JP3565059B2 - Ignition control device for direct injection spark ignition type internal combustion engine - Google Patents

Ignition control device for direct injection spark ignition type internal combustion engine Download PDF

Info

Publication number
JP3565059B2
JP3565059B2 JP33109098A JP33109098A JP3565059B2 JP 3565059 B2 JP3565059 B2 JP 3565059B2 JP 33109098 A JP33109098 A JP 33109098A JP 33109098 A JP33109098 A JP 33109098A JP 3565059 B2 JP3565059 B2 JP 3565059B2
Authority
JP
Japan
Prior art keywords
ignition
discharge
timing
internal combustion
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33109098A
Other languages
Japanese (ja)
Other versions
JP2000161192A (en
Inventor
浩一 山口
友則 漆原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP33109098A priority Critical patent/JP3565059B2/en
Publication of JP2000161192A publication Critical patent/JP2000161192A/en
Application granted granted Critical
Publication of JP3565059B2 publication Critical patent/JP3565059B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、直噴火花点火式内燃機関の点火制御装置に関し、詳しくは、点火プラグに付着したデポジットを空放電により燃焼させて、燃焼性(点火エネルギー)を回復させるための技術に関する。
【0002】
【従来の技術】
従来、直噴火花点火式内燃機関において、点火プラグに対するデポジットの付着により絶縁抵抗が低下すると、点火エネルギーが減少して失火発生の原因になるため、失火頻度等に基づいて燃焼性が悪化していると判定されたときに、点火制御対象の気筒の点火時期において点火制御対象の気筒以外の気筒の点火コイルユニットにも同時に点火信号を印加することで、混合気の着火燃焼に関与しない所謂空放電を行わせ、これにより、前記デポジットを燃焼させ、点火エネルギーを回復させるよう構成された点火制御装置があった(特開平9−303189号公報参照)。
【0003】
【発明が解決しようとする課題】
ところで、上記のように、点火制御対象の気筒以外の気筒の点火コイルユニットにも点火時期において同時に点火信号を印加する構成では、4気筒エンジンの場合に空放電を行わせる時期が、点火時期の180 °CA後(膨張行程後期),点火時期の360 °CA後(排気行程後期),点火時期の540 °CA後(吸気行程後期)になり、これらの空放電時期は、筒内ガス密度が比較的低い時期であるという共通の特性をもつことになる。
【0004】
一方、点火プラグの放電電圧と筒内ガス密度との間には、図4に示すように、筒内ガス密度の低下に従って放電電圧が低下し、正規のギャップ間を火花が飛び易くなることが知られている。
【0005】
即ち、従来の点火エネルギー回復のための空放電制御は、正規のギャップ間に火花が飛び易い条件下で空放電を行わせることになっており、中心電極の周囲の碍子上にデポジットが付着している場合であっても、中心電極と接地電極との間の正規のギャップ部分で火花が飛んで、前記デポジットを導通して接地電極へ漏洩する電流が少ないため、前記デポジットを効果的に燃焼させることができず、点火エネルギーの回復効果を十分に得ることができないという問題があった。
【0006】
本発明は上記問題点に鑑みなされたものであり、点火プラグの中心電極周囲の碍子上に付着したデポジットを空放電によって効果的に燃焼させ、燃焼性(点火エネルギー)の回復を確実に得られる直噴火花点火式内燃機関の点火制御装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
そのため、請求項1記載の発明では、各気筒毎に筒内に噴口を臨ませた燃料噴射弁を備え、圧縮行程で燃料噴射を行わせる運転条件をもつ直噴火花点火式内燃機関の点火制御装置であって、通常の点火時期における点火プラグの放電に加え、燃焼性の悪化が判定されたときに点火プラグの空放電を行わせるよう構成すると共に、前記点火プラグの中心電極周囲のデポジットに沿って電流が流れる筒内ガス密度条件において前記空放電を行わせる構成とした。
かかる構成によると、筒内ガス密度が高いときほど点火プラグの放電電圧が高くなり、放電電圧が高くなるほど正規のギャップ間に放電火花が飛び難くなるという特性があり、筒内ガス密度が高い条件下での空放電は、中心電極周囲のデポジットを介して流れる漏洩電流を多くすることになるので、デポジットに沿って電流が流れる筒内ガス密度条件において空放電を行わせることで、デポジットを効果的に燃焼させる。
【0008】
請求項2記載の発明では、各気筒毎に筒内に噴口を臨ませた燃料噴射弁を備え、圧縮行程で燃料噴射を行わせる運転条件をもつ直噴火花点火式内燃機関の点火制御装置であって、通常の点火時期における点火プラグの放電に加え、燃焼性の悪化が判定されたときに点火プラグの空放電を行わせるよう構成すると共に、燃料を着火燃焼させずかつ筒内ガス密度が最も高い時期を機関運転条件に基づいて検出し、該検出した時期に前記空放電を行わせる構成とした。
かかる構成によると、筒内ガス密度が最も高くなる時期に空放電を行なわせることで、中心電極周囲のデポジットに沿って電流が確実に流れ、デポジットが効果的に燃焼する。
【0009】
請求項記載の発明では、前記空放電の時期を、圧縮行程での燃料噴射の直前とする構成とした。
かかる構成によると、圧縮行程中の燃料噴射の前であれば、放電が燃料の着火燃焼に関与せずに空放電になると共に、燃料噴射の直前として圧縮行程中のなるべく遅れた時期に空放電させる構成であれば、筒内ガス密度がなるべく高い条件下で空放電を行わせることになる。
【0011】
請求項記載の発明では、通常の点火動作からの燃焼期間を機関運転条件に基づいて検出し、膨張行程中の前記燃焼期間が経過した直後を前記空放電の時期とする構成とした。
かかる構成によると、通常の点火動作後の燃焼期間が機関運転条件(機関負荷,機関回転速度)に応じて変化することに対応して、膨張行程中の空放電の時期が制御されるから、膨張行程中のなるべく筒内ガス密度が高い時期で、燃焼の後期まで残った未燃焼成分が点火プラグに付着してデポジットを生成する時期に空放電を行わせることができる。
【0012】
請求項記載の発明では、前記空放電を、機関のアイドル運転状態においてのみ行わせる構成とした。
かかる構成によると、圧縮行程中の燃料噴射の直前等の空放電の時期であっても、機関がアイドル運転状態でない場合には、空放電を行わせない。
【0013】
機関のアイドル運転状態とは、点火プラグの温度が低い条件であって、点火プラグの温度が低いときほど放電電圧が高くなって、正規のギャップ間に放電火花が飛び難くなるので、アイドル運転状態で空放電を行わせれば、他の点火プラグの温度が高い運転状態に比してより効果的にデポジットが燃焼することになる。
【0014】
請求項記載の発明では、前記空放電の時期を、燃料カット状態での圧縮上死点付近とする構成とした。
かかる構成によると、減速燃料カット等の燃料噴射が停止される条件下では、最も筒内ガス密度が高くなる圧縮上死点付近において点火プラグの近傍に燃料が存在せず、圧縮上死点付近での点火プラグの放電動作は空放電となり、最も筒内ガス密度(放電電圧)が高い条件下で空放電が行われることになる。
【0015】
【発明の効果】
請求項1,2記載の発明によると、空放電によって点火プラグの中心電極周囲のデポジットに沿って電流を確実に流し、デポジットを効果的に燃焼させることができるという効果がある。
【0016】
請求項記載の発明によると、圧縮行程中であって、かつ、なるべく上死点に近く、筒内ガス密度が最大限に高い条件下で空放電を行わせることができるという効果がある。
【0017】
請求項記載の発明によると、膨張行程中の燃焼期間を避けた最も筒内ガス密度が高い条件下で空放電を行わせることが可能になるという効果がある。
請求項記載の発明によると、点火プラグの温度が低く放電電圧が高くなる条件でのみ空放電を行わせることで、より一層効果的にデポジットを燃焼させることができるという効果がある。
【0018】
請求項記載の発明によると、燃料カット状態で筒内ガス密度が最も高くなる上死点付近で空放電を行わせることができるという効果がある。
【0019】
【発明の実施の形態】
以下に本発明の実施の形態を図に基づいて説明する。
図1は、直噴火花点火式内燃機関である4サイクル型の自動車用ガソリン機関の制御システムを示すブロック図である。
【0020】
この図1において、各気筒毎に設けられる点火プラグ1には、各点火プラグ1毎にそれぞれ設けられた点火コイル2の二次側から個別に高電圧が印加されるようになっており、前記各点火コイル2の一次側への通電は、エンジンコントロールユニット(以下、ECUという)3によって制御される。
【0021】
前記ECU3には、クランク角を検出するクランク角センサ4,気筒判別を行う気筒判別センサ5,スロットル弁(図示省略)の開度を検出するスロットルセンサ6からの検出信号が入力される。また、図示を省略したが、前記ECU3には、上記各種センサの他、排気中の酸素濃度に基づいて燃焼混合気の空燃比を検出する空燃比センサ,機関の吸入空気量を計測するエアフローメータ,機関の冷却水温度を検出する水温センサ等からの検出信号が入力される。
【0022】
そして、前記ECU3は、前記各種センサからの検出信号に基づいて燃料噴射時期及び燃料噴射量を演算し、該演算結果に応じて、筒内に噴口を臨ませて各気筒毎にそれぞれ設けられる燃料噴射弁13に対して噴射弁駆動信号を出力し、燃料噴射を制御する。
【0023】
具体的には、機関負荷,機関回転速度,水温,始動後時間などの機関運転状態に基づいて、目標空燃比を設定すると共に、吸気行程での燃料噴射による均質燃焼と圧縮行程での燃料噴射による成層燃焼とのいずれかを選択する。そして、前記目標空燃比に制御するための燃料噴射量を演算し、また、均質燃焼,成層燃焼の別に応じて噴射時期を演算し、前記噴射時期に前記燃料噴射量に相当するパルス幅の噴射弁駆動信号を、噴射時期となっている気筒の燃料噴射弁13に対して出力する。
【0024】
更に、前記ECU3は、機関負荷,機関回転速度等に基づいて点火時期を演算し、該演算された点火時期に放電を行わせるべく、前記気筒判別センサ5により判定される点火制御対象の気筒の点火コイル2に対して点火信号を出力し、点火コイル2の一次側に対する通電を制御する。
【0025】
ところで、圧縮行程で燃料噴射を行わせると、燃料噴射から点火時期までの時間が短いために燃料の気化が不十分となって不完全燃焼が生じ、これによって、図5に示すように、未燃焼成分が点火プラグ1の中心電極7周囲の碍子8に付着してデポジット10を生成する場合がある。前記デポジット10は、点火プラグ1の絶縁抵抗を低下させて、中心電極7と接地電極9との間の正規の点火ギャップ間での放電を妨げ、これにより、点火エネルギーを低下させて失火を引き起こす要因となる。
【0026】
そこで、前記ECU3は、混合気の着火燃焼に関与しない点火プラグ1の放電、即ち、空放電を行わせることで、前記デポジット10を燃焼させて、点火エネルギーの回復を図るよう構成されている。
【0027】
ここで、前記空放電制御の第1の実施形態を、図2のフローチャートに従って説明する。
図2のフローチャートにおいて、まず、ステップS1では、圧縮行程にて燃料噴射が行われる成層燃焼条件であるか否かを判別し、成層燃焼条件であるときには、ステップS2へ進む。
【0028】
ステップS2では、燃焼状態が悪化しているか否かを判定する。
前記燃焼状態の悪化は、公知の種々の手段を用いて判断することができ、例えば失火頻度が所定値以上になっている状態を燃焼状態の悪化状態として判定させることができる。また、成層燃焼条件が所定時間以上連続したときに、前記デポジット10の生成による燃焼状態の悪化を推定しても良い。更に、図1に示したように、点火プラグ1の絶縁抵抗を検出する点火プラグ抵抗検出手段12を設け、デポジット10の生成による絶縁抵抗の減少を直接的に検出しても良い。
【0029】
ステップS2で燃焼状態の悪化が判定されると、ステップS3へ進み、圧縮行程での燃料噴射が行われる直前に、同じ気筒で点火プラグ1による放電を行わせるべく、圧縮行程であって燃料噴射が行われる気筒の点火コイル2に対して点火信号を出力する。
【0030】
