JP3565772B2 - Line light source device - Google Patents

Line light source device Download PDF

Info

Publication number
JP3565772B2
JP3565772B2 JP2000255830A JP2000255830A JP3565772B2 JP 3565772 B2 JP3565772 B2 JP 3565772B2 JP 2000255830 A JP2000255830 A JP 2000255830A JP 2000255830 A JP2000255830 A JP 2000255830A JP 3565772 B2 JP3565772 B2 JP 3565772B2
Authority
JP
Japan
Prior art keywords
fluorescent lamp
light source
light
fluorescent
illuminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000255830A
Other languages
Japanese (ja)
Other versions
JP2002077535A (en
Inventor
尊道 小林
学 國永
修治 内藤
富広 平野
公郷 栗原
毅 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Kurihara Kogyo Co Ltd
Original Assignee
Nippon Steel Corp
Kurihara Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Kurihara Kogyo Co Ltd filed Critical Nippon Steel Corp
Priority to JP2000255830A priority Critical patent/JP3565772B2/en
Publication of JP2002077535A publication Critical patent/JP2002077535A/en
Application granted granted Critical
Publication of JP3565772B2 publication Critical patent/JP3565772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Image Input (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、安定した光量で発光する高速画像処理用の長尺のライン光源装置に関する。
【0002】
【従来の技術】
従来、光学検査に使用する光源として安定した光量の光源が要求され、さまざまな工夫がなされ、均一な照度分布を実現する光源として本出願人による面光源装置が提案されている。この光源は並設された複数の蛍光灯に対しそれぞれ点灯電源を設け、各光源ランプの放電電流を調整することにより蛍光灯の光量のばらつきを補正するとともに、蛍光灯電極部付近の照度低下を補う補助光源蛍光灯を設け、発光面全体が均一の照度になるようにしたものである。
【0003】
【発明が解決しようとする課題】
しかしながら、蛍光灯は管内面に塗布された蛍光体を発光させる為に微量の水銀が封入され、水銀の蒸気圧との関係で発光効率は温度特性があり周囲温度(管壁温度)の影響を受け、恒温室などで使用する場合はよいが、使用環境によっては所望の光量が得られない問題があった。
【0004】
また、照明の長さを確保するためには長い蛍光管を必要とするが、蛍光管の作成能力の限界から2メートルが限界であり、それ以上の長さの照明を得ることは難しかった。
【0005】
そして、常に安定した光量の光源を得るために出力をフィードバックする必要があるが、その為には灯具外部のフォトセンサ、被写体からの反射光強度をカメラなどで受光し、その検出結果をフィードバックしているが、灯具外部での検出では灯具カバーの汚れや、被写体の状況で変化し安定した検出結果が得られなかった。
【0006】
本発明は上記問題点を解消し、使用環境の温度に左右されず安定した光量で発光する長尺のライン光源装置を提供することをその課題とする。
【0007】
【課題を解決するための手段】
前記課題を解決するため、本発明に係るライン光源装置は、複数の蛍光灯と、該蛍光灯 の光をライン状に集光するロッドレンズとを備えた光源部と、上記蛍光灯を点灯させる点灯制御装置とを有する以下の要件を備えることを特徴とする。
(イ)上記蛍光灯は照度の低下する電極部近傍が他の蛍光灯の照度の安定した中央部近傍に重複且つ所定間隔をおいて交互に並設されるとともに、蛍光灯と蛍光灯との間には該蛍光灯の光を上記ロッドレンズに反射させる反射板が上記蛍光灯のそれぞれに対応して同数配置されていること
(ロ)上記反射板は長手方向端部同士が当接するとともに、当接部分が上記蛍光灯の重複部分に位置し、対応する蛍光灯の光を選択的に上記ロッドレンズに反射させるように配置されているこ
【0008】
なお、前記光源部には前記蛍光灯の周囲温度を検出する温度センサと蛍光灯の光量を検出する光量センサと空調装置とを設け、前記点灯制御装置は上記温度センサの検出結果に基づいて上記空調装置を制御して上記蛍光灯の周囲温度を所定の温度に保つとともに、上記光量センサの検出結果に基づいて放電電流を制御し、蛍光灯の光量を所定の光量にすることが好ましい。
【0009】
【発明の実施の形態】
図1は、本発明に係るライン光源装置を示し、このライン光源装置は蛍光灯を光源とする光源部Aと、蛍光灯の点灯を制御する点灯制御装置Bと、光源部Aに異常が発生した場合使用者に異常を知らせるとともに異常信号を出力する警告ユニットCとで構成されている。
【0010】
光源部Aは、断面略逆台形の筒状に形成されたハウジング1の内部に配置された複数の直管の蛍光灯2(本発明では2本の蛍光灯2a、2b)と、蛍光灯2と同数の反射板3(本発明では2枚の反射板3a、3b)と、一本のロッドレンズ4とで構成され、図2に示すように、ロッドレンズ4は、ハウジングの天板5に固定された支持部材6によって支持され、ハウジング1の下面に長手方向に形成された開口部7から周面の一部4aが露出し(図4(a)参照)、ハウジング1の天板5から上方に突設された空調室8には空調装置9が設けられている。
【0011】
なお、図1において、符号10aは、ハウジングの上面に形成されたネジ孔を示し、このネジ孔10aは、光源部Aを図示しない支持部材に固定する為のものであり、符号10bはサイドカバー1aを固定する簡易型脱着ラッチ(ナイラッチ)を示し、この簡易型脱着ラッチ10bをとってサイドカバー1aを外すことにより蛍光灯2の交換が容易にできるようになっている。
【0012】
蛍光灯2a、2bは長手方向にライン状の照射口(アパーチュア部)apを設けたアパーチュア蛍光灯で構成され、ロッドレンズ4に平行に、しかも、蛍光灯2aと蛍光灯2bとは所定間隔をおいて、ロッドレンズ4を逆頂点とする側面視略2等辺三角形を構成するように配置されている。そして、蛍光灯2は照度の低下する電極部近傍aが他の蛍光灯2の照度の安定した中央部近傍bに重複し、照度の低下する電極部近傍を除いて、安定した照度の部分が連続するように、所定間隔をおいて平行に配置されている(図3(b)参照)。
【0013】
そして、蛍光灯2a、2bの照度をそれぞれ検出する光量センサ(フォトセンサ)14a、14bが、外乱光が入らないように反射板3a、3bから外れた位置で、しかも蛍光灯2a、2b端部より中央寄りでアパーチュア部apに密着して設置されている。
【0014】
反射板3a、3bは、鏡で構成され、蛍光灯2aと蛍光灯2bとの間に配置され、それぞれ鏡面が蛍光灯2a、2bのアパーチュア部apから照射される光をロッドレンズ4に照射できるように配置されている。反射板3aは、図4(a)に示すように、蛍光灯2aの光を鏡面でロッドレンズ4に向かって反射し、反射板3bは、図4(b)に示すように、蛍光灯2bの光を鏡面でロッドレンズ4に向かって反射するようにそれぞれ傾斜している。さらに、図3(b)に示すように、反射板3aと反射板3bとの端部同士は当接し、当接部分cが蛍光灯2a、2bの重複部分dの中央になるように配置され、反射板3a、3bで反射された光は途中で途切れることのない1本の長い光になるように、2本の蛍光灯の光をあたかも1本の蛍光灯(疑似蛍光灯)の光としてロッドレンズ4に照射できるようになっている。なお、図4(a)(b)において、符号18は長尺のロッドレンズ4が撓まないようにハウジング内に保持する保持板、符号20は外部温度の影響を受けないようにする断熱板を示す。
【0015】
そして、更に長い光源部が必要であれば必要な長さに形成した1本のロッドレンズと3本以上の蛍光灯2と、蛍光灯2の数に等しい反射板3とで光源部を構成すればよく、短いライン光源であれば、反射板を設けることなく1本のロッドレンズの上方に1本の蛍光灯を平行に配置して光源部を構成すればよい。
【0016】
空調装置9は印加する電流の向きによって熱の発生・吸収が行われるペルチェ素子11と、このペルチェ素子11を両側からはさむように設けられた2つのファン12、13とで構成され、ハウジング1の上部の空調室8上に長手方向に所定間隔をおいて多数(本発明では9a〜9pの16個)並設されている。外側のファン12はペルチェ素子11の上面に取り付けられたヒートシンク19aに重合して固定され、ペルチェ素子11の上面に発生した熱を冷却するようにハウジング1の外方に向かって吹き出し、内側のファン13はペルチェ素子11の下面に取り付けられたヒートシンク19bに重合して固定され、ペルチェ素子11の下面の熱吸収による冷却熱又は発熱を天板5に形成された開口部5aからハウジング1内に吹き込んで蛍光灯2の周囲の温度を下げたり、上げたりするもので、ペルチェ素子11に流れる電流の方向と大きさを変えることによってハウジング1内に冷たい空気や暖かい空気を送り込んで、ハウジング1内を周囲の温度に影響されずに一定の温度に保つことができるようにしたものである。なお、この空調装置9はファン12又は13が停止した時に、停止したことを知らせるファンアラーム信号が出力できるようになっている。
【0017】
図5は、点灯制御装置Bのブロック図を示し、この点灯制御装置Bは、蛍光灯2を点灯させるとともに、蛍光灯2のアパーチュア部に密着して設置したフォトセンサ14a、14bにより蛍光灯2a、2bの照度をそれぞれ検出し、照度が低下すると照度低下警報回路21a、21bはフォトカプラからなる絶縁回路22a、22bを介して照度警告信号s1、s2をアイソレート出力するようになっている。このことにより、接続する外部機器に電気的ノイズやアースレベルの変動によって誤動作を誘発させることがない。
【0018】
なお、この照度警告信号s1、s2が出力される照度低下の基準はスイッチ15a、15bで設定(本発明では10%〜50%の5段階)できるようになっている。また、アークの偏り現象をなくす為に極性切り替え回路16a、16bで定期的に放電電流の極性を変えている。この極性切り替えは出射光に影響の少ない内蔵発振器と同期してスイッチする半導体高速自動切り替え回路を採用している。
【0019】
なお、本発明では、上記極性の変更周期を5秒以内、切り替え時間を残光時間の範囲内に設定した。このことにより、蛍光灯境界部での照度の時間変化を低減させることができる。
【0020】
また、電流検出抵抗17a、17bで蛍光灯2a、2bの放電電流をそれぞれ監視し、蛍光灯2a、2bが立ち消えして放電電流が流れなくなったことを検出すると、立ち消え警報回路24a、24bはフォトカプラからなる絶縁回路25a、25bを介して立ち消え警告信号s3、s4をアイソレート出力するようになっている。このことにより、接続する外部機器に電気的ノイズやアースレベルの変動によって誤動作を誘発させることがない。
【0021】
照度警告信号s1、s2、立ち消え警告信号s3、s4はリモートコントローラ(例えば、パソコン等)27に送信され、適宜の処理(例えば、検査ラインの停止、警報の発生など)がなされればよい。
【0022】
図6は、空調装置9及び空調装置を制御するコントロールユニットDのブロック図を示し、コントロールユニットDは点灯制御装置Bの筐体内に組み込まれている。
【0023】
コントロールユニットDはハウジング1内に配置された温度センサ28(28a、28b)の検出結果に基づいて、空調装置9の作動を制御するもので、温度センサ28a、28bの出力信号s9、s10は警告ユニットCを経由してコントロールユニットDに入力され、ハウジング1内の温度が設定温度より上昇していれば、ペルチェ素子11が熱を吸収する方向に電流を流し、ハウジング1内に冷風を送り込んでハウジング内の温度を下げ、ハウジング1内の温度が設定温度より降下していれば、リレー29a〜29pを切り換えてペルチェ素子11が熱を発生する方向に電流を流し、ハウジング1内に温風を送り込んでハウジング1内の温度を上げ、周囲温度や蛍光灯の発熱の影響を受けずにハウジング内の温度が常に一定になるように制御している。
【0024】
このことにより、蛍光灯2の周囲温度特性(封入された水銀の蒸気圧と管壁温度との関係)に対し最適な管壁温度(約40℃)に保つことにより高い光出力を継続して得ることができる。そして、ファン12a〜12p又は13a〜13pの何れかでも停止するとファンアラーム信号s11〜s26が出力され、このファンアラーム信号は警告ユニットCに入力される。
【0025】
図7は、警告ユニットCを示し、この警告ユニットCはファン12a〜12p又は13a〜13pの何れかが停止して発生するファンアラーム信号s11〜s26が入力されると、該当するファンに対応する表示ランプ23a〜23pを点滅させるとともに、ファンが停止したことを知らせるファン停止信号s27を出力するようになっている。このファン停止信号s27は上述のリモートコントローラに送信され、リモートコントローラで適宜の処理(例えば、検査ラインの停止、警報の発生など)がなされればよい。なお、図7において、符号26a〜26pは、入力されたファンアラーム信号s11〜s26に対応して表示ランプ23a〜23pのいずれかを点滅させるワンショットマルチバイブレータである。
【0026】
上述のライン光源装置によれば、蛍光灯の数を増減させることにより任意の長さのライン光源を作ることができる。しかも、蛍光灯の電極部近傍を他の蛍光灯用の反射板で遮蔽するとともに、その反射板で他の蛍光灯の光をロッドレンズに照射するので、単純に2本の蛍光灯を並べてロッドレンズで集光した場合は、図8(b)に示すように、蛍光灯押さえ金具周辺ではどのようにしても光の出力されない領域があり、幅方向に均一な照度分布を得ることができなかったが、蛍光灯の電極部近傍の暗部を除いた中央部分のみを反射板でロッドレンズに向けて反射することにより、蛍光灯の有効発光領域を連続させることができ、図8(a)に示すように、幅方向に暗部のない安定した照度分布が得られる長尺のライン光源を作ることができる。
【0027】
そして、温度制御をしない場合は時間とともに、蛍光灯周辺の温度が高くなり、それに対応して蛍光灯の発光効率が低下するので、数十分〜1時間レベルでの照度の時間変化をみると、図9の点線で示すように照度が時間に比例して低下するが、空調装置で蛍光灯周辺の温度を全幅方向に渡って常に一定の温度に保っているので、温度上昇による発光効率の低下を招くことがなく、図9の実線に示すように、時間が経過しても温度影響を受けない安定した照度を維持することが可能になる。
【0028】
また、直流点灯電源の極性変換周期を30秒にした場合は、時間とともに正極に電子が局在化するために、図10の点線で示すように、幅方向の発光効率に不均一を生じるが、1秒周期で極性変更を行なった場合は、正極に電子が局在化する前に極性変更を施すために、図10の実線で示すように、照度の不均一は発生しない。なお、極性変換の繰り返しは蛍光管の寿命に影響を与えるので極性変換周期は0.5秒以上とし、図10の点線で示されているように、極性変換周期が5秒以内であれば照度の変化がないので、極性変換周期を5秒以内に設定するとともに、極性切り換え時間を残光時間内にすればよい。
【0029】
そして、照度低下、ランプの立ち消え、ファンの停止等を警告信号として出力することができるようにしたので、自動検査装置等のライン光源に用いた時には、リモートコントローラ側でライン光源の状態を把握することができるので、ライン光源に異常を抱えたまま検査システムを連続稼動するようなトラブルを発生させることはない。
【0030】
ところで、リモートコントローラからのバイナリー4bit信号(0〜F)s5、s6は、図5に示すように、フォトカプラからなる絶縁回路35a、35bを介してアイソレート入力されD/Aコンバータ36a、36bでアナログ信号に変換され、レベル調整回路(図示せず)を経て電流制御回路37a、37bの基準電圧となり、電流制御回路37a、37bはフォトセンサ14a、14bで検出した光量信号s7、s8と、上記基準電圧とを比較して光量信号s7、s8が基準電圧と一致するように放電電流を制御するようになっている。したがって、光量可変範囲の上限から下限までを4bitのデジタル信号で16段階に設定することができる。
【0031】
なお、図5において、符号38a、38bは、電流制御回路37a、37bの基準電圧のレベルを可変に調整するボリュームを示し、符号39a、39bは光源照度をリモートコントローラ27から4bitの照度設定信号で設定するのかボリューム38a、38bによるマニアルで設定するのかを選択する切換スイッチを示す。
【0032】
【発明の効果】
本発明によれば、蛍光灯の数を増やすことにより任意の長さのライン光源装置を実現することができる。しかも、蛍光灯は照度の低下する電極部近傍が他の蛍光灯の照度の安定した中央部近傍に重複するように連続して配置され、しかも蛍光灯の重複部分で反射板が連続するようにしたので、照度の安定した蛍光灯の中央部分のみを連続させた長尺の光源を作ることができ、長尺の光源であっても照度むらのない均一の明るさの光源を実現することができる。
【0033】
なお、空調装置を設けることにより、蛍光灯の周囲の温度を一定に保つことができるので環境温度の影響を受けることのない、安定した光量の光源にすることができる。
【0034】
しかも、光量センサを配置し、光量が常に一定になるように放電電流を制御するので、さらに安定した光量の光源を実現することができる。
【図面の簡単な説明】
【図1】本発明に係るライン光源装置の構成を示す斜視図
【図2】光源部の構成を説明する斜視図
【図3】(a)(b)は光源部の側面図及びハウジング内に配置された蛍光灯と反射板との関係を説明する底面図
【図4】(a)(b)は図3(a)のXーX線要部端面図及びYーY線要部端面図
【図5】点灯制御装置のブロック図
【図6】空調装置のブロック図
【図7】警告ユニットのブロック図
【図8】(a)(b)は反射鏡を設けたときと、設けないときのライン光源の全幅方向における照度分布を示すグラフ図
【図9】ライン光源に空調設備を設けた場合と、設けない場合との照度変化を説明するグラフ図
【図10】極性変更周期の時間と照度との関係を示すグラフ図
【符号の説明】
1 ハウジング
2 蛍光灯
3 反射板
4 ロッドレンズ
9 空調装置
14 光量センサ
28 温度センサ
A 光源部
B 点灯制御装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a long line light source device for high-speed image processing that emits light with a stable light amount.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a light source having a stable light amount has been required as a light source used for optical inspection, various measures have been taken, and a surface light source device by the present applicant has been proposed as a light source for realizing a uniform illuminance distribution. This light source is provided with a lighting power supply for each of a plurality of fluorescent lamps arranged side by side, and adjusts the discharge current of each light source lamp to correct the variation in the light amount of the fluorescent lamp and reduce the illuminance decrease near the fluorescent lamp electrode portion. A supplementary light source fluorescent lamp is provided to make the entire light emitting surface have uniform illuminance.
[0003]
[Problems to be solved by the invention]
However, fluorescent lamps contain a small amount of mercury in order to emit light from the phosphor applied to the inner surface of the tube, and the luminous efficiency has a temperature characteristic in relation to the vapor pressure of mercury. Although it is good to use it in a receiving room or a constant temperature room, there is a problem that a desired light amount cannot be obtained depending on the use environment.
[0004]
In addition, a long fluorescent tube is required to secure the length of the illumination. However, it is difficult to obtain an illumination longer than 2 meters due to the limitation of the ability to produce the fluorescent tube.
[0005]
In order to always obtain a stable light source, it is necessary to feed back the output. For this purpose, a photo sensor outside the lamp and the intensity of the reflected light from the subject are received by a camera, etc., and the detection result is fed back. However, in the detection outside the lamp, it changed depending on the stain of the lamp cover and the situation of the subject, and a stable detection result was not obtained.
[0006]
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and to provide a long line light source device that emits light with a stable light amount regardless of the temperature of a use environment.
[0007]
[Means for Solving the Problems]
In order to solve the above problem, a line light source device according to the present invention includes a light source unit including a plurality of fluorescent lamps, a rod lens that condenses the light of the fluorescent lamps in a line, and turns on the fluorescent lamps. It is characterized by having the following requirements having a lighting control device.
(A) In the fluorescent lamp, the vicinity of the electrode portion where the illuminance is reduced is overlapped with the vicinity of the central portion where the illuminance of the other fluorescent lamp is stable and alternately arranged at predetermined intervals, and the fluorescent lamp and the fluorescent lamp are alternately arranged. The same number of reflectors for reflecting the light of the fluorescent lamp to the rod lens are arranged corresponding to each of the fluorescent lamps.
(B) The reflectors are arranged such that the ends in the longitudinal direction are in contact with each other, and the abutting portion is located at an overlapping portion of the fluorescent lamp, and the light of the corresponding fluorescent lamp is selectively reflected by the rod lens. that you have been [0008]
The light source unit is provided with a temperature sensor for detecting an ambient temperature of the fluorescent lamp, a light amount sensor for detecting a light amount of the fluorescent lamp, and an air conditioner, and the lighting control device performs the above based on a detection result of the temperature sensor. It is preferable that the air conditioner is controlled to maintain the ambient temperature of the fluorescent lamp at a predetermined temperature, and that the discharge current is controlled based on the detection result of the light amount sensor to make the light amount of the fluorescent lamp a predetermined light amount.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a line light source device according to the present invention. The line light source device includes a light source unit A using a fluorescent lamp as a light source, a lighting control device B for controlling lighting of the fluorescent lamp, and an abnormality occurring in the light source unit A. In this case, the warning unit C notifies the user of the abnormality and outputs an abnormality signal.
[0010]
The light source section A includes a plurality of straight tube fluorescent lamps 2 (in the present invention, two fluorescent lamps 2a and 2b) disposed inside a housing 1 formed in a tubular shape having a substantially inverted trapezoidal cross section, and a fluorescent lamp 2 And the same number of reflectors 3 (two reflectors 3a and 3b in the present invention) and one rod lens 4. As shown in FIG. 2, the rod lens 4 is attached to the top plate 5 of the housing. A portion 4a of the peripheral surface is supported by the fixed support member 6 and is exposed from an opening 7 formed in the lower surface of the housing 1 in the longitudinal direction (see FIG. 4A). An air conditioner 9 is provided in an air conditioning room 8 projecting upward.
[0011]
In FIG. 1, reference numeral 10a denotes a screw hole formed on the upper surface of the housing. The screw hole 10a is for fixing the light source unit A to a support member (not shown), and the reference numeral 10b is a side cover. 1 shows a simple detachable latch (ni-latch) for fixing the fluorescent lamp 2. The fluorescent lamp 2 can be easily replaced by removing the side cover 1 a by taking the simple detachable latch 10 b.
[0012]
The fluorescent lamps 2a and 2b are constituted by aperture fluorescent lamps provided with a linear irradiation port (aperture portion) ap in the longitudinal direction, and are arranged parallel to the rod lens 4 and at a predetermined interval between the fluorescent lamps 2a and 2b. It is arranged so as to form a substantially isosceles triangle in side view having the rod lens 4 as an inverted vertex. In the fluorescent lamp 2, the vicinity a of the electrode portion where the illuminance decreases is overlapped with the vicinity b of the central portion where the illuminance of the other fluorescent lamps 2 is stable. They are arranged in parallel at predetermined intervals so as to be continuous (see FIG. 3B).
[0013]
Light amount sensors (photo sensors) 14a and 14b for detecting the illuminance of the fluorescent lamps 2a and 2b are located at positions away from the reflectors 3a and 3b so as to prevent disturbance light from entering and at the ends of the fluorescent lamps 2a and 2b. It is installed closer to the aperture portion ap closer to the center.
[0014]
The reflecting plates 3a and 3b are formed of mirrors and are disposed between the fluorescent lamps 2a and 2b, and the mirror surfaces can irradiate the rod lens 4 with light emitted from the aperture portions ap of the fluorescent lamps 2a and 2b. Are arranged as follows. As shown in FIG. 4A, the reflector 3a reflects the light of the fluorescent lamp 2a toward the rod lens 4 with a mirror surface, and the reflector 3b reflects the light of the fluorescent lamp 2b as shown in FIG. Are reflected so as to be reflected toward the rod lens 4 by a mirror surface. Further, as shown in FIG. 3B, the end portions of the reflector 3a and the reflector 3b are in contact with each other, and the contact portion c is disposed so as to be in the center of the overlapping portion d of the fluorescent lamps 2a and 2b. The light from the two fluorescent lamps is used as light from a single fluorescent lamp (pseudo fluorescent lamp) so that the light reflected by the reflectors 3a and 3b becomes one long light without interruption. The light can be applied to the rod lens 4. 4 (a) and 4 (b), reference numeral 18 denotes a holding plate for holding the long rod lens 4 in the housing so as not to bend, and reference numeral 20 denotes a heat insulating plate for preventing the rod lens 4 from being affected by an external temperature. Is shown.
[0015]
If a longer light source is required, the light source can be constituted by one rod lens, three or more fluorescent lamps 2 formed to the required length, and reflectors 3 equal in number to the fluorescent lamps 2. In the case of a short line light source, one light source may be configured by disposing one fluorescent lamp in parallel above one rod lens without providing a reflector.
[0016]
The air conditioner 9 includes a Peltier device 11 that generates and absorbs heat according to the direction of the applied current, and two fans 12 and 13 that are provided so as to sandwich the Peltier device 11 from both sides. A large number (16 in the present invention, 9a to 9p) are juxtaposed at predetermined intervals in the longitudinal direction on the upper air-conditioning room 8. The outer fan 12 is superposed and fixed on a heat sink 19 a attached to the upper surface of the Peltier element 11, blows out toward the outside of the housing 1 so as to cool the heat generated on the upper surface of the Peltier element 11, and Reference numeral 13 denotes a heat sink 19b mounted on the lower surface of the Peltier device 11 and fixed thereon by superimposition. The cooling heat or heat generated by the heat absorption of the lower surface of the Peltier device 11 is blown into the housing 1 through the opening 5a formed in the top plate 5. The temperature of the surroundings of the fluorescent lamp 2 is lowered or raised by changing the direction and magnitude of the current flowing through the Peltier element 11, thereby sending cold or warm air into the housing 1. This is to keep the temperature constant without being affected by the surrounding temperature. When the fan 12 or 13 stops, the air conditioner 9 can output a fan alarm signal indicating that the fan 12 or 13 has stopped.
[0017]
FIG. 5 shows a block diagram of the lighting control device B. The lighting control device B turns on the fluorescent lamp 2 and uses the photosensors 14a and 14b installed in close contact with the aperture portion of the fluorescent lamp 2 so as to emit the fluorescent light 2a. , 2b are respectively detected, and when the illuminance decreases, the illuminance lowering alarm circuits 21a, 21b output the illuminance warning signals s1, s2 via the insulating circuits 22a, 22b composed of photocouplers. As a result, a malfunction does not occur in the connected external device due to electric noise or fluctuation of the ground level.
[0018]
The illuminance lowering criteria for outputting the illuminance warning signals s1 and s2 can be set by the switches 15a and 15b (in the present invention, five steps of 10% to 50%). The polarity switching circuits 16a and 16b periodically change the polarity of the discharge current in order to eliminate the arc bias phenomenon. This polarity switching employs a semiconductor high-speed automatic switching circuit that switches in synchronization with a built-in oscillator that has little effect on emitted light.
[0019]
In the present invention, the polarity change cycle is set within 5 seconds, and the switching time is set within the afterglow time. As a result, it is possible to reduce the time change of the illuminance at the fluorescent lamp boundary.
[0020]
Further, the discharge currents of the fluorescent lamps 2a, 2b are monitored by the current detection resistors 17a, 17b, respectively. When it is detected that the fluorescent lamps 2a, 2b have gone out and the discharge current has stopped flowing, the extinguishing alarm circuits 24a, 24b are provided with a photo The extinguishing warning signals s3 and s4 are isolated and output via the insulating circuits 25a and 25b formed of couplers. As a result, a malfunction does not occur in the connected external device due to electric noise or fluctuation of the ground level.
[0021]
The illuminance warning signals s1 and s2 and the extinguishing warning signals s3 and s4 may be transmitted to a remote controller (for example, a personal computer or the like) 27 and may be subjected to appropriate processing (for example, stop of an inspection line, generation of an alarm, etc.).
[0022]
FIG. 6 is a block diagram of the air conditioner 9 and a control unit D for controlling the air conditioner. The control unit D is incorporated in a housing of the lighting control device B.
[0023]
The control unit D controls the operation of the air conditioner 9 based on the detection results of the temperature sensors 28 (28a, 28b) disposed in the housing 1. The output signals s9, s10 of the temperature sensors 28a, 28b are warnings. If the temperature is input to the control unit D via the unit C and the temperature inside the housing 1 is higher than the set temperature, a current flows in a direction in which the Peltier element 11 absorbs heat, and cool air is sent into the housing 1. If the temperature in the housing is lowered, and the temperature in the housing 1 is lower than the set temperature, the relays 29a to 29p are switched to flow a current in a direction in which the Peltier element 11 generates heat, and hot air is blown into the housing 1. The temperature inside the housing 1 is increased by feeding the heat so that the temperature inside the housing 1 is always constant without being affected by the ambient temperature or the heat generated by the fluorescent lamp. And it is controlled.
[0024]
As a result, a high light output is maintained by maintaining an optimum tube wall temperature (about 40 ° C.) with respect to the ambient temperature characteristics of the fluorescent lamp 2 (the relationship between the vapor pressure of enclosed mercury and the tube wall temperature). Obtainable. When any of the fans 12a to 12p or 13a to 13p stops, fan alarm signals s11 to s26 are output, and the fan alarm signals are input to the warning unit C.
[0025]
FIG. 7 shows a warning unit C. This warning unit C corresponds to a corresponding fan when a fan alarm signal s11 to s26 generated by stopping one of the fans 12a to 12p or 13a to 13p is input. The display lamps 23a to 23p are turned on and off, and a fan stop signal s27 notifying that the fan has stopped is output. The fan stop signal s27 may be transmitted to the above-described remote controller, and the remote controller may perform an appropriate process (for example, stop the inspection line, generate an alarm, and the like). In FIG. 7, reference numerals 26a to 26p denote one-shot multivibrators that blink one of the display lamps 23a to 23p in response to the input fan alarm signals s11 to s26.
[0026]
According to the above-described line light source device, a line light source having an arbitrary length can be produced by increasing or decreasing the number of fluorescent lamps. In addition, since the vicinity of the electrode portion of the fluorescent lamp is shielded by a reflector for another fluorescent lamp, and the light from the other fluorescent lamp is irradiated on the rod lens by the reflector, the two fluorescent lamps are simply arranged side by side. When the light is condensed by a lens, as shown in FIG. 8B, there is a region where no light is output in any way around the fluorescent lamp holding bracket, and a uniform illuminance distribution cannot be obtained in the width direction. However, by reflecting only the central portion of the fluorescent lamp near the electrode portion excluding the dark portion toward the rod lens with the reflector, the effective light emitting area of the fluorescent lamp can be made continuous. As shown, a long line light source that can obtain a stable illuminance distribution without dark portions in the width direction can be manufactured.
[0027]
If the temperature control is not performed, the temperature around the fluorescent lamp increases with time, and the luminous efficiency of the fluorescent lamp decreases accordingly. As shown by the dotted line in FIG. 9, the illuminance decreases in proportion to time. However, since the temperature around the fluorescent lamp is always kept constant over the entire width direction by the air conditioner, the luminous efficiency due to the temperature rise is reduced. As shown by the solid line in FIG. 9, it is possible to maintain a stable illuminance that is not affected by the temperature even when the time elapses, without causing a decrease.
[0028]
Further, when the polarity conversion cycle of the DC lighting power supply is set to 30 seconds, electrons are localized on the positive electrode with the lapse of time, so that the luminous efficiency in the width direction becomes non-uniform as shown by the dotted line in FIG. When the polarity is changed in a cycle of one second, the polarity is changed before the electrons are localized on the positive electrode. Therefore, as shown by the solid line in FIG. 10, non-uniformity of the illuminance does not occur. The repetition of the polarity conversion affects the life of the fluorescent tube. Therefore, the polarity conversion cycle is set to 0.5 seconds or more. If the polarity conversion cycle is less than 5 seconds as shown by the dotted line in FIG. Therefore, the polarity conversion cycle may be set within 5 seconds, and the polarity switching time may be set within the afterglow time.
[0029]
Then, since it is possible to output a warning signal such as a decrease in illuminance, turning off of a lamp, stopping of a fan, and the like, when used as a line light source of an automatic inspection device or the like, the remote controller can grasp the state of the line light source. Therefore, a trouble such as continuous operation of the inspection system with an abnormality in the line light source does not occur.
[0030]
By the way, as shown in FIG. 5, the binary 4-bit signals (0 to F) s5 and s6 from the remote controller are isolated and input to the D / A converters 36a and 36b via the insulating circuits 35a and 35b each formed of a photocoupler. The signal is converted into an analog signal, passes through a level adjustment circuit (not shown), becomes a reference voltage for the current control circuits 37a and 37b, and the current control circuits 37a and 37b output the light amount signals s7 and s8 detected by the photosensors 14a and 14b, respectively. The discharge current is controlled such that the light amount signals s7 and s8 match the reference voltage by comparing with the reference voltage. Therefore, the range from the upper limit to the lower limit of the light quantity variable range can be set in 16 steps using a 4-bit digital signal.
[0031]
In FIG. 5, reference numerals 38a and 38b denote volumes for variably adjusting the level of the reference voltage of the current control circuits 37a and 37b, and reference numerals 39a and 39b denote light source illuminance by a 4-bit illuminance setting signal from the remote controller 27. A changeover switch for selecting whether to set the value manually or manually using the volumes 38a and 38b is shown.
[0032]
【The invention's effect】
According to the present invention, a line light source device having an arbitrary length can be realized by increasing the number of fluorescent lamps. In addition, the fluorescent lamps are arranged continuously so that the vicinity of the electrode portion where the illuminance is reduced overlaps with the vicinity of the central portion where the illuminance of other fluorescent lamps is stable, and furthermore, the reflecting plate is continuous at the overlapping portion of the fluorescent lamps. As a result, it is possible to make a long light source with only the central part of a fluorescent lamp with stable illuminance connected, and to realize a light source with uniform brightness without uneven illuminance even with a long light source. it can.
[0033]
By providing the air conditioner, the temperature around the fluorescent lamp can be kept constant, so that a light source having a stable light quantity without being affected by the environmental temperature can be provided.
[0034]
In addition, since the light amount sensor is arranged and the discharge current is controlled so that the light amount is always constant, a light source with a more stable light amount can be realized.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the configuration of a line light source device according to the present invention. FIG. 2 is a perspective view illustrating the configuration of a light source unit. FIGS. 3 (a) and 3 (b) are side views of the light source unit and the inside of a housing. FIG. 4A and FIG. 4B are end views of a main part of an XX line and a main part of a YY line of FIG. 3A, illustrating a relationship between the arranged fluorescent lamps and a reflection plate. FIG. 5 is a block diagram of a lighting control device. FIG. 6 is a block diagram of an air conditioner. FIG. 7 is a block diagram of a warning unit. FIG. 8A and FIG. FIG. 9 is a graph showing the illuminance distribution in the full width direction of the line light source of FIG. 9; FIG. 9 is a graph illustrating the change in illuminance between when the line light source is provided with an air conditioner and when it is not provided; FIG. Graph showing relationship with illuminance [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Housing 2 Fluorescent lamp 3 Reflector 4 Rod lens 9 Air conditioner 14 Light intensity sensor 28 Temperature sensor A Light source B Lighting control device

Claims (2)

複数の蛍光灯と、該蛍光灯の光をライン状に集光するロッドレンズとを備えた光源部と、上記蛍光灯を点灯させる点灯制御装置とを有する以下の要件を備えることを特徴とするライン光源装置。The light source unit includes a plurality of fluorescent lamps, a rod lens that condenses the light of the fluorescent lamps in a line, and a lighting control device that turns on the fluorescent lamps. Line light source device.
(イ)上記蛍光灯は照度の低下する電極部近傍が他の蛍光灯の照度の安定した中央部近傍に重複且つ所定間隔をおいて交互に並設されるとともに、蛍光灯と蛍光灯との間には該蛍光灯の光を上記ロッドレンズに反射させる反射板が上記蛍光灯のそれぞれに対応して同数配置されていること(A) In the fluorescent lamp, the vicinity of the electrode portion where the illuminance is reduced is overlapped with the vicinity of the central portion where the illuminance of the other fluorescent lamp is stable and alternately arranged at predetermined intervals, and the fluorescent lamp and the fluorescent lamp are alternately arranged. The same number of reflectors for reflecting the light of the fluorescent lamp to the rod lens are arranged corresponding to each of the fluorescent lamps.
(ロ)上記反射板は長手方向端部同士が当接するとともに、当接部分が上記蛍光灯の重複部分に位置し、対応する蛍光灯の光を選択的に上記ロッドレンズに反射させるように配置されていること(B) The reflectors are arranged such that the ends in the longitudinal direction are in contact with each other, and the abutting portion is located in an overlapping portion of the fluorescent lamp, and the light of the corresponding fluorescent lamp is selectively reflected by the rod lens. is being done
前記光源部には前記蛍光灯の周囲温度を検出する温度センサと蛍光灯の光量を検出する光量センサと空調装置とを設け、前記点灯制御装置は上記温度センサの検出結果に基づいて上記空調装置を制御して上記蛍光灯の周囲温度を所定の温度に保つとともに、上記光量センサの検出結果に基づいて放電電流を制御し、蛍光灯の光量を所定の光量にする請求項1記載のライン光源装置。The light source unit is provided with a temperature sensor for detecting an ambient temperature of the fluorescent lamp, a light amount sensor for detecting a light amount of the fluorescent lamp, and an air conditioner. The lighting control device controls the air conditioner based on a detection result of the temperature sensor. 2. The line light source according to claim 1, wherein the control unit controls the ambient temperature of the fluorescent lamp to a predetermined temperature, and controls a discharge current based on a detection result of the light amount sensor to make the light amount of the fluorescent lamp a predetermined light amount. apparatus.
JP2000255830A 2000-08-25 2000-08-25 Line light source device Expired - Fee Related JP3565772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000255830A JP3565772B2 (en) 2000-08-25 2000-08-25 Line light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000255830A JP3565772B2 (en) 2000-08-25 2000-08-25 Line light source device

Publications (2)

Publication Number Publication Date
JP2002077535A JP2002077535A (en) 2002-03-15
JP3565772B2 true JP3565772B2 (en) 2004-09-15

Family

ID=18744552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000255830A Expired - Fee Related JP3565772B2 (en) 2000-08-25 2000-08-25 Line light source device

Country Status (1)

Country Link
JP (1) JP3565772B2 (en)

Also Published As

Publication number Publication date
JP2002077535A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
US7208881B2 (en) LED strobe light
US20040027545A1 (en) Projector display comprising light source units
JPH04128702A (en) Light source device for lighting
US7140733B2 (en) Light source device and projector
JP2007212852A (en) Display device
KR20100131125A (en) Projector
JP3186754U (en) Power saving lighting device with human body sensing module
US9395610B2 (en) Light source, projector, and method of cooling discharge lamp
EP2268106B1 (en) Illumination device
US20220054682A1 (en) Cartridge based uv c sterilization system
JPH057838B2 (en)
TWI566054B (en) Lighting device with discharge lamp
KR100865994B1 (en) Case for intelligent street light and intelligent street light
JP3565772B2 (en) Line light source device
JP2008076661A (en) Hermetically sealed type lamp device and projector
JP2017123248A (en) Luminaire
JP2005243797A (en) Light energy irradiation device
JP2003347070A (en) Lighting system
US20140185020A1 (en) Projection unit and method for controlling the projection unit
JP4755850B2 (en) Portable LED lighting device
KR101580469B1 (en) High Intensity Aircraft Warning Light Apparatus
KR20180061748A (en) Solar Simulator Using Flash Lamp
JP2004165130A (en) Lighting system, discharge lamp lighting device, lighting fixture
JP6601756B2 (en) Lighting device
KR101800633B1 (en) A device for lighting indoor space

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees