、ただしMe2+は陰極構成金属のイオン
なる反応が速やかに惹起することは自明である。この結果、電池起電力が大きく変化する、例えば特開昭60−203270号公報で好適と推奨されているマグネシウム合金を陰極に用いた場合には、短時間の内に陰極表面がMgOで被覆される。Mg(OH)、MgO系酸化物は絶縁物であるため、急速に起電力値が低下し、ながてイオントフォレーゼは停止する。
【0007】
この欠点を解消するために、本発明者は、半導体負極と金属正極の組合せになる皮接発電型イオントフォレーゼ用電源を開示した(特願平1−150654号)。この電源を正極下に塗布したイオン性薬剤と共に皮接して電気的閉回路を形成すると、半導体負極から金属正極に電子が流出した時、半導体負極に発生した正孔が皮接面に形成されるショットキー障壁の内部電界に偏倚されて皮接面にドリフトし、自由正孔または半導体イオンとして皮膚へ流出するため半導体負極の電気的中性が保持されて安定に長期連用に耐えるのである。
この電源は又、発汗等により皮接面上で電極間に短絡を生ずると、自動的に発電を停止する。従って、外部電源を用いた場合と異なり、皮膚に対して安全である。
【0008】
【発明が解決しようとする課題】
イオントフォレーゼを利用して経皮投薬を行う場合、患部の大きさや形状にあわせて投薬素子が設定されることが望ましい。また、患者が日常生活の中で持続的に投薬を継続するには、投薬素子そのものがディスポーザブルであることが望まれる。
しかるに前記した半導体負極利用皮接発電型イオントフォレーゼ素子は、イオン性薬剤を配合した導電性マトリクスが正極金属下に配置され、正極が導線によって離間した位置にある半導体負極と接続されているために、患者が自分で形状を変えたり小面積に切断することが困難であった。
また、特に分子量の大きな薬剤を皮膚内にイオン浸透させる場合、電源電圧を高めたり通電電流を増加させたりするだけでは充分な浸透濃度が得られないことが多い。この場合には、生体の皮膚細胞を生理活性化し、薬剤の取り込み効率を高めることが有効である。
【0009】
本発明の目的は、素子の小面積化や形状変化が比較的容易で使いやすく且つ経済的なディスポーザブル皮接発電型の経皮投薬素子を提供することである。
本発明の別の目的は、皮膚の生理活性化を人為的に行いうる経皮投薬素子を提供することである。
【0010】
【課題を解決するための手段】
本発明は、皮接部位を有する貼着手段と、該貼着手段の非皮接部位にシート状に配設された正極金属部と、該正極金属部上に塗布され且つ被浸透イオンを分散した導電性マトリクスと、該導電性マトリクス上に格子状に配設され且つ下層が非導電性パッド、上層が前記正極より標準単極電位の低い半導体層から成る二層構造の負極と、を積層して成り、前記正極金属部と前記半導体層とを少なくとも縁端部で導線によって短絡後、前記貼着手段によって前記導電性マトリクス及び前記半導体層を同時皮接して使用することを特徴とするシート状の経皮投薬素子を開示する。
なお、前記したシート状の正極金属とは、全面が隙間なく同種金属で充填されたフィルム状金属でも、規則正しい網目状隙間を有するメッシュ状金属でも、また適当なパターンで穿孔したシート状金属でもよい。また、前記した格子状の負極とは、適当且つ規則的な間隔と幅をもって直交または斜交した格子形状の二次元的な二層構造負極を指す。
【0011】
更に本発明は、皮接部位を有する貼着手段と、該貼着手段の非皮接部位にメッシュ状またはシート状に配設された正極金属部と、該正極金属部上に塗布され且つ被浸透イオンを分散した導電性マトリクスと、該導電性マトリクス上に格子状に配設され且つ下層が非導電性パッド、上層が前記正極より標準単極電位の低い半導体層から成る二層構造の負極と、を積層して成り、前記正極金属部と前記半導体層とを少なくとも縁端部で回路を介して接続して、前記貼着手段によって前記導電性マトリクス及び前記半導体層を同時皮接して使用することを特徴とするシート状の経皮投薬素子において、上記回路は、正極金属部と半導体層とを導線によって短絡した第1の回路と、50〜500Hzの低周波パルスが発振可能であり且つパルス極性が前記負極側で正電位、前記正極金属側でゼロ電位となる方向で接続した、小電圧パルス発振器及びその駆動電源から成る第2の回路と、第1の回路と第2の回路とのいずれかを、正極金属部と半導体層との間に選択して挿入する切換スイッチとより成る経皮投薬素子を開示する。
【0012】
前記半導体層は、酸化亜鉛、酸化アルミニウム、酸化ビスマス、酸化鉄、酸化鉛、酸化アンチモン、酸化チタン、及び酸化錫から成る群より選ばれた1種類である酸素欠陥型酸化物であってよい。また、前記半導体層は全体が同一の半導体層であっても、皮接面だけ半導体層でその下層が金属の二層構造であってもよい。
【0013】
【作用】
経皮投薬素子が負極/導電性マトリクス/正極/貼着手段と、1枚のフレキシブルシートに層状構成されているため、所定サイズで市販されていても、患者が自分で切断して適当なサイズ、形状に整えることができる。使用時には、シート縁端部で正極金属と負極半導体を短絡してから用いればよい。
【0014】
貼着手段で導電性マトリクス(被浸透イオンを分散させた導電性ゲル状物質のこと。以下同じ)と半導体層とを同時に皮接すると、皮接部位に正極(金属)、負極(半導体)、電解質(導電性マトリクス及び皮膚)から成る外部回路短絡型の化学電池が形成される。この場合、通電路は半導体層→導線→正極金属部→導電性マトリクス→皮膚→半導体層という閉回路になる。負極から正極に流れた電子によって、シート状正極下の陰イオン(薬剤の被浸透イオン)は、二次元的に電気的に反発力を受けてマトリクスから皮膚内へ浸透する。陰イオンと共に皮膚内へ浸透する電子は、還元反応を惹起する。
一方、電子の流出した格子状半導体層では、過剰になった正孔が、被接面に形成されるショットキー障壁の内部電界に偏倚されて皮膚内に浸透して酸化反応を惹起する。ショットキー障壁は、被接面からの電子の流入を阻止するため、安定した化学電池起電力が得られる。
【0015】
負極が二層構造であり、非導電性パッドによって半導体層は導電性マトリクスと電気的に分離されているため、皮接前にはいわゆる自己放電による消耗がない。
負極側が正電位、正極金属側がゼロ電位になる方向に、前記導線を介して経皮投薬素子に小電圧パルス発振器(50〜500Hz)を接続すると、皮接して外部回路短絡時に皮膚に正孔が注入される負極半導体側から、所定の低周波パルスが皮膚に印加される。電圧はピーク値で0.1〜10(V)程度である。この低周波パルスは、皮下1〜2mm付近に分布する末消神経に印加されると(テタヌス刺激)、神経伝達物質の働きなしにシナプスの可塑性が高まる。この結果、印加後数時間〜1日にわたって長期増強効果(LTP効果)が発現し、末梢神経支配領域の皮膚細胞が生理活性化する。即ち、皮膚呼吸が活発化し新陳代謝が旺盛になる。従って、この状態でイオンフォトレーゼを行えば、被浸透イオンの吸収効率が一層高まると期待される。
【0016】
テタヌス刺激は、繰り返し電圧パルスによる蓄積効果があるため、末梢神経シナプスの前線維に印加された時、神経が識別できる程度の周波数であれば、LTP効果を誘起することが可能である。パルスを直接神経線維に印加する実験では、10Hz−数kHzの範囲で効果が見られた。しかし、表皮上から印加する場合はパルスが伝搬中に分散の影響が出るので、周波数制限はより厳しくなる。生体表皮上からのテスト結果では、50〜500Hzの周波数帯域で好ましい効果が得られた。電圧パルスのピーク値は、シナプス前線維位置で10mV程度以上あればよいが、生体内減衰や使用周波数及び雑音電位などを考慮すると、皮接部位では0.1V以上の大きさが好ましい。
【0017】
負極の半導体層を、皮接面が酸化物半導体層であり、その下層が酸化物半導体層を構成する陽イオン金属の二重構造で形成すると、半導体層の導電性が高まり、この領域の導電損失を減らすことができて好適である。陽イオン金属は、皮接部位の水分を受けて徐々に酸化し、安定な酸化物半導体膜厚が形成される。