燃料噴射が行われる直前に点火プラグ1による放電を行わせる構成であれば、点火プラグ1近傍に燃料が存在しないから、空放電となる。
前記燃料噴射が行われる直前の放電を行わせた後は、通常の点火時期において放電を行わせるべく、同じ点火コイル2に対して続けて点火信号を出力する。即ち、図3に示すように、噴射弁駆動信号aが出力される圧縮行程の気筒において、噴射弁駆動信号aに略同期した空放電のための点火信号cの後の同じ圧縮行程内において、燃料を着火燃焼させるための点火信号bが出力されることになる。
【0031】
上記のようにして、通常の点火時期とは独立に空放電の時期を任意に制御する構成とし、然も、圧縮行程中で、かつ、燃料が点火プラグ1に到達する直前に空放電を行わせる構成とすれば、筒内ガス密度が最大限に高い条件下で空放電を行わせることができ、これによって、中心電極7の周囲のデポジット10を効果的に燃焼させることができる。
【0032】
図4に示すように、筒内ガス密度が高いときには、放電電圧が高くなって正規のギャップ間において火花が飛び難くなり、点火プラグ1の中心電極7の周囲の碍子8上にデポジットが付着している場合には、放電電流は正規のギャップ間を飛ばずに、図5に示すように、導電性のデポジット10を介して接地電極9へと漏洩するか、又は、導電性のデポジット10を介した後、正規のギャップよりも間隙の小さいハウジングポケット11の奥で火花が飛ぶことになる。即ち、筒内ガス密度が高くなる圧縮行程のなるべく後の時期に空放電を行わせれば、中心電極7の周囲のデポジット10に沿って電流が確実に流れ、デポジット10を効果的に燃焼させることができるものである。
【0033】
尚、圧縮行程中の空放電は、燃料噴射が行われることのない圧縮行程前半の固定されたタイミングで行わせても良いが、上記のように噴射弁駆動信号と同期をとれば、なるべく空放電の時期を遅らせて筒内ガス密度の最大限に高いときに空放電を行わせることができ、より確実にデポジット10を燃焼させることができる。
【0034】
ところで、図7に示すように、点火プラグ9の電極の温度が低いときほど放電電圧が高くなってギャップ間に火花が飛び難くなり、デポジット10に沿って電流が流れ易くなるので、図6のフローチャートに示す第2の実施形態のように、前記図2のフローチャートに示した圧縮行程中の噴射直前の空放電を、点火プラグ1の電極温度が低くなる機関のアイドル運転時(低負荷,低回転時)に限って行わせるようにしても良い。
【0035】
図6のフローチャートにおいて、ステップS11では、機関が所定のアイドル運転状態(低負荷,低回転状態)であるか否を判別し、アイドル運転状態であるときにのみステップS12以降へ進む。
【0036】
そして、ステップS12で成層燃焼条件であると判定され、かつ、ステップS13で燃焼性の悪化が判定されたときに、ステップS14へ進み、圧縮行程での燃料噴射直前において空放電を行わせる。
【0037】
このようにアイドル運転時であって、かつ、筒内ガス密度が高い圧縮行程中の燃料噴射の直前に空放電を行わせれば、点火プラグ1の温度条件から放電電圧が高くなると共に、筒内ガス密度の条件から放電電圧が高くなるから、より一層正規ギャップ間に火花が飛び難くなり、空放電によりデポジットをより効果的に燃焼させることができる。
【0038】
また、上記では、成層燃焼条件下の圧縮行程中であって、燃料が点火プラグ1に到達する直前に空放電を行わせる構成としたが、筒内ガス密度が高い条件として膨張行程中に空放電を行わせる構成としても良い。
【0039】
第3の実施形態を示す図8のフローチャートにおいて、ステップS21で成層燃焼条件であると判定され、かつ、ステップS22で燃焼性の悪化が判定されると、ステップS23へ進み、膨張行程内の燃焼期間直後に空放電を行わせる。
【0040】
前記燃焼期間は、機関負荷,機関回転速度によって変化するので、通常の点火bから空放電cまでの期間d(図9参照)を、図10に示すように機関負荷,機関回転速度に応じたマップデータとして決定すれば良い。
【0041】
上記のように点火時期とは独立に、燃焼期間の直後に空放電が行われるようにすれば、膨張行程中のなるべく早い時期、即ち、膨張行程中のなるべく筒内ガス密度(放電電圧)の高い時期に空放電を行わせることができ、空放電によるデポジットの燃焼を効果的に行わせることができる。
【0042】
尚、上記の膨張行程における空放電も、アイドル運転時に限って行わせるようにしても良い。
ところで、上記第1,第2の実施形態では、噴射弁駆動信号に同期した点火信号の出力によって、燃料噴射が行われる直前に空放電を行わせる構成としたが、燃料噴射が停止される条件(燃料カット条件)であって噴射弁駆動信号が出力されない場合にも、通常に燃料噴射が行われる場合と同様にして空放電を行わせるべく、図11のフローチャートに示す第4の実施形態に示すようにして、空放電を行わせると良い。
【0043】
図11のフローチャートにおいて、ステップS31では、スロットル弁全閉であって機関回転速度が所定速度以上であることなどを条件として行われる減速燃料カット時であるか否かを判別する。そして、燃料カット条件であれば、ステップS32へ進んで、燃料カット条件に入る直前での圧縮行程中の噴射時期を記憶し、次のステップS33では、燃料噴射を停止させる。
【0044】
ステップS34では、燃焼性の悪化状態であるか否かを判別し、燃焼性の悪化状態であれば、ステップS35へ進み、前記記憶された噴射時期に同期して圧縮行程の気筒の点火コイル2に対して点火信号を出力することにより、空放電を行わせる。
【0045】
ここで、前記噴射時期に同期した空放電の後の点火時期における放電も、燃料カット中であって点火プラグ1の近傍に燃料が存在しないので空放電となり、結果、1サイクル中に2回の空放電が行われることになる。
【0046】
ところで、上記のような燃料カット中であれば、噴射時期や燃焼期間に制限されることなく、どのタイミングで放電を行わせても空放電となるから、図12のフローチャートに示す第5の実施形態に示すように、燃料カット中であるときには、圧縮上死点付近で点火信号を出力して、空放電を最も筒内ガス密度の高い条件下で行わせることができる。
【0047】
図12のフローチャートにおいて、ステップS41では燃料カット条件が成立しているか否かを判別し、成立していればステップS42へ進んで燃料噴射を停止させる。
【0048】
更に、ステップS43では、燃焼性が悪化しているか否かを判別し、燃焼性が悪化している場合には、ステップS44へ進み、通常の点火時期での放電を停止させて、前記点火時期よりも更に遅れた圧縮上死点付近で点火信号を該当気筒に出力して、空放電を行わせる。尚、燃料カット時に、デポジットを燃焼させるための空放電用の点火時期を設定し、該点火時期に従った点火信号の出力によって圧縮上死点付近で空放電を行わせる構成としても良い。
【0049】
圧縮上死点は、通常の噴射時期の後のタイミングであるが、燃料カットが行われる条件であるから、放電を行わせても空放電となる。然も、圧縮上死点付近であれば筒内ガス密度が高く、また、燃料カット条件下であれば、点火プラグ1の温度も低いから、放電電圧が高くなって、点火プラグ1の中心電極7周囲に付着したデポジットに放電電流を確実に流して、前記デポジットを効果的に燃焼させることができる。
【0050】
尚、上記圧縮上死点付近での空放電と共に、その前の圧縮行程及び/又は膨張行程のなるべく圧縮上死点に近い時期においても空放電を行わせる構成としても良い。
【図面の簡単な説明】
【図1】実施の形態における直噴火花点火式内燃機関の制御システムを示すブロック図。
【図2】空放電制御の第1の実施形態を示すフローチャート。
【図3】上記第1の実施形態における放電の様子を示すタイムチャート。
【図4】筒内ガス密度と放電電圧との相関を示す線図。
【図5】点火プラグの詳細な構造及びデポジットの付着状態を説明するための部分拡大図。
【図6】空放電制御の第2の実施形態を示すフローチャート。
【図7】電極温度と放電電圧との相関を示す線図。
【図8】空放電制御の第3の実施形態を示すフローチャート。
【図9】上記第3の実施形態における放電の様子を示すタイムチャート。
【図10】上記第3の実施形態における空放電の時期を決定する期間dを求めるためのマップを示す線図。
【図11】空放電制御の第4の実施形態を示すフローチャート。
【図12】空放電制御の第5の実施形態を示すフローチャート。
【符号の説明】
1 点火プラグ
2 点火コイル
3 エンジンコントロールユニット(ECU)
4 クランク角センサ
5 気筒判別センサ
6 スロットルセンサ
7 中心電極
8 碍子
9 接地電極
10 デポジット
11 ハウジングポケット
12 点火プラグ抵抗検出手段
13 燃料噴射弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ignition control device for a direct-injection spark ignition type internal combustion engine, and more particularly, to a technique for recovering combustibility (ignition energy) by burning a deposit attached to a spark plug by air discharge.
[0002]
[Prior art]
Conventionally, in a direct-injection spark ignition type internal combustion engine, if insulation resistance is reduced due to adhesion of a deposit to a spark plug, ignition energy is reduced and a misfire occurs. When it is determined that the ignition control is performed, the ignition signal is simultaneously applied to the ignition coil units of the cylinders other than the ignition control target cylinder at the ignition timing of the ignition control target cylinder, so that the so-called idle air which does not participate in the ignition combustion of the air-fuel mixture is provided. There has been an ignition control device configured to cause discharge, thereby burning the deposit and recovering ignition energy (see Japanese Patent Application Laid-Open No. 9-303189).
[0003]
[Problems to be solved by the invention]
By the way, as described above, in the configuration in which the ignition signal is simultaneously applied to the ignition coil units of the cylinders other than the cylinder whose ignition is to be controlled at the ignition timing, the timing for performing the idle discharge in the case of the four-cylinder engine is determined by the ignition timing. After 180 ° CA (late stage of expansion stroke), after 360 ° CA of ignition timing (late stage of exhaust stroke), and after 540 ° CA of ignition timing (late stage of intake stroke). It has the common characteristic that it is a relatively low period.
[0004]
On the other hand, between the discharge voltage of the spark plug and the in-cylinder gas density, as shown in FIG. 4, the discharge voltage decreases as the in-cylinder gas density decreases, so that sparks can easily fly between regular gaps. Are known.
[0005]
That is, the conventional air discharge control for recovery of the ignition energy is to perform the air discharge under the condition that the spark is easy to fly between the regular gaps, and the deposit adheres to the insulator around the center electrode. Even if it is the case, sparks fly in the regular gap between the center electrode and the ground electrode, and the current flowing through the deposit and leaking to the ground electrode is small, so that the deposit is effectively burned. Therefore, there is a problem that the effect of recovering the ignition energy cannot be sufficiently obtained.
[0006]
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and a deposit adhered on an insulator around a center electrode of a spark plug is effectively burned by air discharge, so that a recovery of combustibility (ignition energy) can be reliably obtained. An object of the present invention is to provide an ignition control device for a direct injection spark ignition type internal combustion engine.
[0007]
[Means for Solving the Problems]
Therefore, according to the first aspect of the present invention, the ignition control of a direct injection spark ignition type internal combustion engine having an operating condition for performing fuel injection in a compression stroke is provided for each cylinder with a fuel injection valve having an injection port facing the cylinder. An apparatus which, in addition to the discharge of the spark plug at a normal ignition timing, is configured to perform an empty discharge of the spark plug when the deterioration of the flammability is determined, and to deposit around the center electrode of the spark plug. The configuration is such that the above-mentioned empty discharge is performed under the in-cylinder gas density condition in which a current flows along.
According to such a configuration, the discharge voltage of the ignition plug becomes higher as the in-cylinder gas density becomes higher, and the discharge spark becomes more difficult to fly between regular gaps as the discharge voltage becomes higher. Since the empty discharge below increases the leakage current flowing through the deposit around the center electrode, the effect of the deposit is made by performing the empty discharge under the in-cylinder gas density condition where the current flows along the deposit. Burn.
[0008]
According to the second aspect of the present invention, there is provided an ignition control device for a direct injection spark ignition type internal combustion engine having a fuel injection valve having an injection port facing a cylinder for each cylinder, and having operating conditions for performing fuel injection in a compression stroke. Therefore, in addition to the discharge of the ignition plug at the normal ignition timing, when the deterioration of the flammability is determined, the discharge of the ignition plug is performed so as to perform the idle discharge. The highest timing is detected based on engine operating conditions, and the idle discharge is performed at the detected timing.
According to such a configuration, by performing the idle discharge at the time when the in-cylinder gas density becomes the highest, the current flows reliably along the deposit around the center electrode, and the deposit burns effectively.
[0009]
According to the third aspect of the invention, the timing of the idle discharge is set to be immediately before the fuel injection in the compression stroke.
According to such a configuration, before the fuel injection during the compression stroke, the discharge is not involved in the ignition combustion of the fuel, and the discharge becomes an empty discharge. With such a configuration, the empty discharge is performed under the condition that the in-cylinder gas density is as high as possible.
[0011]
According to the fourth aspect of the present invention, the combustion period from the normal ignition operation is detected based on the engine operating conditions, and the idle discharge time is set immediately after the combustion period during the expansion stroke .
According to this configuration, the timing of the air discharge during the expansion stroke is controlled in response to the fact that the combustion period after the normal ignition operation changes according to the engine operating conditions (engine load, engine speed). The air discharge can be performed at a time when the in- cylinder gas density is as high as possible during the expansion stroke, and at a time when unburned components remaining until the latter stage of combustion adhere to the ignition plug to generate a deposit.
[0012]
According to a fifth aspect of the present invention, the idle discharge is performed only in an idle operation state of the engine.
According to this configuration, even when the idle discharge is performed immediately before the fuel injection during the compression stroke, the idle discharge is not performed when the engine is not in the idle operation state.
[0013]
The idle operation state of the engine is a condition in which the temperature of the ignition plug is low, and the discharge voltage becomes higher as the temperature of the ignition plug becomes lower, and the discharge spark becomes difficult to fly between the regular gaps. , The deposits are more effectively burned as compared with the operation state in which the temperature of the other ignition plugs is high.
[0014]
In the invention according to claim 6 , the timing of the idle discharge is set to be near the compression top dead center in the fuel cut state.
According to such a configuration, under the condition that fuel injection is stopped such as deceleration fuel cut, there is no fuel near the ignition plug near the compression top dead center where the in-cylinder gas density becomes highest, and there is no fuel near the compression top dead center. The discharge operation of the ignition plug in the above becomes idle discharge, and the idle discharge is performed under the condition that the in-cylinder gas density (discharge voltage) is the highest.
[0015]
【The invention's effect】
According to the first and second aspects of the present invention, there is an effect that the electric current flows reliably along the deposit around the center electrode of the ignition plug by the empty discharge, and the deposit can be effectively burned.
[0016]
According to the third aspect of the present invention, there is an effect that the air discharge can be performed during the compression stroke and as close to the top dead center as possible and under the condition that the in-cylinder gas density is maximized.
[0017]
According to the fourth aspect of the present invention, there is an effect that it is possible to perform the empty discharge under the condition where the in-cylinder gas density is the highest while avoiding the combustion period during the expansion stroke.
According to the fifth aspect of the present invention, the deposit can be more effectively burned by performing the idle discharge only under the condition that the temperature of the spark plug is low and the discharge voltage is high.
[0018]
According to the sixth aspect of the present invention, there is an effect that an empty discharge can be performed near the top dead center where the in-cylinder gas density becomes highest in the fuel cut state.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram showing a control system of a four-cycle type automobile gasoline engine which is a direct injection spark ignition type internal combustion engine.
[0020]
In FIG. 1, a high voltage is individually applied to a spark plug 1 provided for each cylinder from a secondary side of an ignition coil 2 provided for each spark plug 1. The energization of the primary side of each ignition coil 2 is controlled by an engine control unit (hereinafter referred to as ECU) 3.
[0021]
The ECU 3 receives detection signals from a crank angle sensor 4 for detecting a crank angle, a cylinder detection sensor for performing a cylinder determination, and a throttle sensor 6 for detecting the opening of a throttle valve (not shown). Although not shown, the ECU 3 includes an air-fuel ratio sensor for detecting the air-fuel ratio of the combustion mixture based on the oxygen concentration in the exhaust gas and an air flow meter for measuring the intake air amount of the engine, in addition to the various sensors. And a detection signal from a water temperature sensor or the like for detecting the temperature of the cooling water of the engine.
[0022]
The ECU 3 calculates the fuel injection timing and the fuel injection amount based on the detection signals from the various sensors, and according to the calculation result, the fuel provided for each cylinder with the injection port facing the cylinder. An injection valve drive signal is output to the injection valve 13 to control fuel injection.
[0023]
More specifically, the target air-fuel ratio is set based on the engine operating conditions such as the engine load, the engine speed, the water temperature, and the time after starting, and the homogeneous combustion by the fuel injection in the intake stroke and the fuel injection in the compression stroke are performed. And stratified combustion. Then, a fuel injection amount for controlling to the target air-fuel ratio is calculated, and an injection timing is calculated for each of the homogeneous combustion and the stratified combustion, and the injection timing has a pulse width corresponding to the fuel injection amount. A valve drive signal is output to the fuel injection valve 13 of the cylinder at the injection timing.
[0024]
Further, the ECU 3 calculates an ignition timing based on an engine load, an engine rotation speed, and the like, and discharges the calculated ignition timing to the ignition control target cylinder determined by the cylinder determination sensor 5. An ignition signal is output to the ignition coil 2 to control energization of the primary side of the ignition coil 2.
[0025]
By the way, when the fuel injection is performed in the compression stroke, the time from the fuel injection to the ignition timing is short, so that the fuel is insufficiently vaporized and incomplete combustion occurs. As a result, as shown in FIG. The combustion component may adhere to the insulator 8 around the center electrode 7 of the spark plug 1 to generate a deposit 10. The deposit 10 lowers the insulation resistance of the spark plug 1 and prevents discharge between the regular ignition gap between the center electrode 7 and the ground electrode 9, thereby lowering ignition energy and causing misfire. It becomes a factor.
[0026]
Therefore, the ECU 3 is configured to recover the ignition energy by causing the deposit 10 to burn by causing the discharge of the spark plug 1 that is not involved in the ignition combustion of the air-fuel mixture, that is, by causing the idle discharge.
[0027]
Here, a first embodiment of the idle discharge control will be described with reference to the flowchart of FIG.
In the flowchart of FIG. 2, first, in step S1, it is determined whether or not a stratified combustion condition under which fuel injection is performed in the compression stroke. If the stratified combustion condition, the process proceeds to step S2.
[0028]
In step S2, it is determined whether the combustion state has deteriorated.
The deterioration of the combustion state can be determined using various known means. For example, a state in which the misfire frequency is equal to or higher than a predetermined value can be determined as the deterioration state of the combustion state. Further, when the stratified combustion conditions have continued for a predetermined time or more, the deterioration of the combustion state due to the generation of the deposit 10 may be estimated. Further, as shown in FIG. 1, a spark plug resistance detecting means 12 for detecting the insulation resistance of the spark plug 1 may be provided to directly detect a decrease in the insulation resistance due to the generation of the deposit 10.
[0029]
If it is determined in step S2 that the combustion state has deteriorated, the process proceeds to step S3, and immediately before the fuel injection is performed in the compression stroke, the fuel injection is performed in the compression stroke in order to cause the spark plug 1 to discharge in the same cylinder. The ignition signal is output to the ignition coil 2 of the cylinder in which the operation is performed.
[0030]
If the discharge is performed by the spark plug 1 immediately before the fuel injection is performed, no fuel is present in the vicinity of the spark plug 1, so that the discharge is idle.
After the discharge immediately before the fuel injection is performed, the ignition signal is continuously output to the same ignition coil 2 so as to perform the discharge at the normal ignition timing. That is, as shown in FIG. 3, in the cylinder in the compression stroke in which the injection valve drive signal a is output, in the same compression stroke after the ignition signal c for the air discharge substantially synchronized with the injection valve drive signal a, An ignition signal b for igniting and burning the fuel is output.
[0031]
As described above, the timing of the idle discharge is arbitrarily controlled independently of the normal ignition timing, and the idle discharge is performed during the compression stroke and immediately before the fuel reaches the ignition plug 1. With this configuration, empty discharge can be performed under the condition that the in-cylinder gas density is as high as possible, whereby the deposit 10 around the center electrode 7 can be effectively burned.
[0032]
As shown in FIG. 4, when the in-cylinder gas density is high, the discharge voltage becomes high, making it difficult for sparks to fly between the regular gaps, and depositing on the insulator 8 around the center electrode 7 of the ignition plug 1. In this case, as shown in FIG. 5, the discharge current leaks to the ground electrode 9 via the conductive deposit 10 or does not fly through the regular gap, or After passing, sparks will fly in the interior of the housing pocket 11 where the gap is smaller than the regular gap. In other words, if an empty discharge is performed as much as possible during the compression stroke in which the in-cylinder gas density becomes high, current flows reliably along the deposit 10 around the center electrode 7 and the deposit 10 is effectively burned. Can be done.
[0033]
The idle discharge during the compression stroke may be performed at a fixed timing in the first half of the compression stroke in which fuel injection is not performed. However, if the discharge is synchronized with the injection valve drive signal as described above, the idle discharge is preferably performed. When the discharge timing is delayed, the idle discharge can be performed when the in-cylinder gas density is as high as possible, and the deposit 10 can be more reliably burned.
[0034]
By the way, as shown in FIG. 7, the lower the temperature of the electrode of the spark plug 9 is, the higher the discharge voltage is, the more difficult it is for a spark to fly between the gaps, and the easier it is for the current to flow along the deposit 10. As in the second embodiment shown in the flow chart, the air discharge immediately before the injection during the compression stroke shown in the flow chart of FIG. 2 is performed during the idling operation of the engine in which the electrode temperature of the ignition plug 1 becomes low (low load, low load). (During rotation).
[0035]
In the flowchart of FIG. 6, in step S11, it is determined whether or not the engine is in a predetermined idle operation state (low load, low rotation state), and only when the engine is in the idle operation state, the process proceeds to step S12 and thereafter.
[0036]
Then, when it is determined in step S12 that the stratified combustion condition is satisfied, and when it is determined in step S13 that the combustibility has deteriorated, the process proceeds to step S14, in which idle discharge is performed immediately before fuel injection in the compression stroke.
[0037]
If the idle discharge is performed during the idling operation and immediately before the fuel injection during the compression stroke in which the in-cylinder gas density is high, the discharge voltage increases due to the temperature condition of the ignition plug 1 and the in-cylinder Since the discharge voltage is increased due to the gas density condition, sparks are less likely to fly between the regular gaps, and the deposit can be more effectively burned by the empty discharge.
[0038]
In the above description, the air discharge is performed during the compression stroke under the stratified combustion condition and immediately before the fuel reaches the ignition plug 1. However, the condition that the in-cylinder gas density is high causes the air discharge during the expansion stroke. The discharge may be performed.
[0039]
In the flowchart of FIG. 8 showing the third embodiment, if it is determined in step S21 that the stratified combustion condition is satisfied, and if it is determined in step S22 that the combustibility has deteriorated, the process proceeds to step S23, in which the combustion in the expansion stroke is performed. An empty discharge is performed immediately after the period.
[0040]
Since the combustion period varies depending on the engine load and the engine rotation speed, the period d (see FIG. 9) from the normal ignition b to the idle discharge c depends on the engine load and the engine rotation speed as shown in FIG. What is necessary is just to determine as map data.
[0041]
As described above, if the idle discharge is performed immediately after the combustion period, independently of the ignition timing, as early as possible during the expansion stroke, that is, the in-cylinder gas density (discharge voltage) as much as possible during the expansion stroke Air discharge can be performed at a high time, and deposit combustion by air discharge can be performed effectively.
[0042]
It should be noted that the idle discharge in the above expansion stroke may be performed only during the idling operation.
By the way, in the first and second embodiments, the idle discharge is performed immediately before the fuel injection is performed by the output of the ignition signal synchronized with the injection valve drive signal. However, the condition for stopping the fuel injection is described. Even in the case of (fuel cut condition) and the injection valve drive signal is not output, the fourth embodiment shown in the flowchart of FIG. As shown in the figure, it is preferable to perform the idle discharge.
[0043]
In the flowchart of FIG. 11, in step S31, it is determined whether or not a deceleration fuel cut is performed on condition that the throttle valve is fully closed and the engine speed is equal to or higher than a predetermined speed. If it is the fuel cut condition, the process proceeds to step S32, where the injection timing during the compression stroke immediately before entering the fuel cut condition is stored, and in the next step S33, the fuel injection is stopped.
[0044]
In step S34, it is determined whether or not the flammability is deteriorated. If the flammability is deteriorated, the process proceeds to step S35, and the ignition coil 2 of the cylinder in the compression stroke is synchronized with the stored injection timing. , An idle signal is output to generate an idle discharge.
[0045]
Here, the discharge at the ignition timing after the idle discharge synchronized with the injection timing is also an idle discharge because the fuel is being cut and no fuel is present near the spark plug 1, and as a result, two discharges are performed during one cycle. An empty discharge will be performed.
[0046]
By the way, during the fuel cut as described above, the discharge is not limited by the injection timing and the combustion period and the discharge is performed at any timing, and the idle discharge is performed. Therefore, the fifth embodiment shown in the flowchart of FIG. As shown in the embodiment, when the fuel is being cut, an ignition signal is output in the vicinity of the compression top dead center so that the idle discharge can be performed under the condition of the highest in-cylinder gas density.
[0047]
In the flowchart of FIG. 12, in step S41, it is determined whether a fuel cut condition is satisfied. If so, the process proceeds to step S42 to stop fuel injection.
[0048]
Further, in step S43, it is determined whether the flammability has deteriorated. If the flammability has deteriorated, the process proceeds to step S44, in which the discharge at the normal ignition timing is stopped, and the ignition timing is reduced. An ignition signal is output to the corresponding cylinder in the vicinity of the compression top dead center, which is further delayed than it, to cause an idle discharge. Note that, at the time of fuel cut, an ignition timing for air discharge for burning the deposit may be set, and the air discharge may be performed near the compression top dead center by the output of an ignition signal according to the ignition timing.
[0049]
Although the compression top dead center is a timing after the normal injection timing, it is a condition under which the fuel cut is performed. Of course, the gas density in the cylinder is high near the compression top dead center, and the temperature of the spark plug 1 is low under the fuel cut condition. 7. The discharge current can be reliably applied to the deposits adhered to the surroundings, and the deposits can be burned effectively.
[0050]
It should be noted that the configuration may be such that the air discharge is performed near the compression top dead center as well as at the time near the compression top dead center as much as possible during the preceding compression stroke and / or expansion stroke.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a control system of a direct injection spark ignition type internal combustion engine according to an embodiment.
FIG. 2 is a flowchart showing a first embodiment of idle discharge control.
FIG. 3 is a time chart showing a state of discharge in the first embodiment.
FIG. 4 is a diagram showing a correlation between in-cylinder gas density and discharge voltage.
FIG. 5 is a partially enlarged view for explaining a detailed structure of a spark plug and a state of attachment of a deposit.
FIG. 6 is a flowchart illustrating a second embodiment of idle discharge control.
FIG. 7 is a diagram showing a correlation between an electrode temperature and a discharge voltage.
FIG. 8 is a flowchart showing a third embodiment of idle discharge control.
FIG. 9 is a time chart showing a state of discharge in the third embodiment.
FIG. 10 is a diagram showing a map for obtaining a period d for determining a timing of idle discharge in the third embodiment.
FIG. 11 is a flowchart illustrating a fourth embodiment of idle discharge control.
FIG. 12 is a flowchart showing a fifth embodiment of the idle discharge control.
[Explanation of symbols]
1 spark plug 2 ignition coil 3 engine control unit (ECU)
Reference Signs List 4 Crank angle sensor 5 Cylinder discrimination sensor 6 Throttle sensor 7 Center electrode 8 Insulator 9 Ground electrode 10 Deposit 11 Housing pocket 12 Spark plug resistance detecting means 13 Fuel injection valve

Claims (6)

各気筒毎に筒内に噴口を臨ませた燃料噴射弁を備え、圧縮行程で燃料噴射を行わせる運転条件をもつ直噴火花点火式内燃機関の点火制御装置であって、
通常の点火時期における点火プラグの放電に加え、燃焼性の悪化が判定されたときに点火プラグの空放電を行わせるよう構成すると共に、
前記点火プラグの中心電極周囲のデポジットに沿って電流が流れる筒内ガス密度条件において前記空放電を行わせることを特徴とする直噴火花点火式内燃機関の点火制御装置。
An ignition control device for a direct-injection spark ignition type internal combustion engine having a fuel injection valve having an injection port facing a cylinder in each cylinder, and having operating conditions for performing fuel injection in a compression stroke,
In addition to the discharge of the ignition plug at the normal ignition timing, the configuration is such that the discharge of the ignition plug is performed when the deterioration of the flammability is determined,
An ignition control device for a direct-injection spark ignition type internal combustion engine , wherein the idle discharge is performed under an in-cylinder gas density condition in which a current flows along a deposit around a center electrode of the ignition plug .
各気筒毎に筒内に噴口を臨ませた燃料噴射弁を備え、圧縮行程で燃料噴射を行わせる運転条件をもつ直噴火花点火式内燃機関の点火制御装置であって、
通常の点火時期における点火プラグの放電に加え、燃焼性の悪化が判定されたときに点火プラグの空放電を行わせるよう構成すると共に、
燃料を着火燃焼させずかつ筒内ガス密度が最も高い時期を機関運転条件に基づいて検出し、該検出した時期に前記空放電を行わせることを特徴とする直噴火花点火式内燃機関の点火制御装置。
An ignition control device for a direct-injection spark ignition type internal combustion engine having a fuel injection valve having an injection port facing a cylinder in each cylinder, and having operating conditions for performing fuel injection in a compression stroke,
In addition to the discharge of the ignition plug at the normal ignition timing, the configuration is such that the discharge of the ignition plug is performed when the deterioration of the flammability is determined,
Ignition of a direct-injection spark-ignition type internal combustion engine , wherein a timing at which fuel is not ignited and burned and a gas density in a cylinder is the highest is detected based on engine operating conditions, and the idle discharge is performed at the detected timing. Control device.
前記空放電の時期を、圧縮行程での燃料噴射の直前とすることを特徴とする請求項記載の直噴火花点火式内燃機関の点火制御装置。 3. The ignition control device for a direct injection spark ignition type internal combustion engine according to claim 2 , wherein the timing of the idle discharge is immediately before fuel injection in a compression stroke. 通常の点火動作からの燃焼期間を機関運転条件に基づいて検出し、膨張行程中の前記燃焼期間が経過した直後を前記空放電の時期とすることを特徴とする請求項記載の直噴火花点火式内燃機関の点火制御装置。 3. The direct injection spark according to claim 2 , wherein a combustion period from a normal ignition operation is detected based on an engine operating condition, and a time immediately after the combustion period during an expansion stroke elapses is set as the idle discharge timing. An ignition control device for an ignition type internal combustion engine. 前記空放電を、機関のアイドル運転状態においてのみ行わせることを特徴とする請求項1〜4のいずれか1つに記載の直噴火花点火式内燃機関の点火制御装置。The ignition control device for a direct injection spark ignition type internal combustion engine according to any one of claims 1 to 4 , wherein the idle discharge is performed only in an idle operation state of the engine. 前記空放電の時期を、燃料カット状態での圧縮上死点付近とすることを特徴とする請求項記載の直噴火花点火式内燃機関の点火制御装置。 3. The ignition control device for a direct-injection spark ignition type internal combustion engine according to claim 2 , wherein the timing of the idle discharge is near a compression top dead center in a fuel cut state.
JP33109098A 1998-11-20 1998-11-20 Ignition control device for direct injection spark ignition type internal combustion engine Expired - Fee Related JP3565059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33109098A JP3565059B2 (en) 1998-11-20 1998-11-20 Ignition control device for direct injection spark ignition type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33109098A JP3565059B2 (en) 1998-11-20 1998-11-20 Ignition control device for direct injection spark ignition type internal combustion engine

Publications (2)

Publication Number Publication Date
JP2000161192A JP2000161192A (en) 2000-06-13
JP3565059B2 true JP3565059B2 (en) 2004-09-15

Family

ID=18239752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33109098A Expired - Fee Related JP3565059B2 (en) 1998-11-20 1998-11-20 Ignition control device for direct injection spark ignition type internal combustion engine

Country Status (1)

Country Link
JP (1) JP3565059B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19945813A1 (en) * 1999-09-24 2001-03-29 Bosch Gmbh Robert Method for operating an internal combustion engine
JP2006170109A (en) * 2004-12-17 2006-06-29 Nissan Motor Co Ltd Ignition control device for cylinder direct injection type internal combustion engine
JP4674193B2 (en) 2005-11-22 2011-04-20 日本特殊陶業株式会社 Ignition control method for plasma jet spark plug and ignition device using the method
JP5548029B2 (en) * 2010-05-18 2014-07-16 本田技研工業株式会社 Control device for internal combustion engine
JP7055248B2 (en) * 2019-06-20 2022-04-15 三菱電機株式会社 Ignition system control device

Also Published As

Publication number Publication date
JP2000161192A (en) 2000-06-13

Similar Documents

Publication Publication Date Title
US7810469B2 (en) Combustion control based on a signal from an engine vibration sensor
JPH08177586A (en) Control device for internal combustion engine
CN110872995A (en) System and method for monitoring ignition system
JP3565059B2 (en) Ignition control device for direct injection spark ignition type internal combustion engine
US20070215100A1 (en) Ignition Control Apparatus For An Engine
CN111636970A (en) Cold start oil injection ignition control method based on composite injection engine
EP3109457B1 (en) Ignition device and ignition method for internal combustion engine
JP2004332598A (en) Start control device for internal combustion engine
JP2017066903A (en) Control device of internal combustion engine
JP2006002683A (en) Control device for internal combustion engine
JP2000073850A (en) Misfire detecting device for internal combustion engine
JP2008280865A (en) Start control device for internal combustion engine
JP3265999B2 (en) Knock control device for in-cylinder injection internal combustion engine
JP3695954B2 (en) Control device for spark ignition type direct injection internal combustion engine
Dong et al. Misfiring control in current cycle at engine start employing ion sensing technology
JP3944985B2 (en) Control device for direct injection internal combustion engine
JP2002188445A (en) Control system for autoignition/spark ignition type internal combustion engine
JP3860994B2 (en) Misfire detection device for internal combustion engine
JP4066476B2 (en) Control device for internal combustion engine
JP2000345949A (en) Ignition control device for internal combustion engine
JP3525796B2 (en) Ignition control device for internal combustion engine
JP2004052634A (en) Start control device for spark ignition type internal combustion engine
JP2000337235A (en) Ignition control device of internal combustion engine
JPH10212990A (en) Fuel injection control device of internal combustion engine
Duhr Intelligent Engine Control & Diagnostic Using the Ionization Current Sensing Technology

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees