JP3565129B2 - Production method of saturated copolymerized polyester resin solution - Google Patents

Production method of saturated copolymerized polyester resin solution Download PDF

Info

Publication number
JP3565129B2
JP3565129B2 JP2000070004A JP2000070004A JP3565129B2 JP 3565129 B2 JP3565129 B2 JP 3565129B2 JP 2000070004 A JP2000070004 A JP 2000070004A JP 2000070004 A JP2000070004 A JP 2000070004A JP 3565129 B2 JP3565129 B2 JP 3565129B2
Authority
JP
Japan
Prior art keywords
polyester
solvent
melt
polyester resin
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000070004A
Other languages
Japanese (ja)
Other versions
JP2001261843A (en
Inventor
隆行 尾鍋
利彦 築城
則光 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2000070004A priority Critical patent/JP3565129B2/en
Publication of JP2001261843A publication Critical patent/JP2001261843A/en
Application granted granted Critical
Publication of JP3565129B2 publication Critical patent/JP3565129B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、塗料、接着剤、コーティング剤などに用いられる飽和共重合ポリエステル樹脂(以下単にポリエステルと略記する)及び該ポリエステルの粉末の製造等に利用できるポリエステル溶液の製造法に関するもので、特にポリエステルを溶剤に迅速かつ容易に溶解できる溶液製造法に関するものである。
【0002】
【従来の技術】
ポリエステルを溶剤に溶解して得られるポリエステル溶液は、塗料、接着剤、コーティング剤、バインダ−などに実用化されている。またそれ以外にも、ポリエステルを一旦有機溶剤に溶解し、その溶液を水中に混合分散させた後、該有機溶剤を除去することによる水分散型のポリエステル系コーティング剤の製造や、ポリエステル溶液を適当な貧溶媒中に分散させポリエステルを析出した後、得られた粉末を乾燥することによるポリエステル粉末の製造等、ポリエステル溶液は広い分野に利用されている。
【0003】
ポリエステルの溶剤への溶解方法には、固体状態のポリエステルを粗く寸断した状態又はペレット状に加工した状態のポリエステルを溶剤に投入して溶解する方法、また、溶融状態のポリエステルを直接溶剤に投入し、攪拌して溶解する方法が一般的に行われている。固体状態のポリエステルを溶解する方法では、上記のように予めポリエステルを溶解速度が早い形状に加工したり、溶剤を加熱するなどの手段をとりながらも、溶解速度は未だ十分でなく溶解に必要な所要時間が長いという問題がある。
また、溶融状態のポリエステルを溶剤に投入して溶解する方法では、合成したポリエステルをそのまま溶解することができ、ポリエステルを冷却固化、および、寸断又はペレット状に加工するプロセスとそこで必要なエネルギーを削減できる利点があるが、溶剤中に投入した溶融ポリエステルが塊状となって溶解速度が遅くなったり、溶解攪拌中に流動性が悪い部分に固化堆積し、溶解性が低下するなどの問題がある。
【0004】
【発明が解決しようとする課題】
本発明は、従来のポリエステルの溶解方法の問題点を解決し、迅速かつ効率的にポリエステルを溶剤に溶解して得られる溶液の製造法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、以上に述べたような従来法の問題点を解決するために鋭意検討し続けてきた結果、特定の溶解条件を特定化することによりポリエステルを溶剤に、容易にかつ短時間で溶解できるという知見を見い出し、本発明を完成するに至った。すなわち、本発明は次の各発明から構成されるものである。
[1]第1発明は、鉛直方向に回転軸を有する攪拌翼により、剪断速度が5秒 -1 以上50秒 -1 以下となる撹拌条件下で行う溶解物の撹拌下において、重力が作用する方向またはその反対方向に、溶解物の全体量に対する液循環量が0.3時間-1以上20時間 -1 以下となるように溶解物を循環することにより、飽和共重合ポリエステル樹脂を溶剤に溶解することを特徴とする飽和共重合ポリエステル樹脂溶液の製造法に関するものである。
[2]第2発明は、溶解物の全体量に対する不活性ガスの投入量が0.1時間 -1 以上10時間 -1 以下となるように不活性ガスを溶解物中に吹き込んだ後、上記[1]記載の製造法を実施することを特徴とする飽和共重合ポリエステル樹脂溶液の製造法に関するものである。
[ ] 第3発明は、溶解物を沸騰させながら飽和共重合ポリエステル樹脂を溶剤に溶解することを特徴とする上記[1]または上記[2]記載の飽和共重合ポリエステル樹脂溶液の製造法に関するものである。
ここで、溶解物とはポリエステルと溶剤及びそれらからなる溶液の混合物のことである。
【0006】
【発明の実施の形態】
本発明のポリエステルを構成する繰り返し単位(モノマー)としては、限定されるものではないが以下の成分を挙げることができる。
酸成分としては、テレフタル酸、イソフタル酸、無水フタル酸、α−ナフタレンジカルボン酸、β−ナフタレンジカルボン酸、5−ナトリウムスルホイソフタル酸、5−カリウムスルホイソフタル酸およびそれらのエステル形成体等の芳香族ジカルボン酸、シュウ酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデシレン酸、ドデカン二酸およびそれらのエステル形成体等の脂肪族ジカルボン酸、1,4−シクロヘキサンジカルボン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の脂環式ジカルボン酸が挙げられる。また、トリメリット酸、ピロメリット酸等の他価カルボン酸もポリエステル合成時のゲル化やポリエステルの溶剤への溶解性を損なわない範囲で併用することが可能である。
【0007】
ポリオール成分としては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール、1,9−ノナンジオール、ネオペンチルグリコール、3−メチルペンタンジオール、2,2,3−トリメチルペンタンジオール、ジエチレングリコ−ル、トリエチレングリコ−ル、ジプロピレングリコール等の脂肪族グリコール、1,4−シクロヘキサンジオ−ル、1,4−シクロヘキサンジメタノ−ル等の脂環式グリコール、ビスフェノ−ルAなどの芳香族グリコールが挙げられる。また、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等の多価アルコールもポリエステル合成時のゲル化やポリエステル樹脂の溶剤への溶解性を損なわない範囲で併用することが可能である。
【0008】
本発明で用いるポリエステルは、一般的な方法により合成することができ、前述の酸成分とポリオール成分とのエステル化反応、および、それに続く高温高減圧下で過剰のグリコールを留去しながら重縮合する直接エステル化法、またはジカルボン酸のエステル形成体を使用したエステル交換法等で合成することができる。
【0009】
本発明で用いる溶剤は、ポリエステルを溶解することができるものであればどのような溶剤でも使用できる。例えば、脂肪族、脂環族、芳香族系炭化水素化合物、脂肪族エステル系化合物、アルコール系化合物、エーテル系化合物、ケトン系化合物、ハロゲン系炭化水素化合物などの有機溶剤の1種以上、或いは、水、水に有機物を混合した水溶液などであり、これによって限定されるものではない。以上の溶剤の中でも、ヘキサン、石油エーテルなどの脂肪族炭化水素、シクロへキサン、シクロヘキセンなどの脂環族系炭化水素、キシレン、トルエンなどの芳香族系炭化水素化合物、酢酸エチル、酢酸プロピル、酢酸ブチルなどの脂肪族エステル系化合物、メタノール、エタノール、ブタノール、エチレングリコールなどのアルコール系化合物、ジエチルエーテルなどのエーテル系化合物、メチルエチルケトン、ジイソブチルケトン、アセトン、シクロヘキサノンなどのケトン系化合物等の各種有機溶剤及びその混合物が好ましい。また、本発明のポリエステル溶液において、溶剤は樹脂組成物に対して、20〜95重量%の割合で好ましく使用される。
【0010】
本発明で製造される溶液には、溶剤に溶解するポリエステル以外の改質剤を特に制限なく配合することができる。その具体的な例を挙げると、ウレタン系樹脂、エポキシ系樹脂、アクリル系樹脂、ノボラック樹脂、フェノキシ樹脂、ブチラール樹脂、ケトン樹脂、等があり、これらを単独で、又は2種以上組み合わせて使用することができる。また、必要に応じて、エポキシ化油、ジオクチルフタレートなどの可塑剤を適宜加えることができる。さらに、着色顔料、垂れ防止剤、表面調整剤、架橋促進触媒、紫外線吸収剤、光安定剤、抗酸化剤などの着色剤や安定剤等の添加剤を必要に応じて使用することができる。
【00011】
ポリエステルは、重合反応終了後の溶融樹脂をそのまま溶解する、ペレット化あるいはシート化して固体状態で溶解する、あるいは、一旦ペレット化あるいはシート化した固体状態のポリエステルを加熱溶融して溶解するなどの方法で使用できる。
【0012】
本発明のポリエステルの溶解方法としては、例えば▲1▼適当な温度に調整した溶剤を溶解槽に予め投入しておき、溶融状態の樹脂を口金、多孔板あるいは格子状の板を通してストランドまたはシート状に吐出しながら又は吐出後に溶解する方法、▲2▼適当な温度に調整した溶剤を溶解槽に予め投入しておき、溶剤中にポリエステルペレットを溶解槽に投入した後溶解する方法などがある。
【0013】
本発明で用いる溶解設備としては図1に示すように、攪拌機及び攪拌翼を有する溶解槽1、溶剤を投入する投入口8、樹脂を投入する投入口9、溶解物を循環及び/又は払い出すためのポンプなどの液移送装置3、溶解物(溶剤と樹脂の混合物)を加熱したり冷却したりするための外部熱交換器4、一部蒸発した溶剤を凝縮するための熱交換器10などから構成される。溶解槽1に十分な熱交換能力のあるジャケットを有する場合には、外部熱交換器4は省略することが可能である。ただし、底部に樹脂が堆積しやすい場合には図2に示すように、液移送装置3の吸入を溶解槽の中段あるいは上段の上澄み部分から行い、溶解槽の底部から反応器内に戻すことが好ましい。
【0014】
本発明において液移送装置3は、溶解槽1での溶解物の全容量[L]に対して0.3時間−1以上の循環能力を有する液移送装置、すなわち、溶解物の全容量[L]に0.3を乗じた循環量[L/時間]以上の循環能力を有する液移送装置を使用する。溶解物の流動が起こりにくく、樹脂などが堆積し易い溶解槽1のボトム抜出ノズル付近の液を流動させるために、そこに滞留した溶解物を循環ポンプ3を使用して溶解物の全容量[L]に対して0.3時間−1以上の循環量で溶解槽1の内部に戻すことにより溶解を促進する。循環量が0.3時間−1より少ない場合には溶解速度が遅く、液循環による溶解速度向上効果が十分でない。循環量の上限は特にないが、ポンプ動力(電力消費量)と配管圧損を考慮した液循環効率など経済的見地からは、20時間−1以下、特に好ましくは10時間−1以下が好ましい範囲である。未溶解樹脂の噛み込みによる液移送装置の損傷を防止するために、必要に応じて吸入口にストレーナーなどの固液分離装置を取り付けることができる。
【0015】
本発明においては、溶解物の溶解速度向上させるため、特に溶解物の流動が起こりにくく、樹脂などが堆積し易い溶解槽1のボトム抜出ノズル付近の液を流動させるために、溶解槽の下部または内部への吹き込み弁2から、溶解物の全容量[L]に対して0.1時間−1以上、すなわち、溶解物の全容量[L]に0.1を乗じた吹込量[L/時間]の窒素、ヘリウム、ネオン、アルゴンなどの不活性ガスを吹き込み、溶解槽下部に滞留した樹脂や溶解物を不活性ガスにより溶解槽内に巻き上げて溶解を促進する。ガスの吹込量が0.1ー時間未満の場合には、溶解促進効果が小さく、また滞留物を巻き上げる力が不足のため吹込効果が認められない。吹込量の上限は特にないが、ガス量増加によるランイングコストのアップ、溶剤蒸気がコンデンサー(図1,2の10)で凝縮されず廃ガス処理設備に流入することによる溶剤の損失など経済的な問題を考慮すると、吹込量は10時間−1以下、特に好ましくは5時間−1以下が好ましい。
本発明において、本発明に係る液循環と不活性ガス吹込を同時に実施することは、溶解速度アップの点で更に好ましい。
【0016】
本発明における溶解物の攪拌は、十分な流動を確保するために剪断速度が5秒−1以上の攪拌条件で行われることが好ましい。本発明において剪断速度は、攪拌翼先端部の液と攪拌槽内壁近傍の液のずり速度勾配の平均値であり、専断速度γはずり速度勾配△uと攪拌翼先端と槽内壁との距離△sとから、γ=△u/△sで算出される。剪断速度が5秒−1に達しない攪拌条件では、溶解速度が遅く生産性が劣る。剪断速度の上限は特にないが、経済性(電力消費量と攪拌効率の関係)の点からは、50秒−1以下、特に好ましくは30秒−1以下の剪断速度で実施することが好ましい。
【0017】
本発明の溶解温度としては、溶解物の沸点であり、かつ樹脂が熱劣化など品質劣化を起こさない温度が好ましい。溶剤沸騰による、発生蒸気量は溶解物の全容量[L]に0.1を乗じた量[L/時間]以上、かつ熱交換器10の凝縮能力以下になるような蒸気を発生させることが、特に好ましい。このように溶解物を沸騰状態に保つことで、発生した溶剤蒸気の気泡により溶解槽内の流動が良くなり、溶解を促進することができる。また、溶解圧力は必要に応じて、加圧下あるいは減圧下で行うことができる。
【0018】
本発明のポリエステル溶液の製造方法において、本発明に係る液循環又は/及び不活性ガスの投入と同時に、第二発明の攪拌方法若しくは第三発明の溶解物の沸騰、又は第二発明の攪拌方法及び第三発明の溶解物の沸騰を合わせて行うことは、溶解速度の向上の点で更に好ましい方法となる。
【0019】
【実施例】
以下、実施例により、本発明を具体的に説明するが、本発明がこれにより限定されることはない。
【0020】
[参考例1]
<ポリエステルの合成>
テレフタル酸ジメチル271kg、エチレングリコール450kg、ネオペンチルグリコール265kgを主原料とし、触媒として酢酸亜鉛2水和物0.135kgを仕込み、150〜180℃に昇温しながらメタノールを留去させてエステル交換反応した後、イソフタル酸155kg、アジピン酸102kg、セバチン酸330kg、及び三酸化アンチモン0.34kgを加えて180〜220℃で水を留去させてエステル化反応した。引き続き、減圧下、220〜245℃に徐々に昇温しながら過剰のグリコールを留去させた。得られたポリエステル樹脂のGPCによる重量平均分子量(PSt換算)は70,000、H−NMR分析によるモノマー組成は、酸成分がモル比でテレフタル酸/イソフタル酸/アジピン酸/セバチン酸=30/20/17/33、ポリオール成分がモル比でエチレングリコール/ネオペンチルグリコール=70/30であった。
【0021】
[実施例1]
<ポリエステルの溶解>
図1に示す装置を使用して、溶剤として酢酸エチル1096kgを溶解槽に仕込み、参考例1で得たポリエステル樹脂998kgを200℃に加熱した配管で移送し、2時間かけて溶解槽に投入した。樹脂投入完了直後より、溶解物の温度を60℃に保ち、攪拌剪断速度10.4秒−1一定にて攪拌し、同時にポンプ3により2m/Hr(溶解物の全容量[L]に対して1.0時間−1倍の循環量)で循環を行い、18時間加熱溶解を続けた。40℃まで冷却後、固形分濃度45%に調整して溶解物を溶解槽から抜出した。溶解槽内に溶け残りのポリエステルは認められず、溶解を開始してから20時間後に目的のポリエステル溶液を入手することができた。
【0022】
[実施例2]
図2の装置を用い、実施例1と同様の条件でポリエステルを投入し攪拌を開始した。実施例1において、樹脂投入完了直後からのポンプによる液循環を行わずその代わりに、溶解槽の下部の配管にある不活性ガスの吹き込み弁2から窒素ガスを1m/Hr(溶解物の全容量[L]に対して0.5時間−1倍の吹込量)で吹き込みながら溶解したこと以外は、実施例1と同様にしてポリエステルを溶解した。ポリエステル樹脂投入後、15時間加熱溶解を続けた後、次いで、ボトム抜出口から溶解槽内部への循環を開始し、加熱攪拌溶解を4時間継続した。40℃まで冷却後、固形分濃度45%に調整して溶解物を溶解槽から抜出した。溶解槽内に溶け残りのポリエステルは認められず、溶解を開始してから21時間後に目的のポリエステル溶液を入手することができた。
【0023】
[実施例3]
参考例1で得られたポリエステル998kgを図1に示す装置を使用して、溶剤として酢酸エチル1096kgを溶解槽に仕込み、参考例1で得たポリエステルを200℃に加熱した配管で移送し、2時間かけて溶解槽に投入した。ポリエステル投入後、ボトム抜出口から溶解槽内部へのポンプ3により2m/Hr(溶解物の全容量[L]に対して1.0時間−1倍の循環量)で循環しながら循環を開始し、同時に溶解槽のジャケット温度90℃、剪断速度が10.4秒−1一定にて攪拌した所、蒸気発生量は平均で1.2m/Hr(溶解物の全容量[L]に対して0.6時間−1倍の吹込量)になり、その蒸気をコンデンサー10で還流を行いながら溶解した。ポリエステル樹脂投入後、上記条件下で12時間溶解を継続した。溶解中の溶解物の温度は約79℃であった。引続き全液を40℃まで冷却後、固形分濃度45%に調整して溶解物を溶解槽から抜出した。溶解槽内に溶け残りのポリエステル樹脂は認められず、溶解を開始してから14時間で目的のポリエステル溶液を入手することができた。
【0024】
【発明の効果】
本発明に係るポリエステル溶液の製造方法により、容易に、且つ、短時間でポリエステルを溶剤に溶解することができ、ポリエステル溶液を製造し、又は使用する化学業界等で広く利用され得るものである。
【図面の簡単な説明】
【図1】本発明の方法を実施するために使用される装置の概念を示すフローチャート1である。
【図2】本発明の方法を実施するために使用される装置の概念を示すフローチャート2である。
【符号の説明】
1:攪拌機を有する溶解槽
2:不活性ガスの吹き込み弁
3:溶解物を循環及び/又は払い出すための液移送装置
4:溶解物を加熱したり冷却したりするための外部熱交換器
5、14:冷媒あるいは熱媒入口ライン
6、15:冷媒あるいは熱媒出口ライン
7:溶解物の払い出しライン
8:溶剤を投入する投入ライン
9:樹脂組成物を投入する投入ライン
10:コンデンサー
11:冷媒入口ライン
12:冷媒出口ライン
13:廃ガス処理設備行きライン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a saturated copolymerized polyester resin (hereinafter simply abbreviated as polyester) used for paints, adhesives, coating agents, and the like, and a method for producing a polyester solution that can be used for producing powder of the polyester. And a method for producing a solution capable of rapidly and easily dissolving in a solvent.
[0002]
[Prior art]
A polyester solution obtained by dissolving polyester in a solvent has been put to practical use in paints, adhesives, coating agents, binders and the like. In addition, the polyester is once dissolved in an organic solvent, the solution is mixed and dispersed in water, and then the organic solvent is removed to produce a water-dispersed polyester coating agent. Polyester solutions are used in a wide range of fields, such as producing polyester powder by dispersing in a poor solvent to precipitate polyester and then drying the obtained powder.
[0003]
The method of dissolving the polyester in the solvent is a method in which the polyester in a solid state is roughly cut into pieces or processed into pellets and the polyester is dissolved in the solvent, or the polyester in the molten state is directly poured into the solvent. Generally, a method of dissolving by stirring is used. In the method of dissolving the polyester in the solid state, the polyester is processed into a shape having a high dissolution rate in advance as described above, or while taking measures such as heating the solvent, the dissolution rate is still insufficient and necessary for dissolution. There is a problem that the required time is long.
In addition, in the method of dissolving the polyester in a molten state by pouring it into a solvent, the synthesized polyester can be dissolved as it is, and the polyester is cooled and solidified, and the process of shredding or processing into pellets and the energy required there are reduced. Although there is an advantage that can be obtained, there are problems such as that the molten polyester charged into the solvent becomes a lump and the dissolution rate is slowed down, and solidification and deposition are caused on a portion having poor fluidity during the dissolution stirring, resulting in a decrease in solubility.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to solve the problems of the conventional polyester dissolving method and to provide a method for producing a solution obtained by quickly and efficiently dissolving the polyester in a solvent.
[0005]
[Means for Solving the Problems]
The present inventors have intensively studied to solve the problems of the conventional method as described above, and as a result, by specifying specific dissolving conditions, a polyester can be easily dissolved in a solvent in a short time. And found that the present invention can be dissolved, and completed the present invention. That is, the present invention comprises the following inventions.
[1] In the first invention, gravity acts on the melt under stirring with a stirring blade having a rotation axis in the vertical direction at a shearing rate of 5 sec- 1 or more and 50 sec- 1 or less. The saturated copolymerized polyester resin is dissolved in the solvent by circulating the melt in the direction or in the opposite direction so that the liquid circulation amount with respect to the total amount of the melt is 0.3 hours- 1 or more and 20 hours- 1 or less. And a process for producing a saturated copolymerized polyester resin solution.
[2] The second invention is characterized in that the inert gas is blown into the melt so that the amount of the inert gas with respect to the total amount of the melt is not less than 0.1 hr- 1 and not more than 10 hr- 1. [1] A method for producing a saturated copolymerized polyester resin solution, which comprises performing the production method described in [1] .
[ 3 ] A third invention relates to the method for producing a saturated copolymerized polyester resin solution according to the above [1] or [2], wherein the saturated copolymerized polyester resin is dissolved in a solvent while boiling the melt. Things.
Here, the melt refers to a mixture of polyester, a solvent, and a solution comprising the same.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Examples of the repeating unit (monomer) constituting the polyester of the present invention include, but are not limited to, the following components.
Examples of the acid component include aromatic compounds such as terephthalic acid, isophthalic acid, phthalic anhydride, α-naphthalenedicarboxylic acid, β-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, 5-potassium sulfoisophthalic acid, and esters thereof. Aliphatic dicarboxylic acids such as dicarboxylic acid, oxalic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecylenic acid, dodecane diacid, and ester-forming products thereof, 1,4-cyclohexanedicarboxylic acid, tetrahydroanhydride Alicyclic dicarboxylic acids such as phthalic acid and hexahydrophthalic anhydride; In addition, other carboxylic acids such as trimellitic acid and pyromellitic acid can be used together within a range that does not impair gelation during synthesis of the polyester or solubility of the polyester in a solvent.
[0007]
As the polyol component, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, Fats such as 1,8-octanediol, 1,9-nonanediol, neopentyl glycol, 3-methylpentanediol, 2,2,3-trimethylpentanediol, diethylene glycol, triethylene glycol and dipropylene glycol And alicyclic glycols such as 1,4-cyclohexanediol and 1,4-cyclohexanedimethanol, and aromatic glycols such as bisphenol A. Polyhydric alcohols such as glycerin, trimethylolethane, trimethylolpropane, and pentaerythritol can also be used in combination as long as gelling during polyester synthesis and solubility of the polyester resin in a solvent are not impaired.
[0008]
The polyester used in the present invention can be synthesized by a general method, and is subjected to an esterification reaction between the above-mentioned acid component and a polyol component, followed by polycondensation while distilling off excess glycol under high temperature and high vacuum. It can be synthesized by a direct esterification method or a transesterification method using a dicarboxylic acid ester-forming product.
[0009]
As the solvent used in the present invention, any solvent can be used as long as it can dissolve the polyester. For example, one or more organic solvents such as aliphatic, alicyclic, aromatic hydrocarbon compounds, aliphatic ester compounds, alcohol compounds, ether compounds, ketone compounds, and halogen hydrocarbon compounds, or Water, an aqueous solution in which an organic substance is mixed with water, and the like are not limited thereto. Among the above solvents, hexane, aliphatic hydrocarbons such as petroleum ether, cyclohexane, alicyclic hydrocarbons such as cyclohexene, xylene, aromatic hydrocarbon compounds such as toluene, ethyl acetate, propyl acetate, acetic acid Various organic solvents such as aliphatic ester compounds such as butyl, alcohol compounds such as methanol, ethanol, butanol, and ethylene glycol; ether compounds such as diethyl ether; methyl ethyl ketone, diisobutyl ketone, acetone, and ketone compounds such as cyclohexanone; That mixture is preferred. In the polyester solution of the present invention, the solvent is preferably used in a proportion of 20 to 95% by weight based on the resin composition.
[0010]
In the solution produced in the present invention, a modifier other than the polyester dissolved in the solvent can be blended without any particular limitation. Specific examples thereof include urethane resins, epoxy resins, acrylic resins, novolak resins, phenoxy resins, butyral resins, ketone resins, and the like, and these may be used alone or in combination of two or more. be able to. If necessary, a plasticizer such as an epoxidized oil and dioctyl phthalate can be appropriately added. Further, additives such as coloring agents such as coloring pigments, anti-sagging agents, surface conditioners, crosslinking accelerators, ultraviolet absorbers, light stabilizers, and antioxidants, and stabilizers can be used as necessary.
[00011]
Polyester is a method in which the molten resin after the completion of the polymerization reaction is dissolved as it is, pelletized or formed into a sheet and dissolved in a solid state, or a once pelletized or sheeted solid state polyester is melted by heating and melting. Can be used with
[0012]
As a method for dissolving the polyester of the present invention, for example, (1) a solvent adjusted to an appropriate temperature is previously charged into a dissolving tank, and the resin in a molten state is passed through a die, a perforated plate or a grid-like plate to form a strand or sheet. (2) a method in which a solvent adjusted to an appropriate temperature is previously charged in a dissolving tank, and polyester pellets are dissolved in the solvent and then dissolved.
[0013]
As shown in FIG. 1, the dissolving equipment used in the present invention is a dissolving tank 1 having a stirrer and a stirring blade, an input port 8 for charging a solvent, an input port 9 for charging a resin, and circulating and / or discharging the melt. Transfer device 3 such as a pump for heating, an external heat exchanger 4 for heating or cooling a melt (mixture of solvent and resin), a heat exchanger 10 for condensing a partially evaporated solvent, etc. Consists of When the melting tank 1 has a jacket having a sufficient heat exchange capacity, the external heat exchanger 4 can be omitted. However, when the resin easily accumulates on the bottom, as shown in FIG. 2, the liquid transfer device 3 can be sucked from the middle or upper supernatant of the dissolution tank and returned into the reactor from the bottom of the dissolution tank. preferable.
[0014]
In the present invention, the liquid transfer device 3 is a liquid transfer device having a circulation capacity of 0.3 hours -1 or more with respect to the total volume [L] of the dissolved material in the dissolving tank 1, that is, the total volume [L of the dissolved material. ] Is multiplied by 0.3 with a liquid transfer device having a circulation capacity of not less than a circulation amount [L / hour]. In order to make the liquid near the bottom extraction nozzle of the dissolving tank 1 in which the flow of the melt hardly occurs and the resin and the like easily accumulate, the melt that has accumulated there is used by the circulation pump 3 to make the total volume of the melt. The dissolution is promoted by returning to the inside of the dissolving tank 1 with a circulation amount of 0.3 hour- 1 or more with respect to [L]. When the circulation amount is less than 0.3 hour- 1 , the dissolution rate is low, and the effect of improving the dissolution rate by liquid circulation is not sufficient. The upper limit of the circulation amount is not particularly limited, but from an economical point of view such as the liquid circulation efficiency in consideration of the pump power (electric power consumption) and the piping pressure loss, is preferably 20 hours- 1 or less, particularly preferably 10 hours- 1 or less. is there. If necessary, a solid-liquid separation device such as a strainer can be attached to the suction port in order to prevent damage to the liquid transfer device due to biting of the undissolved resin.
[0015]
In the present invention, in order to improve the dissolution rate of the dissolved material, particularly, the flow of the dissolved material is less likely to occur, and the liquid near the bottom extraction nozzle of the dissolving tank 1 where the resin and the like are easily deposited flows in the lower part of the dissolving tank. or from blowing valve 2 to the inside, the total volume of the lysate [L] 0.1 hr -1 or more with respect to, i.e., the total volume [L] blow amount multiplied by 0.1 to lysate [L / [Time], an inert gas such as nitrogen, helium, neon, argon or the like is blown, and the resin or the melt remaining in the lower portion of the melter is rolled up into the melter by the inert gas to promote the melt. If blowing of the gas is less than 0.1 over 1 hour, the dissolution accelerating effect is small, and the force to wind the retentate is not observed blow effect because of insufficient. Although there is no particular upper limit for the amount of blowing, economical factors such as an increase in the running cost due to an increase in the amount of gas and a loss of the solvent due to the flow of the solvent vapor into the waste gas treatment facility without being condensed by the condenser (10 in FIGS. 1 and 2). Considering the problem, the blowing amount is preferably 10 hours- 1 or less, particularly preferably 5 hours- 1 or less.
In the present invention, it is more preferable to simultaneously perform the liquid circulation and the inert gas blowing according to the present invention from the viewpoint of increasing the dissolution rate.
[0016]
The stirring of the melt in the present invention is preferably performed under a stirring condition of a shear rate of 5 seconds- 1 or more in order to secure a sufficient flow. In the present invention, the shear rate is the average value of the shear velocity gradient of the liquid at the tip of the stirring blade and the liquid near the inner wall of the stirring tank, and the shear rate γ is the shear velocity gradient Δu and the distance between the tip of the stirring blade and the inner wall of the tank. s is calculated as γ = △ u / △ s. Under stirring conditions where the shear rate does not reach 5 seconds- 1 , the dissolution rate is low and productivity is poor. There is no particular upper limit for the shear rate, but from the viewpoint of economy (the relationship between the power consumption and the stirring efficiency), the shear rate is preferably 50 seconds- 1 or less, particularly preferably 30 seconds- 1 or less.
[0017]
The dissolution temperature of the present invention is preferably a temperature that is the boiling point of the melt and does not cause quality deterioration such as thermal deterioration of the resin. The amount of vapor generated by the boiling of the solvent may be such that the total volume [L] of the melt is multiplied by 0.1 and the volume is [L / hour] or more and the condensing capacity of the heat exchanger 10 or less. Are particularly preferred. By keeping the melt in a boiling state in this way, the flow of the solvent vapor generated in the melting tank is improved by the bubbles of the generated solvent vapor, and the dissolution can be promoted. The dissolution pressure can be increased or increased as necessary.
[0018]
In the method for producing a polyester solution of the present invention, the stirring method of the second invention or the boiling of the melt of the third invention, or the stirring method of the second invention, simultaneously with the liquid circulation or / and the addition of the inert gas according to the present invention. The combination of boiling of the melt of the third invention and the third invention is a more preferable method from the viewpoint of improving the dissolution rate.
[0019]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.
[0020]
[Reference Example 1]
<Synthesis of polyester>
271 kg of dimethyl terephthalate, 450 kg of ethylene glycol and 265 kg of neopentyl glycol are used as main raw materials, and 0.135 kg of zinc acetate dihydrate is charged as a catalyst. After that, 155 kg of isophthalic acid, 102 kg of adipic acid, 330 kg of sebacic acid and 0.34 kg of antimony trioxide were added, and water was distilled off at 180 to 220 ° C. to carry out an esterification reaction. Subsequently, excess glycol was distilled off while gradually raising the temperature to 220 to 245 ° C under reduced pressure. The weight average molecular weight (in terms of PSt) of the obtained polyester resin by GPC was 70,000, and the monomer composition by H 1 -NMR analysis was such that the molar ratio of the acid component was terephthalic acid / isophthalic acid / adipic acid / sebacic acid = 30 / 20/17/33, the polyol component was ethylene glycol / neopentyl glycol = 70/30 in molar ratio.
[0021]
[Example 1]
<Dissolution of polyester>
Using the apparatus shown in FIG. 1, 1096 kg of ethyl acetate was charged as a solvent into a dissolution tank, and 998 kg of the polyester resin obtained in Reference Example 1 was transferred through a pipe heated to 200 ° C., and charged into the dissolution tank over 2 hours. . Immediately after the completion of the introduction of the resin, the temperature of the melt was maintained at 60 ° C., and the mixture was stirred at a constant stirring shear rate of 10.4 sec− 1, and at the same time, 2 m 3 / Hr (with respect to the total volume [L] of the melt) by the pump 3. (The circulation amount was 1.0 hour- 1 time), and the heating and melting were continued for 18 hours. After cooling to 40 ° C., the solid content concentration was adjusted to 45%, and the melt was extracted from the melting tank. No residual polyester was found in the dissolution tank, and the desired polyester solution could be obtained 20 hours after the start of dissolution.
[0022]
[Example 2]
Using the apparatus of FIG. 2, polyester was charged under the same conditions as in Example 1 and stirring was started. In Example 1, the liquid was not circulated by the pump immediately after the completion of the resin introduction, but instead, nitrogen gas was supplied at 1 m 3 / Hr (total of the dissolved material) from the inert gas blowing valve 2 in the pipe below the dissolving tank. The polyester was dissolved in the same manner as in Example 1 except that the polyester was dissolved while blowing at a rate of 0.5 hour to 1 time with respect to the volume [L]. After the polyester resin was charged, the heating and melting were continued for 15 hours, and then circulation from the bottom outlet to the inside of the melting tank was started, and the heating and stirring and melting were continued for 4 hours. After cooling to 40 ° C., the solid content concentration was adjusted to 45%, and the melt was extracted from the melting tank. No residual polyester remained in the dissolution tank, and the desired polyester solution could be obtained 21 hours after the start of dissolution.
[0023]
[Example 3]
Using the apparatus shown in FIG. 1, 998 kg of the polyester obtained in Reference Example 1 was charged into a dissolution tank with 1096 kg of ethyl acetate as a solvent, and the polyester obtained in Reference Example 1 was transferred through a pipe heated to 200 ° C. It was charged into the dissolution tank over time. After the polyester is charged, circulation is started while circulating at 2 m 3 / Hr (a circulation amount of 1.0 hour to 1 time with respect to the total volume of the melt [L]) by the pump 3 from the bottom outlet to the inside of the dissolution tank. At the same time, the mixture was stirred at a jacket temperature of the melting tank of 90 ° C. and a shear rate of 10.4 sec- 1 constant, and the steam generation amount was 1.2 m 3 / Hr on average (based on the total volume of the melt [L]. then 0.6 h -1 time blow amount) Te was dissolved while refluxing the vapors in the condenser 10. After the introduction of the polyester resin, the dissolution was continued for 12 hours under the above conditions. The temperature of the lysate during lysis was about 79 ° C. Subsequently, after cooling the whole liquid to 40 ° C., the solid content was adjusted to 45%, and the dissolved substance was extracted from the dissolving tank. No residual polyester resin remained in the dissolution tank, and the desired polyester solution could be obtained 14 hours after the start of dissolution.
[0024]
【The invention's effect】
The polyester solution can be easily and quickly dissolved in a solvent by the method for producing a polyester solution according to the present invention, and can be widely used in the chemical industry or the like for producing or using a polyester solution.
[Brief description of the drawings]
FIG. 1 is a flow chart 1 showing the concept of an apparatus used to carry out the method of the present invention.
FIG. 2 is a flowchart 2 showing the concept of an apparatus used to carry out the method of the present invention.
[Explanation of symbols]
1: dissolution tank having a stirrer 2: inert gas blowing valve 3: liquid transfer device 4 for circulating and / or discharging the dissolved material 4: external heat exchanger 5 for heating and cooling the dissolved material , 14: refrigerant or heat medium inlet line 6, 15: refrigerant or heat medium outlet line 7: discharge line 8 for dissolving material: input line 9 for inputting solvent 9: input line 10 for inputting resin composition: condenser 11: refrigerant Inlet line 12: Refrigerant outlet line 13: Line to waste gas treatment facility

Claims (3)

鉛直方向に回転軸を有する攪拌翼により、剪断速度が5秒 -1 以上50秒 -1 以下となる撹拌条件下で行う溶解物の撹拌下において、重力が作用する方向またはその反対方向に、溶解物の全体量に対する液循環量が0.3時間-1以上20時間 -1 以下となるように溶解物を循環することにより、飽和共重合ポリエステル樹脂を溶剤に溶解することを特徴とする飽和共重合ポリエステル樹脂溶液の製造法。 The stirring blade having a rotating axis in the vertical direction dissolves the melt in the direction in which gravity acts or in the opposite direction while stirring the melt under stirring conditions in which the shear rate is 5 sec- 1 or more and 50 sec- 1 or less. The saturated copolymerized polyester resin is dissolved in a solvent by circulating the dissolved product so that the liquid circulation amount with respect to the total amount of the product is 0.3 hours- 1 or more and 20 hours- 1 or less. A method for producing a polymerized polyester resin solution. 溶解物の全体量に対する不活性ガスの投入量が0.1時間 -1 以上10時間 -1 以下となるように不活性ガスを溶解物中に吹き込んだ後、請求項1記載の製造法を実施することを特徴とする飽和共重合ポリエステル樹脂溶液の製造法。 2. The method according to claim 1, wherein the inert gas is blown into the melt so that the amount of the inert gas with respect to the total amount of the melt is from 0.1 hours -1 to 10 hours -1. A method for producing a saturated copolymerized polyester resin solution. 溶解物を沸騰させながら飽和共重合ポリエステル樹脂を溶剤に溶解することを特徴とする請求項1または請求項2記載の飽和共重合ポリエステル樹脂溶液の製造法。The method for producing a saturated copolymerized polyester resin solution according to claim 1 or 2, wherein the saturated copolymerized polyester resin is dissolved in a solvent while boiling the solution.
JP2000070004A 2000-03-14 2000-03-14 Production method of saturated copolymerized polyester resin solution Expired - Lifetime JP3565129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000070004A JP3565129B2 (en) 2000-03-14 2000-03-14 Production method of saturated copolymerized polyester resin solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000070004A JP3565129B2 (en) 2000-03-14 2000-03-14 Production method of saturated copolymerized polyester resin solution

Publications (2)

Publication Number Publication Date
JP2001261843A JP2001261843A (en) 2001-09-26
JP3565129B2 true JP3565129B2 (en) 2004-09-15

Family

ID=18588797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000070004A Expired - Lifetime JP3565129B2 (en) 2000-03-14 2000-03-14 Production method of saturated copolymerized polyester resin solution

Country Status (1)

Country Link
JP (1) JP3565129B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524545B2 (en) * 2003-06-30 2010-08-18 東洋紡績株式会社 Method for producing polyester resin varnish

Also Published As

Publication number Publication date
JP2001261843A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
TW491866B (en) Process of producing polytrimethylene terephthalate (PTT)
KR102442443B1 (en) Apparatus and method for mixing recycled material into polyester melt
WO2010123095A1 (en) Method and device for synthesizing polyester
CN106832397A (en) The method of online reuse PET Polymerization Wastes
JP4237491B2 (en) Process for producing polyesters based on 1,4-cyclohexanedimethanol and isophthalic acid
JP2018145221A (en) Production method of polyester
JP2018150453A (en) Manufacturing method of polybutylene succinate
JP4118446B2 (en) Decomposition processing apparatus and decomposition processing method for thermoplastic polyester
WO2005044892A1 (en) Polyethylene terephthalate resin and process for production of moldings of polyester resin
JP2006527281A5 (en)
US3390135A (en) Continuous polyester process
JP3565129B2 (en) Production method of saturated copolymerized polyester resin solution
TW200836823A (en) Polyester production system employing recirculation of hot alcohol to esterification zone
JP4330918B2 (en) How to recycle polyester waste
JP2001261842A (en) Preparation method of saturated copolyester resin solution
JP2009067897A (en) Manufacturing method for aliphatic polyester
JP2002293903A (en) Method for producing cyclic polyester oligomer and method for producing polyester
JP2010195989A (en) Manufacturing method of aliphatic polyester
US3109833A (en) Conserving polyol in fusion cooking of polymeric polyesters
JP3506083B2 (en) Method for producing saturated copolymerized polyester solution
JP4457654B2 (en) Method for producing aliphatic polyester
JP2002317041A (en) Method for producing cyclic polyester oligomer, and method for producing polyester
JP2006016548A (en) Method for producing polyester
JPH0153694B2 (en)
JP4649709B2 (en) Method for producing copolyester

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3565129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term