【0018】
【実施例】
以下本発明を実施例に基づいてより詳しく述べる。
(1)図1は、本発明の実施例による経皮投薬素子の構成を示す図である。図(イ)が上面図、図(ロ)がA−A′断面図である。図において、1は貼着手段の絆創膏、2はシート状の正極金属部(例えば金属層)、3は被浸透薬剤イオンを分散した導電性マトリクス、4は格子状の負極、5及び5′は正負極を短絡する導電シートである。負極4は、導電性マトリクス3に接触する下層の非導電性パッド42及びその上部に配設された半導体層41より成る。この負極4の高さは図面上では無視できない大きさとしているが、実際上は極めて小さい高さである。なお、前記したシート状の正極金属とは、全面が隙間なく同種金属で充填されたフィルム状金属でも、規則正しい網目状隙間を有するメッシュ状金属でも、また適当なパターンで穿孔したシート状金属でもよい。また、前記した格子状の負極とは、適当且つ規則的な間隔と幅をもって直交または斜交した格子形状の二次元的な二層構造負極を指す。
【0019】
縁端部L、Mでは、図(ロ)に示すように、導電シート5が、正極金属部2と半導体層41とを電気的に接続するようになっている。また、導電シート5と導電性マトリクス3とは電気的に接続しないように非導電性パッド42で区切られている。導電シート5はポンディングしたリード線でもよい。
使用時には、皮接面a、b、cを皮膚に接触させて使う。この皮膚接触時には、以下の如くなる。絆創膏で導電性マトリクス(被浸透イオンを分散させた導電性ゲル状物質のこと。以下同じ)と半導体層とを同時に皮接すると、皮接部位に正極(金属)、負極(半導体)、電解質(導電性マトリクス及び皮膚)から成る外部回路短絡型の化学電池が形成される。この場合、通電路は半導体層41→導線5→正極金属部2→導電性マトリクス3→皮膚→半導体層41という閉回路になる。
導電シート5、5′は、皮接した時に形成される化学電池の外部回路を短絡する役割を持つが、皮接前には正極と負極を含む閉回路が形成されないため化学電池が消耗することはない。
【0020】
正極金属部2は、導電性マトリクス3と二次元的に接触している。導電性マトリクス3に含有されたイオン性薬剤塩が解離して生ずる被浸透イオンMの生体浸透に伴って、導電性マトリクス3のPHが変化したり、薬剤塩を構成するアルカリイオンが金属として析出するので、長期間連用する場合には、腐食に強い金属、例えば貴金属を用いることが望ましい。しかし、ディスポーザブルタイプには安価な素材の使用が求められるため、正極金属部2は使用前に導電性マトリクス3に接触させるなどの工夫によって安価な銅系金属を用いることがより好ましい。
【0021】
導電性マトリクス3は、ゲル状の導電性高分子例えばポリビニルピロリドンゲルを素材とするが、長時間皮接によってマトリクスのPH変化が惹起し、生体皮膚面がかぶれるなどの問題が生ずるのを避けるために、周知の技法によるPH変化の緩和、例えば尿酸などの酸性基材配合による不溶性塩生成反応の利用や、アルコール配合によるエステルの利用など中和反応を生起する素材の配合を考慮に入れることが好ましい。
【0022】
負極4を構成する半導体層41は、通常酸素欠陥型酸化物半導体を用いて成る。これら半導体は、薄膜化及び酸素欠損率の向上によって比抵抗を1Ω・cm以下に低減することが可能であり、n型の低抵抗半導体薄膜が形成される。このような酸素欠陥型酸化物半導体には、酸化亜鉛(ZnO)、酸化アルミニウム(Al3−x)、酸化錫(SnO)、酸化ビスマス(Bi)、酸化アンチモン(Sb)、酸化鉄(Fe4−x)、酸化クロム(CrO2−x)、酸化モリブデン(MoO2−x)、酸化ニオブ(NbO2−x)、酸化チタン(Ti3−x)などがあり、一種の不定比化合物を形成している。
【0023】
これらn型酸化物半導体は、下地上にスパッタリングや蒸着、CVDなど周知の薄膜形成法を用いて成膜することができるので、下地にポリイミド系やPTFE系樹脂フィルムを用いれば、負極4が一度に形成できる。即ち、n型酸化物が半導体層41、下地のポリマーが非導電性パッド42となる。
一方、n型酸化物は金属上に形成することも可能なため、下地にn型酸化物半導体の陽イオンを構成する元素を用いて、半導体層41を二重構造とすることもできる。例えば亜鉛の上に酸化亜鉛、アルミニウムの上に酸化アルミニウムを形成するのである。この場合、前記の薄膜堆積法によっても、酸処理等による金属表面酸化によってもn型酸化物半導体を下地金属上に形成することができる。なお、半導体層41が酸化物と金属の二重構造である場合、負極4下層の非導電性パッド42は、毛織物や高分子ポリマーなどの柔軟性シートを半導体層41に貼あわせて形成することができる。
【0024】
負極4を構成する半導体層41は、また、生体内に浸透した時インターフェロン等の誘起によって生理活性化を惹起するn型ゲルマニウムやその合金、n型シリコンやその合金、希土類化合物やその混合物などから構成することができる。一般に、酸化物半導体においては、皮接によって電子が正極側に流出しても酸化反応が優先されるため、皮接面から半導体がイオン化して生体に浸透する可能性は小さい。逆に酸化に対して比較的安定な共有結合性の非酸化物半導体を負極に用いた場合、皮接によって電子が正極側に流出すると、正孔が皮接面に流れてプラスに帯電し、不安定になってショットキー障壁による内部電界で結晶から引きはがされて陽イオンとして生体内に浸透する。従って、前記ゲルマニウム等による半導体層41では、生体内でのサイトカイン誘起効果が期待できる。
【0025】
図1の導電シート5、5′は、例えば金属箔で形成すればよい。既製のアルミ箔、スズ箔等を利用することができる。
図1のワンシート状経皮投薬素子において、正極金属部2を純銅とし、格子状負極4の幅を2mm、高さを2mm、格子間隔(導電性マトリクス3の露出幅)を12mm、導電性マトリクス3をゼラチンゲルに0.5モルのクエン酸ソーダを分散させた厚さ約2mmの基材とし、これを絆創膏1でラットに装荷した。即ち、SD系雄性ラットを3匹1群とし、背毛剪毛して導電性マトリクス3と負極4を同時に皮接した。ラットの平均血中濃度を2、4、6、8時間後に測定した。比較のために、絆創膏1に0.5モルのクエン酸ソーダを分散させたゼラチンマトリクスのみを塗布した同一面積のダミーの経皮素子を1群のラットに装荷し、その血中濃度を比較した。
【0026】
図2は、負極4の半導体層41の種類を変えた時のクエン酸血中濃度の変化をダミーと対比して示したものである。いずれの半導体層41を用いた場合でもダミーより高い血中濃度が観測され、単なる濃度拡散に比べて本発明のイオントフォレーゼが数〜十倍程度薬剤浸透に有効なことを示している。イオントフォレーゼの場合、皮接後ほぼ4時間を経過して血中濃度が一定になる様子が示されている。図示してないが、6時間後の血中濃度をダミーと比較すると、酸化アルミニウム負極の場合ダミーの約10倍、ゲルマウム負極の場合ダミーの約4倍の効果が観測された。
【0027】
また、図2とは別に、半導体層41が単層の場合と酸化物半導体/金属の二層構造の場合についてイオントフォレーゼの効果に与える影響を比較した。PTFEポリマーフィルムに蒸着した厚さ0.5μmのZnO及び亜鉛フィルム上に蒸着した厚さ0.1μmのZnOの各下地フィルム下面に厚さ1mmの絶縁フィルムを貼りつけた後、図1のように格子状に整形した。これら負極4を0.5モルのクエン酸ソーダを分散させたゼラチンゲル層表面に配設して、イオントフォレーゼ用経皮投薬素子を構成した。正極金属及び格子状負極のサイズは、前記同様である。これを、SD系雄性ラットに装荷してイオントフォレーゼの効果を調べたが、殆ど有意差がみられなかった。ただし、酸化物半導体/金属の二層構造では、皮接4時間経過後の血中濃度を最高にしてこれ以降やや血中濃度が低下する傾向がみられた。
【0028】
(2)絆創膏1上に正極金属部2として金の薄膜シートを貼着し、その上に0.8モルのα−トコフェロール誘導体塩を分散させたポリビニルピロリドンゲルを導電性マトリクス3として層状に塗布した。次に、幅2mm、高さ1.5mm、格子間隔10mmの格子状負極4を導電性マトリクス3に密着配置する。負極4は、上層が厚み0.6mmのn−ZnO/Znから成る半導体層41であり、下層が厚み0.9mmのナイロンシートである。導電性マトリクス3の層が40×40mmの大きさのシート状素子の一方の縁端部において、正極金属2の縁端から導線を51を引き出し、切換スイッチ6に接続する。一方、シート状素子の縁端部の格子状負極に接続した導電シート5には、正極金属2との短絡回路(A回路)及び周波数50〜500Hzの範囲内で発振する低電圧(10V以下)低周波パルス発振器8と発振器電源7が接続されたテタヌス刺激回路(B回路)が互いに並列に接続されている。切換スイッチ6は、A回路とB回路とを切換えるものである。テタヌス刺激とは、シナプスにくり返し印加される電圧刺激をさす。
【0029】
これを側面図で示したのが、図3である。パルスの極性は、負極4側で正、正極2側でゼロになる方向で接続されている。このA、B回路及び切換スイッチは着脱自由であり、シート交換自由である。低周波パルス発振器8からの小電圧パルスは、経皮投薬素子が皮接された時、真皮領域に分布する末消神経のシナプスの可塑性を高め、印加領域の細胞を生理活性化する。この活性化は、パルス印加後(テタヌス刺激印加後)数時間以上持続し、長期増強効果(LTP効果)といわれる。低周波パルスによるテタヌス刺激は、生体皮膚面の生理活性化によって薬剤の取り込み効率を高めるために用いられる。従って、経皮投薬素子を皮接後切換スイッチ6でまずB回路を選択して生理活性化を行い、しかる後切換スイッチ6でA回路を選択してイオントフォレーゼを持続する。前記したように、LTP効果は、数時間経過して徐々に減少するので、長時間皮接してイオントフォレーゼを行う場合には、数時間に1度自動的に切換えてテタヌス刺激を与えることが好ましい。なお、テタヌス刺激の印加時間は、初回が1分間程度、追加回は30秒間程度である。また、パルスの周波数、ピーク電圧は患部の深さ、生体皮膚末梢神経の活性度によって選択される。一般に患部が深い場合には、周波数を下げてピーク電圧を上げる。周波数は50Hz以下では刺激の蓄積が弱いためにLTP効果の誘起度が小さく、また500Hzを越えるとシナプスにおけるパルス分離認識効果が下がってLTP効果の発現が低下する。従って、50〜500Hzの周波数帯域にある適当な周波数のパルスを用いることが望ましい。
【0030】
図3に示した前記経皮投薬素子を、 剪毛後脱毛した白色兎の背面に皮接してイオントフォレーゼの効果を調べた。低周波パルス発振器8の周波数は200Hz、ピーク電圧は3Vとした。白色兎2匹を1群として同じ個所に同じ規格の経皮投薬素子を装荷し、2時間毎にα−トコフェロールの平均血中濃度を測定した。1群は、A回路のみを使用、即ち、前実施例同様イオントフォレーゼのみとした。他の1群は、最初にB回路を使用してテタヌス刺激を1分間印加し、すぐA回路に切換え、5時間おきにB回路を1分間作動させてテタヌス刺激を加えた場合である。
【0031】
得られた結果を図示したのが図4である。A回路のみ使用の場合に比べて、テタヌス刺激によってシナプスのLTP効果を誘起し、生理活性化をはかった場合の薬剤取り込み効率が2〜3倍に高まることがわかる。テタヌス刺激は加算(記憶)効果があるため、刺激の大きさと頻度を最適化することによって、更に大きな取り込み効率の向上が期待できる。
【0032】
(3)図3に示したワンシート状経皮投薬素子のテタヌス刺激効果をより詳しく調べるために、パルス周波数とピーク電圧を変化させた。本実施例では、導電性マトリクス3に分散させる被浸透イオン薬剤を0.3モルのアスコルビン酸ソーダとした。正極金属2は銀メッシュ、負極4の半導体層41は、Al薄膜上に蒸着した厚さ1.5μmのn−Ge0.7Si0.3とした。また導電性マトリクス3のサイズは、20×40mmとした。これ以外の材料、寸法は前実施例と同じとした。
【0033】
さて、この経皮投薬素子を剪毛としたSD系雄性ラットの背中に装荷した。ラットは2匹1群とし、各群毎に1時間おきにアスコルビン酸の平均血中濃度を調べた。得られた結果を、図5に示す。
図5は、経皮投薬素子をラットに装荷後、直ちにB回路によって3Vまたは6Vのピーク電圧の低周波パルスを1分間印加し、そのままA回路に切換えてイオントフォレーゼを行った時のデータを示している。図の場合、300Hzでのテタヌス効果が最も大きいことがわかるが、ピーク電圧との組合せで最も好ましい周波数は選択されていない。なお、パルスのデューティ比は50%とした。また、ピーク電圧の効果を200Hzで比較したデータでは、3Vよりも6Vの方が若干高い効果が得られているが、時間減衰は3Vよりも6Vの方がやや大きい。50Hz以下については、図示されていないが、25Hzについて一部テストした所、テタヌス刺激を印加する前と有意差がみられなかった。
以上のことから、好ましいテタヌス刺激の周波数は50Hz以上500Hz以下と考えられる。また、ピーク電圧は図示した実験では数Vとしたが、0.1Vで200Hzの刺激を5分間印加した場合も効果がみられたので、0.1V〜10V程度が適当と考えられる。
【0034】
尚、ラットの血液検査では、何れの周波数、電圧のパルスを印加した場合でも、血中からアスコルビン酸と共にゲルマニウム及びシリコンが検出された。前実施例(1)、(2)においては、負極4の半導体を構成する陽イオン(金属イオン)の血中濃度は有意差が出るほど高くなかったので、本実施例の結果は共有結合性の強い非酸化物半導体特有の現象と考えられる。
【0035】
以上、実施例を用いて本発明を説明したが、負極4の半導体層としては、前記以外にも酸化ビスマス、酸化鉛、酸化アンチモン、酸化チタンなどを用いた場合にもイオントフォレーゼ効果がみられた。導電性パッドに分散する被浸透薬剤は、前記実施例以外に抗生物質や抗てんかん剤、抗不整脈剤、ホルモン剤、インシュリンなど多くの薬剤から選択することができる。
【0036】
【発明の効果】
以上述べたように、本発明によれば、ワンシート状のディスポーザブル経皮投薬素子が、外部電源を使用しないで得られる。従って、携帯用外部電源を用いた場合に生ずる皮膚抵抗変化による過大電流の障害(皮膚損傷)を心配することなく、安全且つ経済的、効果的に日常生活の中で経皮投薬が可能となる。
また、神経シナプスの可塑性を高めるテタヌス刺激を併用することによって、皮膚の生理活性化を惹起し、イオントフォレーゼによる薬剤の取り込み効率を向上させることができる。このために、従来以上に経皮投薬の利用範囲を広げることができると考えられる。
【図面の簡単な説明】
【図1】実施例によるワンシート状経皮投薬素子の構造例を示す図である。
【図2】図1の素子を用いたイオントフォレーゼの効果を示すデータである。
【図3】別の実施例によるワンシート状経皮投薬素子の構造例を示す図である。
【図4】図3の素子を用いたイオントフォレーゼの効果を示すデータである。
【図5】図3の素子を用いたテタヌス刺激効果を示すデータである。
【符号の説明】
1 絆創膏
2 正極金属部
3 導電性マトリクス
4 負極
5、5′ 導電シート
6 切換スイッチ
7 発振器電源
8 低周波パルス発振器
41 半導体層
42 非導電性パッド
51 導線
A 短絡回路
B テタヌス刺激回路
[0001]
[Industrial applications]
The present invention relates to a transdermal administration device utilizing the action of iontophoresis.
[0002]
[Prior art]
The transdermal administration method is an excellent administration method as a means (Drug Delivery System; DDS) for delivering a drug at a predetermined concentration to a predetermined position in a living body. That is, as compared with intravenous injection or oral administration, the ratio of the drug flowing to the whole body in the blood stream is small, so that the side effect and the dose of the drug can be reduced. To this end, transdermal medication, in addition to antiphlogistic analgesia and the like, enables treatment of chronic diseases while performing daily activities depending on the type and degree of the disease. Examples of its practical use include treatment of chronic diseases of the musculoskeletal system and connective tissue, prevention of attacks of angina, calming of bronchitis, treatment of neurological diseases, and the like.
[0003]
Normally, percutaneous administration involves applying a matrix containing an active ingredient (this does not mean a lattice shape in a circuit device, but a material containing an active ingredient; the same applies hereinafter) to a plaster and apply it to a predetermined amount. This is carried out by skin contact with the site and using a concentration diffusion technique to allow a certain concentration of the drug to penetrate into the subcutaneous tissue from the skin contact site. However, penetrant drugs that are effective in treating diseases are generally high molecular compounds and have complex tertiary structures, so relying only on simple concentration diffusion phenomena does not allow the required concentration of drug to reach the affected area, In many cases, a sufficient therapeutic effect cannot be obtained. That is, since human skin has a complex multilayer structure and has a function of preventing foreign substances from penetrating from the outside, it is not easy for a polymer drug to break through a skin barrier and enter the body.
Therefore, in recent years, attention has been paid to the use of iontophorase and the combined use of absorption enhancers as means for increasing the effective penetration rate by the transdermal administration method.
[0004]
The former ionizes the active ingredient of the drug to be permeated, applies the drug under one of the electrodes (active electrodes) disposed at two places using the skin as a current path, and contacts the other electrode (an unrelated electrode). During this time, an electric power is supplied from an external power supply, and the active component ions are forcibly migrated into the skin current-carrying path by the electric repulsive force. The latter is a compound in which a substance that reduces the molecular binding force of sebum and allows the drug to easily penetrate the stratum corneum, such as limonene, is blended in the matrix together with the drug to be permeated.
Although some of these methods have been put to practical use, they can be said to be still under development. That is, the former has a problem mainly with the power supply, and the latter has a problem with effectiveness.
[0005]
As the external power source in the iontophoresis, a fixed type 100 V class DC power source is often used in hospitals and the like under the supervision of a doctor because the skin conduction path has a high resistance (10 to 100 MΩ / cm). However, in this case, since the patient cannot use it in daily life, a portable small power source (battery) is generally used. However, when a battery is used for a certain period of time, the effect of drug penetration by electrophoresis decreases due to a sudden decrease in electromotive force, or skin resistance decreases sharply due to a change in the state of skin contact, for example, perspiration. There is a problem that a large current flows and the skin surface is damaged.
[0006]
As a measure to prevent this, two kinds of metals with different ionization tendencies are conductively connected, an electromotive force is generated using an electric closed circuit formed at the time of skin contact, and a metal salt of the same type as the anode metal is used. An iontophoresis using an ionic drug applied to the skin contact surface of the anode has been proposed (JP-A-60-203270). This method is an attempt to utilize the internal reaction of the battery (oxidation-reduction reaction between the electrodes) as compared to the above-described conventional technology using an external power supply (battery). However, this method has significant disadvantages. When an electrical closed circuit is formed upon contact with the skin, first, electrons flow from the cathode, which has a high ionization tendency, to the anode, and the non-electron (oxidized) cathode becomes chemically active. Since the cathode is surrounded by water molecules, before attracting anions from inside the living skin,
Me 2+ + 2OH → Me (OH) 2 → MeO + H 2 O
, But Me 2+ Is the ion of the metal constituting the cathode
It is self-evident that certain reactions occur quickly. As a result, the electromotive force of the battery changes greatly. For example, when a magnesium alloy recommended and preferred in Japanese Patent Application Laid-Open No. 60-203270 is used for the cathode, the surface of the cathode is coated with MgO within a short time. You. Mg (OH) 2 Since the MgO-based oxide is an insulator, the electromotive force value rapidly decreases, and the iontophoresis stops.
[0007]
In order to solve this drawback, the present inventor has disclosed a power supply for an iontophoresis device which is a combination of a semiconductor negative electrode and a metal positive electrode (Japanese Patent Application No. 1-150654). When this power supply is insulated with the ionic agent applied under the positive electrode to form an electrical closed circuit, when electrons flow from the semiconductor negative electrode to the metal positive electrode, holes generated in the semiconductor negative electrode are formed on the skin-contacted surface. It is deflected by the internal electric field of the Schottky barrier and drifts to the skin contact surface, and flows out to the skin as free holes or semiconductor ions, so that the electrical neutrality of the semiconductor negative electrode is maintained and the semiconductor negative electrode stably withstands long-term continuous use.
This power supply also automatically stops power generation when a short circuit occurs between the electrodes on the skin contact surface due to sweating or the like. Therefore, unlike the case where an external power supply is used, the skin is safe.
[0008]
[Problems to be solved by the invention]
When performing transdermal medication using iontophoresis, it is desirable that the medication element is set according to the size and shape of the affected part. In addition, in order for a patient to continue medication in daily life, it is desired that the medication element itself be disposable.
However, in the above-described semiconductor negative electrode utilizing skin contact power generation type iontophoresis element, the conductive matrix containing the ionic drug is disposed under the positive electrode metal, and the positive electrode is connected to the semiconductor negative electrode at a position separated by a conductive wire. In addition, it was difficult for the patient to change the shape or cut into a small area by himself.
In particular, when a drug having a large molecular weight is ion-permeated into the skin, it is often not possible to obtain a sufficient permeation concentration simply by increasing the power supply voltage or increasing the conduction current. In this case, it is effective to physiologically activate the skin cells of the living body and increase the efficiency of drug uptake.
[0009]
SUMMARY OF THE INVENTION An object of the present invention is to provide a disposable transcutaneous administration device that is relatively easy to use and economical in that the device can be reduced in area and change in shape relatively easily.
Another object of the present invention is to provide a transdermal administration device which can artificially activate the skin.
[0010]
[Means for Solving the Problems]
The present invention relates to a sticking means having a skin contacting portion, a positive metal part disposed in a sheet shape at a non-skin contacting part of the sticking means, and dispersing ions permeated onto the positive metal part. And a negative electrode having a two-layer structure in which a lower layer is a non-conductive pad and the upper layer is a semiconductor layer having a lower standard monopolar potential than the positive electrode. A sheet wherein the conductive matrix and the semiconductor layer are simultaneously used by the attaching means after the positive electrode metal part and the semiconductor layer are short-circuited by a conductor at least at the edge. Disclosed is a transdermal dosage element in the form of a pen.
The above-mentioned sheet-like positive electrode metal may be a film-like metal whose entire surface is filled with the same kind of metal without any gap, a mesh-like metal having regular mesh-like gaps, or a sheet-like metal perforated in an appropriate pattern. . The above-mentioned lattice-shaped negative electrode refers to a two-dimensional two-layer structure negative electrode having a lattice shape that is orthogonal or oblique with appropriate and regular intervals and widths.
[0011]
Further, the present invention provides a sticking means having a skin contacting part, a positive metal part arranged in a mesh or sheet shape at a non-skin contact part of the sticking means, and a coating and coating on the positive metal part. A two-layered negative electrode comprising a conductive matrix in which penetrating ions are dispersed, a non-conductive pad disposed in a grid on the conductive matrix, a lower layer having a non-conductive pad, and an upper layer having a standard monopolar potential lower than that of the positive electrode. The positive electrode metal part and the semiconductor layer are connected at least at the edge portion via a circuit, and the conductive matrix and the semiconductor layer are simultaneously used by the attaching means. In the sheet-shaped transdermal dosage element, the circuit is capable of oscillating a low frequency pulse of 50 to 500 Hz with a first circuit in which a positive electrode metal part and a semiconductor layer are short-circuited by a conductive wire, and Pulse polarity A second circuit comprising a small-voltage pulse oscillator and a drive power supply for the small-voltage pulse oscillator and a driving power supply for the low-voltage pulse oscillator, the first circuit and the second circuit being connected in such a manner that the negative electrode side has a positive potential and the positive metal side has a zero potential And a changeover switch for selectively inserting between the positive electrode metal part and the semiconductor layer.
[0012]
The semiconductor layer may be an oxygen-defective oxide selected from the group consisting of zinc oxide, aluminum oxide, bismuth oxide, iron oxide, lead oxide, antimony oxide, titanium oxide, and tin oxide. Further, the semiconductor layer may be the same semiconductor layer as a whole, or may have a two-layer structure of a semiconductor layer only on the skin contact surface and a lower layer of the semiconductor layer.
[0013]
[Action]
Since the transdermal drug delivery device is formed in layers of negative electrode / conductive matrix / positive electrode / adhering means and one flexible sheet, even if it is commercially available in a predetermined size, the patient cuts it by himself to obtain an appropriate size. , Can be arranged in a shape. In use, the positive electrode metal and the negative electrode semiconductor may be short-circuited at the edge of the sheet before use.
[0014]
When a conductive matrix (a conductive gel-like substance in which ions to be penetrated are dispersed; the same applies hereinafter) and a semiconductor layer are simultaneously skinned by a sticking means, a positive electrode (metal), a negative electrode (semiconductor), An external short circuit type chemical cell consisting of the electrolyte (conductive matrix and skin) is formed. In this case, the current path is a closed circuit of a semiconductor layer → a conductive wire → a positive electrode metal part → a conductive matrix → a skin → a semiconductor layer. By the electrons flowing from the negative electrode to the positive electrode, anions (penetration ions of the drug) under the sheet-shaped positive electrode are two-dimensionally electrically repelled and penetrate into the skin from the matrix. The electrons penetrating into the skin together with the anions cause a reduction reaction.
On the other hand, in the lattice-shaped semiconductor layer from which the electrons have flowed out, the excess holes are deflected by the electric field inside the Schottky barrier formed on the contact surface and penetrate into the skin to cause an oxidation reaction. The Schottky barrier prevents the inflow of electrons from the contact surface, so that a stable chemical cell electromotive force can be obtained.
[0015]
Since the negative electrode has a two-layer structure and the semiconductor layer is electrically separated from the conductive matrix by the non-conductive pad, there is no consumption due to so-called self-discharge before skin contact.
When a small voltage pulse oscillator (50-500 Hz) is connected to the transdermal administration device via the conducting wire in the direction in which the negative electrode side has a positive potential and the positive electrode metal side has a zero potential, the skin is in contact with the skin and a hole is formed in the skin when an external circuit is short-circuited. A predetermined low frequency pulse is applied to the skin from the side of the negative electrode semiconductor to be injected. The voltage has a peak value of about 0.1 to 10 (V). When this low-frequency pulse is applied to peripheral nerves distributed in the vicinity of 1 to 2 mm subcutaneously (tetanus stimulation), synaptic plasticity increases without the action of a neurotransmitter. As a result, a long-term potentiating effect (LTP effect) is exhibited over several hours to one day after application, and skin cells in the peripheral innervation region are physiologically activated. In other words, skin respiration is activated and metabolism is activated. Therefore, if ion photolysis is performed in this state, it is expected that the efficiency of absorbing permeated ions will be further enhanced.
[0016]
Since the tetanus stimulation has an accumulation effect by repeated voltage pulses, when applied to the anterior fiber of the peripheral nerve synapse, the LTP effect can be induced if the frequency is such that the nerve can be identified. In an experiment in which a pulse was directly applied to nerve fibers, an effect was observed in the range of 10 Hz to several kHz. However, when the pulse is applied from the epidermis, the effect of dispersion occurs during the propagation of the pulse, so that the frequency limit becomes more severe. According to the test result from the living body epidermis, a favorable effect was obtained in a frequency band of 50 to 500 Hz. The peak value of the voltage pulse may be about 10 mV or more at the presynaptic fiber position. However, in consideration of attenuation in a living body, a used frequency, noise potential, and the like, a magnitude of 0.1 V or more is preferable at a skin incision site.
[0017]
If the semiconductor layer of the negative electrode has an oxide semiconductor layer on the skin contact surface and a lower layer formed of a double structure of a cation metal forming the oxide semiconductor layer, the conductivity of the semiconductor layer increases, and the conductivity of this region increases. It is preferable because the loss can be reduced. The cationic metal is gradually oxidized by receiving the moisture at the skin contact portion, and a stable oxide semiconductor film thickness is formed.
[0018]
【Example】
Hereinafter, the present invention will be described in more detail based on examples.
(1) FIG. 1 is a view showing a configuration of a transdermal administration device according to an embodiment of the present invention. FIG. 1A is a top view, and FIG. 2B is a cross-sectional view along AA '. In the figure, 1 is a bandage of the sticking means, 2 is a sheet-like positive electrode metal part (for example, a metal layer), 3 is a conductive matrix in which permeated drug ions are dispersed, 4 is a grid-like negative electrode, and 5 and 5 ′ are This is a conductive sheet that short-circuits the positive and negative electrodes. The negative electrode 4 includes a lower non-conductive pad 42 in contact with the conductive matrix 3 and a semiconductor layer 41 disposed on the lower non-conductive pad 42. Although the height of the negative electrode 4 is not negligible in the drawing, it is actually extremely small. The above-mentioned sheet-like positive electrode metal may be a film-like metal whose entire surface is filled with the same kind of metal without any gap, a mesh-like metal having regular mesh-like gaps, or a sheet-like metal perforated in an appropriate pattern. . The above-mentioned lattice-shaped negative electrode refers to a two-dimensional two-layer structure negative electrode having a lattice shape that is orthogonal or oblique with appropriate and regular intervals and widths.
[0019]
At the edge portions L and M, the conductive sheet 5 electrically connects the positive electrode metal portion 2 and the semiconductor layer 41 as shown in FIG. The conductive sheet 5 and the conductive matrix 3 are separated by non-conductive pads 42 so as not to be electrically connected. The conductive sheet 5 may be a bonded lead wire.
In use, the skin contact surfaces a, b, and c are used in contact with the skin. At the time of this skin contact, it is as follows. When a conductive matrix (a conductive gel-like substance in which permeating ions are dispersed; the same applies hereinafter) and a semiconductor layer are simultaneously insulated with an adhesive bandage, a positive electrode (metal), a negative electrode (semiconductor), and an electrolyte ( An external short circuit type chemical cell composed of a conductive matrix and skin) is formed. In this case, the current path is a closed circuit consisting of the semiconductor layer 41 → the conducting wire 5 → the positive electrode metal part 2 → the conductive matrix 3 → the skin → the semiconductor layer 41.
The conductive sheets 5, 5 'have a role of short-circuiting the external circuit of the chemical battery formed when the chemical battery is in contact with the skin, but the chemical battery is consumed because a closed circuit including the positive electrode and the negative electrode is not formed before the skin contact. There is no.
[0020]
The positive electrode metal part 2 is in two-dimensional contact with the conductive matrix 3. Impregnated ion M generated by dissociation of ionic drug salt contained in conductive matrix 3 As the pH of the conductive matrix 3 changes with the infiltration of the living body, or the alkali ions constituting the drug salt are precipitated as a metal, use a metal that is resistant to corrosion, such as a noble metal, when used for a long time. Is desirable. However, since the use of inexpensive materials is required for the disposable type, it is more preferable to use inexpensive copper-based metal for the positive electrode metal part 2 by making contact with the conductive matrix 3 before use.
[0021]
The conductive matrix 3 is made of a gel-like conductive polymer such as polyvinylpyrrolidone gel. However, in order to avoid a problem such as a change in the pH of the matrix caused by skin contact for a long period of time and a rash on the skin surface of a living body. In addition, it is necessary to take into consideration the mitigation of the pH change by a well-known technique, for example, the use of an insoluble salt generation reaction by blending an acidic base material such as uric acid, or the blending of a material that causes a neutralization reaction such as the use of an ester by blending an alcohol. preferable.
[0022]
The semiconductor layer 41 constituting the negative electrode 4 is usually formed using an oxygen-defective oxide semiconductor. These semiconductors can reduce the specific resistance to 1 Ω · cm or less by thinning and improving the oxygen vacancy rate, and an n-type low-resistance semiconductor thin film is formed. Such oxygen-defective oxide semiconductors include zinc oxide (ZnO) and aluminum oxide (Al 2 O 3-x ), Tin oxide (SnO), bismuth oxide (Bi) 2 O 3 ), Antimony oxide (Sb 2 O 3 ), Iron oxide (Fe 3 O 4-x ), Chromium oxide (CrO) 2-x ), Molybdenum oxide (MoO) 2-x ), Niobium oxide (NbO) 2-x ), Titanium oxide (Ti 2 O 3-x ) To form a kind of non-stoichiometric compound.
[0023]
These n-type oxide semiconductors can be formed on a base by using a known thin film forming method such as sputtering, vapor deposition, or CVD. Therefore, if a polyimide or PTFE resin film is used for the base, the negative electrode 4 can be formed once. Can be formed. That is, the n-type oxide becomes the semiconductor layer 41 and the underlying polymer becomes the non-conductive pad 42.
On the other hand, since an n-type oxide can be formed over a metal, the semiconductor layer 41 can have a double structure by using an element constituting a cation of an n-type oxide semiconductor as a base. For example, zinc oxide is formed on zinc, and aluminum oxide is formed on aluminum. In this case, the n-type oxide semiconductor can be formed on the base metal by the thin film deposition method or by oxidation of the metal surface by acid treatment or the like. When the semiconductor layer 41 has a double structure of an oxide and a metal, the non-conductive pad 42 under the negative electrode 4 is formed by attaching a flexible sheet such as a woolen fabric or a polymer to the semiconductor layer 41. Can be.
[0024]
The semiconductor layer 41 constituting the negative electrode 4 is made of n-type germanium or an alloy thereof, n-type silicon or an alloy thereof, n-type silicon or an alloy thereof, a rare earth compound or a mixture thereof, which induces physiological activation by inducing interferon or the like when penetrated into a living body. Can be configured. In general, in an oxide semiconductor, even if electrons flow to the positive electrode side by skin contact, the oxidation reaction is prioritized. Therefore, the possibility that the semiconductor is ionized from the skin contact surface and penetrates into a living body is small. Conversely, when a non-oxide semiconductor having a covalent bond that is relatively stable against oxidation is used for the negative electrode, when electrons flow out to the positive electrode side by skin contact, holes flow to the skin contact surface and become positively charged, It becomes unstable and is separated from the crystal by the internal electric field due to the Schottky barrier, and penetrates into the living body as cations. Therefore, in the semiconductor layer 41 made of germanium or the like, a cytokine-inducing effect in a living body can be expected.
[0025]
The conductive sheets 5, 5 'in FIG. 1 may be formed of, for example, metal foil. Ready-made aluminum foil, tin foil and the like can be used.
In the one-sheet transdermal administration device of FIG. 1, the positive electrode metal part 2 is made of pure copper, the width of the lattice negative electrode 4 is 2 mm, the height is 2 mm, the lattice interval (the exposed width of the conductive matrix 3) is 12 mm, The matrix 3 was used as a base material having a thickness of about 2 mm in which 0.5 mol of sodium citrate was dispersed in a gelatin gel. That is, a group of three male SD rats were shaved and the skin was brought into contact with the conductive matrix 3 and the negative electrode 4 simultaneously. The mean blood levels of the rats were measured after 2, 4, 6, and 8 hours. For comparison, a group of rats was loaded with a dummy transdermal element of the same area in which only a gelatin matrix in which 0.5 mol of sodium citrate was dispersed was applied to a bandage 1, and the blood concentrations were compared. .
[0026]
FIG. 2 shows a change in citrated blood concentration when the type of the semiconductor layer 41 of the negative electrode 4 is changed, in comparison with a dummy. Regardless of which semiconductor layer 41 was used, a blood concentration higher than that of the dummy was observed, indicating that the iontophorase of the present invention was more effective for drug permeation by several to ten times than a simple concentration diffusion. In the case of iontophoresis, it is shown that the blood concentration becomes constant approximately 4 hours after skin contact. Although not shown, when the blood concentration after 6 hours was compared with that of the dummy, an effect of about 10 times that of the dummy with the aluminum oxide negative electrode and about 4 times that of the dummy with the germanium negative electrode was observed.
[0027]
Further, apart from FIG. 2, the effect on the effect of iontophoresis was compared between the case where the semiconductor layer 41 is a single layer and the case where the semiconductor layer 41 has a two-layer structure of an oxide semiconductor / metal. After attaching an insulating film of 1 mm thickness to the lower surface of each base film of 0.5 μm thick ZnO deposited on the PTFE polymer film and 0.1 μm thick ZnO deposited on the zinc film, as shown in FIG. It was shaped like a lattice. These negative electrodes 4 were disposed on the surface of a gelatin gel layer in which 0.5 mol of sodium citrate was dispersed, to constitute a transdermal administration device for iontophoresis. The sizes of the positive electrode metal and the grid-shaped negative electrode are the same as described above. This was loaded on SD male rats and the effect of iontophoresis was examined, but no significant difference was found. However, in the case of the oxide semiconductor / metal two-layer structure, the blood concentration after the elapse of 4 hours from the skin contact was maximized, and the blood concentration tended to slightly decrease thereafter.
[0028]
(2) A gold thin film sheet is adhered to the bandage 1 as the positive electrode metal part 2, and a polyvinylpyrrolidone gel in which 0.8 mol of α-tocopherol derivative salt is dispersed is applied thereon as a conductive matrix 3 in a layered manner. did. Next, a grid-shaped negative electrode 4 having a width of 2 mm, a height of 1.5 mm, and a grid interval of 10 mm is closely attached to the conductive matrix 3. The negative electrode 4 is a semiconductor layer 41 whose upper layer is made of n-ZnO / Zn with a thickness of 0.6 mm, and whose lower layer is a nylon sheet with a thickness of 0.9 mm. The layer of the conductive matrix 3 is 40 × 40 mm 2 A lead wire 51 is pulled out from the edge of the positive electrode metal 2 at one edge of the sheet-shaped element having the size of and connected to the changeover switch 6. On the other hand, the conductive sheet 5 connected to the grid-like negative electrode at the edge of the sheet-like element has a short circuit (A circuit) with the positive metal 2 and a low voltage (10 V or less) oscillating within a frequency range of 50 to 500 Hz. Tetanus stimulating circuits (B circuits) to which a low-frequency pulse oscillator 8 and an oscillator power supply 7 are connected are connected in parallel with each other. The changeover switch 6 switches between the A circuit and the B circuit. Tetanus stimulation refers to voltage stimulation repeatedly applied to a synapse.
[0029]
FIG. 3 shows this in a side view. The polarity of the pulses is connected such that the polarity is positive on the negative electrode 4 side and zero on the positive electrode 2 side. The A and B circuits and the changeover switch can be freely attached and detached, and the seat can be exchanged freely. The small voltage pulse from the low-frequency pulse oscillator 8 increases the plasticity of the synapse of the peripheral nervous system distributed in the dermis region when the transdermal administration device is in skin contact, and activates the cells in the application region. This activation lasts several hours or more after the pulse application (after the application of the tetanus stimulus), and is called a long-term potentiation effect (LTP effect). Tetanus stimulation by a low-frequency pulse is used to increase the efficiency of drug uptake by activating the biological skin surface. Therefore, after the percutaneous administration element is in contact with the skin, the circuit B is first selected by the changeover switch 6 to activate the physiological condition, and then the circuit A is selected by the changeover switch 6 to maintain the iontophoresis. As described above, the LTP effect gradually decreases after several hours, and therefore, when performing iontophoresis after long hours of contact, it is possible to automatically switch once every few hours to give the tetanus stimulation. preferable. The application time of the tetanus stimulus is about 1 minute for the first time and about 30 seconds for the additional time. The pulse frequency and the peak voltage are selected according to the depth of the affected area and the activity of the peripheral nerves of the living skin. Generally, when the affected part is deep, the frequency is lowered and the peak voltage is raised. If the frequency is 50 Hz or less, the degree of induction of the LTP effect is small due to weak stimulation accumulation, and if it exceeds 500 Hz, the pulse separation recognition effect at the synapse is reduced and the expression of the LTP effect is reduced. Therefore, it is desirable to use pulses of an appropriate frequency in a frequency band of 50 to 500 Hz.
[0030]
The transdermal administration device shown in FIG. 3 was in skin contact with the back of a white rabbit that had been shaved and depilated, and the effect of iontophoresis was examined. The frequency of the low-frequency pulse oscillator 8 was 200 Hz, and the peak voltage was 3 V. A group of two white rabbits was loaded with a transdermal administration element of the same standard at the same location, and the average blood concentration of α-tocopherol was measured every two hours. One group used only the A circuit, that is, only the iontophoresis as in the previous example. The other group is a case where the tetanus stimulus is first applied using the B circuit for 1 minute, the circuit is immediately switched to the A circuit, and the B circuit is activated for 5 minutes every 5 hours to apply the tetanus stimulus.
[0031]
FIG. 4 illustrates the obtained result. It can be seen that, compared to the case where only the A-circuit is used, the LTP effect of the synapse is induced by the tetanus stimulation, and the drug uptake efficiency when the physiological activation is measured is increased by two to three times. Since the tetanus stimulus has an addition (memory) effect, further improvement in the capturing efficiency can be expected by optimizing the size and frequency of the stimulus.
[0032]
(3) The pulse frequency and the peak voltage were changed in order to examine the tetanus stimulating effect of the one-sheet transdermal administration device shown in FIG. 3 in more detail. In this example, the permeating ionic drug dispersed in the conductive matrix 3 was 0.3 mol of sodium ascorbate. The positive electrode metal 2 was a silver mesh, and the semiconductor layer 41 of the negative electrode 4 was 1.5 μm thick n-Ge0.7Si0.3 deposited on an Al thin film. The size of the conductive matrix 3 is 20 × 40 mm 2 And Other materials and dimensions were the same as in the previous example.
[0033]
The transdermal administration device was loaded on the back of a shaved SD male rat. The rats were grouped in groups of two, and the average blood concentration of ascorbic acid was examined every hour for each group. FIG. 5 shows the obtained results.
FIG. 5 shows data obtained when a low-frequency pulse having a peak voltage of 3 V or 6 V was immediately applied by the circuit B for 1 minute after the transdermal administration device was loaded on the rat, and the circuit was switched to the circuit A for iontophoresis. Is shown. In the case of the figure, it can be seen that the Tetanus effect at 300 Hz is the largest, but the most preferable frequency in combination with the peak voltage is not selected. Note that the pulse duty ratio was 50%. Also, in the data comparing the effect of the peak voltage at 200 Hz, the effect of 6V is slightly higher than that of 3V, but the time decay is slightly larger at 6V than at 3V. Although not shown, the frequency of 50 Hz or less was not shown. However, when a part of the test was performed at 25 Hz, no significant difference was observed from that before the application of the tetanus stimulation.
From the above, it is considered that the preferable frequency of the tetanus stimulation is 50 Hz or more and 500 Hz or less. Although the peak voltage was set to several volts in the illustrated experiment, the effect was also observed when a 200 Hz stimulus was applied at 0.1 V for 5 minutes, so that about 0.1 V to 10 V is considered appropriate.
[0034]
In addition, in the blood test of the rat, germanium and silicon were detected together with ascorbic acid from the blood, regardless of the frequency and voltage pulse applied. In the previous examples (1) and (2), the blood concentration of the cation (metal ion) constituting the semiconductor of the negative electrode 4 was not so high as to show a significant difference. This is considered to be a phenomenon peculiar to a non-oxide semiconductor having a strong characteristic.
[0035]
Although the present invention has been described with reference to the embodiments, the iontophoresis effect is also observed when bismuth oxide, lead oxide, antimony oxide, titanium oxide, or the like is used as the semiconductor layer of the negative electrode 4 in addition to the above. Was done. The penetrating drug dispersed in the conductive pad can be selected from many drugs such as an antibiotic, an antiepileptic drug, an antiarrhythmic drug, a hormonal drug, and insulin, in addition to the examples described above.
[0036]
【The invention's effect】
As described above, according to the present invention, a one-sheet disposable transdermal administration device can be obtained without using an external power supply. Therefore, transdermal medication can be safely, economically, and effectively performed in daily life without worrying about an excessive current failure (skin damage) due to a change in skin resistance caused when a portable external power supply is used. .
In addition, by using tetanus stimulation to enhance plasticity of nerve synapses, physiological activation of the skin can be induced and the efficiency of drug uptake by iontophorase can be improved. For this reason, it is considered that the use range of transdermal administration can be expanded more than before.
[Brief description of the drawings]
FIG. 1 is a diagram showing a structural example of a one-sheet transdermal administration device according to an embodiment.
FIG. 2 is data showing the effect of iontophoresis using the device of FIG.
FIG. 3 is a view showing a structural example of a one-sheet transdermal administration device according to another embodiment.
FIG. 4 is data showing the effect of iontophoresis using the device of FIG.
FIG. 5 is data showing the tetanus stimulating effect using the device of FIG. 3;
[Explanation of symbols]
1 bandage
2 Positive metal part
3 Conductive matrix
4 Negative electrode
5, 5 'conductive sheet
6 Changeover switch
7 Oscillator power supply
8 Low frequency pulse oscillator
41 Semiconductor Layer
42 Non-conductive pad
51 conductor
A short circuit
B Tetanus stimulation circuit

Claims (3)

皮接部位を有する貼着手段と、該貼着手段の非皮接部位にシート状に配設された正極金属部と、該正極金属部上に塗布され且つ被浸透イオンを分散した導電性マトリクスと、該導電性マトリクス上に格子状に配設され且つ下層が非導電性パッド、上層が前記正極より標準単極電位の低い半導体層から成る二層構造の負極と、を積層して成り、
前記正極金属部と前記半導体層とを少なくとも縁端部で導線によって短絡後、前記貼着手段によって前記導電性マトリクス及び前記半導体層を同時皮接して使用することを特徴とするシート状の経皮投薬素子。
Attachment means having a skin contact portion, a positive metal part disposed in a sheet shape at a non-skin contact part of the sticking means, and a conductive matrix applied on the positive metal part and dispersed with permeation ions And a negative electrode having a two-layer structure in which the lower layer is a non-conductive pad and the upper layer is a semiconductor layer having a lower standard monopolar potential than the positive electrode, and the lower layer is disposed in a grid on the conductive matrix.
A sheet-shaped transdermal skin, wherein the conductive matrix and the semiconductor layer are simultaneously used by the bonding means after the positive electrode metal part and the semiconductor layer are short-circuited by a conductor at least at the edge. Dosing element.
皮接部位を有する貼着手段と、該貼着手段の非皮接部位にメッシュ状またはシート状に配設された正極金属部と、該正極金属部上に塗布され且つ被浸透イオンを分散した導電性マトリクスと、該導電性マトリクス上に格子状に配設され且つ下層が非導電性パッド、上層が前記正極より標準単極電位の低い半導体層から成る二層構造の負極と、を積層して成り、
前記正極金属部と前記半導体層とを少なくとも縁端部で回路を介して接続して、前記貼着手段によって前記導電性マトリクス及び前記半導体層を同時皮接して使用することを特徴とするシート状の経皮投薬素子において、上記回路は、正極金属部と半導体層とを導線によって短絡した第1の回路と、
50〜500Hzの低周波パルスが発振可能であり且つパルス極性が前記負極側で正電位、前記正極金属側でゼロ電位となる方向で接続した、小電圧パルス発振器及びその駆動電源から成る第2の回路と、
第1の回路と第2の回路とのいずれかを、正極金属部と半導体層との間に選択して挿入する切換スイッチとより成る経皮投薬素子。
An attaching means having a skin contacting part, a positive metal part arranged in a mesh or sheet shape at a non-skin contact part of the sticking means, and the permeation ions dispersed on the positive metal part are dispersed. A conductive matrix and a negative electrode having a two-layer structure in which a lower layer is a non-conductive pad and the upper layer is a semiconductor layer having a lower standard monopolar potential than the positive electrode are arranged in a grid on the conductive matrix. Consisting of
A sheet-shaped member in which the positive electrode metal part and the semiconductor layer are connected via a circuit at least at an edge portion, and the conductive matrix and the semiconductor layer are simultaneously used by the attaching means. Wherein the circuit comprises a first circuit in which a positive electrode metal part and a semiconductor layer are short-circuited by a conductive wire;
A second pulse generator comprising a small voltage pulse oscillator and a drive power source for the low voltage pulse oscillator, which are capable of oscillating a low frequency pulse of 50 to 500 Hz and are connected in such a manner that the pulse polarity is positive potential on the negative electrode side and zero potential on the positive electrode metal side. Circuit and
A transdermal administration device comprising: a changeover switch for selectively inserting one of the first circuit and the second circuit between the positive electrode metal part and the semiconductor layer.
前記半導体層が、酸化亜鉛、酸化アルミニウム、酸化ビスマス、酸化鉄、酸化鉛、酸化アンチモン、酸化チタン、及び酸化錫から成る酸素欠陥型酸化物群より選ばれた1種類であり、且つ前記半導体層全体が同一の酸化物半導体層から成るか或は皮接面が前記酸化物であり、その下層が該酸化物半導体層を構成する金属の二層構造から成ることを特徴とする請求項1または2記載の経皮投薬素子。The semiconductor layer is one type selected from the group consisting of oxygen-deficient oxides consisting of zinc oxide, aluminum oxide, bismuth oxide, iron oxide, lead oxide, antimony oxide, titanium oxide, and tin oxide; 2. The semiconductor device according to claim 1, wherein the whole is formed of the same oxide semiconductor layer, or the surface in contact with the oxide semiconductor layer is the oxide, and the lower layer is formed of a two-layer structure of a metal constituting the oxide semiconductor layer. 3. The transdermal administration element according to 2.
JP22019394A 1994-09-14 1994-09-14 Transdermal drug delivery device Expired - Lifetime JP3566346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22019394A JP3566346B2 (en) 1994-09-14 1994-09-14 Transdermal drug delivery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22019394A JP3566346B2 (en) 1994-09-14 1994-09-14 Transdermal drug delivery device

Publications (2)

Publication Number Publication Date
JPH0880354A JPH0880354A (en) 1996-03-26
JP3566346B2 true JP3566346B2 (en) 2004-09-15

Family

ID=16747350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22019394A Expired - Lifetime JP3566346B2 (en) 1994-09-14 1994-09-14 Transdermal drug delivery device

Country Status (1)

Country Link
JP (1) JP3566346B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6122585B2 (en) * 2012-06-08 2017-04-26 株式会社ポリトロニクス Method and apparatus for improving protein production rate by fibroblasts
WO2019068288A1 (en) 2017-10-04 2019-04-11 Berlimed International Research Gmbh Product containing active substance and active substance matrix for transdermal active substance delivery and production and use thereof and active substance matrix and production and use thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607078Y2 (en) * 1982-12-27 1985-03-08 博 井上 skin patch treatment device
JPS6190676A (en) * 1984-10-09 1986-05-08 株式会社ポリトロニクス Skin contact maker
JPS61115578A (en) * 1984-11-13 1986-06-03 株式会社 ポリトロニクス Ion penetration device
JPH0350927Y2 (en) * 1985-04-25 1991-10-30
JPS62268570A (en) * 1986-05-19 1987-11-21 株式会社アドバンス Electrode for iontophoresis
IL86076A (en) * 1988-04-14 1992-12-01 Inventor S Funding Corp Ltd Transdermal drug delivery device
JP2797118B2 (en) * 1989-06-15 1998-09-17 株式会社ポリトロニクス Transdermal drug delivery device

Also Published As

Publication number Publication date
JPH0880354A (en) 1996-03-26

Similar Documents

Publication Publication Date Title
US5944685A (en) Skin-contact type medical treatment apparatus
US6591133B1 (en) Apparatus and methods for fluid delivery using electroactive needles and implantable electrochemical delivery devices
JP4322304B2 (en) Electrotransport dosing device with improved safety and reduced abuse potential
Tyle Lontophoretic devices for drug delivery
US5772688A (en) Skin-contact type medical treatment apparatus
KR100376723B1 (en) Electric transport transmission device
JP4262410B2 (en) Electrical transmission electrode assembly with low initial resistance
EP1195175A2 (en) Iontoporesis device
JPH06506616A (en) Device for reducing stimulation during iontophoresis drug administration
JPH09215755A (en) Skin contact treating implement
IL211504A (en) Sacrificial electrode design and delivery species suitable for prolonged iontophoresis application periods
US6375990B1 (en) Method and devices for transdermal delivery of lithium
US5954684A (en) Iontophoretic drug delivery system and method for using same
EP1355697A1 (en) Apparatus and methods for fluid delivery using electroactive needles and implantable electrochemical delivery devices
JP3748278B2 (en) Skin contact device
JP3566346B2 (en) Transdermal drug delivery device
JP2797118B2 (en) Transdermal drug delivery device
JP4182555B2 (en) Iontophoresis element for transdermal administration
EP0845281A2 (en) Transdermal drug delivery device
JP2004202086A (en) Medicator for electroporation, and system and method of medication for electroporation
JP4126110B2 (en) Transdermal dosing element
AU2006202742B2 (en) Method and devices for transdermal delivery of lithium
JP2003169853A (en) Iontophoresis element

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term