JP3566258B2 - Magnetoencephalography sensor and super multi-channel magnetoencephalography system using it - Google Patents

Magnetoencephalography sensor and super multi-channel magnetoencephalography system using it Download PDF

Info

Publication number
JP3566258B2
JP3566258B2 JP2002034920A JP2002034920A JP3566258B2 JP 3566258 B2 JP3566258 B2 JP 3566258B2 JP 2002034920 A JP2002034920 A JP 2002034920A JP 2002034920 A JP2002034920 A JP 2002034920A JP 3566258 B2 JP3566258 B2 JP 3566258B2
Authority
JP
Japan
Prior art keywords
sensor
magnetoencephalography
coil
channel
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002034920A
Other languages
Japanese (ja)
Other versions
JP2003230546A (en
Inventor
常広 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002034920A priority Critical patent/JP3566258B2/en
Publication of JP2003230546A publication Critical patent/JP2003230546A/en
Application granted granted Critical
Publication of JP3566258B2 publication Critical patent/JP3566258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被験者の脳により生じた磁界を測定する超多チャンネル脳磁計システムに関するものであり、特に被験者の頭部を包囲するセンサの構造に特徴がある超多チャンネル脳磁計システムに関するものである。
【0002】
【従来の技術】
人の脳は、電気信号を発生している。これら電気信号は非常に微弱であるが、これらを種々の方法により非侵襲的に測定できる。かかる方法の一例である生体磁気測定法は、脳の電流によって頭部の外部に生じる磁界の測定を行っている。
【0003】
脳磁計(MEG)システムは、磁界センサ、センサ中の電流の検出器、及び関連エレクトロニクスを有する特別に改良された磁界検出用高感度装置であり、時間および空間分解能がすぐれた非侵襲脳機能計測装置として大きな期待がかけられ、次第に普及が図られている。
【0004】
このようなシステムに使用されるプラナー型磁界センサは、典型的には磁束により貫かれると微小電流を生じさせる多ループのコイル状の電線であり、例えば図3に示すように一つのマグネトメータ用コイル(イ)および計二つの磁場の方向微分コイル(グラディオメータ)(ロ)(ハ)を組み合わせ重ねて一体として構成されている。また、前記(イ)を持たず、(ロ)(ハ)のコイルだけで計測するものも多用されている。同時に(イ)だけのコイルも利用可能である。
【0005】
ところで、上記システムにおいて、充分な感度を確保するためにはセンサコイルの面積は数平方センチメートルは必要であり、そのような面積を持つセンサコイルを頭部表面に稠密に配置した時には、図2に示すように配置する数が限られ、高々数百チャンネル程度がその上限となっている。
【0006】
【発明が解決しようとする課題】
そこで本発明は、薄膜上にプリントしたセンサコイルを上下左右方向に正確にa/n(ただしaは薄膜コイルの一辺の長さ、nは自然数)だけずらし、かつ
枚積層してセンサを構成し、対応する多数の薄膜からの信号を並列して多チャンネルスクイッドの入力部で切り換えるようにした超多チャンネル脳磁計システムを提供することにより、さらに数百から数万倍の解像度を持てる超高解像度システムを得ることを目的とする。
さらに、薄膜上にプリントしたセンサコイルを上下左右方向に正確にa/nだけずらし、n枚積層したセンサを、正確に位置合わせしつつ、対向して上下に複数枚配置し、対応するコイルに生じる電流の差をとるよう磁場の軸方向の一次微分や高次の微分を計測できるようにした脳磁計用センサとそのセンサを利用した超高解像度システムを提供することを目的とする。
【0007】
【課題を解決するための手段】
このため、本発明が採用した技術解決手段は、
薄膜上にプリントしたセンサコイルを必要枚数だけ積層して構成した脳磁計用センサであって、前記センサコイルは上下方向および左右方向にそれぞれ正確にa/n(ただしaは薄膜コイルの一辺の長さ、nは自然数)だけずらし、かつn 2 枚積層して構成したことを特徴とする脳磁計用センサである。
また、上記センサコイルを積層して構成したセンサを、対向して正確に位置合わせしつつ、上下に複数枚配置し、対応するコイルに生じる電流の差をとって磁場の軸方向の一次微分や高次の微分を計測できるようにしたことを特徴とする脳磁計用センサである。
また、上記センサと、前記センサ中の各コイルに対応する高速の切り換え手段と、前記高速の切り換え手段に対応して配置されたスクイッドとを備えていることを特徴とする超多チャンネル脳磁計システムである。
【0008】
【発明の実施形態】
以下、図面を参照して本発明に係る超多チャンネル脳磁計システムの一実施形態を説明すると、図1は同システムに使用するセンサコイル部の説明図である。
図において、1はセンサであり、このセンサ1は、従来公知のプラナー型のセンサコイルと同様の機能を持つ薄膜コイルを上下左右方向に正確にa/nだけずらしてn枚積層して構成されている(ただしaは薄膜コイルの一辺の長さ、nは自然数)。薄膜にコイルをプリントするならば、1枚の厚さを数μmとすれば、数百から数千枚重ねても高々数mmにしかならない。また正確に積層することも現在の技術では容易に実現できる。
【0009】
センサ1は頭部表面に図2に示すように複数配置され、夫々のセンサ1中のセンサコイル2は対応するマルチプレクサ等の切り換え手段3を介して対応するスクイッド4に従来システムと同様に接続されている。よって、マルチプレクサを1〜nに次々と切り換えるとスクイッド、アンプ等は従来の数で最高数万倍ものチャンネルをもった計測システムが構成できる。なお、スクイッド以降の構成は従来のシステムをそのまま使用する。そして上下にこのセンサを並べて対応するコイルに生じる電流の差をとって磁場の軸方向の一次微分や高次の微分を計測することにより、軸方向のグラディオメータも構成できる。このようにして既存の電子システムと同様な構成でセンサを薄膜技術によって多重化するだけで超高解像度を得ることができるシステムを作ることが可能となる。
【0010】
以上の構成からなるシステムでは、セレクト信号により第i層からの出力を同時に多チャンネルのスクイッドに電子的に結合できるよう高速に切り換える手段によって切り換えてやると、スクイッドおよび以降の電子回路を莫大なものにすること無く、安価に超多チャンネルシステムを構築することができことが大きな特徴である。なお、脳磁計で計測される信号成分は高々数百ヘルツにすぎないので、上記切り換えは充分高速に行うことが可能で計測の同時性は保証される。
【0011】
こうして本システムでは一つのセンサに於いて検出する情報が積層した枚数によって決定されるため、積層数が多くなると、頭部に配置したセンサの数にたいして積層枚数分センサコイル数が著しく増大したことになり、従来のセンサコイルに比較して格段の情報収集量となり、従来のシステムに対して数百から数万倍の解像度を持てる超高解像度システムを得ることを可能にする。
【0012】
以上、本発明に係るセンサの実施形態について説明したが、上記実施形態は現在最も実現し易い方法、装置を例にとって説明しているにすぎない。例えば、上記方法によって積層したセンサコイルから得られた出力を適当なソフトウエアを用いて処理すれば同等の結果を得ることが可能であることから、センサコイルをずらす量(a/n)は必ずしも一定である必要はなく、積層枚数も必ずしもn枚である必要はない。さらにセンサコイルは平面形状は四角に限定されることなく、他の形状とすることができる。また上記実施形態ではプレナー型のセンサについて説明したが、積層したセンサを正確に位置合わせしつつ、対向して上下に複数枚配置し、従来公知のグラディオータ、または高次微分センサを構成することも可能であり,それらを切り換え手段を介してスクイッドに接続し脳磁計システムを構築することもできる。また、センサは被測定体(たとえば頭)に平行に置く必要はなく、頭部に垂直において、頭部に平行な磁場成分を測定することに使うことも可能である。また切り換え手段は、従来公知の適宜手段を採用することができる。
さらに、本発明はその精神または主要な特徴から逸脱することなく、他のいかなる形でも実施できる。そのため、前述の実施形態はあらゆる点で単なる例示にすぎず限定的に解釈してはならない。
【0013】
【発明の効果】
以上詳細に説明したように、本発明によれば、センサコイルをプリントした薄膜を左右上下方向に一定方向だけずらして積層してセンサを構成し、対応する多数の薄膜センサコイルからの信号を並列して多チャンネルスクイッドの入力部で切り換える手段を採用することにより、従来のシステムに対して数百から数万倍の解像度を持てる超高解像度システムを得ることができる。
【図面の簡単な説明】
【図1】本発明のセンサ部の構成を説明する図面である。
【図2】センサ部を頭部に配置した様子を示す図である。
【図3】従来のプラナー型のセンサコイルの一例を示す図である。
【符号の説明】
1 センサ部
2 薄膜センサコイル
3 切り換え手段
4 スクイッド
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a super-multi-channel magnetoencephalography system for measuring a magnetic field generated by a subject's brain, and more particularly to a super-multi-channel magnetoencephalography system characterized by a structure of a sensor surrounding a subject's head. .
[0002]
[Prior art]
The human brain generates electrical signals. Although these electrical signals are very weak, they can be measured non-invasively by various methods. A biomagnetic measurement method, which is an example of such a method, measures a magnetic field generated outside the head by brain current.
[0003]
A magnetoencephalography (MEG) system is a specially improved high-sensitivity device for magnetic field detection with a magnetic field sensor, a current detector in the sensor, and associated electronics that provides noninvasive brain function measurement with excellent temporal and spatial resolution High expectations are placed on the device, and it is gradually spreading.
[0004]
A planar magnetic field sensor used in such a system is typically a multi-loop coil-shaped electric wire that generates a small current when penetrated by a magnetic flux. For example, as shown in FIG. The coil (a) and the two direction differential coils (gradientometers) (b) and (c) of the magnetic field are combined to form an integral unit. In addition, there is also often used one that does not have the above (A) but measures only with the coils (B) and (C). At the same time, only the coil (a) can be used.
[0005]
By the way, in the above system, the area of the sensor coil needs to be several square centimeters in order to secure sufficient sensitivity, and when the sensor coil having such an area is densely arranged on the surface of the head, it is shown in FIG. The number of channels is limited as described above, and the upper limit is about several hundred channels at most.
[0006]
[Problems to be solved by the invention]
The present invention is, precisely the sensor coil printed on a thin film in the vertical and horizontal directions a / n (provided that a is the one side of the thin film coil length, n is a natural number) shifting only, and by laminating two n sensors By providing an ultra-multi-channel magnetoencephalography system that is configured and switches signals from a number of corresponding thin films in parallel at the input section of a multi-channel squid, the ultra-multi-channel magnetoencephalography system can have a resolution of hundreds to tens of thousands of times. The aim is to obtain a high resolution system.
Furthermore, shifting the sensor coil printed on a thin film by exactly a / n in the vertical and horizontal directions, a sensor formed by laminating two sheets n, while precise alignment, arranged plurality vertically opposite, corresponding coil It is an object of the present invention to provide a magnetoencephalograph sensor capable of measuring a first derivative or a higher derivative of an axial direction of a magnetic field so as to take a difference between currents generated in the magnetic field, and an ultra-high resolution system using the sensor.
[0007]
[Means for Solving the Problems]
For this reason, the technical solution adopted by the present invention is:
A magnetoencephalograph sensor comprising a required number of sensor coils printed on a thin film, the sensor coils being accurately a / n in the vertical and horizontal directions (where a is the length of one side of the thin film coil). it is, n is an MEG sensor, characterized by being configured by shifting, and by laminating two n is a natural number).
In addition, a plurality of sensors formed by stacking the above-mentioned sensor coils are accurately positioned facing each other, and a plurality of the sensors are arranged one above the other. A magnetoencephalography sensor characterized in that higher order differentiation can be measured.
An ultra-multichannel magnetoencephalography system comprising: the sensor; high-speed switching means corresponding to each coil in the sensor; and a squid arranged corresponding to the high-speed switching means. It is.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a super multi-channel magnetoencephalography system according to the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram of a sensor coil unit used in the system.
In FIG, 1 is a sensor, the sensor 1 is configured to accurately laminating two n being shifted by a / n thin-film coil having the same function as conventional planar type sensor coil in the vertical and horizontal directions (Where a is the length of one side of the thin film coil and n is a natural number). If a coil is printed on a thin film and the thickness of one sheet is several μm, even if hundreds to thousands of sheets are stacked, the thickness will be only several mm at most. Also, accurate lamination can be easily realized by the current technology.
[0009]
A plurality of sensors 1 are arranged on the surface of the head as shown in FIG. 2, and a sensor coil 2 in each sensor 1 is connected to a corresponding squid 4 via a corresponding switching means 3 such as a multiplexer in the same manner as in the conventional system. ing. Therefore, when the switched one after another multiplexer 1 to n 2 SQUIDs, amplifiers etc. can be configured measurement system with the channels also up to several thousand times the conventional number. The configuration after the squid uses the conventional system as it is. By arranging the sensors vertically and measuring the difference between the currents generated in the corresponding coils to measure the first derivative and the higher derivative in the axial direction of the magnetic field, an axial gradiometer can also be constructed. In this way, it is possible to create a system capable of obtaining an ultra-high resolution simply by multiplexing sensors using thin-film technology with a configuration similar to that of an existing electronic system.
[0010]
In the system having the above configuration, if the output from the i-th layer is switched by a high-speed switching means so that the output from the i-th layer can be simultaneously electronically coupled to the multi-channel squid by the select signal, the squid and subsequent electronic circuits become enormous. A major feature is that it is possible to construct an ultra-multi-channel system at low cost without having to perform the above. Since the signal component measured by the magnetoencephalograph is only a few hundred hertz at most, the switching can be performed at a sufficiently high speed, and the simultaneity of the measurement is guaranteed.
[0011]
In this way, in this system, the information detected by one sensor is determined by the number of stacked layers, so when the number of stacked layers increases, the number of sensor coils increases significantly by the number of stacked layers compared to the number of sensors arranged on the head. In other words, the amount of information collected is much greater than that of a conventional sensor coil, and it is possible to obtain an ultra-high-resolution system having a resolution several hundred to tens of thousands times higher than that of a conventional system.
[0012]
The embodiment of the sensor according to the present invention has been described above. However, the above-described embodiment is merely described using an example of a method and an apparatus which are most easily realized at present. For example, an equivalent result can be obtained by processing the output obtained from the sensor coils stacked by the above method using appropriate software. Therefore, the amount (a / n) of shifting the sensor coil is not necessarily required. constant but need not, need not necessarily be two n be the number of laminated sheets. Further, the planar shape of the sensor coil is not limited to a square, but may be another shape. Although the planar type sensor has been described in the above-described embodiment, a plurality of stacked sensors are accurately positioned, and a plurality of sensors are arranged one above the other to form a conventionally known gradiotor or higher-order differential sensor. It is also possible to connect them to the squid via switching means to construct a magnetoencephalography system. Further, the sensor does not need to be placed parallel to the object to be measured (for example, head), and can be used to measure a magnetic field component perpendicular to the head and parallel to the head. Further, as the switching means, conventionally known appropriate means can be adopted.
Furthermore, the present invention may be embodied in any other form without departing from its spirit or essential characteristics. Therefore, the above-described embodiment is merely an example in all aspects and should not be interpreted in a limited manner.
[0013]
【The invention's effect】
As described above in detail, according to the present invention, a thin film on which a sensor coil is printed is stacked by shifting the thin film by a certain direction in the left, right, up and down directions to form a sensor, and signals from a plurality of corresponding thin film sensor coils are arranged in parallel. By employing means for switching at the input section of the multi-channel squid, an ultra-high resolution system having a resolution hundreds to tens of thousands times that of the conventional system can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration of a sensor unit of the present invention.
FIG. 2 is a diagram illustrating a state where a sensor unit is arranged on a head.
FIG. 3 is a diagram illustrating an example of a conventional planar sensor coil.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sensor part 2 Thin film sensor coil 3 Switching means 4 Squid

Claims (3)

薄膜上にプリントしたセンサコイルを必要枚数だけ積層して構成した脳磁計用センサであって、前記センサコイルは上下方向および左右方向にそれぞれ正確にa/n(ただしaは薄膜コイルの一辺の長さ、nは自然数)だけずらし、かつn 2 枚積層して構成したことを特徴とする脳磁計用センサ。 A magnetoencephalograph sensor comprising a required number of sensor coils printed on a thin film, the sensor coils being accurately a / n in the vertical and horizontal directions (where a is the length of one side of the thin film coil). A sensor for a magnetoencephalograph characterized in that it is shifted by n (n is a natural number) and is formed by laminating n 2 sheets. 上記センサコイルを積層して構成したセンサを、対向して正確に位置合わせしつつ、上下に複数枚配置し、対応するコイルに生じる電流の差をとって磁場の軸方向の一次微分や高次の微分を計測できるようにしたことを特徴とする請求項1に記載の脳磁計用センサ。A plurality of sensors formed by laminating the above-mentioned sensor coils are arranged one above the other while accurately positioning them facing each other. 2. The magnetoencephalographic sensor according to claim 1, wherein a differential of the magnetoencephalography can be measured. 請求項1または請求項2のセンサと、前記センサ中の各コイルに対応する高速の切り換え手段と、前記高速の切り換え手段に対応して配置されたスクイッドとを備えていることを特徴とする超多チャンネル脳磁計システム。3. An ultra-compact sensor comprising: the sensor according to claim 1 or 2; high-speed switching means corresponding to each coil in the sensor; and a squid arranged corresponding to the high-speed switching means. Multi-channel magnetoencephalography system.
JP2002034920A 2002-02-13 2002-02-13 Magnetoencephalography sensor and super multi-channel magnetoencephalography system using it Expired - Fee Related JP3566258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002034920A JP3566258B2 (en) 2002-02-13 2002-02-13 Magnetoencephalography sensor and super multi-channel magnetoencephalography system using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002034920A JP3566258B2 (en) 2002-02-13 2002-02-13 Magnetoencephalography sensor and super multi-channel magnetoencephalography system using it

Publications (2)

Publication Number Publication Date
JP2003230546A JP2003230546A (en) 2003-08-19
JP3566258B2 true JP3566258B2 (en) 2004-09-15

Family

ID=27777257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002034920A Expired - Fee Related JP3566258B2 (en) 2002-02-13 2002-02-13 Magnetoencephalography sensor and super multi-channel magnetoencephalography system using it

Country Status (1)

Country Link
JP (1) JP3566258B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7672707B2 (en) * 2003-06-11 2010-03-02 Japan Science And Technology Agency Sensor for magnetoencephalography meter and supermultichannel magnetoencephalography meter system using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5541179B2 (en) * 2011-01-28 2014-07-09 コニカミノルタ株式会社 Magnetic sensor and biomagnetic measuring device using the same
JP6421379B2 (en) * 2014-04-02 2018-11-14 国立大学法人九州大学 Magnetic field sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7672707B2 (en) * 2003-06-11 2010-03-02 Japan Science And Technology Agency Sensor for magnetoencephalography meter and supermultichannel magnetoencephalography meter system using the same

Also Published As

Publication number Publication date
JP2003230546A (en) 2003-08-19

Similar Documents

Publication Publication Date Title
US11350840B2 (en) Magnetic sensor, biological cell sensing device, and diagnostic device
US10809321B2 (en) Magnetic sensor and testing device
JP4571570B2 (en) Magnetic detection coil and magnetic field measuring device
US10058258B2 (en) Biomagnetism measuring device, biomagnetism measuring system, and biomagnetism measuring method
CN103492895B (en) Magnetic detection device
US11536779B2 (en) Magnetoresistive Z-axis gradient sensor chip
US5012190A (en) Apparatus for multi-channel measurement of weak magnetic fields with squids and superconducting gradiometers on individual detachable assemblies, and method of manufacture
JP5474542B2 (en) Sensor array for magnetic inductance tomography
Karo et al. Magnetocardiogram measured by fundamental mode orthogonal fluxgate array
JP5464198B2 (en) Three-dimensional magnetic field sensor and manufacturing method thereof
JP5541179B2 (en) Magnetic sensor and biomagnetic measuring device using the same
US20170209062A1 (en) Magnetic sensor and magnetic sensor apparatus
JP2018048832A (en) Magnetic sensor, magnetic sensor device, and diagnosis device
JP6899055B2 (en) Sensor configuration of medical magnetometer
CA2494167C (en) Sensors for use in magnetoencephalometers and a super-multichannel magnetoencephalography system using these sensors
WO2015117157A1 (en) Magnetic sensor array and system
JP2017166921A (en) Magnetic sensor and magnetic sensor device
JP3566258B2 (en) Magnetoencephalography sensor and super multi-channel magnetoencephalography system using it
JP2002272695A (en) Versatile high-sensitivity magnetic detection device
US11513173B2 (en) Magnetic sensor and inspection device
US11726149B2 (en) Magnetic sensor and inspection device
US11432751B2 (en) Magnetic sensor and inspection device
Smith et al. GMR Magnetic Sensor Arrays for NDE Eddy‐Current Testing
CN204883909U (en) Coin test probe and detecting system thereof
Kawai et al. Fabrication and characterization of an integrated 9-channel superconducting quantum interference device magnetometer array

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040609

R150 Certificate of patent or registration of utility model

Ref document number: 3566258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees